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ABSTRACT 

 

This study explores methods to quantify and evaluate error in digital elevation models 

(DEMs) built from remotely sensed elevation data of the Hintereisferner glacier. A special 

focus lies on glacier surfaces because glaciers are often inaccessible for field observations 

but at the same time prone to measurement errors. They would therefore particularly 

benefit from a comprehensive error assessment.  

 

One of the primary aspects of the study is to find suitable methods that also include the 

spatial distribution of error because this is generally a somewhat neglected aspect of 

quality assessment of DEMs, although it has a potentially significant impact on the way 

DEMs are used in research. Especially if geomorphological or topographical aspects are 

part of this. In addition to identifying and discussing methods to quantify and evaluate 

existing errors in DEMs, this study also looks at some of the major sources from which 

the errors stem to find out if the influence of these sources on the resulting errors can be 

estimated. To this end, two out of three major categories of error sources were selected: 

interpolation effects and spatial resolution effects.  

 

The explored methods include quantitative error measures, such as RMSE, but also more 

evaluative approaches, such as correlation analysis. Including spatial distribution as part 

of the quantification and evaluation of error in DEMs is done by exploring methods like 

the creation of error surfaces or approaches that quantify the spatial patterning of error 

values in DEMs, such as Moran’s I.  

 

The results show that when it comes to quantification and evaluation of error in DEMs, 

error surfaces, in combination with a mapped overview of the Local Moran’s I values, are 

presumably the most powerful methods to gain insight into both the absolute error values 

and the spatial distribution of them. Particularly spatial outlier detection is a useful part 

of this approach.  
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1. INTRODUCTION 

 

With the introduction of satellite-based observation techniques in the second half of the 

20th century, topographic analysis made a significant leap forward. Not only do the 

remotely sensed data enable easy digital mapping on a global or regional scale, they also 

offer many possibilities to analyze both global and local shape and features of the Earth’s 

surface, much to the benefit of geosciences in general. Considering the current increasing 

awareness of global changes in our planet’s natural cycles and processes, remote sensing 

is one of the strongest tools imaginable for monitoring these changes from a topographical 

perspective.  

 

Remote sensing technologies (e.g. spectral imaging, such as Synthetic Aperture Radar 

(SAR)) provide data that can be used to analyze all sorts of topographic objects, including 

glaciers and glacial landforms. Because of the wide recognition of glaciers as indicators 

for climate change, studying them with the aid of remote sensing technologies has become 

an expanding field of research over the past decades.  

 

1.1 The importance of remote sensing for topographic analysis in glaciology 

Remote sensing of glaciers plays a fundamental role in our understanding of their 

characteristics and dynamics, not least because the remoteness of glaciers and difficulty 

to gain access for in-situ measurements mean that remote sensing data is, in some cases, 

an absolute necessity. Many of the glaciological applications of remote sensing are 

concerned with shape, relief and deformation of glaciers. Glaciological features that are 

extensively studied and monitored with remote sensing techniques include geometry (e.g. 

area, outline, surface roughness or thickness), mass balance (proxies), flow/surge 

velocity, surface albedo, snow-line retreat, elevation change, etc. (e.g. Gao & Liu, 2001; 

Bamber & Rivera, 2007; Li et al., 2011; Nuth & Kääb, 2011; Scherler et al., 2011; 

Gärtner-Roer et al., 2014; Kääb et al., 2016; Naegeli et al., 2017).  

 

Virtually all of these features are related to the topography of the glacier. For example, 

research that studies the width, length and slope influences on glacier surging shows that 

normal and surge-type glaciers have significantly different average geometries. Surge-

type glaciers tend to be longer, wider and to have lower overall slope than normal glaciers, 

and there seems to be a fundamental correlation between length and surge tendency 
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(Kamb, 1987; Clarke, 1991). To support these findings the topography of glaciers as well 

as flow rates can be accurately measured by remote sensing devices. More recent studies 

that involve remotely sensed measurements of glacier geometry include research that was 

conducted by Felikson et al. (2017) on the inland thinning of the Greenland ice sheet, 

which shows that the up-glacier extent of thinning and, thus, mass loss, is limited by 

glacier geometry, or the research that was done by Sevestre & Benn (2015) which 

investigates correlations between the distribution of surge-type glaciers and climatic and 

glacier geometry variables. 

 

Another example within the field of glaciology where remote sensing techniques are 

increasingly put to use is the study of energy and mass balances, which is often related to 

the three-dimensional geometry of the glacier but can be based on surface topography as 

well. Arnold et al. (2006a), for example, investigated the role played by topography on 

the spatial distribution of energy balance components, and hence melt. Their study found 

that topography plays a vital role in explaining the spatial complexity when modelling 

energy fluxes. This is mainly because incoming solar radiation is strongly affected by the 

topography of the glacier surface itself, e.g. through the interactions between solar 

geometry and the surface slope and aspect, which determines the incident angle of direct 

solar radiation, but also because the topography of the surrounding terrain controls 

shading patterns over the glacier (affecting direct solar radiation) and influences the 

amount of diffuse radiation that is received by the glacier. In their conclusion, Arnold et 

al. point out that, although in-situ stake measurements will continue to be an important 

tool in mass balance monitoring, the results from their research show that the process of 

monitoring mass balance benefits enormously from remotely sensed topographic data. A 

point of view that is widely acknowledged among scientists in this field (e.g. Bamber & 

Rivera, 2007; Rivera et al., 2007; Joerg et al, 2012; Schellenberger et al., 2016; Goerlich 

et al., 2017; Neelmeijer et al., 2017; Rabatel et al., 2017). 

 

1.2 Quality of remotely sensed topographic data 

The aforementioned examples show that remote sensing techniques are indispensable 

when it comes to topographic analysis of glaciers. There is, however, often a rather large 

variation in quality with regard to satellite-based remotely sensed data. This, of course, 

differs from case to case and depends to a large extent on the application and the specific 

data requirements, but it is also due to things like measurement accuracy, data processing, 
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and systematic biases. It is therefore important to validate and compare the quality of 

topographic data sources and one of the more obvious ways to do this is by looking at 

elevation errors in the data.  

 

Topographic analysis of glaciers is often based on the use of a digital elevation model 

(DEM). In light of the importance of precise and accurate remotely sensed data for these 

analyses, the user of a DEM would most certainly benefit from a comprehensive error 

quantification and evaluation because, as Gonga-Saholiariliva et al. (2011) point out, 

knowledge on the scope of error and where these errors are located determines how to 

correct DEMs to minimize error accumulation or how to include these factors in the 

interpretation of DEM-based research.  

 

1.3 Research motivation  

As mentioned earlier in this introduction, glaciers are often located in inaccessible or 

remote places. On top of that, remote sensing of glaciers presents a broad range of 

challenges (Racoviteanu et al., 2009), including measurement difficulties with regard to 

topographic parameters. With SAR interferometry, for instance, there is often a certain 

bias to the measurements that is caused by the penetration depth (Rignot et al., 2001; Dall, 

2007; Abdullahi et al., 2018). Gaining a complete picture of the error in digital elevation 

models for glacier surfaces, including its spatial distribution, is therefore highly beneficial 

to researchers in the field. Any additional glaciological field surveys, for instance, can be 

conducted in a much more efficient way by reducing it to targeted observations, based on 

the outcomes of the error quantification and evaluation, which will eventually result in a 

more adequate elevation model of the glacier.  

 

1.4 Research objectives 

A significant amount of research has been carried out that has accuracy assessment of 

DEMs as its primary focus. Also, some attempts to model the spatial distribution of error 

in DEMs can be found in the literature (see, for example, Carlisle (2005)). This study, 

however, explores several methods of error quantification and evaluation, including the 

spatial component of error distribution, to offer more insight into the suitability of these 

methods, specifically for glacier surfaces.  
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Errors in DEMs can be quantified and evaluated by comparing the elevation data - or 

other corresponding topographic parameters - to high-resolution reference data that 

function as (an approximation of) ‘ground truth’, because, by doing so, the accuracy of 

the DEM is tested through relating this to the best approximation of what is considered 

as actual elevation values. (Wechsler & Kroll, 2006; Vaze et al., 2010; Purinton & 

Bookhagen, 2017). It is important to mention, though, that reference data as such is 

acquired and processed in ways that are comparable to the data acquisition from the 

coarser DEM, albeit with higher precision and accuracy. 

 

To provide a comprehensive overview of suitable methods for error quantification and 

evaluation in DEMs, some commonly used measures of accuracy, such as Root Mean 

Square Error (RMSE), are complemented by an analysis of the spatial distribution of 

error, e.g. through error surfaces and measures of spatial autocorrelation. As Wechsler & 

Kroll (2006) point out, error values such as the RMSE ignore the spatial structure of error, 

which can be problematic because elevation tends to be spatially autocorrelated – and 

therefore DEM error often as well.  

 

In addition to the methods that quantify and evaluate actual error values in DEMs, there 

are also methods that rather look at the sources where the errors stem from. The main 

sources of error in DEMs fall into three categories:  

• those derived from variations in the accuracy, density, and distribution of the 

measured source data and possible (systematic) biases during data acquisition, 

• those derived from data processing and interpolation, and  

• those resulting from the characteristics of the land surface, which are often linked 

to the spatial resolution (Fisher & Tate, 2006). The importance of spatial 

resolution effects in glaciological research, for instance, is clearly shown in the 

mass balance studies by Arnold et al. (2006a) and Rees & Arnold (2006).  

 

The first category of error sources – in short: measurement errors - is rather difficult to 

quantify or evaluate because this is typically a matter of validation or calibration of the 

remote sensing device. This aspect is ignored in this study because it generally does not 

fall within the scope of the explored methods. However, the other two categories – 

interpolation effects and spatial resolution effects – are included in this study because 

they are quantified and evaluated in similar ways as the original errors.  
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Interpolation effects can be evaluated by comparing error values of the interpolated DEM 

against the error values of the DEM on which the interpolation was applied. Quantifying 

and evaluating spatial resolution effects require a more sophisticated approach. Here, a 

derived topographic parameter – slope – is compiled to serve as a proxy for spatial 

resolution effects. This relationship is derived from the literature. Several studies have 

shown that derived topographic parameters are often inconsistent when the spatial 

resolution of the DEM is changed (Chen & Zhou, 2013), and error in these parameters is 

positively related to the spatial resolution of the DEM (Chang & Tsai, 1991).  

 

In view of the foregoing, the general aim of this study is to explore and discuss suitable 

methods that can be used to quantify and evaluate error, the spatial distribution of error, 

and the sources of error in digital elevation models for glacier surfaces. 

 

1.5 Thesis outline 

Chapter 2 starts with some background information on the various remote sensing 

techniques that are used in this study and continues with an explanation of the different 

types of quality assessment of DEMs, including error quantification. Chapter 3 gives a 

brief description of the study area. In chapter 4, the data and methods that are used in this 

study are described. In chapter 5, results are displayed, interpreted and discussed. Finally, 

conclusions are drawn in chapter 6. 
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2. THEORETICAL BACKGROUND 

 

There are numerous remote sensing-based methods for obtaining elevation data, which, 

in turn, are used to create DEMs. The publicly available DEMs from the Shuttle Radar 

Topography Mission (SRTM), for instance, are derived from spaceborne interferometric 

synthetic aperture radar (InSAR). Due to their wide, almost global spatial coverage, these 

DEMs are often used in geoscientific research, e.g. in glacial mass balance studies 

(Gardelle et al., 2012). Another popular source of elevation data in geoscientific research 

– glaciology in particular – is the Ice, Cloud, and Land Elevation Satellite (ICESat) 

mission, which acquired its elevation data via a method that makes use of laser scanning. 

This thesis primarily focuses on two remote sensing-based methods for the creation of 

DEMs: photogrammetry (more specifically optical stereo data pairing) and a specific 

form of laser scanning called Light Detection and Ranging (LiDAR).  

 

The basic concepts of imaging radar, interferometry, photogrammetry, LiDAR, and the 

creation of DEMs will be explained in this chapter. For a detailed description of imaging 

radars and an in-depth explanation of radar interferometry, the reader is referred to 

Hanssen (2001). Kääb (2010) provides extensive information on photogrammetry with a 

particular focus on glacier studies. For an in-depth introduction to theories and principles 

of LiDAR technology, Shan & Toth (2008) are an informative source. A comprehensive 

overview of the major applications of LiDAR is provided by Vosselman & Maas (2010).  

