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Abstract

The logic scaling following Moores law has reached a level where System on Chips
(SoCs) commonly contains millions of standard cells. The sheer amount implies
that even small optimizations on a standard cell can have a significant effect on
the SoC performance. To ensure the performance of standard cells, many of these
are hand-drawn. This is a tedious task that needs to be done every time a new
process technology emerges. Something which requires both many man-hours and
that holds a risk of designing sub-optimal solutions or introducing human error
into the design.

Presented in this thesis is a method for automatizing the complete design
process of standard cell layouts, requiring only a netlist and a few fundamental
design rules for the given technology. The overall procedure was divided into three
parts: placement, routing, and evaluation. The tool is entirely built in Python and
for functionality verification commercial EDA tools from CadenceTM were used.
The generated standard cells have shown to match the area requirements of typical
industry-level standard cells and in some critical complex cells even outperform
them.
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Popular Science Summary

Moore’s Law states that the number of components on a chip will double every 18
months and today, a single Integrated Circuit (IC) can contain over 20,000,000,000
transistors [1]. This astronomical number makes it clear that a fully manual IC
design process isn’t realistic. Instead, an increasing level of automation is being
implemented in the field of IC design to minimize the workload and to keep time
to market as low as possible.

Standard cells are used to implement fundamental logic, such as AND, OR,
XOR and INV into compact hardware blocks that are used in typical digital ICs.
Hence, standard cells are often considered as the smallest building blocks and its
critical to optimize these building blocks for Power, Performance and Area (PPA).

Designing the layout of standard cells can be a tedious task that is often drawn
manually. Currently, most standard cells (as well as most other analog layout
designs) are manually redesigned for every new process technology that emerges
because of the new sizings and design rules that follow with them.

In this thesis, a generic approach for automating the design of standard cells
is presented. The approach is designed in a way such that a minimal amount of
technology-specific information is needed while still producing efficient cells. This
would allow digital IC designers who receive a new technology to quickly generate
a library to get going with their designs, even before achieving detail knowledge
about their design rules.
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2 Introduction

The quickly increasing complexity of ICs causes more and more development
related tasks to be unfeasible for humans to execute, which is why Electronic
Design Automation (EDA) is a topic which has been subject for much research
over the last decades.

To implement complex digital functionality onto an IC, it is commonly de-
scribed using a Register Transfer Level (RTL)-language. RTL provides a high-level
abstraction of hardware, through which an engineer can code the behavior without
having to put much consideration into the features of low-level components. The
RTL can later be interpreted through a process typically known as synthesis that
realizes the desired functionality with gates from a standard cell library.

Standard cells are predesigned logic blocks implementing very elementary func-
tionality such as AND-gates and OR-gates. These cells can then be duplicated and
reused as black boxes across the entire IC to implement more complex logic. Since
a single IC can contain millions of these blocks, it is crucial that they are well
optimized to avoid unnecessary energy consumption or speed loss.

Designing the layout of standard cells can be a tedious task that is generally
drawn by freehand [3] [4]. Currently, most standard cells are redesigned for every
new process technology that emerges. Something which is required because of
the new sizings and design rules that follow with them [5]. This requires both
many manhours and holds a risk of designing sub-optimal solutions or introducing
human error into the design.

When designing a layout, there are heaps of considerations to keep in mind.
A designer generally attempts to optimize a trade-off of efficiency in area, power
consumption and performance of the circuit such that its specifications are satis-
fied. In addition to this, the designer must also abide by the technology-specific
design rules. The vast amount of parameters and constraints to consider, forces
the designer to employ heuristics achieved by experience rather than to follow an
optimal algorithm.

1.1 Scope of the thesis

The idea behind this project is to automate the design of standard cells, and thus
remove the thousands of work hours currently required for the manual design for
each new technology. Standard cells were chosen as a topic because they are the
one component in a digital flow where analog engineers are still essential. Solving
standard cell generation through a tool would therefore equip digital engineers
with more freedom in their work. Furthermore, it is easy to use standard cells
to evaluate and benchmark their performance by comparing to existing industry
standard implementations.

Questions that are attempted to answer throughout this thesis includes

• Whether it is feasible to automize the design process of standard cells.

• How well such a tool can perform compared to manually designed layouts.

• To what extent such a tool can be made technology independent.

Automation of standard cell design is bound to become a cross-field research
topic to some extent. With this thesis, patterns in industry level standard cells
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have been studied as an initial research step to help gain insight into what can and
can’t be done. However, the scope of this thesis focuses mostly on the algorithmic
level and how to generate area-efficient standard cell layouts in a way that requires
minimum consideration for the design rules of the process technology.

This thesis is developed at Xenergic AB, a company in Lund that is developing
low-power SRAM!s. The project it describes is realized using a 28 nm bulk
process technology.

1.2 Goals achieved

The outcome of the thesis is a successful one where almost every evaluated standard
cell of below 12 transistors can be generated without any human intervention
such that the area requirements remain the same as industry level standard cells.
Additionally, with some manual aid, a full adder could be implemented such that
it required less area than the reference library being used.

1.3 Outline

In this thesis, we will first introduce some foundations and present-time methods
behind physical design and EDA. Afterwards, we will dive into some graph the-
ory algorithms that have played a significant part in the shaping of the routing
algorithm.

Following, we will describe the flow of the method through placement, routing,
post-processing and evaluation along with the results achieved.

Finally, to conclude the thesis, we will discuss performance, usability and
future improvements that can be implemented to make the method industrially
competitive.
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6 Physical Design & EDA

2.1 Inside an integrated circuit

An electronic schematic is something most people have encountered already in
high school. It gives a clear and accurate overview of what is connected to what in
an electrical circuit, which in turn helps to get an intuition for what functionality
it implements.

In integrated circuits, however, the physical design (or layout) looks quite
different. In Figure 2.1 the cross-section of an n-type Metal Oxide Semiconductor
(NMOS) is illustrated. This, along with its p-type Metal Oxide Semiconductor
(PMOS) equivalent, makes up the elementary building blocks that realize the logic
in an IC. For IC designers, the layout is commonly seen from a topographical point
of view where each material type (or metal layer for routing) is viewed as a layer.
From this perspective, a transistor looks like in Figure 2.2 if we omit the bulk
and dopant layers from it. Now, if voltage is applied to the polysilicon gate (often
referred to as poly), the path between the source and drain will become conductive.
If the gate voltage is set to ground potential, the circuit will become resistive, thus
isolating the potentials on either side of the poly from each other. Similarly, its
PMOS counterpart is conductive for low gate voltages and resistive for high gate
voltages.

