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Abstract

Anonymizing time-series data is a demanding task since there might be a lot of private

information which can be inferred which might not initially be obvious. Therefore, it can be

desired to anonymize with some established privacy guarantee. However, there is always a

trade-off to be made between privacy and minimization of information loss. In this thesis, an

investigation is made into how to protect univariate time-series. The main focus is on publish-

ing anonymized time-series from individual users, but methods for anonymizing aggregate

time-series and the removal of sensitive data is also investigated. This is done in order to

find a wider understanding of how a blood glucose related database can be anonymized. The

main achievement of this thesis is the implementation of PC-KAPRA, a novel extension

to the KAPRA algorithm, which publishes data under (k,P)-anonymity. The results show

that PC-KAPRA offers a large improvement in retaining pattern information compared to

KAPRA, and publishes data which could be considered qualitative useful information.
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Chapter 1

Introduction

This thesis will focus on the anonymization of univariate time-series data. Time-series is a

type of data which is collected over time, and is highly useful for various types of analytics.

In particular it can be used for prediction. From an anonymization point of view, a problem

with time-series data is that non-obvious private and identifying data could be inferred from

it. An example of this is shown in a competition hosted by Kaggle, where people could be

identified by using accelerometer data from smart-phones 1. In order to deal with this, it is

desired to use established privacy measures which can guarantee that no such inferences can

be made. Therefore, a large section of this thesis is a theoretical background on k-anonymity

and differential privacy, which are two widely used anonymity measures.

The thesis was carried out at Sony Mobile Communications AB. The original purpose of

the thesis was to find a way to anonymize time-series data in order to deal with problems

which arose from the General Data Protection Regulation (GDPR), with special focus on

datasets containing blood glucose values collected in combination with a glucose monitoring

smart-watch. However, ironically, no blood glucose dataset could be used for testing the

results because of GDPR privacy regulations. Therefore, albeit confusing, the main algorithm

PC-KAPRA, will be show-cased on other kinds of univariate time-series.

Since this is not a thesis in law, there will not be any specific analysis into how the anonymiza-

tion fulfills the requirements from GDPR. Rather, the focus will be on privatization and

specifically anonymization of univariate time-series data from a more algorithmic perspective.

1https://www.kaggle.com/c/accelerometer-biometric-competition



2 Introduction

1.1 Background

For a better understanding of the field of privacy it is important to first distinguish the differ-

ent terminology. A popular definition of data privacy is made by A. Westin in "Privacy and

Freedom" (1967) [1], "Privacy is the claim of individuals, groups, or institutions to determine

for themselves when, how, and to what extent information about them is communicated to

others." Data privacy covers the scope of collection of personal data to usage and publishing.

In this thesis the focus lies on the privacy regarding data publication. Data privacy sometimes

gets mixed up with information security. Information security refers to protection of data by

encryption or other methods, preventing unauthorized access to a database 2. This differs

from data privacy which focuses on how the data is collected, used and published, with

regards to the prevention of leaking sensitive information. In any data processing of personal

information it is essential that both information security and data privacy methods are used.

Data anonymization, or data de-identification, exists as a subfield within the field of

privacy, dealing specifically at protecting an individual or entity by removing or transform-

ing identifying information in a database, while retaining useful information 3. Published

anonymized data should not be allowed to be linked to any one individual or entity, regard-

less of auxiliary information. A common method for anonymization are methods aimed

at establishing k-anonymity. This anonymity measure guarantees that each data provider

is indistinguishable from at least k− 1 others after data publishing [2]. A more detailed

description of this measure will be given in section (2.1) along with (k,P)-anonymity, which

is a similar measure but more aimed towards time-series.

A lighter anonymization requirement is pseudo-anonymization, where no such guarantee

regarding auxiliary information needs to be made [3]. On December 17, 2009, Netflix re-

leased potentially sensitive and personal data from 480.000 users in connection with a public

competition aimed at finding an improved film-recommendation algorithm 4 5. This data

was published after first replacing the participant’s identification with an anonymous unique

numerical identifier. However, shortly after the competition, Arvind Narayanan and Vitaly

Shmatikov were able to reveal the identity of target participants, by comparing the published

data with auxiliary data from IMDB. This privacy breach eventually led to a lawsuit directed

2https://www.techopedia.com/definition/26464/data security
3https://www.investopedia.com/terms/d/data anonymization.asp
4https://money.cnn.com/galleries/2010/technology/1012/gallery.5databreaches/index.html
5https://privacylaw.proskauer.com/2009/12/articles/invasion-of-privacy/netflix-sued-for-largest-voluntary-

privacy-breach-to-date/
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towards Netflix.

Due to this re-identifying risk, the focus of this thesis will lie on anonymization rather

than pseudo-anonymization, i.e, an individual’s data should be protected against an adversary,

regardless of auxiliary information.

The main problem of this thesis is strongly inspired and motivated from an issue faced

by Sony, and a multitude of other companies, in the time after the GDPR. Before going into

the exact problem at hand, a short introduction of GDPR will be offered together with a

privacy scenario inspired from a meeting at Sony. This will help to illuminate the problem of

information sharing between entities after the introduction of GDPR.

1.1.1 GDPR

GDPR, or General Data Protection Regulations was introduced in 2016, offering protection

to natural persons with regards to the processing of personal data[3]. The "Right of Erasure";

a right which legally enforces an entity to erase all personal data from an individual upon

request, was introduced. This right severely complicates the process of sharing personal data

from a natural person between entities.

Figure (1.1) illustrates how personal data might propagate between entities. There might

be a product initiated by a company, which then receives various contributions from external
entities. A natural prerequisite for these contributions could be access to the personal data
gathered through the product. Parallel to the propagation of personal data there is a propaga-

tion of permissions from the users for the processing of this data.



4 Introduction

Fig. 1.1: Propagation of permissions and personal data

Fig. 1.2: Propagation of request for erasure.

Fig. 1.3: Propagation of request for erasure and de-personalized data.
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When a request for erasure is invoked, the following scenario schematized in figure (1.2)

occurs. Where both the company and all the external entities have to remove all the gathered

personal data. This could become problematic for the company for two main reasons. Firstly,

the personal data often contain valuable information which can be used in various forms of

analytics. Secondly, there could be legal issues concerning any of the external entities failing

to comply to the request for erasure.

To avoid these problems, we can avoid the propagation of personal data all together

and instead anonymize the data first, rendering it de-personalized, yielding the schematized

scenario in figure (1.3). Both the company and the external entities are now allowed to keep

the de-personalized data. If the personal data can be scrupulously anonymized while still

retaining valuable information, then this could be an essential part for all data processing.

In addition to the rights given to individuals over their personal data, there are certain

prohibitions on the processing of special categories of personal data [3]. These categories

include data concerning health and biometric data for uniquely identifying a natural person.

These kinds of sensitive inferences could be found in many datasets. For instance, one

can detect smoking by analyzing acceleration data from a wrist band [4]. Having that sort of

information might not be of interest for an entity, and having those sensitive parts removed

would offer both more freedom for data processing and a better privacy for the individual.

When dealing with problems in this category the goal is not to de-personalize the data,

rather to clean the data for any sensitive information, possibly predefined by the data provider.

It will therefore not be retained through a "request for erasure", but would nevertheless both

offer a better alignment with GDPR and strengthen the trust between data provider and data

receiver.

A brief overview of GDPR and how it relates to the incentive to anonymize data and

removal of sensitive information has now been given. However, for the rest of the thesis, the

focus is on the publishing of de-personalized data.

1.1.2 Problem description

Anonymizing personal data can be done in various ways, depending on the type of data being

processed. The focus in this thesis is centered around blood glucose data, which can be
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classified as a univariate time-series or data stream. In this scenario a data surveyor, Sony
Mobile Communications AB in this case, has access to a database with data collected from

various users in the format (user ID, blood glucose, time), see table (1.1), and wants to find

a way to publish the data anonymously. The idea is that this type of data will be collected

through a smart-watch device, which potentially can collect other type of data as well, such

as GPS and activity level.