 

2.1 Imaging radar 

Typical radar systems measure the strength and round-trip time of the electromagnetic 

waves in the radio or microwaves domain that are emitted by a radar antenna and reflected 

off a distant surface or object. The radar antenna alternately transmits and receives pulses 

at particular wavelengths and polarizations. The receiver and processor then determine 

the properties of the distant surface or object, e.g. location or speed.  

 

For an imaging radar system, over a thousand high-power pulses per second are 

transmitted toward the target or imaging area, with each pulse having a pulse duration of 

typically 10 to 50 microseconds. The pulse normally covers a small band of frequencies 

(Richards, 2009). At the Earth's surface, the energy in the radar pulse is scattered in all 

directions, with some reflected back toward the antenna. This backscatter returns to the 
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radar as a weaker signal and is received by the antenna. These signals are then converted 

to digital data and processed to display as an image. 

 

A specific form of imaging radar that is widely used in remote sensing and mapping of 

the surface of the Earth is Synthetic Aperture Radar (SAR). SAR is an imaging radar 

device that is typically mounted on a moving platform, such as an aircraft or satellite. 

Similar to conventional radar, electromagnetic waves are sequentially transmitted, and 

the radar antenna collects the backscattered echo signals. However, SAR uses the motion 

of the radar antenna over a target region to provide finer spatial resolution than 

conventional radars. This technique synthesizes a very large antenna aperture by 

combining echo signals received by the radar as it moves along its flight track (Moreira 

et al., 2013). Typically, the larger the aperture, the higher the image resolution will be. 

This is regardless of whether the aperture is physical (a large antenna) or synthetic (a 

moving antenna), thereby allowing SAR devices to create high-resolution images with 

relatively small physical antennas. 

 

2.2 Interferometric synthetic aperture radar (InSAR) 

The basic design of a SAR system can be enhanced to collect more information. Most of 

these methods use the same basic principle of combining many pulses to form a synthetic 

aperture but may involve additional antennas or significant additional processing. 

Because of the coherent imaging technique used in SAR, the radiometric phase and 

amplitude are preserved during measurements. Rather than discarding the phase data, 

information can be extracted from it (Burgmann et al., 2000). If two observations of the 

same terrain from very similar positions are available, aperture synthesis can be 

performed. This aperture synthesis is a type of interferometric SAR and uses two or more 

SAR images to generate maps of surface deformation or elevation, using differences in 

the phase of the waves of the echo signals that are returned to the SAR devices (see Figure 

1).  
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Figure 1. SAR interferometric configuration for the estimation of surface elevation. M represents the 

orbital position where the master image is captured and S the orbital position where the slave image is 

captured. The interferometric phase map (called an interferogram) is formed on a pixel-by-pixel basis, 

starting from the two master and slave SAR images (Pepe & Calò, 2017). 

 

 

In order for aperture synthesis to work, the SAR devices are either in a closely controlled 

twin constellation (e.g. the TanDEM-X mission (Rizzoli et al., 2012)), are equipped with 

two antennas on the same moving platform some distance apart or revisit each area after 

a certain amount of time while observing from a slightly different incidence angle. The 

twin configuration or revisiting practice ensures the interferometric configuration of the 

sensor allowing for radiometric calculations. The difference in radiometric phase between 

two acquisitions can ultimately be related to topographic characteristics such as surface 

elevation (Ferretti et al., 2007).  

 

An important advantage of obtaining the two sample signals simultaneously, e.g. with 

satellite systems in twin constellation, is that in this case any phase difference that 

contains information about the angle from which the radar echo returned, can be 

processed at the spot. Combining these phase differences with the distance information, 

one can determine the position in three dimensions of the image pixel. In other words, 

one can extract surface elevation as well as radar reflectivity and instantly produce a 

DEM.  
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If the two samples are separated in time, e.g. from two orbits over the same terrain, then 

there are two possible sources of phase shift. The first is surface elevation, as discussed 

above. The second is terrain motion. If the terrain has shifted between observations, it 

will return a different phase. The amount of shift required to cause a significant phase 

difference is in the order of the wavelength used. This means that if the terrain shifts by 

centimetres, it can be seen in the resulting image (a DEM must be available to separate 

the two kinds of phase difference). This second method also offers a powerful tool in 

geosciences. Glacier flow, for example, can be mapped with two passes of the moving 

platform (Pepe & Calò, 2017). 

 

2.3 Photogrammetry and stereo image data 

In essence, photogrammetry can be seen as a technique to obtain spatial measurements of 

objects depicted on images, such as photographs. This technique is applied in a broad 

variety of disciplines, most notably engineering, but in the case of geoscientific research 

it is commonly used as a rather efficient way of (digitally) mapping the topography of 

large and inaccessible areas, e.g. by making use of aerial photographs. The measurements 

that are used in topographic mapping are typical of a spatial nature and include aspects 

like the distances between features in an area of interest or areal extent. As Kääb (2010) 

points out, it is the capability to obtain quantitative spatial information over large areas 

without requiring direct ground access that led to the early application of photogrammetry 

in glaciology, where the technique is mostly used for mapping glacier surface features or 

measurement of surface displacements and the generation of DEMs. In recent decades, 

the use of photogrammetric methods has seen a shift from analogue aerial photography 

towards digital imagery from both airborne and spaceborne sensors (Khorram et al., 

2012).  

 

Basic applications of photogrammetry are bounded to the horizontal plane, with only two 

dimensions available. For the generation of DEMs, however, additional spatial 

information is needed to adequately estimate the three-dimensional coordinates of a point. 

To be able to do this, a more comprehensive form of photogrammetry, which is known 

as stereophotogrammetry or stereo imaging, is applied. This form of photogrammetry 

involves the use of two or more images that were taken from different positions but have 

a certain amount of overlap (‘stereo pairs’). This enables the identification of common 

points on each image, after which a line of sight can be constructed from the sensor 
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location to these specific points. Triangulation based on the intersection of these lines of 

sight allows for determining the three-dimensional coordinates of the point, which can 

then be converted to a geodetic reference system to give the elevation data meaning.  

 

Due to the vast amount of data processing that is required for stereo imaging and stereo 

image pairing, a large share of the currently available digital elevation datasets uses a 

form of automated stereo correlation techniques. Quincey et al. (2014) emphasize, 

however, that the quality of these elevation datasets largely depends on knowledge of the 

exact image and terrain geometries at the time of acquisition and automated stereo image 

pairing is therefore prone to error. Hence, knowledge about the automated processes and 

validation of the used DEMs in the form of an accuracy assessment are highly desirable 

(see, for example, Hirano et al., 2003; Fujisada et al., 2005 and Tachikawa et al., 2011).  

 

One of the most popular sources of elevation data that makes use of photogrammetric 

processing and automated stereo correlation techniques is the imagery captured by the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor 

aboard the Terra satellite that was launched by the US National Aeronautics and Space 

Administration (NASA), in cooperation with Japan's Ministry of Economy, Trade and 

Industry (METI) in 1999 (see Yamaguchi et al. (1998) for a technical overview). One of 

the derived products from this satellite mission is the Global Digital Elevation Model 

(GDEM).  

 

The ASTER sensor provides image data in a total of 14 spectral bands, 3 of which are in 

the visible/near-infrared wavelength region (Hirano et al., 2003). The stereo image data 

that is used for the creation of the GDEM only stems from this wavelength region and is 

recorded using a coupled nadir and backward-looking telescope system (see Figure 2). 

There is a difference of circa 60 seconds between the time the nadir telescope passes over 

a ground location and the backward-looking telescope records the same location on the 

ground track of the satellite. This set-up is ideal for generating DEMs by automated 

stereocorrelation techniques for various terrain conditions because images are acquired 

under uniform environmental and lighting conditions (Quincey et al., 2014).  

 

The combination of its sensor systems (with an adjustable sensor gain setting for 

increased contrast over ice and snow surfaces), its stereo-imaging capability, and the 
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public availability of various output products has made ASTER a favored instrument for 

glacier remote-sensing studies, especially the GDEM product, which is widely used for 

the derivation of glacier parameters, such as elevation (Ramachandran et al., 2014).  

 

 

 

 

2.4 Light detection and ranging (LiDAR) 

LiDAR is a surveying method that measures distance to a target by illuminating the target 

with pulsed laser light and measuring the reflected pulses (or backscatter) with a sensor. 

Differences in laser return times and wavelengths can then be used to make digital 

representations of the target (Shan & Toth, 2008). LiDAR applications can be divided 

into airborne, spaceborne and terrestrial types, all of which are increasingly used in the 

field of geosciences (Komar, 2017). Compared to traditional analogue or digital (passive) 

optical remote sensing, LIDAR offers many advantages, including nearly perfect 

registration of spatially distributed features and the ability to perform topographic 

measurements with very high precision and accuracy. This is also visible in LiDAR-based 

DEMs, which are of a relatively high quality and allow for improved geomorphometric 

characterization of the terrain and glacier surfaces (Quincey et al., 2014). 

 

Figure 2. Configuration of the stereo-imaging capability of the ASTER sensor, on board the Terra satellite. 

The ASTER sensor is equipped with two-directional sensors in the near-infrared: one at nadir (3N) and 

one backward looking (3B) (after Quincey et al., 2014).  
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In glaciological applications, airborne LiDAR (sometimes simply referred to as Airborne 

Laser Scanning (ALS)) is the preferred method (e.g. Arnold et al., 2006b; Telling, et al, 

2017). A LiDAR system operating from an airborne platform comprises a set of 

instruments: the laser device, an inertial navigational measurement unit (IMU), which 

continuously records the aircraft’s orientation, a Global Navigation Satellite System 

(GNSS) unit (in most cases the Global Positioning System (GPS) is used), which records 

the three-dimensional position of the aircraft, and a computer interface that manages 

communication among devices and data storage. The system also requires a GNSS base 

station installed at a known location on the ground in order to differentially correct the 

airborne GNSS data (see Figure 3). In topographic mapping applications (e.g. DEMs), 

the wavelength of the pulses that are sent by the laser device is usually in the near-infrared 

part of the electromagnetic spectrum, typically between 1040 and 1065 nm (Shan & Toth, 

2008).  

 

 

 

 

 

 

Figure 3. ALS configuration. The GPS base station and the on-board IMU enable automatic calculation 

of the X,Y,H coordinates of ground points from range and scan angle (Lemmens, 2017). 
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2.5 Digital elevation models (DEMs) 

At its core, a DEM is a digital representation of the land surface elevation with respect to 

a common (vertical) reference datum such as the World Geodetic System or the European 

Terrestrial Reference System. A DEM solely represents the surface of the bare earth. 

Nevertheless, one will find that the term DEM is commonly used to refer to any digital 

representation of a topographic surface and seems to be accepted as a generic term 

covering digital topographic data in all its various forms as well as the method for 

interpreting the elevations between observations (Maune, 2007).  

 

Depending on the source and/or preferred method of analysis, a DEM can be constructed 

either as a raster-based cell grid, which is a regular matrix with each cell (or pixel) 

representing elevation values, or as vector-based models such as a triangulated irregular 

network (TIN) or contour lines (Moore et al., 1991) (see Figure 4). The TIN model 

represents the surface as a set of irregularly distributed nodes and lines with x, y and z 

coordinates that are arranged in a network of non-overlapping triangles. Within each 

triangle, a plane (the face of the triangle) represents the surface and each vertex is a known 

(i.e. observed) elevation value. The contour structure is based on the concept that land 

surface can be divided into small, irregular shaped polygons based on contour lines and 

their orthogonals. TIN elevation models have its limitations when it comes to spatial 

analysis but continue to be popular in terrain modelling because of the frequent usage of 

LiDAR and the topological limitations that come with regular gridded raster-based DEMs 

(Ali & Mehrabian, 2009).  

 

 

 

 

 

 

 

 

 

Figure 4. Typical DEM data structures: a) raster-based cell grid; b) vector-based TIN or c) contours 

(after Masini et al., 2011).  
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Another advantage of using a TIN over a raster-based DEM in mapping and analysis is 

that the points of a TIN are distributed variably based on an algorithm that determines 

which points are most necessary to create an accurate representation of the land surface. 