CMOS (Complementary Metal Oxide Semiconductor) is a technology for de-
signing integrated circuits. Its name derives from that it is built from complemen-
tary pairs of NMOS and PMOS transistors. The PMOS net connects the output
to the supply voltage and the NMOS net connects the output to the ground rails.
The complementary aspect of the nets is that they are designed such that only
one of them can be open at a given time. Always having one of the nets com-
pletely turned off gives CMOS designs a very low static power consumption, only
consuming significant power during the switching between on and off states. This
power efficiency is one of the main reasons why CMOS now accounts for a vast
majority of the logic in integrated circuits [6].

Figure 2.3 shows a schematic of an inverter, which is the simplest component
that can be built with CMOS technology. If the input A is set to a logical ’1’, the
NMOS transistor will open while the PMOS one will be turned off. This, in turn,
will bind the output Z to ground (logical ’0’). Similarly, the opposite will happen

Figure 2.1: A cross-section image of a transistor. Illustration by [2]
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Figure 2.2: An illustration of how a transistor is viewed to a layout
engineer. The yellow parts represent the source and drain while
the red represents the gate.

NMOS

PMOS

VDD

A
Z=Ā

Figure 2.3: The schematic of a CMOS inverter

if A is set to ’0’.

2.2 Introduction to VLSI

After the emergence of integrated circuits, the number of components on a chip
grew rapidly, as mentioned in the introduction. Already in the 70s, many hard-
ware developers started to put in extensive research into the development of tools
that can automate the design effectively, efficiently and reliably [7]. Even the U.S.
Department of Defense took part in developing VHSIC Hardware Description Lan-
guage (VHDL) in 1983, which to this day is still among the most used Hardware
Description Languages (HDLs) on the market [8] [9]. Something that gave rise to
the fields of EDA and Very Large Scale Integration (VLSI).

VLSI is the process of designing an IC by combining millions of transistors into
a single chip. A typical IC today can even contain upwards billions of transistors.
This is obviously unfeasible to keep track of manually, which has led to that a
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Figure 2.4: The schematic of a CMOS 2:1 MUX

large scale utilization of EDA tools has become a necessity in chip development.
RTL is an abstraction layer within digital IC design that models the flow of

digital signals between hardware registers as well as the logical operations per-
formed on those signals. RTL abstraction is used in HDLs such as Verilog and
VHDL to describe the desired behavior of a circuit. From this, a lower-level circuit
representation can be derived, including logic gate selection and wiring.

The process of interpreting an RTL description of a desired behavior and re-
describe it in terms of logic gates is called logic synthesis. In other words, logic
synthesis generates a circuit schematic from the RTL description it’s fed with.
During synthesis, the tool evaluates the information of each gate’s propagation
delay, which is described in their .lib-files. This information is then used to deter-
mine which gates to use to best meet the timing constraints set by the designer.

To implement the logic into an IC, global place and route tools need to be
used to realize all the physical structures of the design. Firstly, all logic gates need
to be placed on the IC such that the placement is routable and that related gates
are located close to each other. Afterwards, the gates need to be connected with
metal wires according to the schematic described by the synthesis tool. Both the
placement and routing tools need to make use of the .lef -file of each gate, which
contains information regarding the geometry of the gate along with the position
of the gates pins. This is needed both to determine the size of the area that will
be occupied by the gate as well as how to connect to the gate without causing any
unwanted shorts.

The logic gates described above are commonly referred to as standard cells.
These are small logic blocks that implements commonly used functionality, such as
AND-gates, OR-gates, and MUXs. The standard cells are made to be duplicated
and frequently reused across the chips, which is why it is imperative that these
are well optimized. If, for example, an AND-gate would use one transistor width
more than necessary and that AND-gate is reused in 100,000 instances over the
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Behavioural Domain Structural Domain

Physical Domain

Systems
Algorithms

Register transfers
Logic

Transfer functions

Processors
ALUs, RAM, etc.

Gates, flip-flops, etc.
Transistors
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Floorplans

Module layout

Cell layout

Transistor layout

Figure 2.5: A Gajski-Kuhn Y-chart illustrating the abstraction levels
from different hardware perspectives.

chip, that would imply a waste of a significant area which could have been used
for more logic implementation.

An overview of a VLSI design flow is illustrated in the Gajski-Kuhn chart in
Figure 2.5. Here, the hierarchical abstraction layers are depicted as circles inside
each other, where the modules are divided into lower-level problems the further
towards the middle you look. The three lines depict the design flow from different
perspectives of hardware design, although ultimately all points on the same circle
refer to equivalent modules. The tool described in this thesis will focus completely
on the two innermost layers, thus creating building blocks that will be reiterated
towards the outer abstraction layers.

2.3 Design goals & Techniques

2.3.1 PPA trade-off

When designing a circuit, the goal lies in implementing the desired logic such that
it performs as fast as possible while requiring as little power and area as possible.
These three properties often relate to one another such that if one is improved,
the other two worsens. This frequently leaves hardware engineers with trade-off
situations in which a component should be tweaked such that is becomes optimized
for the parameter which is most crucial in the current case.

2.3.2 Drain & source sharing

A technique that can improve all three of the PPA properties simultaneously, and
thus make it a trade-off free improvement, is drain or source sharing. This is
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Figure 2.6: An example of source/drain sharing used to save area.

done when connected transistors, instead of being attached by a wire, are con-
nected through sharing the same drain or source. The outcome of employing this
technique is that the width of the placed layout will become one transistor width
shorter for each drain/source sharing performed in the Pull-Up Network (PUN)
or Pull-Down Network (PDN). Since there will be less interconnect within the
cell, the parasitic capacitances will be reduced, resulting in improvements in both
power consumption and performance [10] [11]. Also, since fewer routes will need
to be drawn, maximizing drain/source sharing tends to make the routing step
easier. An example is presented in Figure 2.6 where three consecutive gate lines
over a diffusion layer make up three transistors. Furthermore, Figure 2.7 shows
an example of a layout where some drain/source sharing has been used.

When designing standard cells, it is a common goal to exploit this feature as
much as possible. A well-known structure in graph theory called Eulerian path is
commonly used as an aid to maximize the utilization of drain and source sharing
and will be described further in section 3.2.