Due to a lack of, and legal complications accessing real blood glucose data from multiple

subjects, the implemented algorithms in this thesis will be showcased on other types of

univariate time-series data.

Blood glucose (mmol/l)

User ID 13:00 13:15 13:30 13:45 · · ·
1 7.5 7.4 7.3 7.6 · · ·
2 7.9 7.7 7.6 7.8 · · ·
3 5.4 5.2 5.3 5.5 · · ·
4 9.3 9.1 9.4 9.6 · · ·
5 6.4 6.7 6.6 6.6 · · ·
6 8.3 8.0 8.5 8.4 · · ·

Table 1.1: Table of blood glucose progression over time in a small population.

In figure (1.4) the data from an individual with diabetes is illustrated, where the blood

glucose concentration is measured every 5 minutes over the span of roughly 2 days.
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Fig. 1.4: Glucose data collected every 5 minutes over a time-span of roughly two days.

Blood glucose measured in mmol/L.

The problem lies in anonymizing the time-series while still retaining as much information

as possible, i.e anonymously publishing the data as closely to the original data as possible.

A naïve approach could be to simply remove unique identifiers and replace them with a

unique ID. This could however have severe privacy consequences in analogue with the

aforementioned Netflix film recommendation system issue. A simple motivation why this

might be the case is given in the following example.
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Fig. 1.5: Inferences

In figure (1.5) a reasonable guess regarding the sleeping patterns based on the blood

glucose values of the data provider has been made. One could, from these guesses, draw

the conclusion that a relatively stable blood glucose value is correlated to sleep, followed

by a sudden dramatic increase which is correlated to waking up. Now imagine if the data

was collected over multiple days and some adversary had access to auxiliary information

regarding a populations sleeping patterns. In that case, there would be a risk that the adversary

could combine both sources of information in order to deduce which individual the blood

glucose time-series belongs to.

These inferences were made by a quick glance at the data. One could imagine that there

might be more hidden inferences, allowing more sources of auxiliary data to be used for

uniquely identifying the data provider. Therefore, the goal of this thesis is to find methods

which can guarantee that the published data will remain anonymous, by some guarantee,

regardless of auxiliary information.
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1.2 Scope

In order to deal with the problem posed in the previous section, the focus will be widened

from strictly looking at blood glucose data to time-series data of similar character, i.e.,

univariate time-series from individual data providers. This is mainly due to a lack of data

samples, but also driven by a wish for a more generic solution; a method which is not

restricted to only function on the unique characteristic of blood glucose data. However, the

applicability of various algorithms will evaluated with regards to its applicability on blood

glucose data. The goals of this thesis are the following.

• Anonymization of individual time-series. This is the main goal of the thesis. Here,

methods for publishing time-series based on the k-anonymity measure [5], will be

investigated. This is because k-anonymity offers a clear-cut privacy guarantee and

simple implementation, that allows for the possibility of retaining the entire time-series

provided by an individual.

• Anonymization of aggregate time-series. Here an investigation into methods aimed at

publishing anonymized aggregate time-series, using differential privacy [6], has been

made. Differential privacy is offers a rigorous mathematical privacy guarantee.

• Removal or transformation of sensitive information. This is important to give a small

investigation, as it offers an alternative when anonymization is not possible.

Notice that algorithmic implementations are only done for the main goal which aims at

anonymizing individual univariate time-series.

1.3 Methodology

In this thesis, the problem has been addressed through a combination of theoretical studies

of privacy preserving technologies, new algorithm development and experimental evaluations.

Initially, a literature study was conducted in order to get as better understanding of the

field of privacy. Special focus was aimed towards differential privacy, k-anonymity and
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general approaches regarding the problem of anonymizing time-series.

When a basic understanding of the field was established, a search for state-of-the-art al-

gorithms aimed at anonymizing univariate time-series was conducted. Here, the investigation

eventually got narrowed down to k-anonymity based methods. This was done in parallel with

finding methods for anonymizing aggregate time-series using differential privacy and general

methods aimed at the removal or transformation of sensitive data.

A promising algorithm using a measure called (k,P)-anonymity was found and further

investigated. Inspired by this algorithm, a new algorithm was designed in this thesis using

the same (k,P)-anonymity measure.

Finally, both algorithms were implemented and tested on databases containing univariate

time-series and evaluated.

1.4 Outline

The outline of this thesis is given as follows:

Chapter 2 provides definitions and descriptions of privacy measures based on k-anonymity

and selected state-of-the-art anonymization algorithms applicable on the main problem

described in section (1.1.2). Furthermore, there will be an theoretical background

explaining differential privacy, and a presentation of privacy methods used on aggregate

time-series data and removal of sensitive data.

Chapter 3 contains a detailed description of the novel PC-KAPRA algorithm which is

aimed towards establishing (k,P)-anonymity.

Chapter 4 provides the results from the PC-KAPRA and the benchmark KAPRA algorithm

on different time-series datasets, by measuring information loss and pattern loss.

Chapter 5 contains a discussion based on the results from the previous chapter, along with

possible improvement and ways to utilize algorithms based on (k,P)-anonymity. In

addition, suggestions for future directions of anonymity and privacy are given.

Chapter6 conclude the thesis by stating the most important findings with respect to the

original purpose.



Chapter 2

Privacy measures

This chapter aims at giving the reader an understanding of k-anonymity and other closely

related measures, such as l-diversity and (k,P)-anonymity [7][2], as well as differential

privacy. Following the theoretical background, a set of selected state-of-the-art methods

aimed at the privatization of univariate time-series will be presented, and analyzed with

regards to the problem stated in section (1.1.2).

In order to have a discussion regarding privacy it is essential to establish a privacy mea-

sure. The ones most typically used are k-anonymity and differential privacy, but there are

more approaches depending highly on what kind of methods are applied. For instance, the

goal could be to protect data against a certain type of attack. In that case the attained defence

against that attack could be used as a measure.

2.1 k-anonymity

The k-anonymity measure was first introduced by Sweeney and Samaranti in 1998 [5] as an

effort to introduce a scientific guarantee for an individual’s privacy while trying to maintain

practically useful data. An individual in a dataset is said to be k-anonymous if it is indistin-

guishable from at least k−1 other individuals in the same dataset.

In the database we are considering there are three types of information: Identification(ID),

Quasi-identifiers (QIs) and sensitive information (As).
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ID Name Nationality Height disease

1 Jane Australia 170 cancer

2 John Sweden 185 diabetes

3 Johanna Sweden 165 diabetes

4 Jack USA 176 chicken pox

5 Jenny Germany 165 heart related

6 Jenny Sweden 167 no illness

Table 2.1: An imaginary database, with ID, QIs(Name, Nationality, Height) and sensitive

information(disease).

In the table (2.1) data is portrayed showing the identification, nationality, height and

disease of a small population. The identification is anonymous in its nature, while the name,

nationality and height is considered QIs and the disease in considered sensitive information.

In the current scenario every individual can be uniquely identified. This can be changed by

removing information, which can be seen in table (2.2) where 2-anonymity is achieved.

ID Name Nationality Height disease

1 Ja* * 170-176 cancer

2 Jo* Sweden 165-185 diabetes

3 Jo* Sweden 165-185 diabetes

4 Ja* * 170-176 chicken pox

5 Jenny * 165-167 heart related

6 Jenny * 165-167 no illness

Table 2.2: Imaginary database, protected under 2-anonymity/

However, the sensitive information of having diabetes is inferable, regardless of John

and Johanna’s 2-anonymity guarantee. This is a fundamental flaw of k-anonymity, where

there is no protection against the possibility protecting individuals from releasing sensitive

information. One way of dealing with this issue is to introduce l-diversity.

