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Abstract

With the transition of responsibilities from the driver to the automated driving sys-
tems in vehicles, the systems need to have been tested for an extensive list of test
scenarios as the passengers require high trustworthiness. The friction coefficient for
the tyre-road friction is of high importance for the control of the vehicle but the co-
efficient is dependent on the physical complexity and nonlinear behaviour of tyres
and is difficult to measure. Hence, testing is performed in controlled environments
which limits the systems exposure to different testing scenarios.

The purpose of this thesis and the underlying work was to develop and evaluate
a process for friction estimation using machine learning. The aim was to produce
an estimation method using neural networks that are trained on data from a vehicle
model implemented in a simulated environment using Unity 3D, which is a software
platform for simulation and game development. The master thesis was produced at
Combine Control Systems AB for Lund University in cooperation with National
Electric Vehicle Sweden AB (NEVS).

Keywords: Friction estimation, vehicle dynamics, vehicle simulation, artificial
neural networks
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1
Introduction

Active safety systems and advanced driver-assistance systems are becoming more
prevalent in vehicles, and responsibilities are transferred from the driver to the
control systems. With an increasing presence of algorithms, the importance of
reliability in the underlying variables is increasing. To achieve trustworthy perfor-
mance several issues need to be addressed including complexity, robustness, and
uncertainty [1].

The introductory chapter will present background information to friction esti-
mation, why it is important, and the impact that the driver’s and vehicle’s knowledge
of external and internal factors have on the friction estimation problem. Difficul-
ties related to the development and testing process are described, and background
on the applicability of simulation and neural networks is given. Furthermore, the
approach and purpose of this thesis is described, followed by the delimitations and
the methodology.

1.1 Background

Problem formulation
Friction estimation As the contact patches of the vehicle’s tyres are the only
connections between the vehicle and the road, the interaction occurring at those
points are of high importance to control the motion and stability of the vehicle
[2]. Notably, tyre-road friction estimation has been found to be one of the most
important factors in avoiding car crashes and is crucial to the performance of safety
systems [3]. The physical complexity and nonlinear behaviour of the tyres induce
difficulties in defining and measuring the friction coefficient [2; 4], and has moti-
vated a large number of papers and articles to improve friction estimation using a
set of proposed methods.

12



1.1 Background

Identifying the friction coefficient gives information about the maximum fric-
tion force that the tyre can generate on the surface of the road which affects the
control and stability of the vehicle [5]. Several variables have been identified as
having a crucial role in the identification of the friction force, however, some vari-
ables cannot be measured or are estimated due to issues of cost or difficulties in
designing suitable sensors [1].

Driver and weather impact Factors that are indirectly related to the vehicle also
influence the vehicle behaviour and two of the most prominent are the driver and
the weather [3]. An investigation into 6.4 million vehicle crashes found that 24%
of crashes occur in unfavourable weather conditions [6], and weather related issues
have an impact on both crash frequency and severity [3]. It was found that drivers
ignore the lower friction when driving on wet pavement instead of dry, as a statis-
tically significant difference in speed could not be found between these scenarios.
However, drivers did reduce the velocity because of limited sight [7]. Other research
found that the frequency of crashes are substantially increased in snowy conditions
but the severity is reduced as drivers recognise the increased crash risk and reduce
the speed, but not enough for the crash frequency to be equivalent to dry driving
conditions [6]. The increased occurrence of crashes during bad weather conditions
has been linked to the friction effect on the vehicle’s safety and stability systems, as
well as the driver’s assessment of the road condition [3]. The gathered data indicate
that drivers and systems need to improve of their detection and handling in adverse
scenarios.

Development and testing process While drivers are aware of the increased crash
risk in adverse road conditions as well as in weather that is difficult to detect as
having a negative impact on vehicle handling [8; 6], their actions required are not
sufficient to avoid an increased crash risk [9]. Safety systems, however, perform
well in crash avoidance actions, but have issues with identifying and estimating the
required variables, notably the friction coefficient [1]. This suggests a potential loss
of information when the transportation industry is moving towards autonomous ve-
hicles, thus increasing the impact and importance of estimation methods. With the
transformation of a modern vehicle from a sensor platform that passes information
to the driver to take intelligent action, to a fully autonomous platform, manual inter-
vention can no longer be relied upon, further strengthening the case for robustness
[10].

For the case of autonomous vehicles a high level of confidence is even more
important as more problems exist in the testing process. Five major issues have been
identified in research of the expanded testing and validation process for autonomous
vehicles, including driver out of the loop and stochastic systems. Where a vehicle
with a human driver requires the ability to identify a critical malfunction and then
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Chapter 1. Introduction

can expect the driver to take control and solve the issue, an autonomous vehicle is
required to solve both the initial issue and the resulting problem hence increasing
the number of issues that require testing [12].

Systems including non-deterministic algorithms are troublesome in connection
to structured testing processes as the same scenario may produce different results
every time due to the random nature of non-deterministic systems [12].

To achieve a higher confidence in the performance, the vehicle’s stability and
safety systems need to be evaluated for a large number of test scenarios. Comparing
to fatality rates from the United States Department of Transportation (NHTSA),
fatalities per mile travelled in 2017 amount to 1.16 ·10−8 [11]. For the testing of a
complete vehicle system, this amounts to 116 million miles travelled to validate the
failure rate for a single incident on a fatal severity level. It is likely that the tests need
to be longer, and be repeated several times over to attain statistical significance [12].
This can be reduced using accepted testing methods for the whole vehicle systems
and individual sub-systems, but this assumes that the testing methods are highly
representative of the real-world scenarios.

Testing for real-world scenarios has two major issues. In general, gathering data
implies the collection of information from the occurrence of an event meaning that
the event needs to happen. For situations with a low probability, the outcome may
not be analysed as it might not have happened.

Secondly, testing for a large set of scenarios is infeasible as the true values
of the variables need to be known in order to fully evaluate the system. For an
environment where any variable is evaluated against another estimate, the testing is
prone to errors and thus reduces the available testing sites to controlled scenarios
where the friction is known, which limits the robustness of the results [13].

Motivation
Simulation In order to overcome some of the issues related to real-world testing,
simulation has been proposed as a solution. For the first sub-problem, scenarios
with a low probability of occurring can be targeted by having full control of internal
and external factors to ensure that the situation has been evaluated. Furthermore,
dangerous situations can safely be tested in a digital environment as the physical
risk to the driver and other involved actors is removed [13].

For the second problem, using a digitally constructed environment, the estima-
tion of a variable is compared to the true value of the variable in order to perform a
valid verification [13]. In comparison, for real-word testing, when an estimation is
compared to a different method of estimation, the result can achieve high precision
but is not guaranteed to have a high accuracy as the true value is not known.
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1.1 Background

In general, the main advantages of simulation have been described as allowing
controllability, reproducible results, and standardization as the environment can be
manipulated to fit the aim of the research. Full control of the scenarios may be used
to reduce the effect of randomness to produce the same results [13].

Neural networks Due to the complexity of friction estimation, particularly related
to modelling of tyre dynamics, it is desirable to find a method that enables results
on the same level as the tyre model presented in Section 2.4 while avoiding too
intricate modelling. The purpose of the models in the case of friction estimation is
to find a connection between a number of input variables and the resulting friction
coefficient [14].