2.3.3 Poly cutting

When trying to maximize drain/source sharing, cases may occur where an Eulerian
path can be found for both the PUN and the PDN, but where matching paths do
not exist. In such a case, a technique commonly known as poly cutting can be
used. As the name implies, poly cutting divides the polysilicon gate into two parts.
This enables opposite transistors to hold different gate signals simultaneously, thus
allowing the PUN and PDN to follow different eulerian paths while still maximizing
drain/source sharing.
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Figure 2.7: A "less than 2"-gate realized with a layout using
source/drain sharing.

2.4 Previous research

As described in section 2.2, EDA problems are generally solved through many
layers of divide and conquer methodology. This means that the main problem is
divided into multiple smaller ones, which in turn are further divided. An example
would be if a common layout placer only considers the size and pin positions of the
standard cells as it places them on a chip while treating the rest of the standard
cell as a black box. Designing the actual standard cell is considered a completely
separate problem, which in turn can be further divided.

Since problem division is a well-employed methodology in hardware design, it
is hard to find any papers on the complete design of standard cells. The authors
of [12], however, published one such paper in which the goal is to generate as
dense standard cells as possible. The transistor placement strategy described
in the paper is performed with much focus on the consideration for routability
in the subsequent step. They aim to aid this step by defining a cost function
based on the total amount of subnets that are longer than minimum sized in
the placement combined with some heuristic measures for how well it will be
externally routable. This cost function is later minimized through the use of
simulated annealing which is a stochastic method for finding approximate global
extrema in discrete environments [13].

The routing method described in the paper features a greedy route-by-route
depth-first search followed by an SAT1 solving method. It uses some problem-
reducing constraints, such as a maximum amount of turns of a wire. Furthermore,
they implement an additional step for evaluating resource congestion. Something
that can help with pushing the router towards areas used by fewer nets. It should
be noted, though, that the authors of this paper have made it easier for themselves
by allowing routing in diagonal directions. Something which is rarely allowed in
newer technologies.

In [4] and [14], the problem has been focused towards the selection within

1SAT will be further explained in the next chapter.
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a pre-generated set of routes. Here, the idea is to filter as many unfeasible or
redundant routes as possible before solving an SAT problem which is defined to
further detect routes that are incompatible with the rest of the nets. Afterwards,
they solve an additional SAT-problem which searches for route combinations that
are compatible.

Furthermore, [14] has put in extra effort into the evergrowing complexity of
the design rules that follow from the smaller technologies. Here, SAT formulations
for design rules and design robustness have been created to make sure that the
environmentally sensitive lithography technology used in the Extreme Ultra Violet
(EUV) process won’t risk the causing of any unwanted shorts.
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Figure 3.1: An illustration of an Eulerian path. An Euler path is
achieved if following the edges in alphabetical order

Throughout the development of this thesis, the field of graph theory has proven
to be very useful. It contains an extensive toolbox for efficiently analyzing and
manipulating pairwise relations between nodes, which is something that can be
applied to many aspects of layout design. A more formal introduction to graph
theory will follow in the next subsection.

3.1 Background

In its most basic definition, a graph is defined as an ordered pair G = (V,E) where

• V is a set of nodes

• E ⊆ {{x, y}|(x, y) ∈ V 2 ∧ x 6= y} is a set of edges.

In words, this can be summarized as a structure consisting of a set of objects in
which some of the objects as pairwise related. As a subset of the original graph,
the edges it contains can also be paired with values to create a weighted graph.

Graph theory is used to model relations and processes in many fields including
physics, biology [15], sociology [16] and computer science. A well-known example
of where graph theory is used within many of the models for neural networks.

Some methods from graph theory that have proven to be very useful over the
course of this thesis will be explained below.
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Figure 3.2: The logic from Figure 2.7 implemented in a less-than-
2 gate. Illustration of a layout designed from matching Euler
paths.

3.2 Relevant algorithms

3.2.1 Eulerian paths

Eulerian paths, or Euler paths, is a trail which passes through every edge in a
graph exactly once. An example is shown in Figure 3.1, where an Euler path is
achieved if the edges are followed in alphabetical order.

In a practical layout scenario, it is always ideal, from an area point of view, to
enable source/drain sharing across all transistors in a network if possible. Addi-
tionally, the merging of the transistors reduces the need for wiring in the cell. This
reduces the capacitive and resistive properties of the circuits, which in turn im-
proves performance and power efficiency. Furthermore, the routing itself becomes
an easier task by having fewer nets to route. A way to find a valid placement
that maximizes the usage of source/drain sharing is by considering the schematic
as a graph where the transistors are seen as edges with gate signals as identifiers.
Then the logic can be realized with only one diffusion layer block if and only if it
is possible to draw an Eulerian path through the PUN and PDN respectively such
that the order of the identifiers is identical for both the paths.

In Figure 5.5, the circuit from Figure 2.7 has been reconstructed using complete
matching Euler paths. It is clearly visible that both the required area as well as
the used wiring has been reduced significantly for this case.

3.2.2 Graph traversal algorithms

There exist many methods for routing the metal layers in an integrated circuit.
For larger systems, a common approach is to look at the layout from a very coarse
scope and route wires semi-independently such that the routes are spread out
appropriately much. After that step, the algorithm begins the detail routing by
trying to connect the nets within the pre-routed areas without conflicting wires
from different nets. This is a method commonly known as a global routing algo-
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rithm [17].
For this thesis, we’ve decided to explore a routing algorithm that considers

each point-to-point route independently and selects a combination of these such
that no routes from different nets collide. Graph traversal algorithms can be used
to efficiently generate these routes.

Dijkstra’s algorithm

Dijkstra’s algorithm is an algorithm designed to find the shortest path between
two nodes in a graph. It is guaranteed to always find the best solution. The
algorithm works as follows [18]:

1. Mark all nodes in the graph as unvisited.

2. Choose an origin node and set a distance score of this node to 0. Set the
score of all other nodes to infinity.

3. For the current node, consider all of its unvisited neighbors and calculate
their distance score through the current node. Compare with the current
score and assign the smallest.

4. Mark the current node as visited.

5. Finish if the destination node has been marked as visited.

6. Otherwise, select the unvisited node with the lowest distance score and go
back to step 3.

Dijkstra’s algorithm is the fastest known shortest path algorithm for generic
graphs, assuming no pre-existing knowledge and it runs with time complexity
O(|V |2), where V is the number of nodes in the graph [19].

