
Deep Distributional Temporal
Di↵erence Learning for Game
Playing

Frej Berglind

Master’s thesis

2019:E66

Faculty of Engineering

Centre for Mathematical Sciences

Mathematics

C
E
N
T
R
U
M

S
C
I
E
N
T
I
A
R
U
M

M
A
T
H
E
M
A
T
I
C
A
R
U
M

1

Abstract

Temporal di↵erence learning is considered one of the most successful methods in
reinforcement learning. Recent developments in deep learning have opened up a
new world of opportunities. In this project, we compare classic scalar temporal
di↵erence learning with three new distributional algorithms for playing the game
of 5-in-a-row using deep neural networks: distributional temporal di↵erence
learning with constant learning rate, and two distributional temporal di↵erence
algorithms with adaptive learning rate. All these algorithms are applicable to
any two-player deterministic zero sum game and can probably be successfully
generalized to other settings.

As it turned out, all algorithms performed well and developed strong strate-
gies. The algorithms implementing the adaptive methods learned more quickly
in the beginning, but in the long run, they were outperformed by the algorithms
using constant learning rate which, without any prior knowledge, learned to play
the game at a very high level after 200 000 games of self play.

2

3

Acknowledgements

I wish to thank my advisors Professor Jianhua Chen of Louisiana State Uni-
versity and Professor Alexandros Sopasakis of Lund University for providing
invaluable feedback, cherished guidance and wonderful support throughout the
project. I always left my weekly meetings with Dr. Chen excited about the
research and inspired to carry on with the work.

Thanks to the computer science department of Louisiana State University
for providing me with a pleasant workplace, e�cient computational resources
and friendly colleagues. Thanks to Doug Lafield for helping me get started with
running my code on the GPU server. It was essential for the success of this
project.

Thanks to my family for supporting me throughout my education, helping
me find my place in life. Thanks to Jing Tan for sharing this time with me and
for her unparalleled love of cabbage. Thanks to Carl Henrik Dahmén and Jo-
hannes Kasmir for keeping me company through countless hours of exercises and
discussions by the chalkboards in the mathematics building of Lund University.

4

5

Contents

1 Introduction 8

1.1 Related Works . 10

2 Background 11

2.1 Reinforcement Learning . 11
2.2 The Game of 5-in-a-row . 12
2.3 Alternating Markov Games . 13

3 Method 16

3.1 Temporal Di↵erence Learning . 16
3.2 Distributional Temporal Di↵erence Learning 18
3.3 Optimality . 19
3.4 Adaptive Distributional Temporal Di↵erence Learning 19
3.5 My Original Algorithm . 19
3.6 Exploration . 20
3.7 The Opponent . 21
3.8 Training Process . 21
3.9 Tournament . 22
3.10 Implementation . 22
3.11 Neural Networks . 23

4 Experiments 24

4.1 Initial Network Design . 24
4.2 Larger Networks . 27
4.3 Batch Size . 27
4.4 Residual Network . 29
4.5 Improved Residual Networks . 33
4.6 Self Play . 35
4.7 Final Experiment . 39

5 Discussions 43

5.1 Comparison of the Algorithms . 43
5.2 Quality of the Results . 44
5.3 Problems with Optimality as Adaptive Learning Rate 44

6 Conclusions 46

6.1 Future Directions . 47

6

7

Chapter 1

Introduction

Reinforcement learning is a branch of machine learning inspired by how humans
learn by practicing. Through trial and error, an agent gradually learns to max-
imize a reward or win a game. These techniques could be applied to a wide
range of sequential or adversarial optimization problems and are predicted to
be an essential part of the development of artificial intelligence [3].

In recent years, many great breakthroughs have been made by combining
reinforcement learning with deep neural networks. A neural network is an ap-
proach to machine learning inspired by the human brain. It consists of layers
of mathematical neurons that can be trained to recognize patterns and make
predictions. Deep learning is the application of deep neural networks, using
many layers of neurons to learn abstract features and perform complex tasks.
The field of deep learning has shown a dramatic rise in the past ten years due
to more powerful computers, access to larger datasets and new techniques for
training deep networks [5].

Furthermore, deep learning combined with reinforcement learning has led
to great achievements in game playing. The reinforcement learning algorithm
acts as a link between the game and the neural network, helping the neural
network make sense of the game. This is illustrated in Figure 1.1. The neural
network can be set up to make decisions in the game, but in the beginning,
it does not know anything about the game and will play very poorly. In this
project, it was set up to predict the outcome of the game based on a state
and used this prediction to select the best move. The reinforcement learning
algorithm can analyse games played by the neural network and generate training
data that is used to improve the neural network. By iterating between playing
games, analysing them and training the network using the new data, the neural
network can gradually learn to play the game.

8

Neural
Network Game

Reinforcement
Learning

Figure 1.1: The reinforcement learning algorithm helps the neural network learn
the game. The neural network makes decisions and plays the game. The games
played by the neural network are analysed by the reinforcement learning algo-
rithm which generates training data. The training data is used to train and
improve the neural network. Through this process, it gradually develops a
strategy for the game.

Games provide a suitable setting to explore di↵erent decision making and
learning algorithms. The combination of simple rules and complex strategies
makes board games especially appealing. It might seem frivolous to waste time
and resources on game playing, but the knowledge gained in game playing can
be used in many other domains. Just like a chemist makes experiments in the
controlled environment of a laboratory, AI research is performed in the artificial
environments of games. Games o↵er absolute definitions of the choices the agent
has to make and measurements of it’s performance; there is no doubt about the
winner or the score in a well defined game.

In the long run, the goal is not to create the best player for a certain game.
The goal is to gain knowledge about the decision making and learning processes.
The game is simply a testbed for comparing the performance of di↵erent meth-
ods. Algorithms used for game playing can be used in many applications that
require e�cient search methods, complex reasoning or long term planning such
as autonomous driving, tra�c control, recommendation systems, robotics and
DNA analysis.

One of the most common and successful methods for reinforcement learn-
ing in game playing is temporal di↵erence learning (TD) [21]. It is a group of
reinforcement learning algorithms applicable to a wide range of problems. How-
ever, most real world problems require more data e�cient learning and better
performance than what is currently possible with reinforcement learning [9].
The classic approach to TD is learning a strategy by approximating the ex-
pected reward, but recent research [1] has shown greatly improved results using
distributional TD, which approximates the distribution of the reward.

The goal of this project is to study temporal di↵erence learning algorithms
combined with deep neural networks and explore the possible advantages of dis-
tributional TD and an adaptive learning rate. As a framework for comparing
di↵erent algorithms, I chose the game of 5-in-a-row. In order to create good
conditions for the algorithms to learn, I also put some e↵orts in neural net-

9

work design and hyperparameter tuning and these results will also be covered
in this thesis. A probabilistic measure of an action’s optimality is proposed,
which served as an adaptive learning rate for distributional temporal di↵erence
learning.

1.1 Related Works

Game playing is a classic area of AI research. Games provide a suitable setting
to explore di↵erent decision making and learning algorithms. Since the dawn of
the field of AI research games such as Checkers, Chess and Go have been very
common settings for AI experiments. Here, I will provide a short overview of
such experiments.

The earliest example of reinforcement learning in game playing is Arthur
Samuel’s checkers experiments from 1959, where he constructed a reinforcement
learning algorithm that managed to beat him in the game of checkers after 10
hours of practice [17]. That is quite an achievement considering the limitations
of a 1950’s computer.

In 1992, the Backgammon program TD-Gammon reached master level in
Backgammon by using temporal di↵erence learning and a neural network [23].
In 1997, IBM’s chess computer DeepBlue based on highly optimized Minimax
search and a handcrafted evaluation function beat the world champion Garry
Kasparov [23].

In 2014 Google Deepmind combined deep learning with Q-learning (a kind of
TD-learning) and created an algorithm that learned to play several Atari video
games from the raw images [12]. In 2017, they published the paper ”A Distribu-
tional Perspective on Reinforcement Learning” [1] introducing an algorithm that
combine deep learning and distributional temporal di↵erence learning showing
greatly improved performance on Atari games. It is similar to the distributional
temporal di↵erence learning algorithm used in this project.