2.1.1 l-diversity

The privacy definition l-diversity was introduced as a way of addressing the privacy problems

k-anonymity has with regards to leaking sensitive information [7]. The definition of l-diversity

is the following:



2.2 k-anonymity for time-series 13

A group is l-diverse if it contains at least l “well-represented” values for the sensitive

attribute. A table is l-diverse if every group is l-diverse.

From the example on the previous table (2.2), one can notice that the group with Swedish

nationality is 1-diverse, since there is only one "well-represented" sensitive attribute, namely

"diabetes". In order to achieve 2-diversity one could introduce another member to the table:

Jonathan from Sweden with height 175 and no illness.

ID Name Nationality Height disease

1 Ja* * 170-176 cancer

2 Jo* Sweden 165-185 diabetes

3 Jo* Sweden 165-185 diabetes

4 Ja* * 170-176 chicken pox

5 Jenny * 165-167 heart related

6 Jenny * 165-167 no illness

7 Jo* Sweden 165-185 no illness

Table 2.3: 2-diversity

If now a random Swede in table (2.3) would be analyzed, one would not with certainty

know if they have diabetes or no illness due to the newly inserted sensitive attribute.

The anonymization procedure discussed thus far is regarding non-temporal data. The

problem a bit more complicated once time is also considered.

2.2 k-anonymity for time-series

In this thesis the problem lies in using k-anonymity on univariate time-series, which dif-

fers from static data portrayed in table (2.1) in that, typically, many more dimensions are

introduced. Take for instance the pseudo-anonymized table (1.1) where blood glucose is

measured every 5 minutes, in which the number of dimensions could be considered equal to

the number of time-stamps:

In order to establish k-anonymity, the data must be transformed so that the QIs of each row

is identical to at least k−1 other rows. This can be done by introducing an Anonymization

Envelope AE in which the QI values Ai for each time-series are contained within a value

range Ri = [r−i ,r
+
i ], belonging to at least k−1 other time-series. An example of this is shown

in table (2.4) where 2-anonymity is established by simply combining every second row.
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Blood glucose(mmol/l)

ID Group ID 13:00 13:05 13:10 13:15 · · ·
1 1 7.3-8.0 7.2-7.9 7.0-7.8 7.3-8.1 · · ·
2 1 7.3-8.0 7.2-7.9 7.0-7.8 7.3-8.1 · · ·
3 2 5.2-9.6 5.0-9.4 4.9-9.7 5.2-10.0 · · ·
4 2 5.2-9.6 5.0-9.4 4.9-9.7 5.2-10.0 · · ·
5 3 6.1-8.5 6.4-8.3 6.3-8.8 6.2-8.8 · · ·
6 3 6.1-8.5 6.4-8.3 6.3-8.8 6.2-8.8 · · ·

Table 2.4: 2-anonymized table of blood glucose progression over time in a small popula-

tion, by creating anonymization envelopes.

Notice that the values have been slightly perturbed, this is essential and the reason why

can easiest be understood by looking at Group 2. Only two people belong to this group and

the difference in blood glucose values are so substantial that one can easily deduce that the

lower bound belongs to one individual and the higher to the other, thereby revealing each

individual’s entire time-series, if not perturbed.

Creating AEs is synonymous to creating clusters and then representing each time-series in

the cluster identically. Therefore, clustering can be seen as a fundamental part of establishing

k-anonymity.

2.2.1 Clustering

By the definition of the k-anonymity it is easily observed that clustering is central to any

algorithm establishing the anonymity measure. Clearly there are "good" and "bad" ways of

establishing k-anonymity. In table (2.4) one can see that the naive k-anonymity clustering

could be improved with regards to minimizing information loss, by combining ID 3,5 and

4,6 rather than 3,4 and 5,6. This would lead to smaller envelope.

In time-series clustering, the most important elements are representation, distance mea-

sure, prototype extraction function, clustering algorithms, and cluster evaluation [8].

Time-series representation refers to how data should be represented before proceeding

with further clustering. In table (2.4) the data is represented as raw-data, but it could be

transformed to any other type more beneficial to clustering. In this step it is common to
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do some kind of dimensionality reduction, in order to deal with the high dimensionality of

time-series [9][2].

The distance measure is used as a metric to compute the distance between time-series.

One of the simplest and common ways of computing distances for a univariate time-series is

using the Euclidean distance [10].

The prototype extraction function decides how the minimization processes of clusters

should look like. In some sense, choosing the prototype is choosing the centre of the cluster.

This is commonly chosen as the average sequence or medoid sequence of the set, where

medoid is the sequence closest to the average of the set [10].

The specific clustering algorithm can then be chosen with regards to the representation,

distance measure and prototype extraction, in addition to, a desired balance between accuracy

and complexity. One of the most prominent clustering algorithm is the partitioning based

k-means clustering [10], which makes k groups from n unlabeled objects. This is also closely

related to the problem faced in k-anonymity, since we would like to partition the data into

different groups.

In a paper published by Johnsana et al., they used performed a dimensionality reduction

by transforming the data by random projection [9]. They then moved on to using k-means

clustering, using the Euclidean distance function. Where k-means clustering is a method

where the centre for each cluster is the average of the respective cluster. They called this

methodology CAT (Clustered k-anonymization of Time Series Data), which is based on

first creating clusters and then for each cluster establishing k-anonymity using the ARX
anonymization tool1. Although this method is very applicable on the problem considered

in this thesis, it can be improved by also taking patterns into consideration. This is done by

Shou et al, and the (k,P)-anonymity which they introduced [2].

2.2.2 (k,P)-anonymity

The formation of envelopes or clusters could be based on one metric such as the euclidean

distance or pattern similarity. However, as shown by Shou et al. [2], focusing on either of

these metrics could give a large information loss regarding the other metric. The solution they

1https://arx.deidentifier.org/
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present for this problem is the (k,P)-anonymity measure, which establishes P-anonymity by

requiring P identical patterns within each k-anonymous envelope. The pattern and data then

gets published in two different formats. A pattern can be defined as a vector p of features f .

p(s) =< f (s)1, . . . , f (s)n >

where f is a correlation function transforming time-series data (s) from value space to

some other space.

f : (A1, . . . ,An)→ Y

This way of forming patterns is quite generic, and with f (s)i = Ai the original time-series

is returned.

The (k,P)-measure is by Shou et al. [2] defined as:

Definition: (k,P)-anonymity: Let T be a database of time-series, and A1, · · · ,An being

the QI attributes. A published database T ∗ is said to satisfy (k,P)-anonymity, if T ∗ meet the

following two requirements:

• k-requirement: Each Anonymization Envelope AE = (R1, . . . ,Rn), where Ri defines

the value range at each time-step, appears at least k times in the entire database;

• P-requirement: Consider any k-group G of time-series having the identical anonymiza-

tion envelope, if any time-series s ∈ G, there are at least P−1 other time-series in G
having the same QI pattern representation as s.

These requirements gives a protection against linkage attacks based on auxiliary knowl-

edge on QI attribute values, and the whole QI pattern representation or parts of it. Where

a linkage attack is an attack aimed at finding a link between auxiliary information and

information contained in the anonymized dataset. The (k,P-anonymity gives the privacy

breach probability Pbreach[s] = 1/P for any target time-series s.

An example of (k,P)-anonymized data is given in table (2.5), with k = 4 and P = 2. In

the table, one can see four time-series with identical value range, this satisfies k = 4. Then

within each group, there is for each pattern two identical representations which satisfies

P = 2. For instance, in Group ID 1, two time-series have the patterns aabbcc and bbccaa.