This means data input is flexible and fewer points need to be stored than in a raster-based 

DEM with regularly distributed points, which may reduce file size and save time during 

image processing. Moreover, raster-based DEMs have the disadvantage that they appear 

as a continuous elevation surface although in reality they are not, due to the limitations 

of the cell size of the grid. Abrupt elevation changes or a complex relief, for example, 

might therefore not always accurately appear in the derived DEM (for these and other 

scale or resolution effects, please refer to section 2.6.3). Nevertheless, choosing to 

represent digital topography in either vector or raster format really depends on the type 

of analysis a user wants to perform. Especially for the analysis of physical features, such 

as precipitation, vegetation type or general land cover classification, rasterized DEMs are 

often considered to be more suitable (Khorram et al., 2012).  

 

2.5.1 The use of DEMs in glaciology 

DEMs are widely used in glaciological applications nowadays. Some studies have used 

DEMs to extract indices of glacier topography, such as slope and aspect, which were then 

combined with satellite images to map glacier areas (e.g. Kääb et al., 2002; Paul et al., 

2002). Also, a lot of research has been done on ways to assess glacier mass balance and 

volumetric change by using time series of digital elevation data. Etzelmüller (2000), for 

example, conducted research in which DEMs have been used as tools to derive 

hypsometry maps at different time steps and to quantify vertical surface changes on 

glaciers in remote areas, as indirect measurements of mass balance. Neelmeijer et al. 

(2017) also show how DEMs that are generated with the aid of remote sensing devices 

can be powerful data sources to infer glacier elevation changes in remote and 

mountainous areas.  

 

Besides the more traditional approaches like surveying and monitoring, DEMs are also 

increasingly popular as input data for automated processes and computational modelling 

in the field of glaciology. James & Carrivick (2016) show that with high-resolution 

DEMs, which permit accurate calculation of surface slope, perfect plasticity-based 

models are becoming popular to model distributed ice thickness, volume and bed 

topography of glaciers. These models require only glacier outlines, centrelines and a 
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DEM. Because of the relative simplicity of the calculations combined with wide 

availability of input data, these models are often a better choice than models for viscous 

flow mechanics when considering large regions, according to the authors. Another 

example comes from research done by Le Bris & Paul (2013). They point out that glacier 

length (as a flow line) is a key parameter in global glacier inventories but difficult to 

determine in a consistent way and seldom available from digital databases. To overcome 

this hiatus, they present an algorithm that calculates a reasonable and reproducible scalar 

value and vector segment for glacier length based only on a DEM and glacier outlines as 

input. 

 

2.6 Quality assessment of DEMs 

Although a DEM is a model of the elevation surface, it is often not treated as a model but 

rather it is accepted as a true representation of the Earth’s surface. However, elevation 

data in DEMs are without exception subject to error and uncertainty (Wechsler & Kroll, 

2006). As mentioned before, main sources of error in DEMs include those derived from 

variations in the accuracy, density and distribution of the measured source data and 

possible (systematic) biases during data acquisition, those derived from data processing 

and interpolation, and those resulting from the characteristics of the land surface and, 

hence, the spatial resolution (Fisher & Tate, 2006).  

 

In the literature on quality assessments of DEMs, the concepts ‘error’, ‘accuracy’, and 

‘uncertainty’ are often poorly defined or applied in an imprecise way. The terms are 

sometimes even used interchangeably. In this thesis, error is defined as the (known) 

difference between an observed value and its corresponding true value (after e.g. 

Wechsler & Kroll, 2006). Accuracy is defined as the level of agreement between an 

observed value and its true counterpart (after e.g. Mukherjee et al., 2013). Uncertainty is 

the unknown (range of) difference between an observed value and its true value. In other 

words: there is a lack of knowledge and it could therefore be argued that error constitutes 

uncertainty. It should be mentioned, however, that some studies in the field of quality 

assessment of DEMs point out that there is often a discrepancy when it comes to the 

proper use of the term ‘error’. This results from the fact that accurate knowledge about 

error – and especially its actual measurement - would require true elevation data, 

something which is rarely determinable (Goodchild et al., 1994; Hunter et al., 1995). 

Some authors thus argue that, instead of error, uncertainty should be used to describe the 
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quality of a DEM (see e.g. Weng, 2002). Nevertheless, for the quantification and 

evaluation methods in this thesis the term ‘error’ is preferred over the term ‘uncertainty’ 

because, essentially, ‘true’ elevation data is by definition an approximation due to the 

nature of its construct. Reference data such as GPS-based or ALS-based elevation 

measurements, which serve as such an approximation in the comparison with the 

observed data, could therefore equally serve as ‘true’ elevation data. For the 

quantification and evaluation methods, it is the (known) difference between both data 

sources that matters.  

 

2.6.1 Spatial accuracy 

Evaluation of the spatial accuracy of elevation data is a key research issue in the area of 

quality assessment of DEMs (Shi et al, 2004). The spatial accuracy of DEMs is primarily 

assessed by looking at the horizontal and vertical accuracy of the elevation data. 

Horizontal accuracy relates to the true position of features in the landscape and can be 

expressed as the difference between the measured horizontal position of a feature and its 

“true” position (with reference to the same geodetic datum). Most studies on the accuracy 

of DEMs are focussing on vertical accuracy, which can be expressed as the difference 

between the measured elevation of a feature and its “true” elevation (again, with reference 

to the same geodetic, i.e. vertical, datum). Vertical accuracy is determined by many 

factors, including the functioning of the remote sensing device. For example, Braun & 

Fotopoulos (2007) show that certain radar signal measurements inherent to the 

specifications of the sensors that were used for the Shuttle Radar Topography Mission 

result in a typical sensing of surface features, depending on terrain cover (e.g. ice, snow, 

sand, vegetation, etc.). In snow, for example, the penetration depth of the radar signal 

depends on wetness, temperature and porosity. The fact that debris cover changes this 

penetration depth complicates the measurement of vertical accuracy even further (Vijay 

& Braun, 2016).  

 

2.6.2 Interpolation methods 

Restricted by the spatial resolution of the remote sensing device, elevation values per grid 

cell in a raster-based DEM or the values of converted elevation data point clouds are 

typically determined by interpolation and approximation methods, such as linear 

prediction, spline interpolation, TIN interpolation, kriging or inverse distance weighting 

(IDW) (Bater & Coops, 2009). The latter two methods particularly rely on Tobler’s First 
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Law of Geography: "Everything is related to everything else, but near things are more 

related than distant things." (Tobler, 1970, p.236). This first law is the foundation of the 

concepts of spatial dependence and spatial autocorrelation. IDW is the simpler of the two 

methods. It involves using known z-values and weights determined as a function of 

distances between the unknown and known points. In general, this means that the greater 

the distance between two points, the smaller the mutual influence, depending on an 

exponent that is predefined. IDW differs from kriging in that no statistical models are 

used.  

 

Kriging is most appropriate when there are spatially correlated distances or directional 

biases in the data. Like IDW, kriging forms weights from surrounding measured values 

to predict unmeasured points. The measured values closest to the unmeasured points have 

the most influence on these points. Kriging, however, uses a statistical method that makes 

use of variograms to calculate the spatial autocorrelation in order to determine the weights 

that should be applied at various distances (Liu et al., 2007).  

 

Both kriging and IDW are very functional and widely used interpolation methods for 

elevation data. However, if the measured land surface has a lot of abrupt changes in 

elevation and no continuous elevation data is required, TIN interpolation can be the better 

choice. As described in section 2.5, a TIN is built up from a network of triangles that 

connect all elevation data points. In the TIN interpolation method, the values of the grid 

cells are calculated using the slope and shape of the triangles. The maximum length of 

the triangle sides and an exponent are predefined. TIN interpolation is therefore able to 

incorporate discontinuities and is efficient to represent rough terrains because the density 

of the triangle can be varied easily (Bater & Coops, 2009).  

 

The selection of an appropriate interpolation method for the creation of a DEM is often 

an important decision, not least because accuracy of the elevation data within the model 

directly affects the estimates of topographic parameters. Racoviteanu et al. (2007) 

highlight the importance of this issue in glaciology by describing an example in which 

time series analysis of glacial change is based on the combination of satellite-derived 

DEMs and DEMs based on digitized elevation contours from old topographic maps. The 

authors point out that there is no established interpolation method especially suitable for 

creating continuous elevation data from old topographic maps. And, although the 
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accuracy of various techniques to construct DEMs from digitized contour data has been 

addressed in the literature, the glaciological community has yet to agree on a suitable 

interpolation method. Nevertheless, several attempts were made. For instance, 

Etzelmüller & Björnsson (2000) used IDW to create a continuous surface from radar 

profile lines on a glacier, Mennis & Fountain (2001) used spline interpolation for the 

representation of glacier and sub-glacier topography and Gratton et al. (1990) applied a 

TIN interpolation, derived from digitized contours, to represent rugged glacier 

topography at the Columbia Icefield in Canada.  

 

2.6.3 Scale effects and spatial resolution 

The effect of scale on geospatial data and data processing is an unavoidable issue in 

geosciences and, according to Quattrochi & Goodchild (1997), has been well recognized 

as one of the more fundamental aspects of any research within the field. This also holds 

true for topographic analysis and modelling. As such, derivatives of a DEM, e.g. 

topographic parameters, are also essentially controlled by the scale factor: when the 

spatial resolution of a DEM is coarsened, the topographic parameters may subsequently 

be varied in different ways (Chen & Zhou, 2013).  

 

A wide variety of research is done that investigates the effect of spatial scale and 

resolution on topographic analysis and modelling. Hasan et al. (2012), for instance, focus 

on variations in the estimation of slope, drainage area and topographic wetness index as 

a result of different DEM resolutions. They find that these estimations differ significantly 

with the resolution of the DEM. Research done by Chang & Tsai (1991) showed that both 

the accuracy of slope and aspect decline with coarser DEM resolution. A study by Gao 

(1997) also evaluated how spatial resolution affects the accuracy of surface representation 

for three areas with different types of topography. He found that DEM resolution has an 

impact on mean slope and even more so on the standard deviation of slope. Chow & 

Hodgson (2009) describe how some researchers even initiated attempts to identify the 

optimal scale, which may best capture the surface complexity with the least error.  

 

Most of the scale effects that occur when using DEMs for topographic analysis are 

directly linked to spatial resolution. For the last few decades, spatial resolution has been 

the main limitation in terms of accuracy of remote sensing in glaciological applications 

(Kääb et al., 2005). Spatial resolution of a DEM generally refers to the dimension of the 
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cell (pixel) size representing the area covered on the surface. The higher the spatial 

resolution of a raster, the smaller the cell size and, thus, the greater the detail. This means 

that the more homogeneous an area is for specific variables such as topographic features 

or land use, the larger the cell size of the DEM can be without affecting accuracy.  

 

Note that a distinction can be made between spatial resolution and cell or pixel size. 

Although the terms are often used interchangeable, strictly speaking the spatial resolution 

refers to the smallest identifiable feature on a satellite image and is not necessarily the 

size of the pixel. Landforms and features must therefore often exceed the pixel size in 

order to be visible on the images. Pixels that contain more than one surface type or 

elevation value can wrongfully be assigned in the elevation model, which, over the whole 

image, can create a considerable error and segmentation (see Figure 5). As a result, some 

resolutions may be adequate for medium- or large-sized glaciers but might struggle 

capturing smaller ice masses such as alpine glaciers or other glacier parameters such as 

surface velocities or mass balance (Gao and Liu, 2001). 

 

 

Figure 5. Example of segmentation results as spatial resolution is altered. The highest resolution (6.5 m) 

yields the most detailed image (after Kim, 2014).  
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3. DATA AND METHODS  

 

3.1 Study area: Hintereisferner 

Having been subject to ongoing observations and measurements for many decades now, 

the Hintereisferner glacier has an impressive track record as object of scientific research 

and is perhaps among the glaciers with the longest period of continuous study in the world 

(i.e. research based on validated and consistent methods of observation). First 

documentation of change observations in the area of Hintereisferner even dates back to 

the early 19th century (Strasser et al., 2018). The glacier is still extensively studied and 

has been the object of a variety of remote sensing data products.  

 

Hintereisferner (46°48’0”N, 10°46’12”O) is situated in the mountain range Ötztal Alps 

and is one of the largest glaciers in Tyrol, Austria (figure 6a and 6b). It covers an area of 

about 7 km2.  