In 2016, Google Deepmind’s AlphaGo [19] using a new reinforcement learn-
ing algorithm and a deep neural network, beat a professional Go player and a
year later beat the world’s top ranked Go player [23]. A later version of the
algorithm, AlphaGoZero [20] greatly outperformed it’s predecessor and learned
the game without any prior knowledge. A generalized version of this algorithm,
AlphaZero [18] reached superhuman performance in Go, Chess and Shogi with-
out any additional tuning for the di↵erent games. Since it has achieved very
impressive results in these complex games, the AlphaZero algorithm is likely to
outperfrom TD-learning in playing the quite simple game of 5-in-a-row. How-
ever, the AlphaZero algorithm is specialized on board games and is compu-
tationally expensive. TD-learning has a wider range of applications and even
though it might not beat AlphaZero for playing board games, progress in this
field can be very useful.

10

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement leaning is a branch of machine learning where an agent learns to
make decisions that optimize a reward, similar to how humans learn by practis-
ing. A common setting for reinforcement learning is a Markov decision process
(MDP). An MDP is centered around an agent interacting with an environment.
I will use a simplified description of an MDP restricted to deterministic pro-
cesses. A deterministic MDP is defined by a tuple: (S,A, r, f) where S is a
set of states, A is a function returning the set of all possible actions in a given
state, r is a function returning the reward for selecting an action, and f is the
transition function.

The process begins in some state, s0 2 S. The agent selects an action
a0 2 A(s0), receives the reward r(s0, a0) and moves to the state s1 = f(s0, a0).
From there, the agent will make a new action, a1 2 A(s1), receive a reward
r(s1, a1) and move on to another state, s2 = f(s1, a1). The process continues
like this. The goal of the agent is to maximize the cumulative reward [11]. A
function that maps each state to an action is called a policy [13]. It represents
a strategy for the agent. A policy can be developed gradually by letting the
agent practice and learn from its mistakes.

A central equation in reinforcement learning is the recursive Bellman Equa-
tion [22],

V (s) = max
ai2A(s)

h
r(s, ai) + �V (f(s, ai))

i
(2.1)

where V (s) is the expected reward in state s, � 2 [0, 1] is the discount factor
and f(s, ai) is the successor of s after the action ai. The Bellman Equation
states that the expected reward in s is the sum of the immediate reward and
the discounted reward of the successor state for the best action in s. This version
of the Bellman Equation is simplified for a deterministic process.

11

Exploration & Exploitation

The dilemma of exploration and exploitation is central in reinforcement learn-
ing. In this context, exploration means trying out suboptimal actions to learn
more about the environment. Exploitation is choosing the best action using
the current knowledge of the environment [14]. In order to make progress it
is often necessary have some exploration, otherwise the agent might get stuck
repeating the same actions, similar to an optimization algorithm getting stuck
at a local minimum. A common approach is the epsilon greedy strategy: with
probability ✏ select a random move, otherwise select the best move [2]. As the
agent practises and learns more about the environment it is common to decrease
✏ to gradually shift the focus from exploration to exploitation.

Temporal Di↵erence Learning

Temporal di↵erence learning is a class of reinforcement learning algorithms that
approximate the expected reward for the states. The expected reward is called
the value of the state and is denoted V (s). It is learned by using the estimated
value of the successor state bootstrapping back through the decision process
[22].

The simplest Temporal Di↵erence algorithm is called one-step TD or TD(0).
According the its current knowledge, it takes the best action a at state s and
updates the value of s using the value of the successor state:

V (s) (1� ↵)V (s) + ↵
�
r(a) + �V (f(s, a))

�
(2.2)

where ↵ 2 [0, 1] is the learning rate.

2.2 The Game of 5-in-a-row

5-in-a-row is a two-player strategy game traditionally played on squared paper.
The players take turns placing markers in an empty cell on the paper. One
player uses ”X” and the other player uses ”O”. You win by getting 5 in a row
horizontally, vertically or diagonally. If the grid is filled up without anyone
having 5-in-a-row the game ends in a tie.

12

Figure 2.1: A game of 5-in-a-row won by ”o”.

This is the version of the game I learned growing up in Sweden. There are
many names for this game: Gomuko, Gobang, Lu↵arschack (Swedish meaning
poor man’s chess) to name a few. Gomuko is usually played on a 15 by 15
board and has many variations of the rules to reduce the first player advantage.
Gomuko without any such extra rules was proven to be a first player win in
1993 [10].

I have chosen to restrict the game to a board size of 11 by 11. It is large
enough to make the game complex while keeping the state and action spaces
reasonably small. Since an 11 by 11 board is more restricted than the 15 by 15
Gomuko board, the game should, if played perfectly, either end in with the first
player winning or a tie.

The number of actions in each state of the game decreases by 1 each move.
Starting with 121, 120, 119... Therefore, if we ignore any winning actions ending
the game, there are 121! ⇡ 10201 possible games, but this is of course a grave
overestimation. If we only look at games with the reasonable length of 40 moves
there are 121!

81! ⇡ 1080 possible games. The game has the symmetry of square, i.e
any state is equivalent under rotation of 0, 90, 180, 270 degrees and horizontal,
vertical and diagonal reflections.

2.3 Alternating Markov Games

To define the algorithms in a more general setting, I will use an abstract frame-
work for games similar to 5-in-a-row. It includes games like Chess, Othello,
Checkers and Go. These are deterministic alternating Markov games with a
final reward of 1 for winning 0 for a tie and -1 for losing and no other reward

13

during the game. An alternating Markov game is similar to a Markov decision
process (see Section 2.1), but di↵ers by having several adversarial agents.

A game is defined by a state space S, an action space A(s) for each state
s 2 S, a transition function f(s, a) defining the successor state when selecting
a in s, an initial state s0 and a function r(s) which determines if a state is
final and in that case returns the reward. A final state either has reward 1
(win), 0 (tie), or -1 (loss). The reward for a player is -1 times the reward of the
opponent. This symmetric view on the reward is used in my implementation
of the algorithms, but sometimes it is better to think if one player trying to
maximize the reward and its opponent trying to minimize the same reward.

The game is played by letting the players take turns selecting actions until
they reach a final state. A game can be seen as a sequence of states [si] connected
by actions [ai] where even numbered actions are played by the first player and
the odd numbered actions are played by the opponent. This is illustrated in
Figure 2.2 and can be the described by the recurrence relation

si+1 = f(si, ai), ai 2 A(si), (2.3)

saying that the next element in the sequence of states is the successor of the
current state depending on which action the agent selects.

s0

s7

s6s2

s3 s5

s4

a0

s1

a2 a4 a6a1 a3 a5 a7

Player 1's
Turn:

Player 2's
Turn:

Figure 2.2: The game is a sequence of states connected by actions. The states
are produced recursively according to Equation 2.3. The actions of the first
player are the even numbered downward arrows and the moves done by the
second player are the odd numbered upwards arrows.

Minimax Search

A common approach for analysing adversarial games is minimax search which
searches through the game tree looking for optimal choices for both players [16].
The root node of the game tree is the initial state, s0. The children of a node
are its successor states. In minimax search the two players are called MAX,
who is maximizing the reward and MIN, who is minimizing the reward.

The minimax search is performed recursively,

MINIMAX(s) =

8
><

>:

r(s) if s is a terminal state.

maxai2A(s) MINIMAX(f(s, ai)) if PLAYER(s) = MAX

minai2A(s) MINIMAX(f(s, ai)) if PLAYER(s) = MIN
(2.4)

14

?

? ?

?

TieWin

?

TieLose

?

WinLose

?

TieWin

Win

Tie Win

Win

TieWin

Tie

TieLose

Win

WinLose

Win

TieWin

Figure 2.3: The minimax search tree for a game of three actions, two by the
maximizing player and one by the minimizing player. The top tree is before the
search and the lower tree show the search results. The minimax algorithm is
described in Equation 2.4. Red arrows represent the minimizing player’s options
and the green arrows are the maximizing player’s options. Their choices are
colored in red and green respectively. This game is shown to be a first player
win.

and this process is illustrated in Figure 2.3. In the end, you have a win, tie
or lose label for each state. Making a decision in the game can be seen as a
classification problem: labeling each successor state as win, tie or lose and based
on this selecting the best option. I will get back to this later when I define the
distributional algorithms.