In the area of artificial neural networks, the "Universal approximation theorem"
states that a multi-layered neural network with one hidden layer can arbitrary well
approximate a continuous function of n variables with certain assumptions on the
contained mathematics. A proof for this can be found using Debao Chen’s theorem
[15]. However, it is preferred to use a larger amount of hidden layers as this will
add more activation functions, thus making the network less linear and reducing the
risk of overfitting.

This motivates the attempt to use neural networks as an effort to move the prob-
lem from identifying a complex physically derived connection between the input
and output variables, to a purely mathematical connection.

Related work
Several publications exist that use different machine learning methods to gather
information about the interaction between the tyre and road.

Nolte et al. use two different deep convolutional neural network models to clas-
sify images from existing data sets of road surfaces, to provide additional informa-
tion to existing friction estimation algorithms [16]. Google search had to be used to
gather enough data for the training, indicating that a method to collect data would
be beneficial to the algorithm. The network does not estimate the friction coeffi-
cient, meaning that it can not replace the network in this thesis, but can act as a
complement to it.

Panahandeh et al. use and compare thee machine learning models to classify
the road surface as slippery or non-slippery based on data from a fleet of connected
vehicles and weather data from a national meteorological institute [17]. The esti-
mation algorithm is evaluated against previously estimated values, implying that a
true comparison is never made. However, as a binary classification is used, the error
from not using true values is reduced.

Ribeiro et al. use a time delay neural network to estimate the friction coefficient
from the estimation of the lateral tyre force and normal force using a Kalman filter
[18]. The neural network is trained using a Matlab model and performs very well
from a theoretical standpoint, but the performance on data from a real vehicle is not
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Chapter 1. Introduction

investigated.

All publications above focus on either simulation or real-world data. The ma-
chine learning models using the simulation approach achieve impressive results, but
are never validated in a real-world scenario. The methods focusing on real-world
data have trouble achieving a high accuracy, or estimates beneficial information to
existing friction estimation algorithms. All alternatives have issues that could be
circumvented using a combined of simulation and real-world testing, which is in-
vestigated in this thesis.

1.2 Purpose

The purpose of the underlying work to this thesis was to develop and investigate
a process to estimate tyre-road friction using an artificial neural network trained
in a simulated environment. The aim of the study was to verify if the artificial
neural network can be used to improve the performance of the vehicle for unknown
tyre-road friction.

The implementation presented in this thesis is only one way to apply the process,
and the chosen technologies were decided based on preferences of involved actors.
Hence, the purpose was not to evaluate the used software but to:

1. Develop a completely digital process for friction estimation

2. Evaluate the performance of the process.

1.3 Methodology

The process that is evaluated in this thesis can be divided into three major parts:
vehicle dynamics, simulation, and the artificial neural networks.

Vehicle dynamics is the basis for friction estimation, and several vehicle- and
tyre models have been developed to represent different physical properties of their
counterpart. The initial work for the study was to decide which types of models that
best fit the purpose and were going to be used. The chosen models were then to be
implemented in the simulation environment and validated against real-world data
logs provided by NEVS to confirm actuality.

A simulation environment was developed using the Unity 3D platform as Unity
was predetermined to be used for building the simulation software. The purpose
of the simulations was to generate data that was used to train, test and partially
evaluate the neural networks. The requirements for the simulation software were
set by the inputs and outputs of the system where the inputs are the parameters and
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1.4 Delimitations

scenarios that require testing, and the outputs are the generated data and results for
evaluation. The inputs are based on requirements from theory of artificial neural
networks and information from NEVS.

In order to determine accuracy and evaluate the networks, different architectures
and designs of neural networks were used to estimate the friction coefficient for the
validation scenarios. Both generated data and logged data were used to evaluate the
networks in order to compare the performance of different setups.

1.4 Delimitations

The focus of the underlying work and thesis was to provide an understanding of and
evaluate a process to estimate tyre-road friction using an artificial neural network.
Certain parts of a complete vehicle system were not implemented in the simulations
as they were deemed either out of scope for the purpose of the study or to have
insignificant impact on the results. It was not the aim to develop a completely opti-
mised ANN nor to implement a perfect digital twin of the vehicle, thus, neglecting
some components were deemed as reasonable. One example would be the effects
of air resistance on the vehicle, which however could be applied in a later effort for
improved results.

1.5 Outline

In Chapter 2 the choice of vehicle model is motivated and the mechanics of the
system is briefly explained. Then, the tyre model is described and equations are
provided with focus on slip, forces, and friction. This gives an overview of the
dynamics that were run in the simulations.

Chapter 3 provides an explanation to Unity 3D, and its role for simulation.
Moreover, the final implemented structure of the vehicle model and tyre model is
presented. Finally, the simulation process from input configuration and test scenar-
ios to logged data is described.

Chapter 4 introduces the method of validation and presents the results from
comparing the implemented simulation model to logged data received from NEVS.

Chapter 5 provides brief theory on neural networks and the requirements it sets
on training. Furthermore, the chapter presents the types, designs, and architectures
of the neural networks that were chosen for the evaluation. Finally, the two different
types of outputs from the neural networks are covered.
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Chapter 1. Introduction

Chapter 6 presents the results from the two approaches for the process evalua-
tion and a sensitivity analysis on the process. Short discussions are held about the
obtained results.

Chapter 7 concludes the underlying work and the thesis with comments about
the results, and the strengths and weaknesses of the process.
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2
Vehicle dynamics

The goal of modelling the kinematics and dynamics of a vehicle is to obtain a
mathematical description of the functionality and characteristics of the vehicle. The
model can then be applied in a variety of areas and used with an array of different
analytical tools. Each area and analytical tool has distinct traits and focus areas,
implying that the area of use decides which model to adopt and its limitations for
the application [19]. Thus, focus should be on the areas of interest that align with
the purpose of the thesis.

For a complete and accurate simulation of a vehicle, the number of parame-
ters and states would be overly extensive and the relationships too complex for a
functional model to be obtained [14]. The validation results of such a model would
most likely prove to have a high accuracy, but have a negative impact on com-
putational requirements and development costs in relation to what is appropriate
for the expected results. Hence, it is beneficial to find a balance between accuracy
and used resources, and a simpler model that still fulfil the requirements is preferred.

2.1 Vehicle model

As the thesis focus on the interaction between the wheel and the road, certain parts
of the vehicle model is of little significance to the results. Thus, components with
less influence on wheel behaviour received less attention and were not modelled,
whereas components with significant impact were modelled based on previous
works in the area of vehicle dynamics [1; 20; 14]. For this reason, the contact be-
tween the vehicle body and the wheels is considered to be stiff, which means that
suspension is disregarded.
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Chapter 2. Vehicle dynamics

2.2 Single-track model

Figure 2.1 The single track vehicle model.

A common and simple option for modelling a vehicle is the linear single track
model, also called the bicycle model. It allows for approximate modelling, but is
based on a collection of simplifications, including [19]:

• The merging of the wheels on each axle translating the contact patches of the
wheels to the longitudinal trajectory line.

• Distribution of forces in the lateral direction is constant.

The model has several simplifications that reduce the controllability of the test-
ing to an extent where it limits the information available from the simulations.