 

 

 

Figure 6a. Overview of the European Alps with the approximate location of the Hintereisferner glacier 

(source: Google Earth). 
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The outline of the study area is based on shapefiles that are provided by contributors to 

the GLIMS glacier inventory project (Fischer, 2012).  

 

 

  

Figure 6b. Part of the Austrian Alps where the Hintereisferner glacier is located. Outlines for the glacier 

are based on GLIMS glacier inventory (source: Google Earth / Fischer (2012)). 

 

Figure 6c. Spatial extent of the study area. The outline of the glacier equals the outer boundary of the DEM 

data on which the analyses will be performed (source: Google Earth / Fischer (2012)).  
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3.2 Remote sensing data 

The feasibility of this study largely depends on the availability of high-quality reference 

elevation data for glacial areas on the one hand, and that of freely available DEMs with 

matching spatial and temporal coverage on the other. Many publicly available DEM data 

sources exist but there are limitations when it comes to spatial and temporal resolution 

and coverage. The SRTM, for example, generated a very complete and, at least for that 

time, relatively high-resolution topographic dataset of Earth in the early 2000s. But the 

spatial scale ranged only from 56°S to 60°N, which means that a lot of places where 

glaciers are abundant (e.g. Alaska at ca. 61°N and up) are not included in the data.  

 

To be able to spatially and temporally match potentially suitable DEM data sources with 

high-resolution reference data, the data acquisition for this study is based on the least 

available data as a starting point and is then complemented with the more widely available 

data. This results in the following datasets that will serve as input in the comparison to 

find error and to compile (derived) topographic parameters:  

 

(i) A set of imagery tiles from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), 

version 2, which is a product of METI and NASA. The data is ordered for free 

from NASA’s Land Processes Distributed Active Archive Center.  

 

(ii) LiDAR-derived (i.e. ALS-based) raster DEM data for the Hintereisferner 

glacier, which are produced and made available by the University of Innsbruck 

(Sailer et al., 2017). 

 

The rasterized LiDAR data - which serves as reference data - is projected in the Universal 

Transverse Mercator (UTM) system, zone 32N, and uses the European Terrestrial 

Reference System 1989 (ETRS89) as (geodetic) coordinate reference system. The data 

from ASTER GDEM will be converted to match these projected and geographic reference 

systems.  
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3.2.1 ASTER GDEM 

The Terra satellite carrying the ASTER sensor is part of a joint mission between Japan 

and the USA and has a coverage range of 83°S to 83°N, which means it includes a large 

part of the Polar Regions and Alaska’s glaciers. Due to the wide range of imaging bands, 

the spatial resolution ranges from 15 to 90 m but final output for the GDEM product has 

been delivered in 1” (i.e. 30 m). The data was released to the public in 2009 and received 

a considerable update in 2011 with a lot of substantial improvements in quality of the 

DEM. Vertical accuracy fluctuates but is in the order of approximately 5-15 m (with 8.3 

m as an average of the mean of elevation error), based on the validation report for GDEM 

Version 2 by Tachikawa et al. (2011). This broad range in accuracy covers factors like 

variation in land cover, penetration depth, atmospheric conditions, etc. Because the 

accuracy is non-uniform within each subset of data, a lot of research has been conducted 

to estimate vertical accuracy of the ASTER GDEM data for specific circumstances. 

Mukherjee et al. (2013), for instance, find an overall vertical accuracy of ca. +/- 12 m for 

parts of the Himalaya in India. Table 1 shows the specifications of the ASTER GDEM 

data that is used in this study.  

 

Table 1. Specifications of the ASTER GDEM dataset used in this study. 

Entity ID Sensor/band Resolution Datum Acquisition  

N46E010 ASTER, 

VNIR band 

B3N, B3B 

(near 

infrared) 

1 arc-second  WGS84 

(horizontal) 

EGM96 

(vertical) 

 

17 Oct 2011 

 

3.2.2 LiDAR 

The specific LiDAR dataset for the Hintereisferner that is used in this study was acquired 

in 2011 as part of the Austrian Space Applications Program (Project Nr.: 815527), funded 

by the Austrian Research Promotion Agency (FFG). The elevation data are comprised of 

a series of point measurements recorded from an aircraft and saved in a file format (e.g. 

LAS) that can easily be converted into 3D point cloud data, which serve as the input data 

for the raster DEM. The vertical accuracy, expressed as standard deviation, has been 

determined to be around 0.04 m for this dataset. The raw LiDAR point cloud data were 

converted to 1x1 m raster DEMs by Sailer et al. (2017). This was done by calculating z-
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values (elevation) from the mean z-value by excluding 5 % of the lowest and highest 

observations of the ALS points which fall inside the respective grid cells. For this dataset, 

the shoot density (mean points density) of the ALS device has a value of 2.9 points per 

m2. Ideally, the number of grid cells in a raster DEM is at least about the same as the 

number of data points representing the terrain area, given there is a more or less 

homogeneous distribution of data points (see e.g. McCullagh, 1988). A mean point 

density of 2.9 per m2 should therefore, in principle, be sufficient for a raster DEM with a 

1x1 m cell size, although this also depends on altitude of the platform and footprint size. 

Moreover, LiDAR data with a high point density typically do not need interpolation and 

therefore preserve small-scale features and their impact on the subtle local variations in 

slope and aspect over the glacier surface, provided that the spatial resolution is high 

enough to capture these features (Arnold et al., 2006b). Table 2 shows the specifications 

of the LiDAR data.  

 

Table 2. Specifications of the LiDAR dataset used in this study. 

Entity ID Sensor/band Resolution Datum Acquisition  

HEF21_2011-

10-04_r1 

Teledyne 

Optech 

ALTM 3100 

1 m  ETRS89 

 

4 Oct 2011 

 

3.3 Data preparation 

Preparation and processing of the data is done with the aid of geospatial processing 

software (ArcGIS), a statistical software package (IBM SPSS), and spreadsheet software 

(Microsoft Excel). Data preparation mainly concerns the standardization of the two 

elevation data sources in terms of spatial projection, reference system, file format, and 

extent (see Figure 6c). Also, a vector grid of sample points is created to be able to spatially 

match the coarse ASTER GDEM elevation data to the reference data, which has a much 

finer resolution. Processing of the data includes the compilation of a derived topographic 

parameter, i.e. slope, and resampling and interpolation of the raster files. The resulting 

characteristics of the datasets after preparation are detailed below (Table 3).  
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Table 3. Data specifications of the different DEMs after data preparation. 

Source Projection Datum/Ellipsoid Initial cell 

size 

Cell size Data 

type** 

ASTER 

GDEM 

UTM 32N ETRS89/GRS80 1 arc-

second 

26.16861243 

m* 

Integer 

      

LiDAR UTM 32N ETRS89/GRS80 1 m 1 m Integer 

(converted) 

* The precise cell size value has been maintained to avoid rescaling issues. 

** Due to its resolution and margin of error, the elevation values in the ASTER GDEM dataset are only 

available as integer. For the purpose of this study, the floating-point LiDAR data is converted to integer 

to match the data type of the ASTER GDEM dataset. This results in a maximum loss of detail of +/- 0.5 m 

per cell. 

 

3.4 Compilation of derived topographic parameters 

Derived topographic parameters (also known as topographic indices or geomorphic 

metrics) are compiled to complement the information provided in a DEM through 

mathematical transformations of elevation data. They are used in many scientific 

applications such as hydrology, geomorphology, and glaciology. In ice-sheet modelling, 

for example, elevation data help to determine locations at which positive mass balance 

will allow accumulation. This is done by combining the derived topographic parameter 

surface slope and ice sheet thickness in order to derive the driving stress of the ice sheet 

(Hebeler & Purves, 2009).  

 

A relatively small number of topographic parameters together form the core of the 

description of a DEM. These often include elevation, slope, and aspect. Two of these core 

parameters will be used within the context of this study. The most important one, 

elevation, is the main element in the error quantification, whereas the derived topographic 

parameter, slope, serves as a proxy for spatial resolution effects.  

 

3.4.1 Slope 

The slope is calculated as the maximum rate of change in elevation value in the horizontal 

and vertical directions between each raster cell and its neighbouring cells. Basically, this 
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means that the maximum change in elevation over the distance between the cell and its 

eight neighbours equals the steepest downhill descent from the cell. The calculation is 

performed on a projected flat plane using a 2D Cartesian coordinate system (the so-called 

planar method). At every cell in a raster-based DEM the slope (S) can be defined as a 

function of gradients in the X and Y directions:  

 

𝑆 = arctan (√(
𝑑𝑧

𝑑𝑥
)

2

+ (
𝑑𝑧

𝑑𝑦
)

2

)  × 
180

𝜋
(1) 

 

where 
𝑑𝑧

𝑑𝑥
 and 

𝑑𝑧

𝑑𝑦
 are the perpendicular gradients (rate of change) in horizontal and vertical 

direction and S is expressed in units of degrees. The key in slope estimation is the 

computation of these perpendicular gradients. Different algorithms use different 

techniques to estimate them, resulting in a diversity of estimated slope values. According 

to Tang et al. (2013), from a raster-based DEM the common approach when estimating 

the gradients is to apply a moving 3 by 3 window to derive the finite differential or local 

polynomial surface fit for the estimations (see Figure 7). The cells in the outermost rows 

and columns of the output raster will not get any data values assigned. This is because the 

cells along the boundary of the input dataset do not have enough valid neighbours to 

perform calculations. To bypass this problem, the spatial extent of the area on which the 

slope calculations are performed is slightly larger than the actual extent of the study area.  

 

 

Figure 7. The values of the center cell and its eight neighbors determine the horizontal and vertical 

gradients.  

A B C 

D E F 

G H I 
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In Figure 7, the neighbouring cells are identified as letters from A to I, with E representing 

the cell for which the slope is being calculated. The rate of change in the horizontal 

direction for cell E is calculated with the following equation: 

 

 
𝑑𝑧

𝑑𝑥
= ((𝐶 + 2𝐹 + 𝐼) ∗

4

𝛼
− (𝐴 + 2𝐷 + 𝐺) ∗

4

𝛽
 / (8 ∗ 𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒(𝑥)) (2) 

 

where 𝛼 and 𝛽 are the horizontal weighted counts of valid cells. For instance, if 𝐶, 𝐹, and 

𝐼 all have valid values then 𝛼 = (1 + (2 ∗ 1) + 1) = 4. But if C has no elevation value 

then 𝛼 = (0 + (2 ∗ 1) + 1) = 3.  

The rate of change in the vertical direction for cell E is calculated in a similar way: 

 

𝑑𝑧

𝑑𝑦
= ((𝐺 + 2𝐻 + 𝐼) ∗

4

𝛾
− (𝐴 + 2𝐵 + 𝐶) ∗

4

𝛿
 / (8 ∗ 𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒(𝑦)) (3) 
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3.5 Error quantification and evaluation 

There are many ways to estimate the (vertical) accuracy of a DEM in terms of error, or 

the level of agreement between elevation values from different datasets. Most of them are 

based on regular statistical model validation techniques. Cross-validation, for example is 

often used in settings where the goal is prediction of unknown values and one wants to 

estimate how accurately a predictive model will perform in practice. The model is usually 

given input data with a known high quality and accuracy (e.g. LiDAR or differential GPS 

elevation data) on which training is run with a training dataset, and a dataset of unknown 

data against which the model is tested (i.e. the validation dataset).  

 

This study focuses on quantifying and evaluating error in the elevation values, which is 

represented by the vertical coordinate (z-value) in the elevation model - the only 

unconstrained coordinate value in the raw data. The z-value is of particular interest in 

glaciological applications, e.g. because surface elevation changes over time can be an 

indicator for mass balance changes. In this study, two commonly used methods or 

measures are applied as a starting point to quantify and evaluate the error that is present 

in the ASTER GDEM elevation data for the Hintereisferner. These methods are selected 

based on the relevant scientific literature (e.g. Weng, 2002; Carlisle, 2005; Wechsler & 

Kroll, 2006; Fisher & Tate, 2006; Erdogan, 2010; Gonga-Saholiariliva et al., 2011; 

Mukherjee et al., 2013) and include:  

(i) Root mean square error (RMSE) 

(ii) Correlation analysis 

 

In addition to these conventional methods of error quantification in DEMs, two methods 

are included that give insight into the spatial distribution of the error: 

(iii) Error surfaces 

(iv) Measures of global and local spatial autocorrelation and clustering 

 

Finally, two methods of error quantification and evaluation are applied that cover 

interpolation effects and spatial resolution effects. These two effects have been identified 

earlier in this study as major sources of error in DEMs.  