15

Chapter 3

Method

In this section, I will describe the algorithms starting from basic TD-learning
and define the optimality measure used in my new algorithms. Furthermore,
I will explain how I implement the algorithms, the training procedure and the
evaluation of the results. The algorithms are defined within the framework of
the Deterministic Alternating Markov Games described in Section 2.3.

3.1 Temporal Di↵erence Learning

A classic reinforcement learning approach is directly approximating the value
function, V ⇤(s) ⇡ V (s). This is what is usually referred to as temporal di↵erence
learning. In deep temporal di↵erence learning, V ⇤(s) is calculated by a neural
network. The result of this algorithm will serve as a reference point for my
other more experimental methods. To distinguish it from the distributional
algorithms, I will sometimes refer to it as scalar TD. I will call the agent using
this algorithm TDBot.

Decision Making

The agent simply selects the move with the highest expected reward,

a(s) = argmax
ai2A(s)

V
⇤(f(s, ai)). (3.1)

Training

After the agent has played a game it uses the result to assign new values to V
⇤.

The update starts from the end of the game by assigning a new value 1 to the

1The arrow () is a pseudo code notation for assigning a new value to the function. In my
implementation, the new value is used immediately to create new values for preceding states
and the input/output pair is used as training data for the neural network at the end of the
training iteration.

16

final state,
V

⇤(sfinal) r(sfinal) (3.2)

and recursively updates V
⇤ based on the Bellman Equation (Equation 2.1),

radually stepping back through the game,

V
⇤(s) (1� ↵)V ⇤(s) + ↵� max

ai2A(s)

h
V

⇤(f(s, ai))
i
. (3.3)

There are two training parameters: ↵ 2 [0, 1] is the learning rate and de-
termines how the agent values old and new knowledge. With ↵ = 1 the agent
completely discards old knowledge and with ↵ = 0 the agent does not change
at all. � 2 [0, 1] is the discount factor. It determines how the agent prioritize
between quick and delayed rewards. � = 0 would mean the agent only cares
about immediate reward and � = 1 makes the agent value all rewards equally.

A state gets updated using its best successor state. This process is described
in Figure 3.1. When applied to a 2-player game, the value of the successor state
will be calculated from the opponent’s perspective. In this case, one would use

V
⇤(f(s, ai)) = �V ⇤

opponent(f(s, ai)) (3.4)

to change it to the correct perspective.
The new input-output (state-value) pairs assigned in Equation 3.2 and 3.3

were used as training data for the neural network.

Best

Options

s0

sN

sN-1s2

s3 sN-2

a0

s1

aN-1a1 a3 aN-2

s'Ns'3s'1

a'0

The Game

a'2 a'N-1

s'2 s'4 s'N-1

a'1 a'3 a'N-2

Best

Options

a2 aN-3

Figure 3.1: The training result backpropragates through the game, starting
from the right in this diagram gradually moving to the left, back through the
decisions made in the game. The value of the final state is assigned according to
Equation 3.2 and the preceding states are updated recursively using Equation
3.3. The green arrows represent the use of the best successor states for the
update. Either the value of a state visited in the game is used, or a better
option.

17

3.2 Distributional Temporal Di↵erence Learn-

ing

Distributional Temporal Di↵erence Learning (DTD) is very similar to scalar
TD-learning. The only di↵erence is that it learns the distribution of the reward
instead of the expectation value. I have used a kind of DTD where � = 1 and
the distribution consists of probabilities for ending the game with a win, tie or
loss. This discrete distribution is approximated using a neural network,

g(s) ⇡ (p(win|s), p(tie|s), p(lose|s)) (3.5)

where each component of the output vector is the probability of an outcome for
the game in state s . The approximated distribution D

⇤ is:

8
><

>:

D
⇤(win|s) = g(s)1

D
⇤(tie|s) = g(s)2

D
⇤(lose|s) = g(s)3

(3.6)

In DTD g takes role of V ⇤ as the function which is learned through the training
process . The state value can be approximated using g:

V (s) = p(win|s)� p(lose|s) ⇡ g(s) · (1, 0,�1) (3.7)

where ”·” is a dot product.
Like the MINIMAX search in Section 2.3, this algorithm attempts to label

the states as WIN, TIE and LOSE, but unlike MINIMAX, it is using soft labels.
For example, a state could be labeled 30% win, 20% tie and 50% lose. In machine
learning, this is usually called a classification problem, whereas learning the
continuous values of V ⇤(s) as described in the previous section, is a regression
problem.

Decision Making

The agent selects the move with the highest expected reward:

a(s) = argmax
ai2A(s)

h
g(f(s, a)) · (1, 0,�1)

i
(3.8)

Training

Similarly to TD-learning, DTD uses the result of the game to assign new values
to g.. The update starts from the end of the game by assigning a new value to
the final state,

g(sfinal)

8
><

>:

(1, 0, 0) for r(sfinal) = 1

(0, 1, 0) for r(sfinal) = 0

(0, 0, 1) for r(sfinal) = �1
(3.9)

18

and recursively updates the values according to

(
a = argmaxai2A(s)

h
g(f(s, ai)) · (1, 0,�1)

i

g(s) (1� ↵)g(s) + ↵ g((f(s, a))
(3.10)

where ↵ 2 [0, 1] is the learning rate.
To get the correct perspective in a 2-player game you need to reverse g(f(s, ai))

since the successor state will be evaluated from the opponent’s perspective and
p(player 1 winning) = p(player 2 losing).

3.3 Optimality

An action is optimal if it leads to an optimal outcome from the current state. We
can calculate the probability of an action being optimal using g. Let ai 2 A(s)
and g(f(s, ai)) = (wi, ti, li), then

p(ai optimal) = p(win|ai)+p(tie|ai)p(can’t win|aj , j 6= i)+p(can only lose in s).
(3.11)

() p(ai optimal) = wi + ti

Y

j 6=i

(1� wj) +
Y

j

lj (3.12)

I will refer to p(ai optimal) as the optimality of ai. The optimality shows
how strongly connected the values for two consecutive states are. If we choose
an optimal action, then the current state and the successor state should have the
same ranking. If we make a bad move —choose an action with low optimality—
then the current state isn’t necessarily bad, but the next is.

3.4 Adaptive Distributional Temporal Di↵erence

Learning

The optimality can be used as an adaptive learning rate for DTD. By using
↵ = p(a(s) optimal), we get a new algorithm with adaptive learning rate. I will
call the agent using this algortithm ADTDBot.

3.5 My Original Algorithm

With optimality as an adaptive learning rate, it is no longer necessary to learn
from the best successor state. It is possible to simply use the actions and suc-
cessor states from the game for training. That is the idea behind this algorithm.
Since this agent is my own creation I will call it BerglindBot.

19

The decision making is performed like in DTD. The agent is trained using
the following update rule,

g(s) (1� p(a optimal))g(s) + p(a optimal)g(f(s, a)) (3.13)

where a is the action selected in state s during the game.

3.6 Exploration

If the agent always selects the best action it might not discover new and po-
tentially better policies. Furthermore, a neural network needs diverse data to
learn well and an agent using its best policy is likely to play quite repetitively.
I devised a simple method for adding a good amount of randomization without
completely ignoring prior knowledge. Let V̂ (s) be the approximated expected
reward, either calculated directly using V

⇤(s) or as g(s) · (1, 0,�1). Let

M̂ = max
ai2A(s)

V̂ (f(s, ai)) (3.14)

then randomly select an action in the set

Aselected = {ai 2 A(s)|M̂ � 2✏  V̂ (f(s, ai)} (3.15)

where ✏ 2 [0, 1] is the exploration parameter.
If ✏ = 0, the agent will, according to its current knowledge, select the best

possible move. If ✏ = 1, the agent will play completely randomly. If ✏ 2
(0, 1), the agent should play somewhat randomly, but avoid making any critical
mistakes. As the training goes on the agent will get better at distinguishing
good and bad moves and it should play less and less randomly. If I did not
specify the exploration in an experiment setup, it is set to ✏ = 0.01.