The first point removes the possibility for individual control of all four tyres
[19], therefore limiting the available data from the wheels to what is deemed as a
too imprecise level.

The second point has a definite impact on the friction coefficient. As the de-
nominator of the friction quotient, which is described later, is the normal force, not
including the changes to the normal forces due to the transfer of load in the lat-
eral direction would set a constant friction maximum and limit the available friction
force. In total, the simplifications reduce the level of detail of the model too much
for the purpose of the thesis.

2.3 Two-track model

A model which has more degrees of freedom is the two-track model. The major
difference is the involvement of all four tyres. This allows the incorporation of all
individual tyre forces, hence, increased accuracy in modelling roll dynamics and
the friction coefficient for every wheel [1].
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2.3 Two-track model

Figure 2.2 A two-track vehicle model

Vehicle body model
For the following equations the superscripts indicate the selection, i.e. f for front,
and rl for rear-left, and the subscripts indicate the direction. From Figure 2.2 the
generalised forces can be described from the individual tyre forces:

F f
x = (F f l

x +F f r
x )cos(δ )− (F f l

y +F f r
y )sin(δ ) (2.1)

Fr
x = Frl

x +Frr
x (2.2)

F f
y = (F f l

y +F f r
y )cos(δ )+(F f l

x +F f r
x )sin(δ ) (2.3)

Fr
y = Frl

y +Frr
y (2.4)

which is the summation of all forces for the front and rear axles in the x and y
direction, where δ is the steered wheel angle, as in the difference in angle between
the vehicle’s longitudinal trajectory line and the wheel’s longitudinal trajectory line.
Furthermore, the vehicle torque can be derived:

M = l f ·(sin(δ )(F f l
x +F f r

x )+ cos(δ )(F f l
y +F f r

y ))+

Tw
2 ·(sin(δ )(F f l

y −F f r
y )+ cos(δ )(F f r

x −F f l
x ))+

Tw
2 ·(F

rr
x −Frl

x )−
lr·(Frr

y +Frl
y ) (2.5)
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Chapter 2. Vehicle dynamics

where l f and lr is the distance to the front and rear axle from the centre of gravity
respectively, and Tw is the track width, as in the distance between the contact points
of the wheels in the lateral direction. The translational and angular motion can then
be described by:

Fx = F f
x +Fr

x −Fair
x −mg · sin(Θ)−∑Frr = m(αx− vy ·ωv) (2.6)

Fy = F f
y +Fr

y −Fair
y −mg · sin(ϕ) = m(αy + vx ·ωv) (2.7)

M = Izz ·αv (2.8)

where ax and ay is the acceleration in the longitudinal and lateral direction re-
spectively, αv the angular acceleration for the vehicle, Frr the rolling resistance force
for each wheel, ϕ the road bank angle, Θ the road inclination angle, and ωv the an-
gular velocity around the centre of rotation for the vehicle. Note that for a more
accurate representation the aerodynamic drag force Fair needs to be included, but
has been neglected and is set to zero in this thesis.

Vehicle load transfer
When the wheel is in contact with the road and generates longitudinal and lateral
forces, the normal force that acts on the tyre limits the maximum force that can
be generated [21]. When no acceleration takes place in either direction, the normal
force on each tyre is constant and can be found using simple rigid body mechanics.
However, when the vehicle is in motion the distribution of normal forces changes
[1]. An example is braking, which transfers load to the front wheels of the vehicle
[14]. To be able to capture the full range of the forces, the model needs to incorpo-
rate the dynamics of load transfer.

Longitudinal load transfer

Figure 2.3 Longitudinal load transfer model

In the longitudinal direction, the normal force for the front and rear axle can be
found using the equation of force in the z-direction and equation of torque.
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2.3 Two-track model

Frear
z =

g · (ms +mu) · l f −ms ·ax ·CGH
l f + lr

(2.9)

F f ront
z =

g · (ms +mu) · lr +ms ·ax ·CGH
l f + lr

(2.10)

Lateral load transfer

Figure 2.4 Lateral load transfer model

Using the same equations of force and torque applied in the lateral direction of
the vehicle, the load transfer equations can be formulated as:

F le f t
z =

g · (ms +mu)

2
+

ms ·ay ·CGH
Tw

(2.11)

Fright
z =

g · (ms +mu)

2
−

ms ·ay ·CGH
Tw

(2.12)

Combined load transfer To apply the longitudinal and lateral load transfer simul-
taneously, each equation from equation 2.9 to equation 2.12 can be divided by the
sum of the total weight to obtain the percentage assigned to the relative section.
The normal force for each wheel can then be found by multiplying the associated
percentages with the weight. For the front-left wheel, the following is applied:

F f ront−le f t
z = percentageFront ·percentageLeft ·weight (2.13)

Equation 2.13 can be applied for every wheel using the correct percentages.
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Chapter 2. Vehicle dynamics

2.4 Tyre model

The interaction between the tyre and road is highly important in order to model the
behaviour of a vehicle[14]. To obtain the friction force F , one simply needs to solve:

µ =
F
Fz

(2.14)

However, µ can be found difficult to compute as the friction coefficient µ is
required to compute the force F , and the force is required for the quotient used
to describe µ . However, the complexity depends on the chosen approach. If one
neglects the deformation of the tyre, a simple but imprecise solution can be found
[14]. The use of a more accurate approach requires the inclusion of the tyre defor-
mation [4] and the problem becomes complex and can motive the number of papers
on the subject.

The appropriateness of a tyre model is decided by the type of research that is
to be carried out, hence, no universal model exists. As the result of the thesis is
partially based on measurements from a physical vehicle, it is important that the
digital and the physical version use the same model for them to be comparable. For
the implementation of the tyre model, data was received from NEVS that describe
the relationship between slip, normal force, and friction force for the tyres that were
used during the collection of the received logged data. For reasons of confidential-
ity, neither tyre model data nor logged data will be presented in this thesis.

Slip
For the tyres to generate longitudinal and lateral forces from the contact with the
road, the occurrence of slip is required. Slip is the difference in velocity for the
wheel and the road, and exist in both the longitudinal and lateral direction [1]. Slip
is a common choice of parameter to include in the modelling of a tyre, and can in
combination with the normal force be considered to be one of the two variables
with most impact on the friction quotient µ [14].

Longitudinal slip When a driving or braking torque is applied to a wheel and
the wheel is accelerated in either direction, a momentary difference in velocity is
introduced. The difference in velocity is the longitudinal slip and is described as the
difference between the circumferential velocity of the tyre and the velocity of the
vehicle at the point of the wheel, commonly known as the speed of the road [4]. The
circumferential velocity is given by:

vc = ω · re (2.15)
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2.4 Tyre model

where ω is the angular velocity of the wheel, and re is the effective radius of the
tyre. The effective radius is defined as the ratio vx/ω0 where vx is the road velocity,
ω0 is the angular velocity of a free-rolling wheel. The usage of effective radius
is required due to the deformation of the tyre that arises when the wheel comes
into contact with the ground, especially notable with a large vertical load [4]. The
longitudinal component of slip can then be defined as:

κx =−
vx− vc

vx
(2.16)

where vx = vc indicates no slip, and vc = 0 implies that the wheel is completely
locked [14]. A positive slip for this definition means that the vehicle is accelerating.