 

(i) In geosciences, one of the most commonly used measures of error is the RMSE. Its 

values can be calculated by comparing the differences between the elevation values and 
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the ones from the reference data. This will yield a very easily understood "average error". 

The RMSE is expressed as: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦𝑡𝑖)2𝑛

𝑖=1

𝑛
(4) 

 

where 𝑦𝑖 refers to the 𝑖𝑡ℎ estimated or modelled elevation (“predicted”), 𝑦𝑡𝑖 refers to the 

𝑖𝑡ℎ known or measured elevation (“observed”), and 𝑛 is the number of sample points.  

 

RMSE measures how much error there is between two data sets. In other words, it 

compares a predicted value and an observed or known value. In this study, the predicted 

value is ASTER GDEM elevation data and the observed value is LiDAR elevation data. 

RMSE quantifies the difference between sets of values. The smaller an RMSE value, the 

closer predicted and observed values are, but the absolute RMSE value has only meaning 

in relation to the range of the predicted values (in this case the low-resolution elevation 

data). Wechsler & Kroll (2006) point out that the RMSE itself therefore does not provide 

an accurate assessment of how well the DEM represents true elevation. Note that the 

correlation analyses and RMSE values contain no information about the spatial 

distribution of error, which is often spatially correlated with topographic parameters. 

Rather, estimates of uncertainty based on RMSE assume a uniform error value. Several 

studies have shown that this is often not the case (see e.g. Weng (2002); Erdogan (2010)).  

 

(ii) Correlation analysis is a method of statistical evaluation used to examine the strength 

of a relationship between two, numerically measured, continuous variables (e.g. elevation 

or slope). This particular type of analysis can be helpful to determine if there are possible 

connections between these variables. In this case, the comparison is applied on elevation 

as the topographic parameter in the low-resolution ASTER GDEM data and the high-

resolution LiDAR reference data. To keep the amount of data manageable, sampling is 

applied. A grid of sample points is created with a fixed interval and equal spatial 

distribution to avoid biased sampling. The Pearson correlation coefficient (Pearson’s r) is 

calculated as a measure of the linear correlation and used to quantify the strength of the 

correlation and its direction. Line fitting with an ordinary least squares approximation is 
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added to the scatter plot for visualization purposes. Pearsons’s r, when applied to a 

sample, is defined as: 

 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

(5) 

 

where 𝑛 is the sample size, 𝑥𝑖, 𝑦𝑖 are the individual sample points from the sample grid 

with 50m interval, and 𝑥̅, 𝑦̅ are the sample mean.  

 

(iii) One of the most effective ways to observe and analyse the spatial distribution of error 

in DEMs is to create a visualization of the error values in the form of an error surface 

(Fisher & Tate, 2006). DEMs error surfaces are constructed by subtracting the high-

resolution reference raster DEMs from the ones with a coarse resolution on a cell-by-cell 

basis. The coarser ASTER GDEM raster is resampled to the cell size of the reference 

DEM to enable a direct subtraction. Nearest neighbour resampling is applied because it 

maintains cell values if the centre of the raster cell in the output coincides with the input 

cells. The maximum spatial error will therefore be reduced to half the cell size. In general, 

this would be problematic because it compromises the elevation values in the DEM. In 

this case, however, the measures - which are: absolute error values per raster cell and its 

spatial distribution - are not altered.  

 

(iv) The analysis of the spatial distribution of error, especially visualization and 

quantification of spatial autocorrelation, helps measuring the degree of clustering and 

locates weaknesses and inaccuracies in the spatial structure of the DEM. It highlights the 

spatial heterogeneity of error and helps determine potential locations that may require 

data correction (Gonga-Saholiariliva, 2011). To quantify the spatial distribution of error, 

four measures of spatial autocorrelation are used. Two of them are global: Global Moran’s 

I and Getis-Ord General G. The other two are local: Local Moran’s I, and Getis-Ord Gi*. 

Although all four measures examine the extent of error clustering, they differ in the way 

they represent this.  

 

Calculations of all measures of spatial autocorrelation and clustering are based on a 

vectorized error surface containing a total of 346,762 polygons. The initial error surface 

contains 7,466,365 cells (data points) in total. Spatial relationships and threshold 
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distances for all measures are defined and set to values that ensure every input feature has 

at least one corresponding neighbor feature on which their spatial relationship is based, 

and, at the same time, minimize computations because of the vast amount of data points.  

 

Global Moran’s I is an indicator for error clustering for the entire DEM. It is calculated 

as follows:  

 

𝐼 =  
𝑛

𝑆0

∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖=1

(6) 

 

where 𝑧𝑖 is the deviation of an attribute (i.e. error value) for feature (i.e. polygon) 𝑖 from 

its mean, 𝑤𝑖,𝑗  is the spatial weight between feature 𝑖  and 𝑗 , 𝑛  is the total number of 

features, and 𝑆0 is a term for the aggregate of all the spatial weights.  

 

Moran’s I values range from -1 to +1, where -1 indicates perfect dispersion (i.e. clustering 

of dissimilar values), 0 indicates a random spatial pattern, and +1 indicates clustering of 

similar values (strongly positive spatial autocorrelation). Moran’s I indicates clustering 

but is not able to distinguish between clusters of high or low error respectively. Since the 

main interest in error evaluation for DEMs generally would be the presence of high error 

clusters, an additional measure of spatial autocorrelation is needed. The Getis-Ord 

General G measure can be used to check for concentrations of high or low error values, 

so-called ‘hotspot analysis’. A high index value for the General G measure indicates 

clustering of high error values, whereas a low index value indicates clustering of low error 

values. It is expressed as: 

 

𝐺 =  
∑ ∑ 𝑤𝑖,𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1

, ∀𝑗 ≠ 𝑖 (7) 

 

where 𝑥𝑖 and 𝑥𝑗 are attribute values (i.e. error values) for features (i.e. polygons) 𝑖 and 𝑗, 

and 𝑤𝑖,𝑗 is the spatial weight between feature 𝑖 and 𝑗. 𝑛 is the total number of features, 

and ∀𝑗 ≠ 𝑖 indicates that 𝑖 and 𝑗 cannot be the same feature.  
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Both Global Moran’s I and the Getis-Ord General G yield only one single statistic that 

summarizes the whole DEM. They both fail to determine clustering at a local level. For 

this, Local Moran’s I and Getis-Ord Gi* can be used. Local Moran’s I and Getis-Ord Gi* 

are derived from the Local indicators of spatial association (LISA), a concept that Anselin 

(1995) came up with. Anselin based these indicators on the global Moran’s I index to be 

able to identify local outliers or local clusters. In line with the global measures of spatial 

autocorrelation, the local ones can also be distinguished according to their type of output. 

The Local Moran’s I is a measure to analyse clusters and outliers, whereas Getis-Ord Gi* 

is a measure for hotspot analysis. Local Moran’s I is calculated with the following 

equation: 

 

𝐼𝑖 =
𝑥𝑖 − 𝑋̅

𝑆𝑖
2 ∑ 𝑤𝑖,𝑗(𝑥𝑗 − 𝑋̅)

𝑛

𝑗=1,𝑗≠𝑖
(8) 

 

where 𝑥𝑖 and 𝑥𝑗 are attribute values (i.e. error values) for features (i.e. polygons) 𝑖 and 𝑗, 

𝑋̅ is the mean of these attribute values, 𝑤𝑖,𝑗 is the spatial weight between feature 𝑖 and 𝑗, 

and: 

 

𝑆𝑖
2 =

∑ (𝑥𝑗 − 𝑋̅)
2𝑛

𝑗=1,𝑗≠𝑖

𝑛 − 1
(9) 

 

with 𝑛 being the total number of features (i.e. the polygons).  

 

Getis-Ord Gi* is calculated as follows: 

 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗𝑥𝑗 − 𝑋̅𝑛
𝑗=1 ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖,𝑗
2 − (∑ 𝑤𝑖,𝑗

𝑛
𝑗=1 )

2𝑛
𝑗=1 ]

𝑛 − 1

(10)
 

 

where 𝑥𝑗  is the attribute value for feature 𝑗 (i.e. error value),  𝑋̅ is the mean of these 

attribute values, 𝑤𝑖,𝑗 is the spatial weight between feature 𝑖 and 𝑗, 𝑛 is the total number of 

features.  
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The term 𝑆 in the denominator is calculated as follows:  

 

𝑆 = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (𝑋̅)2 (11) 

 

Although both Local Moran’s I and Getis-Ord Gi* are used to analyze spatial patterns on 

a local level, the calculations each have different accents which leads to different results. 

For example, when Getis-Ord Gi* is calculated, each input feature value -in this case the 

error values of the polygons- is checked and the algorithm determines if each feature's 

neighborhood is significantly different from the study area. If so, the feature is categorized 

as part of a hot spot if the feature value is significantly higher or as part of a cold spot if 

the feature value is significantly lower. Local Moran's I algorithm, on the other hand, 

removes the feature from its neighborhood as a first step and then investigates if the 

neighborhood is significantly different from the study area. As a second step, the 

algorithm determines if each feature is significantly different from its neighborhood. This 

approach allows to find outliers within hot or cold spots, something the Getis-Ord Gi* 

algorithm is unable to do. Local Moran’s I can therefore be useful when trying to find 

anomalies (for instance, polygons with significantly high error values in a neighborhood 

of polygons with significantly low error values).  

 

3.5.1 Quantifying and evaluating interpolation effects 

Major sources of error in DEMs are mentioned several times throughout this thesis. 

Interpolation of the elevation data, as part of the data processing, is considered one of 

these sources. The errors that arise because of interpolation effects often contribute 

significantly to the total error in DEMs. Because the commonly used, publicly available, 

DEMs with (near) global coverage, such as SRTM or ASTER GDEM, are usually 

provided with a maximum resolution of around 30 m, it is quite common for researchers 

to resample or interpolate the data (see section 2.6.2 for a description of interpolation 

methods). Theoretically, this enables data analysis at a more detailed level, provided the 

interpolation method yields accurate values.  

 

As described earlier in the chapter on theoretical background, one of the more suitable 

interpolation methods for elevation data is kriging. This method is preferred in the case 
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of spatially (auto)correlated data, which is, as will become clear in the results on spatial 

distribution error later in this thesis, often an important characteristic of elevation data 

(see also Wechsler & Kroll (2006), who discuss the nature of elevation data in more 

detail).  

 

Before kriging as interpolation method can be applied, the original raster elevation data 

from the ASTER GDEM dataset is vectorized to point features, one point for each raster 

cell. The elevation data values for the point features are based on the initial cell values. 

Kriging parameters are set to create an interpolated raster with an output cell size equal 

to the LiDAR-based reference DEM, i.e. 1 m, and a variable search radius that includes 

a default of 12 nearest input sample points to be used to perform interpolation. Because 

of possible edge effects around the glacier outline, the vectorisation of the DEM raster is 

based on a much wider spatial extent. After interpolation is applied, the output raster is 

clipped to match the outlines of the study area again.  

 

In order to quantify and evaluate the effects on elevation values that are caused by the 

interpolation, a correlation analysis is applied in the same manner as is done for the initial 

error quantification in section 4.4, sub ii. This means the interpolated DEM is sampled 

with the same sample point grid, Pearson’s r is calculated as a measure of the linear 

correlation, and a scatter plot is created for visualisation purposes and outlier detection. 

In addition, the RMSE value for the interpolated DEM is calculated. The reference data 

that is used for comparison is, again, the high-resolution LiDAR-based DEM.  

 

3.5.2 Quantifying and evaluating spatial resolution effects 

Besides errors due to interpolation effects, errors resulting from the characteristics of the 

land surface and, hence, the spatial resolution, are also high on the list of substantial 

sources of error in DEMs (Fisher & Tate, 2006). For example, if the maximum spatial 

resolution of a remote sensing device is 30 m and significant elevation changes occur 

within the spatial extent of only a few meters, then these changes are either not detected 

at all, or they are generalized to fit the resolution (see section 2.6.3 about scale effects and 

spatial resolution). In the case of glacier surfaces, one could think of crevasses, small 

ridges, medial moraines, or even small nunataks.  
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Spatial resolution effects can be highlighted by looking at certain derived topographic 

parameters, such as slope, because these parameters are particularly sensitive to abrupt 

changes in elevation because of the way they are calculated (the moving 3*3-window to 

calculate slope has been explained in section 3.3.1). Essentially, the derived topographic 

parameter slope serves as a proxy for relatively large elevation changes on a small spatial 

scale. This means that if one can find a strong correlation between slope values and error 

values, then this would be an indicator for the influence of spatial resolution effects on 

the error of the DEM. This is especially true if the correlation is still present and of high 

strength for areas with large variation in error values.  