If we assume the approximation error for V̂ is less than ✏,
���V̂ (s)� V (s)

���  ✏ 8s 2 S (3.16)

then the best action will be in Aselected. Proof:
Let a⇤ be the best action in state s,

a
⇤ = argmax

ai2A(s)
V (f(s, ai)) (3.17)

and M the true value for the successor state,

M = V (f(s, a⇤)) (3.18)

then (
M̂ M + ✏

M � ✏  V̂ (f(s, a⇤))
(3.19)

()
(
M̂ � ✏ M

M  V̂ (f(s, a⇤)) + ✏
(3.20)

=) M̂ � 2✏  V̂ (f(s, a⇤)) () a
⇤ 2 Aselected. (3.21)

20

3.7 The Opponent

To measure the performance of the agents, it is necessary to use a static refer-
ence point. I have previously designed a 5-in-a-row agent which uses heuristics
for decision making. It creates a ranking for each cell of the board based on
how good opportunities the players have and selects the cells with the highest
ranking. It is fast, systematic and plays the game at the level of an intermediate
player. I will refer to this agent as QuickBot.

Let O(c, player) be the set of all opportunities (possible ways to get 5 in a
row) for the player using the cell c and let n(o) be the number in a row it has
in this position already. The occupied cells get ranking 0 and the ranking of an
empty cell c is

ranking(c, player) = 1.5·
X

o2O(c,player)

f(n(o, player))+
X

o2O(c,opponent)

f(n(o, opponent)),

(3.22)
where f(n) is a scalar function representing the ranking of having n in a row. I
have been using

f(n) =

(
0 n = 0

5n n > 0
(3.23)

This could probably be fine tuned through evolutionary learning, but I have just
hand tuned it. The 1.5-factor is added to account for the advantage of playing
the next move.

3.8 Training Process

The training is performed as a sequence of training iterations. A training iter-
ation is described in Figure 3.2 and consists of 3 steps:

1. Training Games. Each iteration starts with N (usually set to 50) prac-
tice games. After each game the end result is used to assign a new output
value to the states in the game. This is done by iterating back from the
final state using the training formulas for the di↵erent algorithms. The
new state/output pairs are saved for training the neural network.

2. Network Update. The network is trained for five epochs using the data
generated in the previous step.

3. Evaluation Games. The agent, using it’s optimal policy (✏ = 0), plays
10 evaluation games against QuickBot starting with 1 random move. This
is only done to track the progress and the data is not used for training.

21

Training
Games

Network
 Update

Evaluation
Games

Figure 3.2: A training iteration consists of training games, neural network up-
date and evaluation games.

Most agents have been trained for 1000 iterations of 50 games. Throughout
the training the score and length of each game is saved and this can be used to
analyse the learning process.

3.9 Tournament

For comparing the performance of the di↵erent agents I implemented a tour-
nament with 2000 games between each pair of agents. The first 4 moves are
randomized to avoid the agents playing the same game over and over and to
test their ability to handle unfamiliar situations.

3.10 Implementation

The algorithms were implemented as similarly as possible. They shared most
of the code; only the decision making and calculation of new outputs were
done separately. They analysed the board using convolutional neural networks
of identical design except the output size, output activation and loss function.
The neural networks were implemented in Keras using the TensorFlow backend.
The training was done on a GPU server and the SuperMike2 super computer
at Louisiana State University.

The input of the network was divided to 2 channels, just like two colors
in an image. The first channel represented the board positions of the player
who placed the most recent move. The second channel represented the board
positions for the opponent. Both channels consisted of binary 11 by 11 arrays
where a cell is 1 if the player has a marker in this position and 0 otherwise. A
similar input representation was used in AlphaGo [19] and it’s successors.

To make decisions in the game, each possible action in the current state was
evaluated by analysing the successor state using the neural network and this
data was saved for generating new training data. When a game had finished,
new training data was generated by iterating backwards through the game using
the update formulas presented in Section 3.1 to 3.5. To get eight times more
training data, the input is rotated and reflected according to the symmetries of
the game. This is the only knowledge about the game, apart from the rules,
used by the agents.

22

3.11 Neural Networks

I have tried many network architectures and these are specified for the di↵erent
experiments. Here, I will describe the properties they all have in common.

The structure of the board makes the game naturally suitable for convolu-
tional neural networks. We can tell the quality of a state by looking at local
patterns on the board; having 5 in a row means the same thing all over the
board. A convolutional network naturally has an ”intuition” for this property.
Using a fully connected network would be like looking at a reordered version
of the board where you would have to learn the relationship between the dif-
ferent cells and this game would be very hard for humans to learn. Therefore,
convolutional neural networks were used throughout the project.

TDBot used neural networks with a single value as output and the output
activation function tanh since V (s) 2 [�1, 1]. The networks were trained using
the Mean Squared Error (MSE) loss function,

MSE(V (s), V̂ (s)) =
⇣
V̂ (s)� V (s)

⌘2
. (3.24)

where V̂ (s) is the target value and V (s) is the current estimate from the neural
network for state s. This is common practice for regression tasks [15].

The distributional algorithms used neural networks with three outputs pro-
cessed through a softmax activation function since they represent three proba-
bilities from the same distribution. The network used categorical cross entropy
loss,

CrossEntropy(g(s), ĝ(s)) = �
X

i

ĝ(s)i log(g(s)i) (3.25)

where g(s)i is the i’th component of g(s), ĝ(s) is the target value and g(s) is the
current output of the network. This is common practice when using softmax
[15].

All layers except the output used ReLu activation and uniform He initializa-
tion. According to [4] He-initialization is the best choice for layers with ReLu
activation. If the activation is tanh, sigmoid or softmax, Glorot-activation is
a good choice. This has been used consistently throughout my experiments.
All networks were trained using an Adam optimizer with the common default
parameters ↵ = 0.001,�1 = 0.9,�2 = 0.999.

23

Chapter 4

Experiments

I have tried many di↵erent hyper parameter values and network architectures,
in total, more than 100 di↵erent setups. In the following sections, I will describe
some of these experiments and how the results of one experiment leads to the
construction of the next. For each experiment, there is a figure of the training
data showing the score, the length of the training games and the loss function.
Moreover, there is a graph of the evaluation data displaying the average score
and length of the evaluation games. Section 3.8 describes how this data is
generated. I will mostly discuss the evaluation results since this is a better
indicator of the performance of the algorithms, but the training data of the
experiments is included for completeness.

4.1 Initial Network Design

After some initial experiments, I found a network architecture that learned to
play the game quite well.

Setup

All agents practiced against QuickBot for 50 000 games with 50 games per
iteration, updating the neural network after every 50th game. The network
architecture is presented in Table 4.1. First, a 5x5 convolution is used to analyse
the raw board. This helps the network see the patterns of length 5 which are
important for the game. Next, the data is processed through three layers of
3x3 convolutions. Before calculating the outputs through two dense layers, a
1x1 convolution reduces the dimensions to avoid having too many parameters
in the dense layers. This technique was also used in AlphaGoZero [20]. All
convolutional layers have batch normalization before the activation function.

24

Type of layer Output channels/units Padding Parameters

5x5 convolution 64 channels No padding 3 500
3x3 convolution 64 channels 1x1 padding 37 000
3x3 convolution 64 channels 1x1 padding 37 000
3x3 convolution 64 channels 1x1 padding 37 000
1x1 convolution 16 channels 1x1 padding 1 100
Dense 64 units 50 000
Dense 1 or 3 ⇠ 100

Table 4.1: The initial network architecture. The input is at the top of the table
and the output layer is in the bottom.

Results

The data from the training games is presented in Figure 4.2 and the data from
the evaluation game is shown in Figure 4.1.