Lateral slip

Figure 2.5 Slip angle for tyre

When the front wheels are turned, the heading of the wheel and the wheel travel
velocity differ in direction. This gives rise to a velocity in the lateral direction that is
used in combination with the longitudinal velocity to describe the lateral slip using:

tan(α) =
vy

vx
(2.17)

where α is the slip angle, and is used to define lateral slip [4].

Forces
A press on the acceleration pedal will produce a driving torque from the engine.
The torque is transmitted throughout the components of the propulsion system ex-
periencing loss, and a change in magnitude by a ratio decided by the design of the
transmission, and finally reaches the driven wheels [21].

The torque generated from braking is instead acting directly on the wheel due to
the mechanical design and placement of the brake system. The braking torque will
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Chapter 2. Vehicle dynamics

produce a force opposite to the motion and reduce the angular velocity by decel-
erating, thus creating a slip in the opposite direction of the direction of rotation [21].

Longitudinal forces The torque applied to the wheels from the engine while ac-
celerating, τeng, is reduced by the dissipation of power due to the deformation of the
tyre, also known as rolling resistance. The rolling resistance is assumed to depend
linearly on the vertical load and a factor froll is generally introduced to represent
this effect. The propulsion force on the wheel can then be defined as:

F prop
x =

τeng · ratio
radius

− froll ·Fz (2.18)

However, the propulsion force is limited by the maximum available friction
force which is given by µ ·Fz. The traction force in the longitudinal direction when
accelerating can thus be described by [21]:

Fwheel
x = min(F prop

x ,µ ·Fz) (2.19)

Lateral forces Lateral force is generated from wheels due to the existence of
either slip or camber. The camber angle is the angle of the wheel around the longi-
tudinal axis and is a major part of lateral forces when modelling motorcycles, but
the effect for cars is much smaller in relation to the force generated by lateral slip
[4]. Thus, the effect of camber is ignored in the underlying work and the thesis.

Friction
In the situation of both cornering and deceleration or acceleration, the tyres will
experience both longitudinal and lateral slip. When the events occur simultaneously
it is known as combined slip. This differs from the case where only one type of slip is
occurring, called pure slip[1]. As the magnitude of the traction forces cannot exceed
the available friction force, occurrence of combined slip will affect the maximum
value of the longitudinal and lateral traction force. Combined slip is more complex
than the case of pure slip, and a semi-empirical approach can be chosen as a solution
where empirical data is transformed using a physical model to be applicable for
other situations [4].

The relation between longitudinal and lateral force during combined slip can be
described using the friction ellipse, where the assumption is that the resultant force
is limited and lies in the ellipse described by:

(
Fx

Fx,max

)2

+

(
Fy

Fy,max

)2

≤ 1 (2.20)
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where Fx,max is given by µ ·Fz and Fy,max can be found using the magic formula [1],
described below.

Magic Formula A commonly used model to compute tyre forces in vehicle dy-
namics is the Magic Formula. The semi-empirical model has been developed over
a long period of time by several partners and has produced a general formula that is
defined by [21]:

y = Dsin [C · arctan{Bx−E(Bx− arctan(Bx))}] (2.21)
Y (X) = y(x)+SV (2.22)

x = X +SH (2.23)

where the uppercase variables B, C, D, E are factors that alter the shape of the
magic formula curve and are named as follows:

B stiffness factor
C shape factor
D peak value
E curvature factor

and SH and SV are shifts of the curve in the horizontal and vertical direction
respectively, which are used to match the empirical tests better. Y is the output force,
and X is the input variable tan(α) for the lateral curve or κx for the longitudinal
curve.

The curve applied in the longitudinal and lateral direction can be seen in the
figures below.
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Figure 2.6 An example of a magic formula curve for longitudinal traction force.
Note that this does not represent the curve used in the thesis.
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Figure 2.7 An example of a magic formula curve for lateral traction force. Note
that this does not represent the curve used in the thesis.
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3
Vehicle simulation

The ability to evaluate during the development stage is essential to understand-
ing the performance of the product. For full evaluation it is important that tests
are performed systematically under controlled conditions, which is especially im-
portant if repeatability is required. As the real-world environment is a large non-
deterministic system, the use for controlled environments is understandable given
the pre-conditions.

Simulation is a powerful solution to study variables of interest in scenarios that
are repeatable and controlled to perform a scientific evaluation of a process. The
goal of vehicle simulation is to achieve the functionality of the real-world vehicle.
The concept is called fidelity and is defined as "faithfulness to the original" [23]. In
order for the simulation to be applicable and provide value for the testing process,
the models need to have a good-enough level of fidelity.

The effort to shorten product cycles and reduce the development time of new
vehicle models pushes the automotive market to introduce new technologies that
allow for faster testing and evaluation. This can be achieved through the implemen-
tation of simulation and virtual prototypes, which removes the need for a physical
prototype to exist in certain areas of interest. However, the methods used on the
virtual prototypes must be proven and trusted for the process to be valid. Another
reasoning for the use of simulation is the price competition for vehicles where
manufacturers and suppliers are forced to not only shorten development time but
also cut costs in the development phase to stay competitive [19].

As mentioned in the introduction, testing can become a limitation as the number
of tests can become extremely large. The reasoning for this is that options for testing
scenarios are combinatorial in nature and thus the sum of scenarios greatly increases
with the addition of a single option [24].
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3.1 Unity 3D

3.1 Unity 3D

Unity3D is a real-time development platform initially created as a game engine but
has since included software to support realistic simulation and has been adopted
by several industries including engineering and automotive. The platform uses the
.NET platform and scripting is done using a C# API. To achieve high physics fi-
delity the platform relies on Nvidia PhysX [25] for physics computations.

A Unity program is based on a collection of objects called GameObject. The
GameObjects work as containers for a set of components. Each GameObject has a
transform component that manages the location, rotation, and physical scale of the
object, and uses the PhysX engine to compute the new position and rotation during
each update from the physics engine. Various physics components exist that handle
different parts of the physics and have several changeable physical properties related
to their task, including:

• Rigidbody - controls the kinematic and dynamic properties including mass,
drag, and inertia.

• Mesh - component which controls the material, and the mesh, which sets the
boundaries for the object and is used to compute collisions.

• Joint - used to connect and control how GameObjects behave in relation to
each other and limit the degrees of freedom.

An example execution for a single refresh:

1. A force with a specific magnitude is applied on a point on a GameObject.

2. The rigidbody of the GameObject, the rigidbodies of the GameObject’s chil-
dren objects, and the GameObjects that are connected by joints, are collected
to see which objects that are affected by the applied force.

3. Every affected objects then check for collision with other objects using the
designated meshes used for each GameObject.

4. If a collision has taken place, the materials and other physical properties of
the objects are used to compute the effects of the collisions.

5. The final translational and rotational motion is applied for every involved
GameObject.

The platform allows for controlled testing as results for identical tests are repro-
ducible unless a non-deterministic algorithm has been introduced to the simulation
software. The software can be built for different target platforms, and can be built
for both visual feedback and running on a server for optimised performance [26].
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Chapter 3. Vehicle simulation

Furthermore the time scale and refresh rate for the physics engine can be adapted to
fit the complexity of the simulation and the hardware that the simulation is running
on, allowing for faster than real-time testing.