 

The idea of using certain topographic parameters or measures of morphology as a proxy 

to determine spatial resolution effects is not uncommon (see, for example, Mukherjee et 

al. (2013)). It should be mentioned, however, that using slope as a proxy to investigate 

spatial resolution effects should be treated with caution because it is evident that this 

approach does not exclude other sources of error such as interpolation effects. Indeed, 

errors or biases in the data acquisition could also very well propagate in this method. 

 

In order to quantify and evaluate potential spatial resolution effects, slope values are 

calculated for the LiDAR-based reference DEM (see section 4.3.1). These slope values 

are then compared to the error values that result from the calculations that were made to 

create error surfaces (section 4.4, sub iii). A correlation analysis is applied to determine 

the strength and direction of the relationship. This analysis is based on a regular sample 

grid like the one that is used to extract values for the quantification of interpolation 

effects. Except in this case, the sample grid is denser with intervals of 25 m (instead of 

50 m). The choice for a denser grid is based on the spatial extent of the parts in the study 

area that have a very high slope value and should ensure a proper sampling of these 

locations.  
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4. RESULTS AND DISCUSSION 

 

4.1 Overview of the processed elevation data and descriptive statistics 

Figures 8 and 9 show the ASTER GDEM-based elevation model for the Hintereisferner, 

which has a resolution of 1 arc second (ca. 26 m), and the LiDAR-based reference model 

with a 1 m resolution. Because of the relatively small spatial extent of the study area, the 

cell size for each individual pixel of the ASTER GDEM-based DEM is coarse enough to 

be visible on the map, whereas the reference DEM seems to be of a more continuous 

nature because of its much higher resolution.  

 

Both maps show clearly distinct elevation levels throughout the study area. Most of the 

high elevation values can be found at the western parts of the study area or at the southern 

edges, while the lower elevation values are predominantly situated at the northeastern 

corner.  

 

 

 

Figure 8. Overview of the ASTER GDEM elevation data for the Hintereisferner.  
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Frequency distributions in the form of a histogram and descriptive statistics are shown in 

Figures 10 and 11. The histograms of both the ASTER GDEM data and the LiDAR 

reference data show that elevation values around 3100 m are most frequent in the study 

area, although the bulk of the high-frequency elevation values tends to be a little bit more 

shifted towards the 3150-3200 m range in the reference data. In this regard, it should be 

noted that the maximum elevation values in the reference data are quite a bit higher than 

those in the ASTER GDEM data, although the local dip at around 2850 m is equally 

situated in both graphs. Moreover, the mean and standard deviation for the ASTER 

GDEM model and the LiDAR reference model are comparable, which indicates that the 

dispersion of the data is more or less the same for both models. It should be mentioned 

that, because the two cells with maximum elevation values differ 79 m and differences 

between corresponding individual cells for the two elevation models are sometimes even 

larger than 100 m, questions may arise about quality and suitability of the coarser ASTER 

GDEM elevation data. In many types of research, this aspect should not be ignored. In 

this study, however, this only plays a minor role because the primary focus is on methods 

of error quantification and not on the absolute accuracy of the error as such.  

Figure 9. Overview of the high-resolution LiDAR-based reference elevation data for the Hintereisferner. 
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Another aspect that stands out in the graph of the ASTER GDEM data, is that a lot of 

fluctuation seems to be present in the frequency of the different elevation values for that 

model. This can be explained partly by the coarseness of the raster and partly by the 

precision of the data type, which cause a certain generalization of specific elevation 

values, resulting in higher frequencies for some elevation values (the steep peaks) right 

next to elevation values that are almost absent in the study area (the steep dips).  
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Figure 10. Frequency distribution and descriptive statistics for the low-resolution ASTER GDEM elevation 

data.  

Figure 11. Frequency distribution and descriptive statistics for the high-resolution LiDAR reference data.  
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4.1.1 RMSE 

Table 4 shows how the predicted values of the low-resolution data perform when 

compared against the reference data. In general, the lower the value for the root mean 

square error, the more accurate the model predicts the actual values. For the calculation 

of the RMSE, the total amount of available data points in the ASTER GDEM DEM (i.e. 

11050, after NoValue records are removed) is sampled and compared against the LiDAR 

reference data. 

 

Table 4. Error quantification for the topographic parameter elevation, based on RMSE. The descriptive 

statistics in the table are based on the predicted values, i.e. the ASTER GDEM low-resolution data 

source. 

 Predicted  Observed 

(reference) 

Min. Max. Mean RMSE 

Elevation ASTER 

GDEM  

LiDAR 2456 m 3689 m 3053 m 35 m 

 

Because of the way the RMSE is calculated, this measure can be seen as an average 

magnitude of the error, which is expressed in the same units as the predicted data it refers 

to (i.e. the low-resolution ASTER GDEM data). It is therefore a very popular measure to 

quantify error in DEMs. However, as such, the RMSE is not very informative because it 

does not provide crucial information about the dispersion of the elevation data in the 

DEMs, nor gives it insight into the absolute values of the underlying errors. Because the 

errors are squared before they are averaged, a relatively large weight is given to the higher 

error values and RMSE increases quite a lot in cases of large error outliers. This is 

specifically true for outliers because RMSE does not necessarily increase proportionally 

with an increasing variance in the error values. In this respect, it is worth noting that 

outliers in error data, which often imply outliers in the underlying elevation data of one 

or both of the DEMs, are potentially false data that need to be excluded from the dataset. 

This is why reporting a single RMSE value has little meaning and should preferably be 

accompanied by descriptive statistics on the dispersion of the data of the elevation models 

that are compared, and the dispersion of the error values.  

 

Moreover, the measure RMSE fails to acknowledge the spatial heterogeneity of error that 

is often present in DEMs. This shortcoming is illustrated by the selective sampling of data 
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points for the calculation of RMSE in Figure 12. The data points in the area that is 

depicted as Sample 1 yield an RMSE of roughly 12 m, whereas the RMSE based on 

Sample 2 is around 2 m.  

 

 

As discussed in the introductory chapter of this thesis, knowledge about the spatial 

distribution of error in DEMs can be crucial in the process of determining suitable DEMs 

for specific research. This issue becomes even more relevant if geomorphological 

characteristics or topographical aspects in its broadest sense are key element of this 

research. As was mentioned earlier, error increases significantly when derived 

topographic parameters, such as slope or aspect, are compiled from elevation models.  

 

 

  

Figure 12. The Hintereisferner glacier with two different sample areas to illustrate how a single RMSE 

value disregards spatial heterogeneity.   
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4.2 Correlation analysis 

Correlation analysis can be very helpful to gain more insight into the relation that may or 

may not exist between predicted and observed data. Inspection of a scatter plot, for 

instance, may be useful to support the abstract RMSE value that was calculated in the 

previous section and serves as an early warning system with regard to outliers in the data. 

Also, quantitative measures to express the strength and direction of a relationship, e.g. 

Pearson’s r, tell the user of the DEMs in a very concise way something about the accuracy 

of the elevation data, although the RMSE has the advantage that it is expressed in the 

same unit as the data for which it was calculated.  

 

For the correlation analysis, the amount of data points is restricted by an evenly 

distributed random sample grid to limit the output to a manageable size (Figure 13). The 

even distribution of the points ensures spatially unbiased sampling.  

 

 

Figure 14a shows that the low-resolution ASTER GDEM elevation model has an almost 

perfect positive linear relationship with the high-resolution LiDAR reference model, with 

Figure 13. Sample grid with 3034 sample points and 50 m interval to extract elevation values to compare 

for correlation analysis. NoValue samples are removed (these occur in the GDEM data due to the coarse 

resolution). Resulting number of samples: 2983.   
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the value for r being very close to +1.0. This comes as no surprise and is expected when 

comparing two DEMs for the same area with these ranges in the data. Within these large 

ranges, it is also hard to detect unexpected outliers that might or might not be present in 

the data. This approach makes clear that a correlation analysis for the whole dataset is 

very limited when it comes to quantifying or evaluating error in DEMs.  

 

However, a correlation analysis, including outlier detection, may be useful to determine 

the level of agreement between observed and predicted data in DEMs if either the range 

of the data is altogether smaller, or if the focus of the analysis is on a certain (limited) 

elevation range. This could, for instance, be the case if one would like to know more 

about the level of agreement between the ASTER GDEM and LiDAR datasets for 

elevation levels between, say, 2000 and 2200 m. Or, alternatively, if the focus is on a 

specific part of the study area. To exemplify this, Figure 14b shows the level of agreement 

between the ASTER GDEM elevation model and the LiDAR reference model for a small 

part of the study area with relatively low elevation levels (sample 2 in Figure 12).  

 

As was shown in the previous section, the RMSE value is rather sensitive to outliers in 

the data and without any form of outlier detection, it is impossible to determine to which 

extent the outliers affect this value, whereas with correlation analysis, one is able to 

estimate the influence of outliers. In addition, the correlation coefficient (in this case 

Pearson’s r) instantly tells the user of the DEM something about the accuracy of the 

complete elevation model, albeit without a distinct reference framework since the 

interpretation of the outcome values for Pearson’s r can be rather arbitrary. Absolute error 

values, on the other hand, are impossible to extract from just this correlation analysis. 

These error values would be represented by the difference between the predicted elevation 

values (i.e. the ASTER GDEM DEM) and their corresponding observed elevation values 

(i.e. the LiDAR reference DEM), something that cannot be derived from the correlation 

analysis directly. The residuals, which are expressed by the distances from the actual data 

points to the fitted line, are useless in this regard because the fitted line is, in this case of 

correlation analysis, not supposed to represent an estimation of an elevation model that 

best fits the input data.  
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Figure 14a. Correlation analysis for ASTER GDEM DEM versus the LiDAR reference DEM. The line is a 

best fit based on OLS and is added for visualization purposes. 

 

 

Figure 14b. Correlation analysis for ASTER GDEM DEM versus the LiDAR reference DEM for a small 

part of the study area with relatively low elevation levels (sample 2 in Figure 12). 
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4.3 Error Surfaces 

The error surface in Figure 15 is a result of the subtraction of the high-resolution LiDAR 

reference elevation values from the corresponding low-resolution ASTER GDEM ones. 

The range of the values from the error surface provides useful information on the 

goodness of fit of the predicted elevation values (i.e. the ASTER GDEM): positive values 

in the error surface represent an overestimation of the actual elevation values, whereas 

the negative values correspond to an underestimation. 

 

 

Table 5 shows that, on average, the elevation values in the coarser ASTER GDEM-based 

DEM are underestimated. It also shows that the elevation difference data are rather 

dispersed, based on the standard deviation. This may be caused by the variation in 

topography of the study area, an aspect that is examined more closely in section 5.5.2 that 

deals with spatial resolution effects. 

 

 

Figure 15. The error surface is constructed by calculating the differences between the elevation values of 

the ASTER GDEM elevation model and the ones from the LiDAR reference elevation model. Both the high 

and low values in this error surface represent error, whereas an elevation difference of 0 would mean that 

the elevation value for that specific location is equal in both DEMs.  
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Table 5. Descriptive statistics for the values of the elevation error surface, which is calculated by 

subtracting the reference data from the ASTER GDEM data.  

 Top. Parameter Min. Max. Mean Std. Dev. 

Error Surface  

ASTER GDEM – 

LiDAR 

Elevation -103 m 33 m -31 m 15 m 

 

The histogram in Figure 16 shows that the frequency distribution of the error values is 

rather close to a normal distribution, albeit slightly right-skewed. The skewness is most 

likely caused by the significant amount of relatively low error differences that are 

concentrated in the areas with lower altitude at the north-eastern part of the 

Hintereisferner (compare Figures 8 and 9). An explanation for the mean and median 

within the range of negative values can be found in its relationship with the topography 

of the area (i.e. mainly high elevation values), which causes an overall underestimation 

within the ASTER GDEM (see Table 5).  