Figure 4.1: Evaluation results for the di↵erent algorithms using the initial net-
work architecture. This is the results of the evaluation games played at the end
of each training iteration using the current best policy (✏ = 0). The graphs have
been smoothed using a running average over 100 iterations. The same amount
of smoothing has been applied to all graphs displaying evaluation results.

25

Figure 4.2: Training data for the di↵erent algorithms using the initial network
architecture. The score and game length presented here are from the training
games played to generate training data. These game are played using a subop-
timal policy (✏ = 0.01). The length and score graphs have been smoothed using
a running average over 5000 games and the loss function is smoothed over 200
epochs. The same amount smoothing has been applied to all graphs displaying
training data

A tournament played between all algorithms using this network and Quick-
Bot resulted in the scores in Table 4.2.

TDBot 2652
ADTDBot 535
DTDBot 21
BerglindBot -716
QuickBot -2492

Table 4.2: Total score from a tournament of 2000 games played between each
pair of players.

Discussion

From the tournament (Table 4.2) and the evaluation games (Figure 4.1) it is
clear that TDBot performs the best with this network architecture reaching the
highest score in the evaluation games and the tournament, however Berglind-
Bot and ADTDBot learn faster in the beginning. The use of optimality as
an adaptive learning rate appears to speeds up the beginning of the learning
process.

26

There are some interesting patterns in the evaluation result (Figure 4.1). The
length of the games seems to be negatively correlated to the score. For example,
TDBot has the highest score in the end, but played the shortest games and
BerglindBot played long games, but had the lowest score. Furthermore, peaks
in the game length often correspond to valleys in the score. This can be seen
in the evaluation result for ADTDBot and BerglindBot. It indicates that they
are developing a too defensive strategy during some parts of their training.

4.2 Larger Networks

To improve the result, I tried increasing the size of the network by making it
deeper (400 000 parameters) or wider (600 000 parameters), but neither seemed
to improve the performance. The evaluation results are shown in Figure 4.3. To
avoid making the graph too cluttered, only ADTDBot and TDBot are included,
but the other agents showed similar results. In general, the distributional al-
gorithms seems to improve slightly with a larger network, but not enough to
outperform the initial TDBot.

Figure 4.3: Evaluation result of ADTDBot and TDBot with three di↵erent
network designs.

4.3 Batch Size

In the previous experiments, the neural network was trained using a batch size
of 32 for the Adam optimizer . In this experiment, I tried increasing it. A
larger batch size is beneficial for practical purposes since it makes it possible

27

to take advantage of the parallelization of a GPU and significantly speed up
the computation. However, it often results in worse generalization and slower
convergence [5]. Larger batch size lead to fewer gradient decent steps per epoch,
but the estimated gradients are more accurate. This makes it harder to follow
the curvature of a highly nonlinear surface, but locally the more precise gradient
estimate improves the accuracy.

It would be best to try a range of batch sizes for all algorithms, but I didn’t
have the time or the computational resources to run all those experiments.
Therefore, I only tried training ADTDBot with the batch sizes 32, 64, 128, 256
and 512 and assumed there would be similar results with the other algorithms.

Result

The result is displayed in Figure 4.4 and 4.5. The data for batch size 32 is the
same as in Section 4.1. The training time with batch size 64 was 16h and with
batch size 512 this was reduced to 10.5 hours. However, several models were
being trained at the same time on the same processor, so these numbers are
not very accurate. Nevertheless, it is clear that a larger batch size significantly
decreases the training time.

Figure 4.4: Evaluation result of ADTDBot with batch size ranging from 32 to
512.

28

Figure 4.5: Training result of ADTDBot with batch size ranging from 32 to 512.

Discussion

Surprisingly, a larger batch size improves the results. It learns slower in the
beginning but achieves a better result in the end. With lower batch size, the
training seems slightly unstable; the game length and score are fluctuating dur-
ing the training, while a larger batch size leads to a more smooth and steady
progress (compare the blue and purple curves in Figure 4.4). Since the network
with larger batch size trains faster (in the sense of computational time), reaches
a better end result and shows more stable behavior, I will use a batch size of
512 for the remaining experiments.

4.4 Residual Network

The residual network architecture (ResNet) was introduced in 2015 and showed
state of the art performance in several image classification tasks [7]. AlphaGoZero
and AlphaZero used a simplified ResNet Architecture and it showed greatly im-
proved performance compared to a similar sequential network [20][18]. With
these impressive results in mind, I decided to try using a residual network ar-
chitecture.

ResNet

A ResNet is comprised of blocks of two convolutional layers with a skip connec-
tion which adds the input of the block to the output. This reduces problems
with vanishing or exploding gradients and makes it possible to train deeper

29

networks. I used blocks similar to those used for AlphaZero. These blocks are
described in Table 4.3 and Figure 4.6. The network design is specified in Table
4.4. AlphaGoZero and AlphaZero used L2 weight normalization, but when I
tried this, it prevented the network from learning properly, so I removed the
weight normalization.

Type of layer Output channels/units Padding Parameters

3x3 convolution 64 channels 1x1 padding 37000
Batch normalization 64 channels 256
ReLU 64 channels 0
3x3 convolution 64 channels 1x1 padding 37000
Batch normalization 64 channels 256
Skip Connection 64 channels 0
ReLU 64 channels 0

Table 4.3: A residual block. The input is processed through two 3x3 convolu-
tions. The output of these convolutions is added to the input. Finally, this sum
is processed through a ReLu nonlinearity.

Input

Batch NormConvolution ReLu Batch NormConvolution

ReLu Output+

Figure 4.6: A residual block. The input is processed through two 3x3 convolu-
tions. The output of these convolutions is added to the input. Finally, this sum
is processed through a ReLu nonlinearity.

30

Type of layer Output channels/units Padding Parameters

5x5 convolution 64 channels No padding 3 500
Batch Normalization 64 channels 256
ReLu 64 channels 0
ResBlock 64 channels 1x1 padding 74 000
ResBlock 64 channels 1x1 padding 74 000
ResBlock 64 channels 1x1 padding 74 000
ResBlock 64 channels 1x1 padding 74 000
ResBlock 64 channels 1x1 padding 74 000
1x1 convolution 1 channel No padding 65
Batch Normalization 1 channel 4
ReLu 1 channels 0
Dense 64 units 8000
Dense 1 or 3 ⇠ 100

Table 4.4: The residual architecture used for these experiments. It has a total
of 380 000 parameters.

With � = 1 for all batch normalization layers the network initially outputs
very large values. For scalar TD-learning, the output was often very near -1
or 1. With such an initialization the untrained agent would be almost certain
some states lead to a win and other states lead to a loss. As the agent trains,
these errors would spread to the training data and make the training unstable.
To solve this issue I set � = 0.1 for the first batch normalization layer and this
resulted in reasonable starting outputs around �0.1 to 0.1 for TDBot.

Result

The data from the training games is presented in Figure 4.8 and the data from
the evaluation games is shown in Figure 4.7.

31

Figure 4.7: Evaluation results for the di↵erent algorithms using the residual
network architecture. I included the previous best player, TDBot for reference.

Figure 4.8: Training data for the di↵erent algorithms using the residual network
architecture. I included the previous best player, TDBot for reference.

A tournament played between all algorithms using this network, TDBot
using the initial convolutional network and QuickBot resulted in the scores in

32

Table 4.5.

ADTDBot ResNet 1714
TDBot 1661
TDBot ResNet 1548
BerglindBot ResNet 38
DTDBot ResNet �302
QuickBot �4659

Table 4.5: Total score from a tournament of 2000 games played between each
pair of players.

Discussion

ADTDBot using a residual network outperforms TDBot. In Figure 4.7, we can
see that it learns faster and reaches a higher end score. It also achieves the
highest score in the tournament. Quite surprisingly, TDBot does not seem to
benefit from the ResNet, but the performance is quite similar. If we compare
Figure 4.7 and 4.1, it seems like a ResNet overall gives a better result.

Looking at Figure 4.7, it seems like BerglindBot is performing similarly to
TDBot, but in the tournament, it performs quite poorly. Unlike the other
algorithms, it is only learning from the actions selected in the game. Therefore,
it learns directly from the strategy of QuickBot and does not adapt well to other
opponents.