The option of running the simulations on servers is favourable for software
testing because of the potentially large input space as multiple instances of the
simulation software can be run on multiple servers, limiting the testing time to the
computational power available and the cost of computations.

3.2 Model structure

The following sections present how the vehicle and tyre models were implemented
in the simulation software in relation to the unity components and scripts. The
implementation was made for the thesis and is based on the theory presented in
Chapter 2 on vehicle dynamics, and focus on creating a program that supports large
scale simulation usable for achieving the advantages discussed in the introductory
chapter and the previous segments of the vehicle simulation chapter. The imple-
mented model in Unity 3D can be seen in Figure 3.1 below.

Figure 3.1 The vehicle model in Unity 3D.
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Vehicle model structure
Figure 3.2 shows the components of the vehicle that were implemented in Unity 3D
using theory on vehicle dynamics. The diagram excludes parts that are not affected
by vehicle dynamics such as the log system and testing system, as well as the details
of the wheel components which will be covered in the next section.

Figure 3.2 A diagram of the parts of the vehicle implemented in Unity 3D.

Vehicle The vehicle object is the container object of the vehicle system, and is
implemented as a two-track model described in Chapter 2.3. However, since all
wheels are assumed to be in contact with the road, vertical motion, roll, and pitch is
set as constant for the vehicle relative to the road.

The vehicle body is implemented as a rigid body and contains both the sprung
and unsprung mass in the manually set centre of gravity. The object contains infor-
mation supplied by NEVS such as masses, moment of inertia, and centre of gravity
to increase the fidelity of the model.
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Figure 3.3 The vehicle object model for Unity 3D.

Powertrain The powertrain component is only implemented by scripts and clamps
the maximum and minimum torque that can be produced by the electrical engine.
The engine torque is directly applied to the driven wheels using an open differential,
thus, the produced torque is split evenly between the driven wheels. Losses in the
transmission is applied to match the maximum torque for the engine and wheels
that were provided by NEVS.

Brake system The braking system is implemented by applying the same level
of braking torque to all wheels, where the maximum braking torque was given
by NEVS. In reality, the distribution of brake torque is often asymmetric but the
difference is ignored for the digital vehicle.

Steering system The rotation of the wheels around the vertical axis is given by
an input to the steering system by a turning of the steering wheel. The input angle
is converted using a function provided by NEVS and then applied to the steered
wheels, thus, the inner and outer wheel angles are assumed to be the same.
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Cruise control Cruise control is implemented using a programmed script for sce-
narios where tests are being performed in a pre-determined velocity. The cruise
control is designed using a PI-controller with back-calculation for anti-windup, and
the output saturates between maximum engine torque and maximum braking torque
as the negative limit.

Vehicle forces Forces in the vertical direction, i.e. normal forces, are computed as
presented in Section 2.3 and assigned to each individual wheel, whereas forces in
the longitudinal and lateral direction are computed in the tyre model.

Tyre model structure
Figure 3.4 presents the components of the tyre model that were implemented in
Unity 3D. Every wheel is identical in the aspect of components but have different
constraints based on their location, as a wheel placed on the rear axle is not rotated
by the steering wheel and cannot rotate around the vertical axis.

Figure 3.4 A diagram of the components of the tyre model implemented in Unity
3D.

Wheel The wheels are attached to the vehicle in their respective locations using
joints which are identical except for the front axle joints which can rotate around
the vertical axis due to steering.

The wheels are implemented as rigid bodies, which is inaccurate as the de-
formation of the tyres is a major factor in their dynamic behaviour. However, the
problem is circumvented as the slip and friction components are implemented us-
ing data from NEVS produced from real tyres, thus, the deformation behaviour is
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implemented on a computational level, but not on a visual one.

Transformation The transformation component manages rotational motion
around the vertical and horizontal axes, which is used to compute the slip in
the longitudinal and lateral direction.

Slip The slip for each wheel is computed as presented in Section 2.4. The angular
velocity for wheels that are not driven is the velocity in the longitudinal direction
divided by the wheel radius. For driven wheels, the torque that is applied from either
the engine or the brake system is converted to angular acceleration using:

τ = I ·α (3.1)

where I is the moment of inertia, and α the angular acceleration. The resultant accel-
eration or deceleration is the source of the slip that arises due to the change of input.

Friction The friction in the longitudinal and lateral direction are computed using
the magic formula described in Section 2.4. The factors for the curves in the differ-
ent directions are chosen using data that was received from NEVS, and the actual
values will not be presented due to confidentiality.

The curves that are generated in the simulations are based on the road surface
that was chosen for the test scenario and new curves are generated using interpola-
tion with the received data as a reference.

Tyre forces Using a powertrain that allows a high level of torque to be transmitted
to the wheels or when driving on a road with adverse friction conditions, there is
a limit to how much traction the vehicle can experience. The forces that can be
generated are limited on the upper side by the friction force µ ·Fz, and on the lower
side by the resistance forces, including resistance from road slope angle, rolling
resistance, and air resistance[21]. See Figure 3.5.
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Figure 3.5 A traction diagram including rolling and air resistance.
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3.3 Simulation process

Figure 3.6 represents the structure and the purpose at each stage of the simulation
process, and the process is composed of three major parts, input to the simulations,
running the simulations, and output from the simulations. These topics will be cov-
ered in the following sections, and the data flow for the simulation process can be
seen in Figure 3.7.

Figure 3.6 Overview of the simulation process.

Figure 3.7 Data flow of the simulation process where µ0 is the reference friction
for the ground, δ is the steering wheel angle, v is the vehicle velocity and τ is the
torque. Note that τ can be both positive (engine torque) or negative (braking torque).

Input configuration
In order to train a neural network to be applicable to a large collection of possible
vehicle scenarios, big sets of data are required to achieve a sufficient accuracy. Thus,
it would be irrational to manually create every possible combination of scenarios
and an automatic combinatorial input process has been implemented. The inputs
to the vehicle are designed to match the inputs controllable by a driver, meaning
that the inputs to the vehicle model can represent turning of the steering wheel, and
pressing on the gas or brake pedal, or using cruise control. Furthermore the input
configuration allows each scenario to manipulate the environment in the form of
selecting the road condition by changing the reference friction, which is the peak
friction coefficient.

The input scenarios are based on two types of vehicle dynamics: straight line
acceleration, and sinusoidal turning. Both scenarios contain a set of parameters
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which are required to completely define the test scenario. To cover a large collec-
tion of scenarios, each parameter is defined by a start value, an increment value, and
an end value. This produces a range of possible values for a single parameter, and
the ranges of values for every parameter for the scenario are combined to produce a
large set of unique test scenarios.

Straight line acceleration is defined by three parameters: reference friction µ0,
test duration, and engine torque τeng. The test is performed from a stand-still and
the vehicle will accelerate for the duration of the test applying a constant torque
during the whole test. A simple example of straight line input configuration which
yields 60 input scenarios can be seen in table 3.1 below.