In layout design, the grid space can become huge and the number of nodes
required to get an accurate resolution can quickly make the algorithm unfeasibly
slow.
Luckily, we do have some preexisting knowledge about the graph that we can use.
Namely the geographical positions of all nodes. This information proves to be of
huge help when looking towards the A* algorithm instead.

A* algorithm

The A* algorithm is an informed search algorithm and is considered as an extension
to Dijkstra’s algorithm. It works by adding a heuristic to the cost of each node,
guessing the remaining distance to the final destination [20].

The algorithm works as follows:

1. Select an origin node.

2. For the current node, consider all of its neighbors and calculate their esti-
mated cost as a sum of the traversed distance and a heuristic of the remain-
ing distance.

3. Add all neighbors with their estimated costs to a sorted set.
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Figure 3.3: An example of a minimum spanning tree.

4. Finish if the destination node has been marked as visited or if the set is
empty.

5. Otherwise, select the unvisited node with the lowest estimated cost and go
back to step 2.

This algorithm has been shown to excel in many real-world applications where
spatial data tends to be available at least to some extent. Examples where A* has
proven to be of great use is in road navigation systems [21]. In those cases, trying
all possible road combinations to get to a certain location would be unreasonably
demanding, which is why some form of heuristic needs to be applied.

3.2.3 Minimum-spanning-tree algorithms

A Minimum Spanning Tree (MST) is the subset of edges in a graph that connects
all of its nodes such that the total cost is as small as possible [22]. An example of
an MST is illustrated in Figure 3.3.

A typical field where it is useful to find an MST is within telecommunications
or power grid planning where cables need to be buried such that all houses are
connected. In a use case such as this, the edges of the graph would be all areas
where the cable can be buried and the nodes would be the houses that are to be
connected. The MST would then represent the path that requires the least amount
of wiring while connecting exactly all of the houses.

Kruskal’s algorithm

Kruskal’s algorithm is a greedy MST algorithm. An algorithm being greedy means
that it’s following a problem-solving heuristic that is only locally optimal while
searching for a global optimum. In spite of this, Kruskal’s algorithm guarantees an
optimal solution for all cases where one exists [23]. For large problems, however,
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it becomes very inefficient with a time complexity of O(ElogE), where E is the
amount of edges in the graph.

Kruskal’s algorithm goes as follows:

1. Put all edges E in a list sorted by weights.

2. Pop the smallest edge en from the list.

3. If the nodes on each side of the edge are already connected, go to step 2.

4. Add en to a set of MST edges EMST .

5. Finished if all nodes are connected to the same net. Otherwise, return to
step 2.
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Overview

In this chapter, we will present the components to the thesis project and the
reasoning behind the choices we’ve made in the design. We will also relate and
compare with some of the previously existing research that has inspired this work.

As with most things in the EDA world, we have deployed the divide and
conquer strategy by recursively trying to chop up many of the tasks to smaller
ones that are more easily solved. However, the thesis can be roughly divided into
3 main components:

1. Selection of transistor placement.

2. Routing of the nets.

3. Evaluation of the result compared to industry level standard cells.

4.1 Transistor placement

The goal of the transistor placement component is to find the placement ordering
that requires the smallest possible area as well as the least amount of wiring.

While somewhat correlative, these two criteria give rise to two completely
different tasks. The ordering in this approach is optimized sequentially, first on
area consumption and secondly on wire requirements. This is motivated by that
we have come up with an efficient method for quickly generating area optimized
CMOS-logic and that it turns out that the most wire effective solution often is
part of the set of area optimized solutions.

4.1.1 Area optimization

The focus of the area optimization part of the placement was on the search for
Euler paths through the circuit. By treating all the transistors as edges and their
interconnects as nodes, the network could be seen as graphs to traverse, thus
simplifying the problem.

The initial thought for this step was that the small problem size that comes
from only designing standard cells would make the problem solvable by employing
the following "brute force" method. It should be noted that this algorithm was
created before graph theory entered the focus of the thesis.

1. Select the drain/source of one transistor in the PUN and add the transistor
to an empty set.

2. Iterate through all transistors not in the set to find those with a drain/source
matching the previous one.

3. Create a new set for each such transistor extending the previous one and
select the opposite drain/source of the last transistor.

4. If any transistor in a set still has an adjacent transistor, not in its set, go to
step 2. Otherwise, continue.

5. Repeat from step 1 with the PDN. Then skip this step.
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6. Search the sets for entries where the sequence of gate signals are identical
for both the PUNs and PDNs.

This algorithm proved to have two big flaws. Firstly, it does not work for
standard cells which cannot be realized in a single Euler path, and secondly, the
computational complexity of this method is O(|N/2|!) where N is the amount of
transistors in the netlist, making the computation time and memory usage explode
as we’re approaching larger standard cells.

To address both of these issues a second algorithm was developed. In this
improved version, an empty alternative was added as a possible component in the
transistor sequence for both networks. The empty entry can be matched against
any other entry in the opposite network, allowing for any shape of the PUN and
PDN regardless of the other. Since this algorithm allows empty alternatives, there
are no longer any ways for a transistor sequence to be "locked in" and forced to
continue on other combinations using the recursive method in the previous algo-
rithm. Instead, this version performs the matching between the gate connections
in the subnets on the fly and employs the A* algorithm to determine the best
transistor sequence to expand.

The second version is considering the nets as graphs and goes as follows:

1. Consider each transistor as an edge with its nodes being the nets the tran-
sistor is connected to. Each edge also holds an identifier equal to the name
if the transistors gate signal.

2. Generate a list holding all edges for PUN and PDN respectively.

3. Build a set S1 for each combination of one edge or None from each subnet.
For each edge in S1, push the combination as a list of one element lists Li to
a minheap H along with a cost value representing x−distance_traversed+
min(x− distance_remaining).

4. Pop Li from H and fetch all adjacent edges not yet traversed through.

5. Build a set S2 for each combination of one edge or None from each subnet.

6. Iterate through S2. If both edges hold the same identifier or if at least one
of the edges are None, add the combination to a copy of Li and push it to
the heap along with a cost value defined as before. Otherwise, discard this
combination.