The patterns are represented as strings, which will be explained in more detail in the next

chapter.
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Blood glucose(mmol/l)

ID Group ID 13:00 13:15 13:30 13:45 · · · p(sID)

1 1 5.2-9.6 5.0-9.4 4.9-9.7 5.2-10.0 · · · aabbcc
2 1 5.2-9.6 5.0-9.4 4.9-9.7 5.2-10.0 · · · aabbcc
3 1 5.2-9.6 5.0-9.4 4.9-9.7 5.2-10.0 · · · bbccaa
4 1 5.2-9.6 5.0-9.4 4.9-9.7 5.2-10.0 · · · bbccaa
5 2 6.1-8.5 6.4-8.3 6.3-8.8 6.2-8.8 · · · bbaaca
6 2 6.1-8.5 6.4-8.3 6.3-8.8 6.2-8.8 · · · bbaaca
7 2 6.1-8.5 6.4-8.3 6.3-8.8 6.2-8.8 · · · bbccaa
8 2 6.1-8.5 6.4-8.3 6.3-8.8 6.2-8.8 · · · bbccaa

Table 2.5: Table of blood glucose progression published under (4,2)-anonymization.

In the paper by Shou et al.[2], they suggested the algorithm KAPRA (k and P- rein-
forced anonymization) to establish (k,P)-anonymity. This algorithm has an outline which is

reminiscent of the clustering outline given in the previous section (2.2.1). It starts by a pre-

processing step of transforming the data to a pattern and attribute value representation, along

with introducing two distance metrics for the two representations which are mainly used to

evaluate the information loss. Then follows an algorithm which join together time-series with

identical pattern representation into groups of size larger than P. These groups are then clus-

tered together into groups of size k. In such a way, they manage to establish (k,P)-anonymity.

The KAPRA algorithm is quite applicable on the problem considered in this thesis. It

offers a good way to maintain information on both patterns and attribute values, however

the requirement of identical pattern representation which is inserted during the formation

of P-groups may lead to considerable information loss. In particular if one wants to pub-

lish data with fine granularity or if the data has a large variance. Therefore, in the next

chapter we will introduce PC-KAPRA (pattern clustering - k and P-reinforced anonymity),

which is similar to the KAPRA algorithm, but applies a version of a k-means clustering

method in forming the pattern groups. In that chapter also the steps used in the KAPRA

algorithm will be clarified as both algorithm are identical except for the pattern clustering part.

Before looking more specifically into the method which aims at establishing (k,P)-
anonymity, a look into differential privacy will be made. The differential privacy measure

offers a methodology more aimed towards aggregate data. This could be a useful in com-

bination with k-anonymity based methods in order to create a wider anonymity cover on a
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database generated by, for instance, a glucose measuring smart-watch.

2.3 Differential privacy

Differential privacy is the golden standard for database privacy and can be seen as a promise

from data holder to data subject that they will not be affected by allowing their data to be

studied, regardless of adversaries and auxiliary information; your data cannot be tracked

back to you [6]. Establishing differential privacy allows for analysis of the entire population,

but keeps individuals private. Therefore, the area of application will differ from the main

problem as described in section (1.1.2), and instead be focused on publishing related data as

univariate aggregate time-series. This could be data such as: number of people with diabetes

in the database, average activity level and population trajectories based on inferences (see

figure (1.5 and (2.2). The model we are considering is depicted in figure (2.1), where a

trusted server receives data from individual users and then publishes a univariate aggregate

time-series. Theoretically, for some algorithms, this could also be done without a trusted

server [11].

Fig. 2.1: Publishing aggregated time-series.

In the initial definition, introduced by

Dwork et al. in [12], they consider

a trusted server that holds a database

of sensitive information. This server

allows for a query function f to be

used to extract information, perturbed

in order to establishing differential pri-

vacy. The definition of differential pri-

vacy given below is a reformulation of

the original definition given by Dwork et

al.

(Differential privacy). Given two datasets D1,D2 ∈ D differing in at most one record and a

query function f : D → R. Algorithm f satisfies ε-differential privacy if for any y ∈ R it

holds that:

P[ f (D1) = y]≤ eεP[ f (D2) = y]
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The implication is that if adversaries wants to find if the data from a data subject is

contained in a dataset or not, they can at best only reach a guarantee described by eε . This

definition will allow for data subjects to share their data for analytics, without being afraid of

revealing any personal information. This ε is usually defined as the privacy budget, used as a

measure of the upper limit for allowed queries posed on the database. Queries are questions

posed to and answered by the database.

In this thesis the interest lies in publishing univariate time-series data. What this boils

down to, with regards to differential privacy, is to pose the same query at multiple times

to a database and then publish the results. Fulfilling the goal of publishing each individual

time-series as accurately as possible, as described in section (1.1.2) is not possible, because

differential privacy deals with aggregate data from a group rather than individuals. However,

it can be used together with k-anonymity for publishing different types of anonymous data

from a database. Where differential privacy could be used on anonymizing the aggregate data

and k-anonymity used in order to keep utility from individual time-series. For that reason

follows a common methodology used to reach differential privacy.

2.3.1 Reaching differential privacy

One of the most common methods to reach differential privacy is through the Laplace

mechanism [12], which adds noise in the form of a zero mean Laplace distribution to the

answer from a real or vector valued query. The magnitude of the Laplace noise added

depends on ε and the sensitivity S of a query function f . A query function is a wide range of

functions. One commonly used query is the counting query:

f (E) = |E|, E ∈ D (2.1)

Where E is an event, and |E| describes the number of occurrences of this event in the

database D. The sensitivity can then be defined as:

S( f ) = max
D1D2

| f (D1)− f (D2)| (2.2)

Where D1 and D2 are two adjacent databases. The sensitivity would vary depending on

what kind of query is posed. For a counting query it would be 1, since that is the maximum

counting difference between two adjacent databases, while the sensitivity would differ for

other statistical queries such as mean, variance or median.
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The Laplace mechanism outputs F; the summation of the answer to the original query

and the added Laplace noise in the form

F(D) = f (D)+L(λ )

where L(λ ) is a random variable drawn from the Laplace probability distribution

Lap(x) =
1

2λ
exp(−|x|

λ
)

It is shown by Dwork et al. [6] that adding Laplace noise with magnitude S( f )/ε to the

answer of a query guarantees ε-differential privacy. Note that a smaller ε , i.e better privacy,

leads to a larger Laplace noise.

Repeated queries on a database will lead to an accumulated privacy loss, according to

the composition theorem [6]. If each query offers εi-differential privacy we get the total

ε-differential privacy loss as:

ε =
n

∑
i=1

εi (2.3)

where n is the number of queries. This is one of the fundamental problems when it comes

to offering a differential privacy guarantee to aggregated time-series. A typical characteristic

of time-series is that it is correlated between time-steps; knowing that 400 people in the

database had diabetes yesterday gives information about how many people have diabetes

today. Therefore, using the average from repeated queries yields more details about the true

value, and soon the privacy budget could be satiated.

2.3.2 Event- and user-level privacy

When it comes to privacy regarding time-series, there are two fundamental notions: event-

level and user-level privacy [13]. Event-level privacy aims at hiding the presence or absence

of one event. In regards to collecting data regarding blood glucose, this could for instance be

an individual reporting whether or not they have diabetes, a disclosure typically only needed

to be given once.

In [13], Dwork et al. introduced the web counter problem which described the problem of

publishing the number of events that has happened so far, while obscuring at each time-step

whether or not an event occurred. This is a useful problem statement regarding the problem
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of tracking the number of users with diabetes, while concealing the response of a single user.

Dwork et al. continues to present an algorithm which yields a solution to this problem which

enjoys ε-differential privacy [13]. This algorithm could be useful to implement in order

to, for instance, to track the number of people with diabetes that are using the smart-watch

mentioned in section (1.1.2). By repeated queries, the exact number of people with diabetes

could be found, but the issue lies, from a privacy point of view, in knowing when someone

submitted their answer.