4.5 Improved Residual Networks

The residual network in the previous section is based on a paper from 2015
[7]. Since then there has been plenty of research attempting to understand and
improve the residual architecture. I tried applying a couple of these changes to
my network architecture.

Set Up

Initializing the �-parameter of the final batch normalization of each block to
zero and � = 1 for all other batch normalization layers will cause each block to
start out as an identity function letting the signal pass unchanged through the
network. Goyal et al claims that such an initialization ease optimization in the
beginning of training and improves all models but is especially helpful for large
mini batch training [6].

According to He et al, by reordering the layers of a residual block and keeping
the skip connection free of any non-linearities, the network gets easier to train
and generalizes better [8]. The new ResBlock is described in Figure 4.9. He et
al creatively named their new network architecture ResNet2.

33

Input

Batch Norm Convolution

Output+

ReLu Batch Norm ConvolutionReLu

Figure 4.9: The new residual block.

I separately applied these modifications to two residual networks and trained
ADTDBot for 50 000 games using these networks.

Result & discussion

The results are presented in Figure 4.10 and 4.11. Unfortunately, these changes
seem to decrease the performance of the network and I decided to keep the
previous ResNet architecture instead.

Figure 4.10: Evaluation results for ADTDBot using the di↵erent residual net-
works.

34

Figure 4.11: Training data for ADTDBot using the di↵erent residual networks.

4.6 Self Play

Although the results with the first ResNet (Section 4.4), were quite satisfactory,
there were some problems. The agents tended to develop a preference for a
single cell on the board, often the center, and as soon as they have this cell,
they would think they are almost guaranteed to win. From there on, a policy
with ✏ > 0 would almost be random since the player is certain it will win anyway.
Furthermore, the agent developed a strong strategy against QuickBot, but could
act quite erratically when it played against a di↵erent opponent, for example
when playing against itself. I think this is because its exploration is limited by
the playing of QuickBot; the agent was trained to play against QuickBot, not
to play the game in general. To solve these problems, I let the agents train by
playing against themselves. Since ADTDBot and TDBot have shown the most
promising results I focused on these algorithms.

First Experiment

First, I tried using the simple initial hyperparameters and network architec-
ture (shown in Table 4.1). However, even though this setup worked fairly well
when playing against QuickBot, it did not work well for self play. The amount
of exploration (✏ = 0.01) was not su�cient for the agents to discover all win-
ning configurations. They ended up frequently losing games immediately when
playing against QuickBot because they didn’t realize they were about to lose.

35

More Exploration

To improve upon the previous result, I tried using more exploration, ✏ = 0.05
or ✏ = 0.1, and the ResNet design from Table 4.4. TDBot showed promising
results, but was learning slowly, so I trained it for another 1000 iterations. These
results are shown in Figure 4.12 and 4.13. In Figure 4.12, we can see that ADTD
learns just as well through self play as it did while training against QuickBot.
However it is no longer specialized on playing against Quick Bot and is likely
to show better performance against other opponents. To put this to test, I ran
a tournament between these agents and QuickBot.

Figure 4.12: Evaluation result of TDBot and ADTDBot using a ResNet, self
play and exploration ✏ = 0.05 and ✏ = 0.1. I let TDBot train for an extra 1000
iterations since it was still improving at the end of the first 1000 iterations.

36

Figure 4.13: Training data of TDBot and ADTDBot using a ResNet, self play
and exploration ✏ = 0.05 and ✏ = 0.1. I let TDBot train for an extra 50 000
games since it was still improving at the end of the first 50 000 games. Note that
the score graph only shows random noise since the agents are playing against
themselves.

TDBot Self Play ✏ = 0.05 2112
TDBot Self Play ✏ = 0.10 1946
ADTDBot Self Play ✏ = 0.05 1290
ADTDBot Self Play ✏ = 0.10 680
ADTDBot ResNet ✏ = 0.01 �243
QuickBot �5785

Table 4.6: Total score from a tournament with 2000 games played between each
pair of players.

The results from the tournament are shown in Table 4.6. TDBot performed
the best, but it trained twice as long as ADTDBot. Both algorithms benefited
from self play and greatly outperformed the ADTDBot who practiced against
QuickBot.

Improving TDBot

In all experiments so far, TDBot has used a learning rate of ↵ = 0.3. This was
based on some early experiments training against QuickBot using a small neural
network. For consistency, I have kept the same ↵ since then, but seeing that

37

TDBot learns a lot slower than ADTDBot, it could be worth trying to increase
↵.

In this experiment, I tried learning rates ranging from the old value of 0.3
to 0.9 with exploration ✏ = 0.1. The results are shown in Figure 4.14 and 4.15.

Figure 4.14: Evaluation result for TDBot with learning rate from ↵ = 0.3 to
↵ = 0.9. Note that the data for ✏ = 0.3 is the same as in Figure 4.12.

38

Figure 4.15: Training data for TDBot with learning rate from ↵ = 0.3 to ↵ =
0.9. Note that the data for ✏ = 0.3 is the same as in Figure 4.13.

It is clear that the previous learning rate of 0.3 was far too low. A learning
rate of 0.8 or 0.9 seems to be a good choice. For my final experiment, I will use
a learning rate of 0.8 since training with a lower learning rate is more stable
and likely to be better later in the training.

4.7 Final Experiment

The previous experiments with self play have shown really promising results.
As a final experiment, I ran a similar setup with all four algorithms for 200 000
games to see how they converge and how far they can go.

Setup

Just like in the previous experiments, I used a residual network and self play.
To give the network larger data sets for training, 100 instead of 50 games were
played per iteration. The agents all trained for 2000 iterations, a total of 200
000 games. Since the tournament result in Table 4.6 indicate that ✏ = 0.05 is
a good amount of exploration, I used this for all algorithms. In accordance to
the result in the previous experiment, TDBot and DTD used the learning rate
↵ = 0.8.

39

Result

The result is presented in Figure 4.16 and 4.17. BerglindBot achieved an average
score of 0.81 at the end of training, ADTDBot reached 0.9 , TDBot 0.92, and
DTDBot 0.95.

Figure 4.16: Evaluation result with all four algorithms using self play, ResNet
and 100 games per iteration. Note that one iteration contains twice as many
games as in the previous experiments and the graph contains twice as many
iterations. This results in 4 times longer training.

40

Figure 4.17: Evaluation result with all four algorithms using self play, ResNet
and 100 games per iteration. Note that this experiment had 4 times longer
training.

The result from a tournament played between these agents and QuickBot is
shown in Table 4.7.

TDBot Final 2416
DTDBot Final 2173
ADTDBot Final 972
BerglindBot Final 705
QuickBot -6266

Table 4.7: Total score from a tournament with 2000 games played between each
pair of players. Each game started with four random moves.

To get a comparison between the players in an environment more similar
to the training games, I ran a tournament with a single random move in the
beginning of each game. Since there are less possible starting positions, I only
ran it for 400 games between each pair of players to avoid wasting computations
on repeated games.

41

DTDBot Final 655
TDBot Final 533
ADTDBot Final 272
BerglindBot Final -29
QuickBot -1431

Table 4.8: Total score from a tournament with 400 games between each pair of
players. Each game started with one random move.

Discussion

Training through self play using larger datasets clearly improved the results: all
agents reach a higher evaluation score (see Figure 4.16), almost winning every
game against QuickBot at the end training. This improvement should generalize
to other opponents since they did not train against QuickBot. The larger data
sets let the neural networks see a more complete picture of the game and learn
more complex patterns. It reduces the risk of the network overfitting on the
training data and it allows the agents to explore more options before settling
on a strategy.

All algorithms learn the game quite well. However, BerglindBot shows the
lowest performance. Since it learns from the actions selected in the game and
not the best actions its performance su↵ers from the high exploration (✏ = 0.05)
used in this experiment.