7. Repeat steps 4-6 until no unvisited edges exist in Li. Li will then hold an
area optimized placement alternative.

This reduces the asymptotic time complexity to O((N + 1)2) which, while
much better than the previous version, is further improved by the guided search
provided by A*. Another good property of this algorithm is that it can be left
running to find more placement alternatives. Most often, one netlist contains
multiple alternatives tying for the same area usage.

In this approach, we fetch all of the best combinations and feed them to the
wire optimization step.
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4.1.2 Wire optimization

The wire optimization step can be seen as a preprocessing step to the routing
of the standard cell. The routing is the most time-consuming part of the layout
automation tool and it can become demanding to route all possible placement
alternatives. Because of this, the area optimized placements are sorted based on
heuristics that estimates which layouts are most likely enable efficient routing.
There are two different heuristics being employed sequentially.

1. The placement which holds the smallest cumulative horizontal span of all
nets.

2. The placement which holds the least maximum vertical stacking.

The first of these heuristics is simply intended to guess which of the placements
will need the least amount of wiring. The other has the purpose of minimizing local
congestions, thus making the layout easier to route. Consequently, the order of
the sorting heuristics could be reversed if hard-to-route layouts are encountered.

4.2 Net drawing

One of the most important constraints of this tool is the agnosticism to process
technology. Because of this, it is important that only the absolutely essential data
from the technology file is being forwarded to the tool. [4] is another paper that
holds the same constraints for process independence which has inspired some of
the reasoning in the routing part of this project. However, since we’re actually
creating our own layout and routes rather than puzzling pre-existing ones, we need
some extra information including minimum wire width and minimum wire spacing.

4.2.1 Initial attempts

For this part of the thesis, many different ideas have been studied and sometimes
also realized and evaluated. Initially, a generative reinforcement learning approach
was considered. This would, in its most general format, mean that the algorithm
explores the layout space through trial and error and improves its performance
from positive or negative reinforcement scores. Routing, though, proves to be a
problem with exponential complexity and the chances of generating a fully con-
nected net "by accident" are incredibly small. This means that the reinforcement
learning agent will never get any positive rewards to learn from, and is therefore
unlikely to improve. This is a famous problem known as a sparse reward problem
which is currently undergoing lots of research.

Another approach that was considered was to place horizontal and vertical
wires on different layers, thus making an easily routable grid. This idea was
quickly discarded, though, due to the bad performance that can be expected from
the output by having close to 50% of all routes in Metal 2 (M2).

The last major approach that was attempted was to modify the A* algorithm
to work as a multi net algorithm. This was done by defining the cost function as
the total length of all current wiring and the heuristic as the sum of all minimum
remaining distances between metal and endpoints. The grid steps were defined as
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the minimum notch of the wiring. Each iteration then had the available expansions
of moving one step with either wire stub in either legal direction. It turned out,
though, that the A* algorithm became greedy when dealing with multiple nets,
getting stuck in local minima where the wiring can become close to fully connected,
but with some nets locked in, close to a successful result.

4.2.2 Final approach

The approach that is currently employed for drawing the metal on the layout is a
modular approach following multiple larger steps. The steps will be described one
by one below.

Environment definition

Before the routing can begin, the layout space needs to be properly described and
quantified into a three-dimensional grid. For this project, I’ve designed a coarse
grid with intervals based on physical properties from the design rules. The grid
intervals were chosen as follows:

dy = min(w_metal) +min(w_spacing) (4.1)

dx = gate_interval/2 (4.2)

On this grid, no two objects belonging to different nets can be placed in the same
point. Furthermore, one additional rule is that no two objects from different nets
that are on the same y can be at less than 2dx distance from each other.

Support for adding weight factors for routing at a certain grid node has been
implemented. This could work as a preprocessing step in aiding the routing step
explained in the next section by guiding it away from congested areas. However,
since no good enough method for deciding how to set the weights has been de-
signed, this functionality is currently idle.

When the grid is in place, each net node is assigned to a grid coordinate and
paired with all other nodes of the same net. Afterwards, all pairs except supply
nodes are passed to the router.

Routing

The idea as a whole with this routing approach is to gather lots of possible candi-
date routes for each point-to-point connection, then select the combination of these
that satisfies a cost function without breaking any Dynamic Rule Check (DRC)-
rules.

The router at its core relies on the A* algorithm for point-to-point routing.
In contrast with the normal use of the algorithm, though, this was left to keep
searching for more possible routes, exploiting the data that was already gained by
the previous search. The maze solver keeps searching for route alternatives until
a predetermined number of routes has been found. Given the coarse grid, a fairly
large portion of the solution space can be explored with a reasonable number of
routes. The routing algorithm accepts user customization, primarily to let the



24 Tool Development & Considerations

user decide the weight of having M2 wires and vias in the layout. With these, the
cost of the A* is defined as

cost =

N∑
n=0

l(n) · cost_factor(layer(n)) +
V∑
via_cost (4.3)

Similarly, the remaining distance heuristic is defined with the following equa-
tions:

dist = |x− xgoal|+ |y − ygoal| (4.4)

heur =

{
dist · cost_factor(layer), if layer = layergoal

dist · cost_factor(layer) + via_cost, otherwise
(4.5)

In order to avoid any obviously redundant routes, checks are made on the fly
during the course of routing to make sure that:

• No u-shape can be made in any of the three dimensions such that the space
is to small for an intermediate wire.

• No route can ever re-enter a node it’s previously been in.

Selection

When a predefined number of routes have been found for each point-to-point
connection, we need to match them such that no routes conflict with each other
while the total cost is as small as possible. This is something that is done at the
time complexity of O(RN/2), where R is the number of routes per net and N is the
number of nets in the netlist. This can become very computationally demanding
for larger cells, which is why the first step of this approach is about minimizing
the size of the route combination problem.

There are two methods being applied sequentially in order to remove unnec-
essary routes from the data set:

• Kruskal’s algorithm

• SAT solving

Kruskal’s algorithm is being used as the first step to build a minimum spanning
tree for each of the nets. According to what is presented in the theory section, it
works by connecting the unconnected node that is closest to a point in its connected
net repeatedly until all nodes are connected. Kruskal is generally considered as a
greedy algorithm, but since the number of connection points in a net is expected
to be in the range of less than 10 and not in the range of thousands, its time
consumption is still negligible.