Table 3.1 Example of straight line acceleration configuration

Parameter Start Increment End
Reference friction 0.1 0.1 1.0

Test duration 20 0 20
Engine torque 50 50 300

Sinusoidal turning is performed at a selected velocity which the car will acceler-
ate to using the cruise control. When the target velocity is reached, the test is started
and the steering wheel will turn according to a sinus curve which is defined by an
amplitude in degrees of steering wheel turning (not wheel angle), and a wavelength.
The amplitude and wavelength are input parameters along with the target velocity
and the reference friction.

Data generation
The input scenarios that are produced from the input configuration are split into
groups based on the number of simulation instances to run. As it is possible to run
a large set of input scenarios, the time required to run the simulations can become
long. The short configuration example in table 3.1 produces 60 scenarios where
each scenario run for 20 seconds plus the additional time for resetting between
tests. For real-time simulation, this small configuration takes 20 minutes to run,
hence it is desired to be able to run the scenarios in parallel, especially when con-
figuring for thousands of scenarios.

An empirical test was run showing that a single core per simulation instance
was sufficient, and for a computer using newer processors with 8 available cores,
total simulation duration would be cut to two and a half minutes. This highlights
the applicability of the process design where the computational power is the limit
for testing a large set of scenarios.
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Each instance of the simulation software follows the data-flow seen in Figure
3.7, where the group of scenarios are converted into one file for each simulation in-
stance and a log file is created accordingly. For every update of the physics engine,
the inputs to the vehicle model is read, the vehicle dynamics calculations are per-
formed according to Figure 3.8, and finally, the requested vehicle data is logged to
the log file. This is repeated at a frequency of 50 Hz, meaning that the 60 scenarios
would produce 60 000 data points for each parameter.

Figure 3.8 The order of vehicle script execution for every update.

The internal state component of the vehicle contains the computations that con-
vert the forces applied at the wheels to translational and rotational acceleration.
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For the process to be applicable for a specific real vehicle, the digital representation
of the vehicle needs to behave similarly to the physical car. Since the inputs to the
neural network are dependent on vehicle parameters and the vehicle state, too large
inaccuracies would cause a mismatch, implying that the network tries to estimate
the friction for a vehicle that is not a match with the intended one.

The usefulness of a simulation can be decided by the comparison of the digi-
tal vehicle (DV) and the physical vehicle (PV) in terms of their behaviour. If the
intersection, DV ∩PV , is null, which means that there is no similarity between the
DV and PV, no usefulness for the simulation can be found and the process is not
applicable for the PV, otherwise it is useful to some level.

If DV ⊂ PV , the simulation model can be described as being a degree of accu-
rate, but incomplete as the behaviour is comparable to the PV, but not all behaviour
is included in the DV.

For PV ⊂DV , the simulation is considered a degree of complete, but inaccurate
as the behaviour of the PV is displayed by the DV, but additional behaviour was
also encountered from the DV. The goal is to find a DV, which is equivalent to the
physical vehicle PV, DV ≡ PV , thus, is both complete and accurate [27].

For the purpose of the validation it is desired for the DV to reach a high degree
of accuracy. Incompleteness is expected for all behaviour of the PV as data was
not provided to cover all behaviour of the vehicle, however, completeness for the
provided data can be analysed.

Full validation of a DV imply a problem of catch-22. To reach the goal of
DV ≡ PV , both full accuracy and full completeness is required. In practice, this re-
quires a perfect model or digital twin to be evaluated for every possible test scenario
that could be encountered, and be compared to the behaviour of the PV running
the same scenarios. This is highly resource consuming, and evaluating for the same
test scenarios using a PV negates the benefits from using a DV if performed in an
inefficient manner as the purpose of the DV is to not having to run tests on the PV.
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However, this can be avoided by generalising the scenarios and reducing the value
range of the vehicle parameters for the PV.

4.1 Model comparison

The aim of the comparison is to find similar behaviour for similar situations, that
is, the same inputs to the DV and PV should optimally produce two identical logs
from both vehicles. As the simulator was implemented to run on the same inputs
that a human driver input to a car, in other words, the steering wheel angle, engine
torque, and brake torque, the simulations can mimic driving patterns in the PV.

To validate the DV, the starting point was the data logs received from NEVS.
The test scenarios run on the physical vehicle were performed at a target velocity
with turning of the steering wheel, implying the use of cruise control for the DV. As
the tests were focused on lateral behaviour at a relatively constant velocity, lateral
variables were used for the comparison. The following figures depict the steering
angle, the yaw rate, and the lateral acceleration of the DV and the PV.
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Validation scenario 1

Figure 4.1 Validation scenario 1. Comparison between DV and PV for steering
angle, yaw rate, and lateral acceleration for velocity 1.

From the first test scenario, it can be noted that the digital vehicle performs the
major movements of the physical vehicle, but minor changes are not captured. Fur-
thermore, the digital vehicle has trouble with magnitude, especially for the lateral
acceleration.
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Validation scenario 2

Figure 4.2 Validation scenario 2. Comparison between DV and PV for steering
angle, yaw rate, and lateral acceleration for velocity 2.

Similar behaviour to the first test scenario is displayed for the second test. Once
again, the DV experiences problems with magnitude but peak values are closer to
the PV, than in scenario 1.
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Validation scenario 3

Figure 4.3 Validation scenario 3. Comparison between DV and PV for steering
angle, yaw rate, and lateral acceleration for velocity 3.

In the initial stage of the test, the yaw rate and lateral acceleration are not aligned
until the first peak, as is expected due to the values starting close to zero for the DV,
which is not the case for the logged data. The yaw rate for the DV and PV behave at
a previously unseen level of similarity in the beginning, and the lateral acceleration
peaks for the DV are slightly larger than for the PV. For the turns with a larger
steering wheel angle, the behaviour seen in Figure 4.1 and Figure 4.2 can once
again be noted.
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Validation scenario 4

Figure 4.4 Validation scenario 4. Comparison between DV and PV for steering
angle, yaw rate, and lateral acceleration for velocity 4.

For test scenario four, the DV displays similar behaviour as previously but with
more disturbances in the mid segment. Moreover, the lateral acceleration peaks
have a higher magnitude than the PV.

In general, the digital vehicle displays part of the behaviour of the physical
vehicle, where the DV can be seen to behave with a level of similarity to the PV for
the major actions. The magnitudes for the actions vary, and a higher level of accu-
racy would benefit the digital vehicle. As expected, the digital vehicle demonstrates
DV ⊂ PV . However, it does so with a degree of accuracy and completeness that is
moderate.

The usage of an imperfect vehicle model, where DV ≡ PV is false, will have
negative consequences on the accuracy results of the process evaluation. However,
as briefly mentioned in the Sections 1.2 Purpose and 1.4 Delimitations, the purpose
of the thesis is not to create a perfect model as the effort is highly resource demand-
ing. The errors from the validation will extend when adapted from simulation to the
logged data for the neural network as the errors displayed in the validation will re-
sult in input values that are not perfectly aligned with what would be the inputs from
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the PV. While the validation is not optimal, it is deemed adequate for the continued
process evaluation. The results in the section on process evaluation will highlight
and discuss differences in achieved performance for scenarios where the impact of
the vehicle model varies.
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5
Neural networks

The complex modelling of the tyre dynamics motivates the effort to use neural
networks to find a link between sensor values and the friction quotient. However,
the use of neural networks, or machine learning in general, in applications that can
be deemed as life-critical is discussed, with one of the reasons being that neural
networks can be labelled as "black boxes". While a network can perform very well
for the task of approximating a function [28], the structure and variables of the
network does not give much insight into the function that is being approximated,
thus it can be difficult to analyse the network and understand the inner workings of
it. However, the discussion whether neural networks, for the "black box" reasoning,
should be allowed to be used in safety systems is neglected for this thesis as the
performance of neural networks for friction estimation is evaluated.