ADTDBot learns faster in the beginning, but does not converge as well as the
algorithms with constant learning rate. In the end, DTDBot and TDBot show
the strongest performance. DTDBot learns faster than TDBot. This might
be because it is learning the more complex distribution instead of a scalar and
thereby extracts more information from a single training game. It could also be
because of the di↵erent neural network output layer and loss function. It has the
highest score in the evaluation games (Figure 4.16) and got the highest score in
the tournament with one random move (Table 4.8), but gets outperformed by
TDBot in the tournament with four random moves(Table 4.7). This might be
because the discount factor of TDBot makes the value function smaller in the
beginning of the game and increases the randomness of the first move, making
the training games more similar to the tournament.

42

Chapter 5

Discussions

Deep reinforcement learning is immensely complex and one has to be careful
when drawing conclusions from these experiments. The results comes from the
interaction of a deep neural network, the adaptive Adam optimizer and the
reinforcement learning algorithms. This interplay of three components, all very
complex on their own, makes it di�cult to understand what is happening. For
example, it is very hard to explain why TDBot achieved the best results with the
initial network (see Figure 4.1), but ADTDBot worked the best when using a
ResNet (see Figure 4.7). It is surprising that DTDBot performed well in the final
experiment (Figure 4.16) after performing quite poorly in the previous ResNet
experiment (Figure 4.7). Nonetheless, I will try to draw some conclusions.

5.1 Comparison of the Algorithms

In the end, it is clear that the algorithms with constant learning rate achieved the
strongest results. However, throughout the experiments, ADTD has shown the
most consistent performance and seems to learn more quickly in the beginning
of the training. When I switched from training the agents against QuickBot to
self play, the constant learning rate algorithms needed a di↵erent learning rate,
while ADTD and BerglindBot showed good performance without needing any
retuning. ADTD has consistantly been one of the best algorithms while DTD
worked quite poorly in most of the experiments, to suddenly rise and perform
very well in the final experiment. This might indicate that it was not using the
best learning rate in the first experiments, or perhaps that the algorithm needs
the stable conditions of self play to thrive.

Scalar TD consistently achieved strong results, it was easier to implement
and it seemed less sensitive to the capacity of the neural network. The discount
factor (�) can be useful for encouraging winning more quickly making it less
likely for the player to make mistakes. However, with the distributional algo-
rithms, it is possible to modify the ranking function g(s) (Equation 3.5) after
training to customize the behaviour of the agent, for example making it play

43

more aggressively or defensively. This flexibility can be really useful for some
applications.

BerglindBot showed weak generalization when training against QuickBot
and reached the lowest score when using self play. This is a strong indicator
of the benefits of generating training data using the best successor states (the
maximization in Equation 3.3 and 3.9), instead of the states actually visited
during the game.

5.2 Quality of the Results

The final results shown in Section 4.7 are very strong. All agents except
BerglindBot reached an average score above 0.9 when playing against QuickBot.
Most people play at a level similar to that of QuickBot and they would proba-
bly be greatly outperformed by the fully trained neural networks. Nonetheless,
there are some simple changes that probably would improve the results, but I
did not have the time for any more experiments.

The final experiment showed that training with larger datasets improved the
results. It would probably be beneficial to go even further and use 200 games
per iteration, but then it would take even longer to execute the training. The
choice to simply use constant learning rates might have limited the performance.
By gradually decreasing the learning rate of temporal di↵erence learning, you
can help the algorithms converge. A carefully tuned schedule decreasing the
learning rate is likely to improve the result, but creating such a schedule can be
quite laborious.

I designed the exploration method (see Section 3.6) to automatically decrease
the randomization as the training advance. However, this might not have been
su�cient for the best training result. By scheduling the exploration to start out
with a large value, maybe ✏ = 0.5 and gradually decrease, perhaps to ✏ = 0.01,
you can make the agent explore a wide range of options in the beginning of the
training and later on use its knowledge to learn from games played at a very
high level. Additionally, my exploration scheme might put too much trust in the
neural network. It could be good to combine it with the classic epsilon greedy
strategy: selecting completely random actions with probability ✏, questioning
the prediction of the neural network and perhaps learning that it was incorrect
or confirming what it predicted.

5.3 Problems with Optimality as Adaptive Learn-

ing Rate

There are several problems when using optimality as an adaptive learning rate.
The results indicate that it works quite well in the beginning of the training,
often learning faster than with a fixed learning rate, but later on, it does not
converge as nicely as an algorithm with a fixed learning rate. Theoretically,
the adaptive algorithms are based on a false assumption. There are also some

44

practical problems: the adaptive algorithms are learning too ”carefully”, they
are biased towards underestimation and the learning rate tend to increase over
time.

Theoretically, the update formula using optimality is based on the assump-
tion that the prediction for the successor state, g(f(s, a)) and the optimality
of the action are independent, but this is clearly false since the prediction is in
the formula for the optimality. However, the theoretical correctness of the opti-
mality as a learning rate is not neccessarily a problem. Many machine learning
algorithms are based on such assumptions and work fine. It’s hard to avoid
these paradoxes when trying to create knowledge out of nothing by learning
new, better approximations using old approximations.

The idea of the optimality is ”careful” learning: only learn what you know to
be true (probabilistically speaking). If you are uncertain, then just change the
value a little bit. However, the results indicate that it might still be better to
learn something that could be wrong, than not to learn anything. For example,
if we have a state with probabilities (0.9 ,0 ,0.1) with 80 successor states all with
the probabilities (0.1, 0 , 0.9) it is clear that the value for the first state way
too optimistic, but the optimality for any option would be really low, about 0.1,
so the prediction for the state would approximately from shift from (0.9, 0, 0.1)
to (0.8, 0, 0.2). Whereas with a fixed learning rate of 0.8 it would shift from
(0.9, 0, 0.1) to (0.26, 0., 0.74). In a sense, the result with optimality is correct
because any of those 80 successor states has a 10 percent chance of winning, so
we can’t know for certain that any of them is an optimal choice, but intuitively,
the fixed learning rate gives a reasonable result.

As the example in the previous paragraph indicates, the adaptive algorithms
struggle to learn to recognize a losing situation because it will lead to a low
learning rate since it is very hard to show that there is no way out of the bad
situation. On the other hand, a winning situation will lead to high learning rate
and the information will propagate to the preceding state. With the change
of perspective due to the alternating nature of the game, this will lead to un-
derestimation. All basic TD algorithms have an overestimation bias due to the
maximization in the Bellman Equation 2.1 and in this context it turns into an
underestimation bias. This e↵ect is amplified by the adaptive learning rate and
this might be the cause of the lower end result of ADTD.

With the optimality as a learning rate we are avoiding to learn incorrect
values by using the certainty as a learning rate. As the neural network is being
trained it will learn to make more and more certain predictions; the optimality
will increase. It is common practice to decrease the learning rate during the
training process to help the reinforcement learning algorithm converge. Here,
we get the opposite behavior and that might be problematic. The algorithm will
continue to change it’s predictions until it has solved the game and all states
have hard labels, but it probably does not have the capacity to do this and
might just collapse. I am just speculating about the behaviour here and I have
not really seen any such collapse in my results. Perhaps the adaptive learning
rate of the Adam optimizer helped stabilize the process.

45

Chapter 6

Conclusions

This project aimed to investigate the possible advantages of distributional tem-
poral di↵erence learning (DTD) and an adaptive learning rate in place of the
classic scalar temporal di↵erence learning for game playing using deep neural
networks. All methods I tried performed well and developed strong strategies,
but there were significant di↵erences in their performance.

Distributional TD

My experiments indicate that DTD can achieve strong results, but it is more
sensitive to tuning and the neural network capacity. The classic scalar TD works
well and is easier to implement and tune than DTD. If one wants quick working
result, then scalar TD is a good choice. For the best result and to gain more
information, it can be worth experimenting with DTD.

Adaptive Learning Rate

Using the action’s optimality as an adaptive learning rate leads to more consis-
tent results without parameter tuning. It learns more quickly in the beginning,
but does not converge as nicely as DTD with well tuned constant learning rate
and has lower performance in the end. More research is needed to evaluate the
usefulness of the optimality measure and an adaptive learning rate.

Learning From the Best Successor State

According to my results, it is very beneficial to learn from the best possible
successor state, instead of simply using the successor state visited in the game.
It allows the algorithm to explore options even though they were not actually
played and helps the it learn more quickly and reach a better end result.