User-level privacy aims at hiding the presence or absence of a user in a database. This is a

generalization of event-level privacy, expanded to all the events provided by a user throughout

the time-series. In this scenario a user is expected to continuously share information with the

database. If the time-series has time-lag dependent correlations it will also be affected by the

composition theorem (2.3).

An algorithm that adaptively chooses the frequency of queries posed to a dataset in

real-time, is proposed by Fan and Xiong [11]. This algorithm aims at maximizing the privacy

budget by performing less queries when the time-series is static. They add noise by using

the Laplace Mechanism, and then use a Kalman filter and a PID controller to dynamically

alter the query frequency. In this way they can fill the privacy budget ε in a way that yields

higher utility. In this model they require prior knowledge of the length of the time-series.

This methodology could be used well to track the activity level among the smart-watch users.

Less activity during the night would yield a more static data, resulting in a lower sampling

rate.

Cao and Yoshikawa introduced a measure called l-trajectory privacy, in order to deal with

the problem of privatizing infinite trajectory streams [14]. A 3-trajectory could for instance

be Home → gym → work. By ensuring l-trajectory by differential privacy, an adversary with

prior knowledge of an individual’s location cannot infer any of the other locations they have

been situated. Cao and Yoshikawa aims in their model to continuously publish the number of

people in each location at every time-stamp.

The data in figure (1.5) could be transformed to instead be represented by trajectories.

Where every users state moves from either being asleep or awake along with possibly more

states if more inferences are made possible, see figure (2.2).
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Fig. 2.2: Blood glucose transformed to repre-

sent inferences.

By using the methodology by Cao

and Yoshikawa, it would then be pos-

sible to publish the count of users be-

ing in different states. This could

be interesting in order to see the gen-

eral activity patters of the users in real-

time.

When dealing with historical data, there is more room to work with the data holistically.

One approach proposed by Rastogi and Nath [15] is to transform a time-series of length n
by Fourier transform and saving only the k most prominent Fourier coefficients which can

approximately reconstruct answers to n queries posed on the time-series. These k-coefficients

are then perturbed in order to establish differential privacy, which allows for a smaller amount

of noise than if all n data points were perturbed.

Fan and Xiong; and Cao and Yoshikawa considered algorithms collecting data in real-

time which can be interesting in many scenarios[14][11]. Consider, for instance, real-time

collection of location data from vehicles, in order to monitor the traffic situation or the

collection of health data for early prevention of an epidemic. In the case of the glucose data

considered in this thesis, the applicability of real-time collection is less prominent. Therefore,

the approach by Rastogi and Nath on historical data is more applicable, in which they have

the possibility of lower the noise by using Fourier transforms.

An introduction to the anonymization measures k-anonymity and differential privacy has

now been given. However, there are scenarios where anonymization can be very difficult,

and not even necessary. In the next section a short introduction to the protection of sensitive

information which offers a good privacy alternative to anonymization methods.

2.3.3 Protection of sensitive information

In this section the focus is shifted from anonymity to removal of sensitive information.

Here the goal is no longer to keep an individual anonymous, but rather to guarantee that

nothing harmful can be deducted from their data. Often times, this could be sufficient privacy

guarantee for a data provider.

Sensitive information comes in any shape and form, depending on what kind of data

we are dealing with. There might be a scenario where the speed of drivers are tracked.
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These drivers might not want to reveal situations where they are over-speeding, but have no

problems revealing general driving patterns. In that case one could, by adding noise, create a

reasonable deniability on whether over-speeding occurred or not. In a study by Papademitriou

et al. [16] they added noise to the entire time-series through wavelet transforms, which was

shown to be strong against attacks from adversaries with auxiliary information about the true

value at certain time-points or the underlying structure of the time-series.

This approach has is simple and can easily be implemented on univariate blood glucose

time-series considered in this thesis. It could for instance be used for hiding the exact moment

waking up, insulin injection, time of eating, etc. However, it loses a lot of information in the

process of adding noise to the entire dataset.

Given a good understanding of the data it is possible to transform certain parts of the

data that contains sensitive information. In two similar studies by Malekzadeh et al. [17] and

Saleheen et al. [18] they considered multidimensional data where sensitive information such

as smoking could be deduced. Where other approaches often use randomization, filtering or

mapping [17], they implement a replacement method which transforms time sequences of

sensitive data to non-sensitive data. This approach is superior at retaining desired data and

protecting against inferences of sensitive data.

The replacement approach is however quite difficult to implement, due to the non-trivial

problem of finding sensitive inferences in blood glucose data. Neither of the approaches give

a guarantee that they have actually been able to remove all the sensitive data contained in the

dataset. However, if a better understanding of blood glucose data is found in the future, then

this method could become very valuable.



Chapter 3

Implementing (k,P)-anonymity for
time-series

This chapter will describe the steps necessary for the implementation of the (k,P)- anonymity

based algorithm PC-KAPRA (Pattern clustering - k and P-reinforcing anonymization). PC-

KAPRA is identical to KAPRA in all aspects except the pattern formation, in which it offers

a novel approach in applying a k-means inspired clustering method in order to satisfy the

P-requirement introduced in section (2.2.2).

The motivation behind developing the alternative method of PC-KAPRA came from

noticing the large pattern loss occurring in the KAPRA algorithm due to its requirement

of identical pattern representation which will be explained closer in section (3.2). The

first step in loosening up this requirement, was to move from identical patterns to similar

patterns. Therefore, the approach in PC-KAPRA is to cluster similar patterns together

and then fulfilling the P-requirement by changing their pattern representation to that of the

average of the cluster.

3.1 Clustering

In this section a presentation of the three major steps of the clustering process will be given.

These include, representation, distance metric and algorithm. The aim of the clustering is to

create groups with similar patterns, in order to satisfy the P-requirement.
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3.1.1 Data representation

Data representation is the first step of a clustering algorithm. Depending on the raw data and

the desired output, there is a variety of possibilities of how the data can be represented [8]. In

both KAPRA and PC-KAPRA the value attributes is represented as raw data, and the patterns

using SAX( Symbolic aggregate approximation). The rest of this section will describe how

to transform the data to a SAX-representation, in which the first step is transforming the raw

data into a PAA (Piecewise aggregate approximation) representation.

The basic idea of PAA is to reduce the dimensionality of the time-series by splitting them

into equal sized segments and replacing the values in each segment with their combined

average value [19]. Assuming we have the time-series Y = Y1,Y2, · · · ,Yn and we want to

reduce it to the PAA-representation X = X1,X2, · · · ,Xm where m < n, the algorithm can be

summarized by the following formula:

Xi =
m
n
·

(n/m)i

∑
j=(n/m)(i−1)+1

Yj

Where m is the number of segments and will from here on be referred to as the PAA-size.

The PAA-representation X is then z-normalized before using SAX to transform the data

into a symbolic sequence. The transformation is done by splitting the value axis in seg-

ments, each with an asserted symbol assigned to the Xi values within this segment. Each

symbol should be equiprobable, which is easy to construct since z-normalized time-series

are Gaussian distributed [20]. The quantiles βi, which are the points which divides the

Gaussian distribution into equiprobable parts, can easily be found once you have decided on

the SAX-level, i.e. the number of symbols used for the SAX-representation. This is done by

using the Probit function, which is the inverse of the cumulative distribution function for a

normal distribution N (0,1), see figure (3.1)

The probit function does not have a closed form, but a numeric approximation can be

found using ppf (Percent point function, which is another name for the probit function) from

the scipy.stats.norm package in python. The quantiles are then found in the following way:

βi = pp f (
i

SAX-level
) (3.1)

where i∈ [1, · · · ,(SAX − level)−1]. A SAX-alphabet of size 10 is reached by dividing the

x-axis in 10 equal sized intervals, i.e computing quantiles β1, · · · ,β9. The SAX-representation
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Fig. 3.1: Probit function 1

used in this thesis will use the Latin alphabet, starting from the letter a and continuing until

the predetermined SAX-level.