In order to avoid having to re-invent the wheel and manually implement mathe-
matical optimisation methods, back-propagation, and other parts, a neural network
API was used for the project. Keras [29] is written in Python and was used for the
machine learning tasks for the thesis.

5.1 A brief outline of neural networks

This section briefly covers theory on neural networks in order to increase the un-
derstanding of the mathematical basis to the work that has been done for the thesis.

Neurons
Figure 5.1 below represents the mathematical model of a single artificial neuron,
which consists of inputs, weights, bias, an activation function, and an output.

The neuron has scalar inputs x, also called features, and scalar weights w. The
inputs are multiplied with the weights to form weighted inputs, which are summed
together with the bias b. The bias can also be modelled using a constant input of
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Figure 5.1 A single artificial neuron.

1 with the weight b. The summed value is input to an activation function which
produce the output value. Hence, the output can be described by:

out put = f
(
∑(wx)+b

)
(5.1)

Single artificial neurons can be combined such that the output from one neuron
is the input to one or several other neurons, and can thus be stacked both horizon-
tally and vertically. This forms layers of neurons and increases the computational
capabilities and complexity compared to a single neuron.

Activation functions
An activation function is a modification used for the summed inputs and bias to
alter the value towards a selected goal. Both linear and non-linear functions can be
used, where the selected function should be chosen based on the specification of
the problem [30]. Three common activation functions are the hard limit function,
the linear function, and the sigmoid function.

The hard limit function outputs a zero if the inputs are less than zero, and one if
the inputs are greater or equal to zero. The hard limit activation function is useful
for cases where a binary result is expected.

A linear function provides more information to the output than the hard limit
function, but two problems exist. First, the derivative is a constant which is not pre-
ferred for training. Secondly, using several linear functions in a chain will produce
an output linear to the first input no matter the length of the chain, and cannot be
used to approximate non-linear problems.
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The sigmoid function is a non-linear function where the output is limited be-
tween zero and one. An advantage versus the hard limit function is that a value
close to zero will not have the same effect on the output, for example, 0.49 and
0.51, compared to 0 and 1, depending on the sign of the input. Furthermore, the
derivative is the steepest closest to zero, which implies that the function has a ten-
dency to move towards one end of the curve. An alternative to the sigmoid function
is the hyperbolic tangent function which is a scaled sigmoid function with the same
properties, except that the range of values is between -1 and 1.

Backpropagation
When sufficient layers of neurons have been connected to form a neural network,
the network requires training in order to be able to solve the associated problem.
Each neuron has three variables that can be changed in order to alter the behaviour
of the network, the weights, the bias, and the activation function. The activation
function is a design choice and cannot be changed during training, leaving the
weights and the bias.

To alter the weights and the bias, a solution has been presented using Bayesian
back-propagation. The methodology of back-propagation is to design a cost func-
tion for the neural network, which can be used to alter the variables based on the
cost that each input has [30]. The purpose is to find the minimum of the cost func-
tion, transforming the problem into an optimisation problem.

For a set of inputs x, a correct value t exists for every output, implying that the
cost can be quantified. A common method is the mean squared error, where the cost
(error) can be defined by e = (t−out put). The cost function F(x) = E(e2) can then
be minimised using stochastic gradient descent where the partial derivatives for the
weights and biases are [30]:

wm
i, j(k+1) = wm

i, j(k)−α
δF

δwm
i, j

(5.2)

bm
i (k+1) = bm

i (k)−α
δF
δbm

i
(5.3)

where α is learning rate of the network. Applying these derivatives to a situation
where we have multiple inputs, a sensitivity can be found for every weight and bias
for the received output value. Thus, the inputs are propagated through the network
to receive a final output value, which is compared to the true value and an error
can be computed. Finally, the error can be propagated backwards - hence the name
back-propagation - to alter the value of each weight and bias based on the error
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5.1 A brief outline of neural networks

that their respective neuron produced. By repeating the process numerous times, a
minimum to the cost function can be found.

The advantage of using a Bayesian method is that the error approaches the
lower bound, decided by the backpropagation method used, when the training set
approaches infinity, and will on average have equal or lower error compared to any
other method if certain constraints are followed [31].

Training requirements
In general, it is difficult to include previous knowledge when creating a neural
network. This results in networks being dependent on the data they are given and
can only perform on a level as good as the data is. Neural networks are not good at
extrapolating results, meaning that if the network has not been trained on data for
a certain situation, it will not perform well when evaluating data from that kind of
situation [30]. For this reason, the network needs to cover the full range of input
variables that it can be exposed to during evaluation.

It was agreed upon by all partners to the thesis that the ranges for the following
variables were of the most relevant for the vehicle model:

• Longitudinal slip κx - [-0.25, 0.25]

• Lateral slip α - [-0.15, 0.15]

However, as the logged data from the physical vehicle did not include any scenarios
with negative longitudinal slip, only non-negative values were included in the gen-
erated data. The data coverage for those variables can be seen in Figure 5.2 and 5.3
where it can be noted that the range are covered by the training set.
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Figure 5.2 Longitudinal slip distribution.
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Figure 5.3 Lateral slip distribution.

53



Chapter 5. Neural networks

5.2 Neural network architecture and design

One neural network type was used for the process, a multilayer perceptron (MLP).
A MLP is a feedforward type of a neural network where the input is translated from
the input layer to the output layer without loops. A MLP neural network consists of
at least three layers, the input layer, a hidden layer, and an output layer, where each
neuron in every layer is connected to all neurons in the previous and subsequent
layer. The MLP type of network is known for being able to approximate universal
functions [33; 34; 28], and can therefore be applied to the underlying work of the
thesis.

Input selection
Two types of input selection were chosen for the thesis, a theoretical selection, and
an applicable selection. All data that is generated from the simulations and passed
to the neural network is noiseless to allow for a fair comparison, as the data received
from the real-world testing vehicle is filtered.

The applicable selection contains features that can be measured from the physi-
cal vehicle, thus the network can be applied on the physical vehicle without requir-
ing an addition of a physical component to the vehicle if the available computational
power exists. Worth noting is that the required computational power is low as it only
needs to perform the multiplications required to transverse the neural network once.
The inputs for the applicable input selection are as follows,

• Angular velocity for the front-left wheel

• Vehicle forward velocity

• Vehicle longitudinal acceleration

• Vehicle lateral acceleration

• Vehicle yaw rate

• Acceleration pedal usage in percent, (0-100)

• Steering angle

The theoretical selection of features contains inputs that have been deemed as
relevant to determine the friction quotient. The selection is named theoretical as it
includes variables from the vehicle and tyre state of the digital vehicle that are not
measured on the physical comparison vehicle. The inputs used for the theoretical
input selection are the same as for the applicable selection, as well as,

• Angular velocity for the remaining wheels

• Normal force for the front-left wheel
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5.2 Neural network architecture and design

• Longitudinal force for the front-left wheel

• Lateral force for the front-left wheel

• Vehicle yaw acceleration

• Vehicle lateral jerk

• Longitudinal slip for the front-left wheel

• Lateral slip for the front-left wheel

It is worth noting that several of these variables cannot be directly measured
for a real vehicle, but have been included for the evaluation of the network. Fur-
thermore, the inputs related to the front-left wheel are used as it is the friction
coefficient for the front-left wheel that is estimated. By using inputs to the network
that are closely related to the friction coefficient, a higher accuracy is expected and
a reference for the optimal performance of this type of network model is achieved.