 

 

Under- or overestimations are eliminated by creating an error surface with absolute values 

(see Figure 17). This alternative visualization provides a better insight into the actual 

derivation of the predicted ASTER GDEM values from the reference LiDAR data.  
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Figure 16. Frequency distribution of the error values based on the ones that are depicted in Figure 15.   
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The error surfaces, both regular and with absolute values, are ideal for analysis of the 

spatial distribution of error in DEMs. For instance, one of the more notable things that 

can be observed when comparing Figure 17 to Figure 15, is that the overestimation of the 

predicted model, which is mainly concentrated in the relatively flat north-east part of the 

Hintereisferner with elevation levels at around 2500 m, turns out to be much smaller than 

the underestimation of the model, which is mainly situated at the more rugged terrain at 

the western part of the glacier. Another interesting point about the spatial distribution of 

error that stands out when looking at the error surface, is that the error in the DEM seems 

to relate to the topographical characteristics of the study area. For example, in the south 

western part of the Hintereisferner, a small line of high error values in NW-SE direction 

is present, right next to a line of very low error values (see Figure 17). When looking at 

the same location in the DEM itself, e.g. the one that is shown in Figure 9, a distinct 

topographical feature in the form of a ridge with an elevation of around 3700 m can be 

identified.  

 

  

Figure 17. Absolute elevation differences (i.e. error values) that result from comparison of the ASTER 

GDEM DEM with the LiDAR reference DEM. 
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4.4 Measures of spatial autocorrelation and clustering 

As the previous section made clear, the mapping of an error surface is purely a 

visualization technique to evaluate the spatial distribution of error in DEMs. The spatial 

patterns that emerge from this can also be quantified. To this end, several measures are 

calculated to analyze the spatial distribution or spatial patterning of those errors that were 

derived by calculating the error surface for the ASTER GDEM data. Because of the 

differences in approach and level of detail, the results are described in four subsections. 

The first two deal with the spatial distribution of error on a global level (i.e. the whole 

study area), whereas the last two show the resulting measures for the error distribution at 

a local level.  

 

4.4.1 Global Moran’s I 

The calculated global Moran’s I index comes with both a z-score and a p-value to evaluate 

its significance and interpret the result within the context of a null hypothesis (see Table 

6). The null hypothesis states that the error values are randomly distributed among the 

study area (i.e. the error surface of the Hintereisferner). Based on the resulting z-score 

and p-value, this null hypothesis is rejected. The spatial distribution of high error values 

and/or low error values in the study area is more spatially clustered than would be 

expected if one assumes randomness. In fact, there is a less than 1% likelihood that this 

clustered pattern could be the result of random chance.  

 

Table 6. Global Moran’s I index as a measure for spatial autocorrelation and clustering in the study 

area, based on a vectorized error surface.  

Moran’s I z-score p-value 

0.953 4036.515 0.000 

 

The Global Moran’s I measure may be useful if the user of a DEM wants to find out 

whether the errors in the elevation model are clustered, dispersed or distributed randomly 

throughout the entire model. The big advantage here, is that this spatial pattern is 

expressed in a single value, much like the RMSE expresses an “average error” in a single 

value. But, much like with the RMSE, the Global Moran’s I measure also has the 

disadvantage that it tries to summarize for the whole study area with this single index 

value. This disregards the possibility that the spatial distribution has local anomalies, or 

at least the Global Moran’s I index does not express this. Another disadvantage of the 
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Global Moran’s I index, is that this value does not indicate whether the low error values, 

the high error values, or both are clustered. It just simply shows whether there is 

clustering, dispersion, or random distribution of data points.  

 

4.4.2 Getis-Ord General G 

The General G is used to measure the degree of clustering for either high values or low 

values. In this case, the clustering of high error values is of particular interest, although 

sometimes the user of a DEM might also want to know more about the spatial distribution 

of low error values in the model, e.g. to find out in which locations the data acquisition 

has been the most successful.  

 

Table 7 shows the Getis-Ord General G index value, which is accompanied by a z-score 

and a p-value because it is an inferential statistic that needs to be interpreted within the 

context of a null hypothesis – just like Global Moran’s I in the previous subsection. As 

was the case with Moran’s I index, the Getis-Ord General G statistic also defines the null 

hypothesis as complete spatial randomness, which would mean that the error values are 

randomly distributed among the DEM. With a statistically significant p-value, the null 

hypothesis may be rejected. The positive z-score value indicates that the observed General 

G index value is larger than the expected one, which means the spatial distribution of the 

high error values in the dataset shows more spatial clustering than would be expected 

based on randomness. In fact, given the z-score of around 312, there is a less than 1% 

likelihood that this high-clustered pattern could be the result of random chance. 

 

Table 7. Getis-Ord General G as a measure for spatial autocorrelation and clustering in the study area, 

based on a vectorized error surface.  

Getis-Ord General G z-score p-value 

0.000080 312.485813 0.000000 

 

Reporting the Getis-Ord General G index value can be an improvement over the Global 

Moran’s I value because it distinguishes between high-value and low-value clustering. 

This might aid the user of the DEM in determining whether or not improvement of the 

input data for the elevation model is desirable or required. Nevertheless, the General G 

index still lacks the ability to find specific locations with notably high error clustering. 

Another disadvantage of this method is that the algorithm with its spatial weights tends 
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to cancel out high and low values clusters, when both are more or less equally present in 

the study area (see section 4.4).  

 

4.4.3 Local Moran’s I 

As the previous subsections on the quantification of spatial patterning of errors in DEMs 

showed, global measures can be useful indicators but are in need of additional information 

that sheds light upon the spatial location of error clustering.  

 

The map in Figure 18 shows a visualization of Local Moran’s I for the Hintereisferner 

glacier, based on the absolute error values. This Local Moran’s I statistic enables both 

spatial outlier detection, as well as cluster analysis, based on significant hot or cold spots 

with a 95 percent confidence level.  

 

 

The results are categorized into clusters of high error values (high-high cluster), clusters 

of low error values (low-low cluster), spatial outliers with high values that are surrounded 

primarily by low values (high-low outlier), and spatial outliers with low values that are 

Figure 18. Cluster and outlier detection based on Local Moran’s I. Hot spot, cold spot and outlier mapping 

are based on a significance level of 95 percent.  
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surrounded primarily by high values (low-high outlier). This makes the (mapping of the) 

Local Moran’s I statistic a very informative and suitable method to determine patterns in 

the spatial distribution of error in DEMs with the added bonus of spatial outlier detection. 

Presumably the biggest advantage of this method is that it enables the user of a DEM to 

specifically target error clusters and anomalies in the form of spatial outliers in order to 

improve the overall performance of the DEM. This method provides some very useful 

information on where to correct input data exactly or how to adjust the processing of raw 

data, for instance in case of interpolation flaws if the error clustering or spatial outliers 

are located in areas with scarce measurement points. It also specifically shows the 

location of the clustering of low errors, which can be useful to identify areas of the glacier 

that seem to have been measured more accurately.  

 

4.4.4 Getis-Ord Gi* 

Another way of determining local clustering in the form of error hot or cold spots is by 

applying the Getis-Ord Gi* algorithm to the error data. The results for Hintereisferner 

glacier are mapped in Figure 19.  

 

Figure 19. Error hot spot and cold spot analysis based on the Getis-Ord Gi* statistic. Significant clustering 

is shown for different confidence levels.  
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Getis-Ord Gi* and Local Moran’s I differ in how they calculate spatial patterns. This 

becomes clear when looking at the north-eastern part of the study area where Local 

Moran’s I yields only significant low error value clusters based on a 95 percent 

confidence level, whereas the clustering pattern based on the Getis-Ord Gi* statistic 

differentiates and also finds significant clustering that only upholds at a lower confidence 

level. Note that the Getis-Ord Gi* statistic does not allow for spatial outlier detection. In 

this regard, the Local Moran’s I is the preferred measure.   

 

A filter can be applied to extract useful information from the maps. The input data for the 

map in Figure 18, for example, can be divided into separate categories to show only the 

outliers or clusters, or even the specific types of outliers or clusters. Another possibility 

is to combine the error hot spot categories that are shown in Figure 19. This results in an 

expanded error map where also significant hot spots are shown that are selected based on 

a lower confidence level (see Figure 20). This could be a more appropriate map if the user 

of a DEM wants to make sure that potential error clusters that have a lower probability to 

be a statistically significant hot spot are also included for further quality inspection.  

 

Figure 20. Map of the filtered error hot spot analysis. All significant hot spots with a confidence level of 

90 percent or higher are shown.  
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4.5 Quantifying and evaluating major sources of error in DEMs 

Thus far, the results and discussion have focussed on exploring methods to quantify and 

evaluate error and its spatial distribution in DEMs. As was discussed previously in the 

introductory chapter and the theoretical background, the sources where these errors stem 

from are categorized in roughly three different categories. Two of these major 

contributors to errors in DEMs are explored in more detail in the following subsections: 

interpolation effects and spatial resolution effects.  

 

4.5.1 Interpolation effects  

The map in Figure 21 shows the result of an interpolation based on kriging techniques. 

To assess whether or not this high-resolution version is an improvement over the original 

coarser ASTER GDEM data or results in increased error values, the interpolated DEM is 

compared to the LiDAR reference DEM (see Figure 22). The results give an indication 

of the effects that the interpolation might have on error values in the DEM.  

 

 

Figure 21. An overview of the interpolated ASTER GDEM DEM of the Hintereisferner glacier. The low-

resolution ASTER GDEM elevation model is interpolated to a high-resolution raster with 1 m cell size.  
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Figure 22. Level of agreement between the interpolated DEM and the LiDAR reference DEM. The line is 

a best fit based on OLS and is for visualization purposes only.  

 

The scatterplot shows a nearly perfect positive relationship between the interpolated 

DEM and the reference data. This strong relationship is also expressed by a very high 

correlation coefficient. Compared to the correlation coefficient that was found by 

comparing the original low-resolution ASTER GDEM data with the LiDAR reference 

data, the coefficient is even slightly higher, although the difference is negligible. Table 8 

provides an overview of the error quantification for the interpolated DEM, for which an 

RMSE was calculated.  

 

Table 8. Calculated RMSE for the interpolated DEM. The minimum, maximum and mean are based on the 

predicted values, i.e. the interpolated ASTER GDEM data. 

 Predicted  Observed 

(reference) 

Min. Max. Mean RMSE 

Elevation Interpolated 

ASTER 

GDEM  

LiDAR 2461 m 3683 m 3052 m 36 m 

 

In comparison to the original coarse ASTER GDEM DEM, applying the interpolation 

shows almost no increase or decline in error values. Both Pearson’s r and RMSE are 
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comparable and the changes in the range and dispersion of elevation values are minimal. 

It means that the kriging interpolation had virtually no effect on the quality of the DEM. 

This can be very valuable knowledge to the user of the DEM because it means that, under 

these specific conditions, interpolation effects can be ruled out as a major source of error 

in the DEM. It also means that the use of the original, non-interpolated data may suffice. 

This can be different, however, if the elevation model is used to compile derived 

topographic parameters. As was described in the chapter on data and methods, these 

derived parameters tend to be more susceptible to small changes in elevation values in 

the input data and might therefore manifest a stronger deviation from the original data.  

 

4.5.2 Spatial resolution effects 

Another major source of error in DEMs is the spatial resolution and the effect it has on 

the level of detail that is captured in the DEM. Section 2.6.3 gives an in-depth description 

of these spatial resolution effects. To estimate the influence of spatial resolution on the 

error values within the DEM, the slope as a derived topographic parameter is calculated 

and used as a proxy for large elevation changes within a relatively small spatial extent. 

The potential of determining spatial resolution effects with the aid of slope as a proxy is 

explained in section 4.4.2.  

 

Determining the scope of spatial resolution effects in DEMs is potentially very useful to 

gain a better understanding of the underlying factors that are causing the errors in DEMs. 

If the user of a DEM is able to estimate the influence of spatial resolution effects and 

combine this with an estimation of the influence of interpolation effects, as was shown in 

the previous section, then this would already isolate the larger part of two of the three 

major categories of error sources in DEMs.  

 

The mapped slope values for the high-resolution reference DEM are shown in Figure 23. 