The SAX-representation creates patterns which are easily tunable. For instance, if the

data is collected daily over the time span of a year, we could tune PAA to represent the daily,

weekly or monthly patterns. Similarly, we can tune the SAX granularity depending on the

variability of the data.

When the data representation has been chosen, the next step is to define a distance metric

in the space created by these representations. In this thesis, each data representation has its

own distance metric.

3.1.2 Distance metric

To do any clustering, one first needs to define a meaningful distance metric. The distance

metric used for patterns is MINDIST [21]. It is a metric used specifically for SAX represented

data, and is defined as follows.

MINDIST (SAX(s(i)),SAX(s( j))) =

√
n

PAAsize

√√√√PAAsize

∑
k=1

dist(SAX(s(i)k ),SAX(s( j)
k )) (3.2)

where n is the original length of the time-series s(i) and s( j), and the dist function

implemented using a look-up table where each cell is defined as
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cell(r,c) =

⎧⎨
⎩0 if |r− c| ≤ 1

βmax(r,c)−1 −βmin(r,c) otherwise
(3.3)

where β are the quantiles, r are rows, c are columns, and the size of the table depends on

the alphabet size. A table of alphabet cardinality 4 would have the following look.

Fig. 3.2: Look-up table used in the MINDIST function for a SAX-level 4 representation.

Here the alphabet cardinality is 4, and the distances are computed using equation (3.3).

Other distance measures could be used, yielding similar results. The importance lies in

having a distance measure that makes sense when it comes to similar patterns yielding a small

functional value and dissimilar yielding a large value. The MINDIST is however relatively

quick, because using the look-up table has only the time complexity of O(1), yielding the

final complexity of O(PAA-size).

In order to form k-groups the Instant Value Loss (IVL) proposed by Shou et al [2] will be

used, which is defined as:

IV L(E) =

√
n

∑
i=1

(r+i − r−i )2/n (3.4)

Where E is an envelope, n is the length of the envelope, and r+i and r−i is the largest and

smallest values respectively at each time step i within the envelope. This distance measure

makes sense, considering the ultimate objective of creating small envelopes that still fulfill

the (k,P)-requirement.

Both the MINDIST and IVL distance measures are later used for the evaluation of the

information loss regarding the patterns and attribute values. Now that distance measures are
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defined, it is possible to look at at a clustering method which can achieve this.

3.1.3 Clustering algorithm

In creating a clustering algorithm fitting for the task of partitioning the SAX represented

pattern data into clusters of size larger or equal to P, it was suitable to use a version of

the k-means clustering algorithm [22]. Observe that k here is referring to the number of

clusters, and not the requirement of indistinguishable time-series, as in k-anonymity. The

clustering algorithm is ran in a PAA-size-dimensional space, where each SAX-representation

of the time-series, can be seen as a data point in this space. The distance metric used is the

MINDIST function.

The clustering k-means clustering algorithm is a partitioning based algorithm, and consist

of three phases: Initialization, Assignment and Update. In the initialization phase, k cluster

centers, i.e. centroids, are placed at random. Every SAX-representation of time-series, i.e

data point is then assigned to the closest centroid in the Assignment phase. When all data

points have been assigned a centroid, the centroid position gets updated in the Update phase

to the average of all data points within its cluster. The location change of the centroids could

lead to some data points now being closer to another centroids. These points would like

to change clusters. Therefore, the two last steps, Assignment and Update, is repeated until

convergence. A two-dimensional version of this can be seen in figure (3.3). In this case, only

two assignment steps are needed for convergence, since no elements changed clustering in

the second assignment step.

A problem with the k-means clustering method is knowing how many initial centroids to

create. In the variation of k-means implemented in the PC-KAPRA algorithm, the number of

clusters are allowed to change dynamically by removing all empty clusters, like the removal

of the green centroid in figure (3.3). This allows for more flexibility when choosing the

initial number of centroids, since a high number of centroids would also cause more of them

to be removed. This cluster removal step is, for the best of my knowledge, novel to this thesis.

The average value, i.e. SAX-representation, within each group is computed by doing a 1

to 1 mapping from the symbolic representation to a set of consecutive integers of the same

length as the SAX-level, computing the average, rounding to the closest integer and then

inverse transforming it back to the SAX-representation. For instance, the SAX-representations

ACAD and DADA would be transformed to 1−3−1−4 and 4−1−4−1 respectively. The
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Fig. 3.3: Example of the kmeans clustering algorithm in two dimensions, step-wise

moving from top-left corner, and ending with convergence in the bottom-right.

average between them would be computed to be 3−2−3−3, which would make CBCC the

"average" SAX-representation.

This pattern clustering step is the main difference between the method PC-KAPRA and

KAPRA, where it was a requirement of equality between SAX-representation. Exactly how

KAPRA requires equality, is explained in the next section.
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3.2 KAPRA: P-groups formation

The KAPRA algorithm is in most part identical to the PC-KAPRA algorithm, but differs

in how the pattern groups, i.e. P-groups, are formed. The schematics of the algorithm is

shown in figure (3.4). The algorithm starts by creating a SAX-representation with SAX-level

= 1, and puts all data within the same group. The SAX-level is then increased, and new

groups are formed based on having identical pattern representation and SAX-level. This

is done repeatedly for each group until the group size is smaller than 2 ∗P or until some

predetermined max SAX-level has been reached. That level will be referred to as max-level.

Once the splitting is finished, the result is a number of good-leaves and bad-leaves,

representing groups succeeding and failing the P-requirement. In order to avoid suppression

of the bad-leaves, they are put through a recycling process. This process goes through

the list of bad-nodes and tries to merge at least P of them together in order to fulfill the

P-requirement. For two bad-nodes to be merged they must fulfill the requirement of identical

SAX-representation and SAX-level. The process start from the predetermined max-level and

moves down to SAX-level = 1, where all time-series have identical SAX-representation. This

ensures that a maximum P−1 time-series will be suppressed.

Fig. 3.4: P-groups formation

The problem that occurs in the P-groups formation in the KAPRA algorithm, is that a

relatively long SAX-sequence will lead to the creation of many bad-nodes. Furthermore,

many of the bad-nodes will be given a SAX-level = 1, due to large number of possible

SAX-representation, and the difficulty in finding equality between them. In the next chapter,

both the KAPRA and PC-KAPRA algorithm will be used to anonymize on various datasets.

It will in the next chapter be shown that much more information can be retained by using the

PC-KAPRA method for P-groups formation.
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3.3 Algorithmic implementation

Fig. 3.5: Schematic of the PC-KAPRA algo-

rithms and the three phases: Pattern clustering,

Deconstruction and Group formation. The col-

ors represent unique patterns.

In this section, each step of the PC-KAPRA
algorithm will be explained. Keep in

mind that most of these steps are iden-

tical in the KAPRA algorithm, except

for the pattern clustering phase. As il-

lustrated in figure (3.5), the algorithm

is divided into three phases. First, the

data is divided into groups with sim-

ilar patterns in the Pattern clustering
phase. These patterns are then bro-

ken into smaller P-groups of size be-

tween [P,2P] in the Deconstruction phase,

and then finally, in the Group forma-
tion phase, pieced together into k-groups
of size larger or equal to k, which can

contain various pattern groups, or just

one, depending on the size of k and

P.

The Pattern clustering phase starts with

some preprocessing, in which the attribute

values will be represented as raw data, and

patterns as SAX-representations with a pre-

determined SAX-level, as explained in the

previous section. Clusters are then formed

using the k-means clustering method. Some of these clusters might have less than P time-

series inside them. The time-series within those clusters will then be moved to the closest

cluster which fulfills the P-requirement. Once every time-series belongs to a cluster which

fulfills the P-requirement, their SAX-representation will be changed to that of the cluster

center. The complexity of the k-means algorithm is O(k ∗n∗ t), where k is the number of

clusters, n is the number of data points and t is the number of iterations. The number of

iterations until convergence is quite low.