After Kruskal has removed all unnecessary point-to-point connections, the
routes that are incompatible with the rest of the system needs to be removed.
In this approach, that is done through solving a boolean satisfiability (or SAT)
problem, following an approach similar to what was presented in [4]. The SAT
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problem is about finding a set of variables such that a boolean formula asserts
true. In this case, the formula can be defined as

rokab =

P∧
p=0

p 6= a

(

Rp∨
j=0

(rab ∧ rpj)) (4.6)

where P denotes the number of point-to-point connections in the system, Rp

the number of routes for a connection and rpj denotes route j at point-to-point
connection p. rab∧rpj is defined to assert true if both routes can be drawn without
conflict. In words, this means that a route will be considered invalid if there
exists a point-to-point connection with which no generated routes are compatible.
Furthermore, if exactly all routes within a point-to-point connection are deemed
invalid, the system is to be considered unroutable for the given placement and
generated routes.

Conn 1 Conn 2 Conn 3 Conn 4 C5
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

Conn 1
r1 - x x x x
r2 - x
r3 - x x

Conn 2 r4 x x x -
r5 x - x x

Conn 3 r6 x -
r7 x -

Conn 4
r8 x - x
r9 -
r10 x -

Conn 5 r11 x x -

Table 4.1: Illustration of how the nets are filtered out in the SAT
step. r1 is completely blocking connections 2 and 5. Also r4
and r11 are unfeasible.

Conn 1 C2 Conn 3 Conn 4 C5
r2 r3 r5 r6 r7 r9 r10 r11

Conn 1 r2 -
r3 - x

Conn 2 r5 - x

Conn 3 r6 x -
r7 -

Conn 4 r9 -
r10 x -

Conn 5 r11 -

Table 4.2: After filtering, r6 completely blocks connection 2 and
needs to be removed as well.
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Conn 1 C2 C3 Conn 4 C5
r2 r3 r5 r7 r9 r10 r11

Conn 1 r2 -
r3 - x

Conn 2 r5 -
Conn 3 r7 -

Conn 4 r9 -
r10 x -

Conn 5 r11 -

Table 4.3: Filtered system with no unfeasible routes remaining.

In a net it is clearly beneficial, from all three optimization parameters point of
view, if the routes coincide with each other, thus sharing metal. Because of this,
a discount system has been defined, reducing the net cost corresponding to the
amount of overlapping of its routes. The set of available routes that fully spans a
net at the least cost has been coined as best buddies.

After the routes have been filtered and buddies defined, the next step is to
find a combination of the remaining routes such that the layout is fully routable
with the least possible wiring. The total amount of possible combinations can be
written as

combos =

N∏
n=0

len(pn) (4.7)

where N is the amount of point-to-point connections in the layout and len(pn)
represents the number of route alternatives remaining in a point-to-point connec-
tion.

This number will quickly become very large, even for small netlists. Something
that disables us from trying all the possible combinations sequentially. Instead, a
method for trying combinations in such a way that total metal cost goes from low
to high while keeping unnecessary attempts at a minimum had to be designed.

For this part, we are given a list Lp of routes for each of the point-to-point
connections p. A few methods were considered and discarded for this task.

One involved simply increasing the index for one of the lists, trying the com-
bination, then increasing an index again if no successful route combination was
found. This method would skip past many alternatives, though, making it an
incomplete solver. An illustration of the problem is shown in Figure 4.1.

A second procedure was a recursive solution where each index increment was
added to a heap as a (cost, indices) structure. This, however, caused problems in
that the same index combination can be reached in many different ways, leading
to large overheads in re-investigating the same combination multiple times. Par-
ticularly for high indices, the number of possible ways is so many that the same
combination could be checked billions of times. An example of how the same index
combination can be reached multiple times with this algorithm is shown in 4.2

The final solution builds on the second one. By adding the previously tried
index combinations as a tuple to a set the program can abort re-evaluations of
these as they appear. It’s important that the data structure is made to be a set
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Figure 4.1: Illustration of the problem with constant increment. If
this algorithm is used, the combination in step 3 may never be
tried.

Figure 4.2: Illustration of the problem with recursive increment. If
this algorithm is used, the combination in step 3 may be tried
multiple times.
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of tuples as the hashing operation of the set enables the search to be performed
at O(log(n)) as opposed to O(n) which normal list comparison would operate.
For millions of attempts, this makes a very large difference. Additionally, the
expansion of an index doesn’t happen until the route it represents is involved in a
conflict. This doesn’t remove any of the possible combinations, but it does allow
the program to focus on faster iterating through the more problematic routes.

The method currently being used adheres to the following algorithm:

1. Sort all the lists Lp on the cost of their routes.

2. Initiate a tuple of indexes for the lists Lp, starting at 0 for each list.

3. Add the tuple to a minheap H along with the total cost value for the routes
represented.

4. Pop from H and investigate if any nets are colliding.

5. If yes, increase create a new tuple for each colliding net where that index
has been incremented by 1.

6. For each new tuple, look in a set of tried combinations S if such a combi-
nation has been tried. If not, push the tuple to the heap along with a new
associated cost and add the tuple to S.

7. Repeat from step 4 until a successful net combination has been found.

Genericness of the routing method

While the grid system alone produces very high generalizability in the route cre-
ation, there are a few fundamental rules that are not covered by it alone. One such
rule is the available directions for routing. The technology used in developing this
method allows for routing in the x and y directions, which is why that is the rout-
ing style featured in this thesis. Other technologies, however, such as the 0.6 µm
technology allows for diagonal routing as well. Furthermore, it is not unreasonable
to assume that other technologies may prefer certain directions of routing, such
as is the case for most global routing scenarios. To address this constraint, the
method presented in this thesis allows for easy configuration of which directions
are allowed for each metal layer. It also supports soft breaks in certain directions
by increasing their cost if that should become relevant.

Via placement

When nets and transistor layouts have been chosen, it’s time to place the vias. Vias
add a few extra constraints to its surroundings such as the required encapsulation
of the layers it connects. This implies a need for some extra information from the
technology. In order to maintain as high indifference to the process technology as
possible, I’ve built a decision tree that considers the surroundings of the layout and
builds a metal structure around the via such that it makes the via legal but without
intruding on other metal drawing spacing constraints. The inherent margin in the
x-axis that comes from the grid, has been shown to give the room needed for
metal expansion in that direction. The only extra information needed from the
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technology for this problem is the required extra sizing of the layers adjacent to
the vias.