They are divided into classes of 10 degrees each. By comparing these slope values with 

the elevation differences (i.e. the error values) from the error surface that was previously 

calculated, a first impression is given of a possible correlation between the two (see Figure 

24 for an overview of both maps).  
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Figure 24 clearly shows that the highest slope values in the study area coincide with the 

highest error values in the DEM, especially in the southern and western part of the 

Hintereisferner glacier. However, it also shows that, besides these locations with high 

error values, there are many areas in the DEM that have high error values that do not 

match with high slope values. These areas are particularly prominent in the western part 

of the study area, where the highest error values sometimes even overlap with almost flat 

areas. To find out more about the partial mismatch between error values and slope, a 

correlation analysis is performed. The scatterplot in Figure 25 shows that there is hardly 

any relationship detectable if one looks at the data for the whole study area. But, more 

importantly, the graph also shows that slope values tend to cluster around specific values. 

This is due to scaling problems, which limit the level of detail in the calculation of the 

slope values. Nevertheless, if spatial resolution effects would be a significant factor of 

influence, the plotted error values would be a lot closer to the fitted line curve.  

 

Because the southern and western parts of the study area generally have the highest 

elevation values (compare Figure 9), this seems to indicate that error in the DEM 

positively correlates with elevation levels but not necessarily exclusively with 

Figure 23. Mapped slope values for the LiDAR reference data. The slope values are calculated on the 

level of individual cells in the raster and then reclassified.   
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characteristics of the land surface that are susceptible to spatial resolution effects. This 

leaves room for speculation on what causes these large error values in areas that show 

little variation in topography. For instance, high elevation values in general could be 

problematic for the ASTER GDEM data acquisition, or differences in land cover could 

significantly influence measurements (e.g. the amount of snow cover, indications for 

which can be found in Figure 6c).  

 

 

 

 

Figure 25. Level of agreement between the error values and slope values to determine the influence of 

spatial resolution effects. 
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Figure 24. Comparison of slope values against elevation differences (i.e. error values) for the whole 

study area. 
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4.6 Caveats and limitations 

In order to correctly evaluate the results and conclusions of this study, certain caveats and 

limitations have to be mentioned: 

- Bias: Analysis of remote sensing data generally requires a mix of technical data 

analysis and expert judgment. Both components can be subject to (systematic) 

bias. Please be aware that identification and/or reduction of bias have not been 

part of the data handling, nor has any distinction been made by differences in land 

cover, weather conditions or type of sensor (e.g. with regard to the ability to 

penetrate clouds or snow or ice to a certain depth). The reader should bear in mind 

that in this respect margins of error were not included in the results or accounted 

for in the methods of quantification and evaluation of error. 

- Spatial accuracy: Each acquisition of remote sensing data has its own flaws when 

it comes to (spatial) accuracy. Because the main factor in this study concerned the 

exploration of methods, the focus has been on vertical accuracy and not on 

horizontal accuracy (although this would obviously matter if accurate elevation 

values were required).  

- Temporal resolution: Due to restrictions in data availability, the comparisons for 

the error quantifications had to be made based on datasets from 4 and 17 October 

2011 respectively. Seasonal variations in snow or ice cover are therefore not 

included in the analyses, although this aspect might have been able to explain 

discrepancies found in the estimation of spatial resolution effects.  

- Reference data: In order to conduct most of the error quantifications and 

evaluations in this study, reference data of high precision and accuracy is required. 

In other studies, this is not always readily available, for obvious reasons. On the 

contrary, if high-quality elevation data is available, this would naturally be used 

as input data for the DEM instead. Nevertheless, by showing how the methods of 

error quantification work that were explored in this study, estimations can be 

made with regard to the scope of error in DEMs for similar contexts.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

This study explores methods to quantify and evaluate error in digital elevation models 

built from remotely sensed elevation data of the Hintereisferner glacier. A special focus 

lies on glacier surfaces because glaciers are often inaccessible for field observations but 

in the same time prone to measurement errors. They would therefore particularly benefit 

from a comprehensive error assessment. One of the primary aspects of the study is to find 

suitable methods that also include the spatial distribution of error because this is generally 

a somewhat neglected part of quality assessment of DEMs, although it potentially has a 

significant impact on the way DEMs are used in research, especially if geomorphological 

or topographical aspects are part of this. In addition to identifying and discussing methods 

to quantify and evaluate existing errors in DEMs, this study also looks at some major 

sources from which the errors stem to find out if the influence of these sources on the 

resulting errors can be estimated. To this end, two out of three major categories of error 

sources were selected: interpolation effects and spatial resolution effects.  

 

The explored methods are chosen based on the relevant scientific literature on quality 

assessment of DEMs. They include quantitative error measures, such as RMSE, but also 

more evaluative approaches, such as correlation analysis. The results of the calculation 

of RMSE for the study area confirmed that, as such, the RMSE as a single value is limited 

in its capability to explain both the variation and dispersion in the error values. This is in 

line with findings in similar studies that focus on the quality of DEMs, as was pointed out 

before in the introduction and theory. RMSE also fails to give an indication as to how 

large the errors in the elevation model are on a local scale, nor does it inform the user of 

the DEM where errors are located within the model or how they are distributed. This is, 

of course, inherent in these global measures of error. Nevertheless, considering the 

importance of knowledge on the spatial distribution of error, especially when dealing with 

DEMs, the single RMSE value that is so often used with regard to quantifying error in 

DEMs, seems to be a somewhat poor choice.  

 

As an alternative to calculating the RMSE, error in DEMs can also be quantified and 

evaluated by performing a correlation analysis. The results from this method show that 

plotting the original DEM values against very accurate reference data gives the user of a 

DEM a fairly good impression of the overall level of agreement of the data, i.e. the 
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accuracy of the input DEM. This way of visualizing the elevation data also serves as an 

early warning system with regard to outliers in the data, which is especially helpful if the 

correlation analysis is performed in combination with the calculation an RMSE value 

since this value is rather sensitive to outliers in the data. In addition to the scatterplot, the 

correlation coefficient (in this case Pearson’s r) can be calculated. This quantitative 

measure instantly tells the user of the DEM something about the accuracy of the complete 

elevation model, albeit without a distinct reference framework since the interpretation of 

the outcome values for Pearson’s r can be rather arbitrary. One of the disadvantages of 

performing a correlation analysis to quantify and evaluate error in DEMs is the fact that 

absolute error values are impossible to extract from the scatterplot and the correlation 

coefficient. Also - like with the calculation of an RMSE value - spatial distribution of 

error is not part of this method. 

 

Including spatial distribution as part of the quantification and evaluation of error in DEMs 

is done by exploring methods like the creation of error surfaces or approaches that 

quantify the spatial patterning of error values in DEMs. Error surfaces offer a useful 

combination of quantification and evaluation of both error and its spatial distribution: 

absolute error values are shown, and their spatial distribution is observable. The range of 

the values from the error surface provides insight into the goodness of fit of the predicted 

elevation values (i.e. the ASTER GDEM): positive values in the error surface represent 

an overestimation of the actual elevation values, whereas the negative values correspond 

to an underestimation. Furthermore, a direct comparison between error surfaces and the 

elevation models themselves, allow the user of the DEMs to link error to topographical 

characteristics within the study area. In the case of the Hintereisferner glacier, this 

resulted in a clear overlap between high error values and distinct topographical features, 

such as ridges or crevasses.  

 

The introduction and methodology part of this thesis have made clear that a 

comprehensive error quantification and evaluation requires the inclusion of spatial 

patterning of the error values throughout the DEM. Creating error surfaces is a very 

straightforward way to do this but lacks a proper quantification of this aspect because it 

is merely a visualization technique. To quantify the spatial patterns, e.g. clustering, that 

emerge from error surfaces, several measures of spatial autocorrelation or clustering are 

calculated. Two of them are global and cover the study area as a whole: Global Moran’s 
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I and Getis-Ord General G. The other two are local and consider variation in clustering 

of the error values within the study area: Local Moran’s I and Getis-Ord Gi*. The results 

show that the issue of global versus local approach is rather essential in choosing a 

suitable method to quantify and evaluate spatial distribution of error in DEMs. The fact 

that both the global measures try to summarize for the whole study area with a single 

index value is quite a disadvantage and would restrict the user of a DEM in its aim to 

improve the quality of a DEM not only by looking at absolute error values, but also by 

looking at spatial clustering or spatial anomalies to identify weaknesses in the elevation 

model, which are, as the results show, often of a local nature. Therefore, the local 

measures of error clustering are preferred. In this respect, the Local Moran’s I is favored 

over the Getis-Ord Gi* because the Local Moran’s I allows for spatial outlier detection, 

something that is potentially very useful to the user of the DEM because it often indicates 

anomalies in the data (like the ‘regular’ outliers in the elevation data or error values).  

 

In light of the above, it can be concluded that: 

- Suitable methods for error quantification and evaluation include calculating an RMSE 

value, performing correlation analysis, and calculating error surfaces and measures of 

spatial autocorrelation or clustering;  

- Quantifying error in a DEM by calculating an RMSE value is probably the most 

convenient and straight-forward way. But without proper context, a single RMSE error 

can not show or explain dispersion in elevation values. Moreover, this study made explicit 

that absence of the spatial component makes a single RMSE value a poor choice when 

quantifying error in DEMs because this aspect is essential due to the spatial nature of the 

data in DEMs; 

- Correlation analysis turns out to be the weaker choice to quantify and evaluate error in 

DEMs in this study, both in terms of the absolute error and its spatial distribution;  

- Error surfaces are presumably the most powerful methods in this specific study to gain 

insight into both the absolute error values and the spatial distribution of them. They are 

easy to understand, and they provide the user of a DEM with adequate information, 

although they lack quantitative measures that report the error term or its spatial pattern in 

the DEM with a single number;  

- Calculation of local measures of error clustering that include spatial outlier detection 

(e.g. Local Moran’s I) is a valuable addition to the common approach of error 
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quantification and evaluation for DEMs. Especially if the elevation data is used in cases 

where spatial clustering of error would increase the total error in the resulting output.  

 

As a last step in this thesis, two of the major sources of error in DEMs – interpolation 

effects and spatial resolution effects - are explored to find methods to quantify and 

evaluate their influence on the resulting error values. To estimate interpolation effects, a 

comparison is made between the error values that resulted from the original ASTER 

GDEM data and the ones that were calculated based on the interpolated ASTER GDEM 

data. The comparison is based on correlation analysis, including a correlation coefficient, 

and RMSE because these measures of error should suffice to give the user of the DEM at 

least a rough idea about the effects the interpolation had on data quality. Results show 

that both the correlation coefficient and the RMSE are comparable in both cases. There 

is hardly a noticeable increase or decrease in error values due to the interpolation, which 

leads to the conclusion that, in this case, the interpolation had virtually no effect on the 

quality of the DEM. Although it should be noted that this very specific case contradicts 

general findings in the scientific literature on this topic (see section 2.6).  

 

The estimation of spatial resolution effects is based on the compilation of a derived 

topographic parameter, i.e. slope. Slope serves as a proxy for abrupt elevation changes on 

a small spatial extent and is therefore an ideal parameter to compare to the error data in 

order to find out if there is a relationship between the two. If a strong correlation between 

slope values and error values is found, then this would be an indicator for the influence 

of spatial resolution effects on the error of the DEM. In this case, the results showed that 

the highest slope values in the study area coincide with the highest error values in the 

DEM, especially in the southern and western part of the Hintereisferner glacier. However, 

the results also show that, besides these locations with high error values, there are many 

areas in the DEM that have high error values that do not match with high slope values. 

This leaves room for speculation on what causes these large error values in areas that 

show little variation in topography. Regardless, both the approaches on estimating 

interpolation effects and spatial resolution effects lead to the conclusion that, in this case, 

these two major sources of error have, in fact, relatively little influence on the error values 

in the DEM.  

 

Recommendations for further study include: 
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- Applying the chosen methods of quantifying an evaluating error and its spatial 

distribution on different data sources with different resolutions and different 

remote sensing devices to find an optimum. 

- Inclusion of different study areas to be able to distinguish results for various types 

of glaciers and/or glacial surfaces (e.g. debris cover and type of snow or ice). This 

seems particularly interesting since the results in this study showed a rather 

unexpected relationship between high error values and relatively flat topography 

for some parts of the study area, something that might be explained by the type of 

land cover. Variation in temporal resolution could be an option as well.  
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