After the Pattern clustering phase, there could be very large groups with identical SAX-

representation. The goal of the Deconstruction phase is to partition these groups into smaller
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P-groups with size [P,2P]. The partitioning method used is called top down greedy search
[23]. The top down greedy search creates a binary partitioning aimed at minimizing IVL. The

heuristics of the method is to create a seed in each subgroup by taking the two time-series

that differs the most with regards to the IVL. The rest of of the time-series are than paired

with the seed which minimizes IVL. This partitioning is done recursively until the size

of the groups are smaller than 2P, resulting in the formation of what is referred to as P-
groups. The complexity of this algorithms is O(n2), with n referring to number of data points.

The algorithm then forms the k-groups in the Group formation phase. This is done by

merging the P-groups into k-groups by a greedy method aimed at minimizing the distance,

defined by IVL. The method used in this thesis is called "Algorithm 3: Group formation"

as described by Shou et al. [2]. The heuristic of this algorithm is to take the P-group
with the smallest IVL and then merge it with another P-group such that their distance is

minimized. This merging process continues until the size of the new group is larger or equal

to k, in which the new group is moved from P-groups to k-groups. This merging process

is then repeated until the size of P-groups is smaller than k. The groups left over in the

end is added to k-group such that the IVL is minimized. This phase has the complexity O(n2).

3.4 Evaluation

In the evaluation of PC-KAPRA and KAPRA the IVL is used to compute the information

loss of the attribute values. This is done by computing IVL for each k-group Gi, and then

normalizing by the number of groups m.

T IV L =
1

m

m

∑
i=1

IV L(Gi) (3.5)

The total pattern loss is computed by comparing the original SAX-representation with the

one obtained after the PC-KAPRA or KAPRA algorithms. This is done by transforming the

symbolic sequence back to the real values, using the following transformation

T (S) = pp f
( (2 f (S)−1)

2(SAX-level)

)
(3.6)

Where S is a symbol from a SAX-sequence, and f (S) : A → [1, · · · ,SAX − level] with

a → 1,b → 2, etc. This transformation returns the point in the middle of each interval used
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in the original SAX-transformation described in section 3.1.1.

In order to compute the total pattern loss the following equation is used

T PL =
n

PAA-size

n

∑
i=1

PAA-size

∑
j=1

(T (SAX (i)
new( j))−T (SAX (i)

org( j))2 (3.7)

Where SAX (i)
org( j) and SAX (i)

new( j) is jth symbol of the ith original and transformed SAX-

sequence, n is the number of time-series in the database.

This distance measure is similar to that of MINDIST, but allows the symbolic sequences

SAXnew and SAXorg to have a different SAX-level. This is necessary when computing the

distance loss in the KAPRA algorithm, where SAXorg and SAXnew most likely will differ. In

KAPRA, SAXorg is the SAX-representation using the predetermined max-level.
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Results

The results from using KAPRA and PC-KAPRA on two different time-series will be pre-

sented and discussed in this chapter. The first dataset will be used in order to evaluate the

performance of PC-KAPRA, with KAPRA as a benchmark. Then, in order to get a more

qualitative insight into how the published (k,P)-anonymized data may look like, an example

implemented using PC-KAPRA will be presented on the first and second dataset. Both

PC-KAPRA and KAPRA were implemented in Python.

The datasets used in this thesis is taken from the UCR Time-series classification archive1.

The methods KAPRA and PC-KAPRA were used on many datasets from this archive, giving

similar results with regards to how TIVL and TPL with regards to changing k, P and PAA-size.

Therefore, only the results attained from the ECGFiveDays test dataset will be presented.

This dataset contains the ECG data from a 67 old male, measured 5 days apart. It contains 861

time-series, each representing one heartbeat. The length of the time-series are 136 and the

value range is between -6 and 7.2. ECG data is quite interesting since it shows medical data,

and could for that reason be deemed similar to the glucose data considered in the problem

description provided in section (1.1.2).

In the problem description the hypothetical dataset considered is containing univariate

time-series from various unique individual users. In this results section, this is not the case

because of lack of access to such data. That is however not necessarily an issue with regards

to showcasing the result from the anonymization methods. Both KAPRA and PC-KAPRA

will work similarly on the ECG dataset presented here as data consisting of time-series from

multiple users.

1https://www.cs.ucr.edu/ eamonn/timeseriesdata2018
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The limitations of the specific dataset, ECGFiveDays, is the fact that most of the heart-

beats look very similar throughout the database, the characteristic of which is shown in figure

(4.2). This exact characteristic is not expected to be found in a time-series database consisting

of glucose data, where there probably is a larger variability between the time-series, i.e. the

difference between the time-series data in the set. PC-KAPRA and KAPRA were however

also used on other datasets from the UCR Time-series classification archive containing

univariate time-series. These datasets were used to test the algorithms on data with different

lengths, variability between the time-series and value ranges. In the end, the results were

for all datasets practically identical with regards to dependency on k, P and PAA-size and

difference between PC-KAPRA and KAPRA, as to the ones presented in (4.1)

In figure (4.1), a comparison is made between the KAPRA and PC-KAPRA algorithm

with regards to TPL and TIVL, for different values of k, P and PAA-size, which otherwise

would be kept at k = 10, P = 5 and PAA-size = 10. The pattern loss is done by computing

the MINDIST between SAXorg and SAXnew which is here chosen to be a SAX-representation

with SAX-level = 10 and the SAX-representation after anonymization, respectively.

The parameters k,P and PAA-size are typically chosen after some predetermined privacy

requirement and PAA-size would depend on the required granularity in the data. In this thesis,

the specific values were chosen mainly similar to the ones in the experimental setup used

in the study by Shou et al [2]. Other value combinations were also tried, and they gave

a similar result regarding the dependency of TIVL and TPL with regards to k, P and PAA-size.

The worst case breach probability is Pbreach = 1/P, see section (2.2.2). A larger k would

not help towards the diminishing this worst case scenario with regards to finding a link

between between auxiliary data and which k-group envelope with would belong to. However,

it would make each time-series indistinguishable from k−1 other time-series, with regards

to attribute information.

Since the breach probability Pbreach is only decided from the formation of (k,P)-groups,

there should not be a difference in this respect between PC-KARPA and KAPRA. How-

ever, the PC-KAPRA algorithms creates uncertainty with regards to the true value of the

pattern representation, while KAPRA publishes the exact representation together with the

corresponding SAX-level. Because of this, it is possible to find a 1-to-1 correspondence

between published time-series and auxiliary data. In PC-KAPRA the pattern representation

is perturbed and represented by centroid of the cluster, which makes it very unlikely to find a
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(a) Varying k. (b) varying P.

(c) varying PAA-size.

Fig. 4.1: Instant value loss and pattern loss after using KAPRA and PC-KAPRA on ECG

data. The variables are kept as k = 10, P = 5 and PAA-size = 10 when not varied.

1-to-1 correspondence.

When k is allowed to vary, as in figure (4.1a), it can be seen that the pattern loss is

constant in the KAPRA algorithm, which is expected since the size of k does not affect

the P-group formation step. In PC-KAPRA there are small variations, which due to the

stochasticity of the k-means clustering algorithm. The TIVL has a similar linear increase for

both algorithms, which can similarly be seen when P is allowed to vary. This indicates that P
and k should be kept as small as possible to optimize for information loss, while still be large

enough for the desired privacy requirements.

When the PAA-size is small, the pattern loss for both methods are quite similar. It is

expected that KAPRA will perform alright in this case, because there are less unique SAX-
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representations in the database, allowing for more identical patterns to be grouped together.