A fundamental flaw with this approach would be if it encountered a technology
that required more extra space than is provided by the margin. In this case, it is
reasonable to assume that a less coarse post-processing step or manual intervention
could aid in finding the needed space.

Additional layout features

As a final step, after all the components are in place, some required layers need
to be put in place. Examples are the dopant masks and the body contacts. This
step is performed in a rather hardcoded manner, simply depending on the size
of the finalized layout. Since not much consideration is placed on these layers,
we won’t elaborate on their implementation any further. A demonstration of the
extra layers can be seen in Figure 5.1 in the Results section.

4.3 Evaluation

4.3.1 Preprocessing

Since this project has been built entirely with Python, a first step before being able
to properly evaluate the results is to export the data to a format recognized by
the simulation environment. Graphic Database System Information Interchange
(GDSII) is a file format that has become the industry standard for data exchange
of IC layouts. In GDSII all layout data is stored as polygons or labels along with
an associated layer and datatype.

There can be tons of different layers for each process technology including
both metal types and abstract design rules that should be applied for a given
area. Furthermore, layer and datatype id may vary for different technologies.
Because of this, a mapping function was built to map the internal naming of all
layers to their corresponding counterparts in a given technology.

4.3.2 Procedure

The evaluation was made using Cadence Virtuoso, which is an analog design envi-
ronment that aids the user with drawing, modifying and verifying layouts. With
the help of Virtuoso, a proper schematic implementing the logic could be built.
Afterwards, a Layout Versus Schematic (LVS) test could be run to verify that the
layout does indeed implement the desired logic. Also, a DRC check was run to
verify that the layout was built in a manner that does not break any of the design
rules.

Since the method is intended to be technology independent, the area of the
cells is measured by gate count rather than absolute measurements. Considering
the size of the cells, this simply became a manual counting task for the purposes
of this evaluation.

It should be noted that the cells are never evaluated on performance and power
consumption. This is motivated by that the cells capacitive values aren’t expected
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to vary significantly from the industry level cells. Furthermore, it would be too
time-consuming to set up the capacitive extraction and simulation test benches.
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5.1 Results

The final outcome of the tool presented in this thesis is one which is verified to
feature quick transistor placement and metal route generation for most standard
cells consisting of 12 transistors or less. The largest cell generated purely through
the tool has been one containing 18 transistors. As can be seen in the figures
5.1, 5.3 and 5.4, the outer metal wires for most cells overlaps with the outermost
poly. This is something that, during implementation, would increase the required
area of the standard cell by one transistor width. However, it has been both
practically shown and studied from industry level standard cells that these wires
can be "squeezed" to fit within the margin required to leave space for an adjacent
cell. As is shown in Figure 5.2, the tool supports adding any extra peripheral
layers, such as dopant areas, that are needed to make the design immediately
integrable.

The industry level standard cells being compared with in this thesis are pro-
tected by a Non-Disclosure Agreement (NDA) which is why no comparative layouts
or supplier names are given throughout the thesis.

Cell type #
transistors

Routed
connections

Area [gate
count]1

Industry
area

Generation
time

BUFF 4 3 2 (3) 2 4 s
2-AND 6 3 3 (4) 3 5 s
4-AND 10 3 5 (6) 5 12 s

Full adder
part 1 10 5 5 (6) - 25 s

MUX 12 9 7 (8) 6 24 s
XOR 12 12 7 (8) 7 2 min 5 s

Full adder
part 2 18 10 9 (10) - 3 min 13 s

Full adder 28 20 15 16 ∼ 4 min +
puzzle time2

Table 5.1: A table showing the performance and generation time for
some of the most common standard cells.

1The number in the parenthesis refers to the area of the output of the tool. The
number outside of the parenthesis is the area required for the same cell design after "wire
squeezing".

2Puzzle time refers to the time used to attach two separately generated layouts. This
is further explained in section 5.1.1
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Figure 5.1: Generated layout for an AND-gate.

Figure 5.2: Same layout showing all of the layers used to generate
the complete cell.
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Figure 5.5: A schematic of a full adder. The dashed line shows
where the problem was divided into the generation procedure.

5.1.1 Complex Standard cells

The tool has some trouble with generating very large standard cells in its current
state. That problem is shown to be solvable by dividing the input netlist into
multiple parts and puzzling them together. The full adder which is shown in
Figure 5.6 and referenced in table 5.1 is built using such a methodology with great
result. As the table shows, this standard cell was implemented using only 94 %
of the area required by the industry supplied cell. There hasn’t been any such
puzzling functionality implemented in the tool, though, meaning the coupling of
the two parts had to be done manually. It should be noted that even though
I’m an inexperienced layout drawer, the connecting of the parts took less than 30
minutes and is thereby a feasible solution until a better one is added.

5.2 Comments on the results

The method presented in this thesis is shown to be able to generate most cells
in a library. Its success rate decreases with larger sizes, but the tool has been
shown to generate 18 transistor cells as well. It is shaped such that the routes
are constrained to occupy at most the area required to fit the transistors in the
logic. This, in turn, constrains the generated cell itself to always occupy the area
required to place the transistors.

For cases where the cell becomes too complex for the tool, it is possible to
divide the schematic of the cell into two parts for which the layouts are generated
independently. These layouts can then be merged as a post-processing step to
further push the boundaries of which cells can be generated. The aforementioned
strategy was used to implement the logic of a full adder, which is something that
requires 28 transistors. The result ended up being a great success story, allowing
for a circuit using only 94 % of the industry supplied cells.
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Figure 5.6: Full adder generated by manually connecting two sub-
parts of the schematic. This layout is shown to require less area
than the industry level cell supplied to us.

Some cells generated through this method, such as the XOR, requires more
area than the industry standard. The reason for this is that it was found out
too late in the project that cutting of the poly-layer was an alternative in layout
design. By cutting the Polysilicon (poly), it is made possible to keep some euler
paths in the PUN and PDN even though they’re not matching. Something which
would save area in the placement of the IC. It should be noted, though, that the
implementation of this only would affect the placement module of the method.
Because of this, it is reasonable to update it accordingly as future work without
compromising compatibility with subsequent modules.

It should be acknowledged that only one process technology has been evaluated
in this thesis. The design methodology is made such that it should be resilient
to changes in the design rules, including sizings and routable directions. Before
having actually verified it, though, there is no guarantee that the tool will work
for a given process technology.