46

Residual Network

A residual network architecture helps improve the performance and enables the
use of deeper networks. However, the output of the untrained network can get
very large and cause poor conditions for the reinforcement learning. This can
be solved by careful initialization of the residual network.

Self Play

Self play helps stabilizing the learning process and lets the agents freely explore
the game from the perspective of both players. It leads to an overall stronger
strategy and better generalization against new opponents.

6.1 Future Directions

In my experiments, the algorithms with constant learning rate reached the best
end results, but I still think some of the new concepts are worth investigating
further. Here, I will describe some ideas for moving further with this research.

Adaptive Learning Rate

I find the idea of adapting learning rate very appealing. Hyperparameter tuning
is quite a tedious process and being able to adapt to new environments is one
of the essential traits of intelligence. Although the optimality did not quite cut
it, I think it could be a part of the puzzle. It showed strong performance in
the beginning of the learning process, but later on got outperformed by the
algorithms using a constant learning rate. Perhaps a solution combining the
optimality measure, adaptive learning rate decay and a method for dealing with
the uncertainty of the neural networks estimation could provide an e↵ective
adaptive learning rate.

Learning from Several Successor States

In temporal di↵erence learning, we want to learn from the best successor state.
The most successful algorithms in this project selects the successor state with
the highest expected reward. However, when the choice of the best successor
state is very uncertain it might be better to learn from several successor states.
I believe the optimality could be useful as a measure of certainty and somehow
be used to generate a weighted sum of the old estimate and several successor
states to create the new estimate.

Using Optimality for Exploration

When exploring new strategies through training games, the expected reward
might not be the best measure for selecting actions. The goal is to discover
the optimal action and I think the optimality can be useful to select actions.

47

It should give a similar result to the expected reward, but encourage a more
aggressive strategy and focus on trying to win unless it is quite certain it is
impossible to win.

Q-learning

All algorithms used in this project can be modified to Q-learning. The Q-value
is the expected reward given a selected action, Q(s, a) = V (f(s, a)). You can set
up a neural network to output all Q-values, or corresponding distributions, for
the possible actions in s, to get estimates for all successor states using a single
network evaluation. This would speed up the algorithms significantly and make
the execution time independent of the game’s branching factor (size of the action
space A(s)). For 5-in-a-row this would be a reduced execution time by a factor
of almost 100. However, you would need to find a way for the network to encode
the actions and avoid doing illegal actions. Q-learning would change the way
the network generalize its predictions and it might lead to slower learning and
a di↵erent end result, but it is impossible to know without trying it out. A
comparison between the performance of Q-learning and the scalar TD-learning
used in this project would be interesting.

Combining Algorithms

The distributional algorithms does not have a discount factor and this might be
the reason why the scalar algorithm performed the best in many experiments.
A distributional algorithm could be combined with scalar TD learning by using
a two-headed neural network, similar to that used for AlphaZero [18], learning
both the distribution and the discounted reward. Then the distribution could be
used to make long term decisions, for smart exploration and perhaps an adaptive
learning rate. The discounted reward could be used to promote winning as
fast as possible, reducing the risk of unexpected problems due to inaccurate
predictions. This combined algorithm might learn more quickly since it will
generate twice as much training data each game. According to Silver et al. [20],
the two headed network architecture used for AlphaGoZero and AlphaZero was
beneficial due to improved computational e�ciency, but more importantly the
regularizing a↵ect of the dual objectives. If the information in the distribution
and the discounted reward is di↵erent enough, this network design should show
similar benefits.

Other Applications

The exact same algorithms could be used for many other games. It would
be interesting to see if the algorithms works just as well for more complex
games like Chess, Othello and Go or a simpler game like Connect Four and
whether the hyperparameters would need to be retuned for di↵erent games.
These algorithms could also be used for single agent Markov Decision Processes
with a discrete reward at the final state.

48

Bibliography

[1] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Per-
spective on Reinforcement Learning”. In: CoRR abs/1707.06887 (2017).
arXiv: 1707.06887. url: http://arxiv.org/abs/1707.06887.

[2] Exploration vs. Exploitation - Learning the Optimal Reinforcement Learn-
ing Policy. Oct. 2018. url: https://deeplizard.com/learn/video/
mo96Nqlo1L8 (visited on 12/12/2019).

[3] Gary. Applications of Reinforcement Learning in Real World. Aug. 2018.
url: https://towardsdatascience.com/applications-of-reinforcement-
learning-in-real-world-1a94955bcd12 (visited on 12/12/2019).

[4] Daniel Godoy. Hyper-parameters in Action! Part II - Weight Initializers.
Dec. 2018. url: https://towardsdatascience.com/hyper-parameters-
in-action-part-ii-weight-initializers-35aee1a28404 (visited on
12/12/2019).

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016, pp. 26, 276.

[6] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour”. In: CoRR abs/1706.02677 (2017). arXiv: 1706.02677. url:
http://arxiv.org/abs/1706.02677.

[7] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
arXiv preprint arXiv:1512.03385 (2015).

[8] Kaiming He et al. “Identity Mappings in Deep Residual Networks”. In:
CoRR abs/1603.05027 (2016). arXiv: 1603.05027. url: http://arxiv.
org/abs/1603.05027.

[9] Alex Irpan. Deep Reinforcement Learning Doesn’t Work Yet. https://
www.alexirpan.com/2018/02/14/rl- hard.html. 2018. (Visited on
12/12/2019).

[10] M.P.H. Huntjens L.V. Ailis H.J. van den Herik. “Gomoku Solved by New
Search Techniques”. In: AAAI Technical Report FS-93-02 (1993). url:
https://www.aaai.org/Papers/Symposia/Fall/1993/FS-93-02/

FS93-02-001.pdf.

49

[11] Markov Decision Processes (MDPs) - Structuring a Reinforcement Learn-
ing Problem. Sept. 2018. url: https://deeplizard.com/learn/video/
my207WNoeyA (visited on 12/12/2019).

[12] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836.
url: http://dx.doi.org/10.1038/nature14236.

[13] Policies and Value Functions - Good Actions for a Reinforcement Learn-
ing Agent. Sept. 2018. url: https://deeplizard.com/learn/video/
eMxOGwbdqKY (visited on 12/12/2019).

[14] Q-Learning Explained - A Reinforcement Learning Technique. Oct. 2018.
url: https://deeplizard.com/learn/video/qhRNvCVVJaA (visited on
12/12/2019).

[15] Stacey Ronaghan. Deep Learning: Which Loss and Activation Functions
should I use? Aug. 2019. url: https://towardsdatascience.com/deep-
learning-which-loss-and-activation-functions-should-i-use-

ac02f1c56aa8 (visited on 12/12/2019).

[16] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009,
pp. 163–164. isbn: 9780136042594.

[17] A. L. Samuel. “Some Studies in Machine Learning Using the Game of
Checkers”. In: IBM J. Res. Dev. 3.3 (July 1959), pp. 210–229. issn: 0018-
8646. doi: 10.1147/rd.33.0210. url: http://dx.doi.org/10.1147/
rd.33.0210.

[18] D. et al. Silver. “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm.” In: TODO (2017).

[19] D. et al. Silver. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529 (2016), pp. 484–489.

[20] D. et al. Silver. “Mastering the game of go without human knowledge”.
In: Nature 550 (2017), pp. 354–359.

[21] David Silver, Richard S. Sutton, and Martin Müller. “Temporal-di↵erence
search in computer Go”. In: Machine Learning 87.2 (May 2012), pp. 183–
219. issn: 1573-0565. doi: 10.1007/s10994-012-5280-0. url: https:
//doi.org/10.1007/s10994-012-5280-0.

[22] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Second. The MIT Press, 2018, pp. 64, 119–120. url: http:
//incompleteideas.net/book/the-book-2nd.html.

[23] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and
Games. Springer, 2018, pp. 8–10. url: http://gameaibook.org.

50

Master’s Theses in Mathematical Sciences 2019:E66
ISSN 1404-6342

LUTFMA-3370-2019

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