All together, there is clearly a diminished total pattern loss in PC-KAPRA, while the

TIVL is roughly identical in both of the methods. This allows for more freedom when using

PC-KAPRA when it comes to choosing the size of both PAA-size and SAX-level, while still

publishing a more accurate pattern representation.

In figure (4.2) a qualitative look at the published data from the PC-KAPRA algorithm is

provided. To get a broad view of the results, the published data from four different k-groups
corresponding to the largest and smallest pattern and attribute value loss are shown. These

k-groups are found by computing the pattern loss and IVL for each group, after running the

algorithm on the ECGFiveDays and the ArticularyWorkRecognitionDimension1 test dataset 2.

The ArticularyWorkRecognitionDimension1 is also from the UCR Time-series classification
archive and measures the movement of the lips when different words are articulated. In this

case, it was chosen to illustrate the results of the PC-KAPRA algorithm used on a database

with a higher variance between the time-series than ECGFiveDays.

Due to the stochastic behaviour of the k-means algorithm, the k-groups will look dif-

ferent for every run. In this run the following values are used: k = 10, P = 3, PAA-size

= 5, SAX-level = 26. These values were chosen because it gave a good illustration of the

results. The interval between the two line segments is the envelope, in which all time-series

are contained and they are represented by the SAX-representations given in the top-right

corner. In this figure, the exact time-series are plotted out to give an indication of how the

time-series might be grouped together, this will normally not be the case when publishing

the data. Furthermore, the envelope corresponds exactly with the largest and smallest values

respectively in the k-groups. This will of course carry a certain privacy risk. If for instance

the entire top-side of the envelope is represented by a single time-series, then that time-series

would be fully disclosed. This scenario can be avoided by adding noise to the envelope or

by choosing the envelope in some other fashion. How to do this in a good way for retaining

attribute information has not been investigated in this thesis.

It his hard to judge qualitatively how useful the published data is in figures (4.2) and

(4.3). Even though the envelope for the published ECG data is small, the variance between

the time-series was initially quite small as well. The usefulness of the data is hard to discuss,

because it is too dependent on the case. However, in all the k-groups illustrated in the figures,

2http://www.timeseriesclassification.com/description.php?Dataset=ArticularyWordRecognition
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Fig. 4.2: Sample of published data from PC-KAPRA on the ECGFiveDays dataset, with

the smallest and largest information loss with regards to pattern and value loss. Here we

have use k = 10, P = 3 and PAA-size = 5.

there is a clear grouping of similar values, which goes well with the goal of publishing single

univariate time-series as close to their original value as possible.

In figure (4.2), there seems to be a small time shift between the P-groups in the plot

corresponding to largest attribute value loss. A temporal shift might in many cases not

really be seen as a difference between time-series, but they will nevertheless contribute to a

large instant value loss. This is a limitation of the PC-KAPRA algorithm as implemented in

the thesis. In order to currently avoid this, a preprocessing step could be used to align the

time-series in time.

One limitation of the PC-KAPRA algorithm, is with the regards to what types of time-

series which might be deemed similar to each other. The similarity between time-series can

be based on different requirements. For instance, considering blood glucose data, a similarity



39

Fig. 4.3: Sample of published data from PC-KAPRA on the ArticularyWorkRecogni-
tionDimension1 dataset, with the smallest and largest information loss with regards to

pattern and value loss. Here we have use k = 10, P = 3 and PAA-size = 5.

between two time-series could be defined by having similar glucose fluctuations after waking

up, in this case some other distance metric and possibly data representation has be used.

Another limitation comes with regards to complexity. The bottleneck in PC-KAPRA

is in the top-down partitioning algorithm and k-groups formation phases with complexity

O(n2). If the dataset becomes too large, this could become an issue. A future direction for

improvement could be to finding a quicker method for partitioning and forming the k-groups.

Beyond the methods implemented in this thesis, i.e KAPRA and PC-KAPRA, a look

was put into using the algorithm CAT, mentioned in section (2.2.1). However, PC-KAPRA

can be seen as a mixture between KAPRA and CAT, since it implements both a clustering

methodology and the (k,P)-anonymity measure. Since there was a desire to establish (k,P)-
anonymity, CAT was never implemented in this thesis. It could however be interesting to
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see how it compares with to PC-KAPRA with regards to TIVL. It also has its merits when it

comes to anonymizing time-series when patterns are not of interest.



Chapter 5

Discussion and Conclusion

In this chapter, a holistic discussion regarding the thesis will be given. The applicability of the

methods introduced in this thesis on the problem description given in section (1.1.2) will be

discussed, where the scenario of a database generated by a glucose monitoring smart-watch

was considered along with the main problem of anonymizing univariate time-series of glucose

data. Future research directions will also be discussed, with focus on the implementation of

the (k,P)-anonymity measure.

5.1 Differential privacy and Sensitive data

It is important to investigate a wide scope of state-of-the-art research to get a good overview

of the possible directions that can be taken towards reaching privacy. The importance of

this is even more enforced by the fact that univariate time-series can look quite different

from each other. In this thesis the main focus has been on time-series from individual users,

where (k,P)-anonymity was considered the strongest approach with regards to publishing

data with minimum information loss. However, there was also an investigation into aggregate

time-series data, where the strong guarantee of differential privacy could be achieved. Fur-

thermore, methodologies of how sensitive information could be removed, was investigated.

Taking the scenario with a glucose monitoring smart-watch, it seems reasonable to con-

tinuously track the aggregate data considering users with diabetes. In this case a user is

expected to only be queried once, and can therefore be protected under event-level differential

privacy which is aimed at hiding the occurrence of a single event. If aggregate trajectory data

is collected, then user-level differential is necessary, because a user is expected to answer



42 Discussion and Conclusion

multiple queries regarding their location.

Differential privacy can seems like quite a bit too drastic of a step for implementing

privacy, considering the large information loss. However, in some scenarios, for instance

with tracking the number of users with diabetes, the exact number is not that important. In

those cases, it is good to establish a strong security for the privacy of the data provider and

convenience of the data surveyor. Other types of relevant aggregate time-series data that

could be gather include: The number of users, number of sold devices, user information such

as age and gender, etc.

When it comes to hiding sensitive information, there are two ideas considered in this

thesis. First, a simpler idea which focuses on adding noise to the entire time-series to generate

a certain degree of uncertainty, or reasonable deniability. The problem with this approach is

that a lot of information is lost when applying noise on all data points. The second approach

replaces sections of the time-series which contains sensitive information. This approach has

a lot of potential with regards to retaining information, but also requires a deep understanding

of all the inferences that can be found in the dataset.

5.2 (k,P)-anonymity

Publishing data under (k,P)-anonymity while still retaining a good amount of information

was possible using the PC-KAPRA method. The method is based on the idea of clustering

similar time-series together, and then transforming the data so that they are all presented

identically. In this regard, a version similar to the raw data is anonymously published. This

method could be used not only to retain aggregate information, but also more qualitative

parts of the data.

The measure of (k,P)-anonymity could be used as a basis to create different methods

towards the anonymization of time-series data. In this thesis, the k-means clustering method

was used to enhance the KAPRA algorithm, with regards to diminishing pattern loss. This

clustering method is quite generic and easy to understand, and has a simple implementation

which proved sufficient to give a substantial improvement with regards to preservation of

pattern information. If more was knows about the database, then a more intelligent way

of distributing initial clusters could be implemented, which could substantially help with

reducing pattern loss.
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For future work, it is completely essential that PC-KAPRA gets tested on actual glucose

data, and gets evaluated in its usefulness. The pattern loss and instant value loss measures

used in this thesis is mainly used to compare PC-KAPRA with the benchmark KAPRA, and

does not offer any real information regarding how useful the published data is with regards

to analysis. When this is done, potentially more suiting ways of representing the patterns and

attribute values can be investigated.
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