5.3 Comparison with similar research

Despite only containing a few components of the thesis, [4] is a paper that has in-
spired much of its final design. After a few unsuccessful initial attempts with more
globally focused routing methods and fine level resolutions, this paper sparked the
idea of both using a coarse grid definition and to route each point-to-point con-
nection independently.

[12] was unfortunately found too late to have much influence on the archi-
tecture of the thesis. It is notable, though, that many of the considerations were
similar to the ones had throughout this project. However, they had some interest-
ing ideas for how to implement the placement step of their solution. The current
cost function being used in this approach is very coarse, meaning that many of the
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objects in the minheap hold the same priority level. This even can become a show
stopper for large cells. By adding expected routability to the cost function as a
runtime heuristic, the cost landscape can become much more nuanced. Further-
more, the usage of simulated annealing to rank placement strategies would reduce
both the time and memory consumption for large cells compared to the minheap
solution being used now. Left to evaluate is if simulated annealing also can be
expected to always generate area optimized results even though it is a stochastic
method. Additionally, for the routing component of their solution, they used a
congestion evaluation step to modify the cost of routing at different edges. In an
early version of this thesis, a congestion grid was implemented as a part of the
routing component. At the time we did not manage to get desired functionality
from it, which led us to comment that block away. Looking at this paper, though,
we feel there might be reason to revisit that work as a continuation project.

As we look towards the latest technologies such as the 7 nm EUV process
technology, the design rules will grow significantly more complex. A reason for
this is that shapes produced through the EUV process can be heavily dependent
on the layout around it. [14] proposes a sophisticated set of SAT-rules that not
only looks at the distance between wires, but also at specific shapes in the layout
that are more prone to cause unwanted behaviors.

In order for this tool to perform well for the process technologies all the way
down to EUV levels, it could be good to implement such an SAT-step to verify
the compatibility of the proposed routing combination here as well.

5.4 Limitations & Improvements

Despite promising results, there are still some shortcomings of the tool that should
be fixed. Furthermore, some features that would improve the success rate of the
tool and the quality of its generated layouts have been identified.

Automation

In order to consider the tool fully automized, the layout it generates should be
ready to be implemented straight away with the promised quality. It should also be
reliable in creating DRC-clean output. In its current embodiment, however, both
of these factors might require manual efforts because the routes may be drawn
outside the cell borders and the via structures currently aren’t built in a robust
enough manner. In order to mitigate the boundary issue, a future desired feature
of the tool is to add a post-processing step to squeeze the outer wires into the
cell such that they fit inside the cell boundaries. This may require some pushing
of some other wires as well to follow the DRC-rules. Something which can be
fairly intuitive for a human. However, this task might prove quite challenging to
generalize in a program, meaning this may become a small project of its own. To
address the via structure issue, the primary intention is simply to further improve
the decision tree that decides which structure to place around the via.

Furthermore, for the sakes of automation, functionality for separating the
schematic of difficult cells into multiple components and reattaching the result-
ing layouts should be implemented into the tool. This could be designed as an
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immediate fall back step as soon as the primary algorithm fails. Given that the
layouts will have continuous connection points, the routing problem it creates may
require another routing algorithm.

Success rate

One more goal is to increase the number of cells that can be designed. Here, we
primarily encounter problems in the routing part of the tool. The main reason
for failure is that the amount of possible routes increases exponentially with the
distance being routed over. For long connections, this results in that most gener-
ated routes are going to be very similar to each other, thus reducing the flexibility
of the connections when combining it with others. For this problem, two com-
binable solutions have been identified. One is to add an intermediary node for
distant connections before initiating the routing. By routing to the intermediary
node from both sides, the variability in the routing suggestions should be increased
significantly. The other idea is to make the tool congestion aware. By adding a
cost function of how many nets are trying to route in a given point, the routes
can be iteratively updated to spread out away from each other. The congestion
information can also be used to intentionally place the intermediary nodes in less
congested areas.

Quality

To improve the quality of the outputs, two proposals have been made. One is
to add support for poly cutting already in the placement phase of the design.
This would enable the tool to further minimize the area further when there is a
mismatch in gate sequences of the PUN and PDN. The existing algorithm for
transistor placement is already very dynamic in its architecture, so implementing
this is not expected to be a very demanding task. Additionally, automizing the
sizing of the transistors depending on the stacking in the schematic would make
the layout further improved. Also, this is expected to be a fairly easily integrated
improvement.

EUV

As we look towards the smaller process technologies, the DRC-rules will become
increasingly complex. Particularly the EUV process holds a sensitivity to how the
layout looks in the vicinity to the structure it’s currently drawing [14]. The tool
in its current state does not support consideration for this type of effects. Due to
the modular nature of the tool, however, this could seamlessly be integrated as
an additional SAT definition in the route selection step, not unlike what is done
in [14].
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6.1 Final words

In this thesis we have presented a method for the complete layout design of a
standard cell, using only a netlist and a few elementary design rules. The method
is shown to generate layouts with similar areas to industry level designs and have
even been shown to outperform some industry-level cells. In its current state, the
layouts produced by the tool still require some manual oversight. However, the
features that are needed to make the tool truly independent have been identified
and are intended to be implemented as a continuation of the project.

The speed of which this tool generates standard cells along with the quality
of its results leads me to believe that it has the potential to become industrially
competitive and that it can reduce manual workload within the field significantly.

6.2 Future work

This is a project that can be grown to a very large extent. Because of this, the
list of future work and improvements can grow long as well. However, some of the
most important points for making this tool competitive in the industrial domain
have been identified and are listed below.

• Build a post-processing step to squeeze the outer wires towards the center.
While fairly easy to edit manually afterwards, this step is essential to make
the tool fully automatic without unnecessary area usage.

• Add support for poly cutting in the placement component of the tool.
Poly cutting enables an extra level of area optimization that would not be
possible if there is a mismatch in the Euler paths of the PUN and PDN.

• Improve routability for long connections by adding intermediary nodes.
By cutting the long routes in half we can counteract the route complexity
that grows exponentially with distance.

• Automate transistor sizing.
By automizing transistor size based on the stacking in the schematic, the
standard cell quality can be even further improved.

• Improve via decision tree.
The via algorithm needs to be more considerate to its environment when
placing its structures to avoid causing any DRC-violations.

• Make routing step congestion aware.
By making the routing algorithm congestion aware, we can get more place-
able routes already from the beginning.
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