SDP input For the first approach, for each of the input selections, the features
were fed to the network for every timestamp with logged data. This approach,
where the set of features are made of Single Data Points (SDP), allows the network
to estimate a friction every time new values are logged from the vehicle.

CDP input The second approach to the inputs were to use one set of features rep-
resenting the sensor values, identical to the SDP approach, but also to include sta-
tistical parameters and short trends. To accomplish this, five additional inputs were
added for every original input value. The value of the five additional parameters
were the:

• mean

• median

• standard deviation

• maximum value

• minimum value

which were evaluated for previous SDP inputs. This yields a set of features where
one part, SDP, is updated at a high frequency and one part, the aggregated statistical
features, at a lower frequency, giving a feature set of Combined Data Points (CDP)
that is the combination of the SDP and the aggregated features. The lower frequency
is decided by the range of inputs to be included for the aggregation, where the value
from the last five measures were used in the underlying work.
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Network design
For both the theoretical and applicable selection of inputs, the same networks were
used. The number of neurons, also called units, in all hidden layers was chosen
arbitrarily, as an optimal network is difficult to design [35]. A collection of layer
sizes were tested, ranging from 8 to 256, where the final number of units used was
decided by finding a maximum of the accuracy. Note that the maximum could have
been a local maximum, which was disregarded as it was out of scope to find an
optimal network design.

For all designs of the network two hidden layers were used as it has been found
adequate to approximate nonlinear functions [33].

The activation function used for all networks was the hyperbolic tangent func-
tion (tanh) as it has been shown to give the best accuracy, especially using a
"Tanh-Tanh" network configuration [36]. The same was true during early evalua-
tion where the tanh function gave the highest accuracy.

Figure 5.4 A model of a the MLP neural network that was used in the thesis with
one input layer, two hidden layers, and one output layer. Compare to Figure 5.1 of a
single neuron.

Normalisation
During the training of neural networks using backpropagation the error value used
for the cost function should decrease over time as the model is trained. This implies
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5.3 Neural network output

that changes in the weights and biases are also reduced over time as the network is
fine-tuning the parameters at the end of training. This can be troublesome in com-
bination with sets of features where the value of a feature has a large distribution.

If the multiplication of the input and the weight, x ·w, is considerably more
affected by the shift in value of the input than the shift in value of the weight, the
training becomes more difficult. Thus, normalisation is used to reduce the shift in
values, called "internal covariate shift". Normalisation transforms the inputs so that
the inputs have a mean of zero and a variance of one, which helps reduce the training
time and increases the generalisation performance of the network [37].

Overfitting
Overfitting is a phenomenon where the neural network performs unreasonably well
on the training data in comparison to the evaluation data. The problem exists when
the model is trained on data that it already has seen or data that is similar to previous
data. When the network is exposed to previously unseen values of the features the
network will perform worse as it has not been trained for anything close to the new
combination of feature values. To avoid overfitting, the network needs to be trained
for the full range of values for every feature that the network can be exposed to.
Furthermore, a technique called dropout can be used [38].

Dropout is an idea based on the genetic optimisation algorithms [38] where
the genes that are passed on to the child are changed by a small random mutation.
This is applied for neural networks by adding a random chance for neurons to be
removed or set to zero for a single set of features during training. While it has
been found to slightly increase training time, it has also been found to increase the
generalisation of the network, hence decreasing overfitting [38]. For the underlying
work, a 20 % dropout rate was used for all network designs.

5.3 Neural network output

To evaluate and compare the neural network models, two types of results were used,
regression and classification. From discussions with NEVS, it was decided that the
thesis was to focus on classification, but regression was used to put the results from
the classification into more context.

Using regression the neural network has one output neuron and tries to pinpoint
the exact value of the output, that is, the friction.

For classification, the network has multiple output neurons equal to the amount
of categories that the output can be mapped to, where a category is decided from
the value at each output neuron.
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Regression
For the regression neural network, the network had the same design for both the
theoretical and applicable input selection as no increase in accuracy was received
by increasing the number of neurons in the hidden layers nor from increasing the
number of hidden layers.

The network was setup with either 7 or 17 input neurons, depending on the
input selection. Furthermore, only SDP was used for the regression. The network
had two hidden layers with 32 units in each layer using the hyperbolic tangent
activation function. The input was normalised and a 20% dropout was used. For
backpropagation, the optimisation algorithm ADAM [39] was used, and the loss
was measured using the mean squared error.

Classification
For the classification of friction, four categories were decided to be adequate, where
the range indicates which category that is correct based on the value of the friction
quotient.

• Ice - 0 < µ ≤ 0.15

• Snow - 0.15 < µ ≤ 0.4

• Wet asphalt - 0.4 < µ ≤ 0.7

• Dry asphalt - 0.7 < µ

Two neural network models were evaluated for both the theoretical and applica-
ble input selections as well as for both SDP and CDP.

First, a network that is of similar design to the regression model is used to be
able to compare the results. Hence, only the output layer differs as four output neu-
rons are required for the classification. A softmax activation function was used for
the output layer which transforms the value of the outputs to be distributed in a
range between zero and one, where the sum of all outputs equal to one. Thus, the
outputs can be interpreted as the percentages for the inputs to belong in a certain
category. The loss function was changed to categorical cross-entropy [40] where
the loss is determined by:

H(p,q) =−∑ p(x)log(q(x)) (5.4)

where p is the true distribution, [0, 1, 0, 0] for the case of snow, and q is the
distribution from the output layer. This network was used for inputs identical to the
regression problem.

Second, an identical network to the first was also used but the number of neurons
in the hidden layers were doubled to 64 to take the increased number of inputs using
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CDP into account. For this approach the number of inputs were increased for the
applicable inputs and theoretical inputs to 42 and 102 respectively.
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Process evaluation

For the process to be applicable and provide value, the benefits gained from using
simulation and neural networks, such as comparing to the true value for estimation,
need to outweigh the loss from the sources of errors that have been added by the
process. The sources of errors include the accuracy of the digital vehicle and the
performance of the neural network.

There are three approaches for the process to be applied to friction estimation,
and to be evaluated for:

1. Train neural network (NN) on generated data, evaluate on unseen generated
data.

2. Train NN on generated data, evaluate on data from physical vehicle

3. Train and evaluate on data from physical vehicle.

The first approach removes sources of error from the process as the digital
vehicle is used to generate data for both the training and the evaluation, hence
temporarily removing the physical vehicle from the process. Even though the dif-
ferences between the DV and PV do not affect the results, the choice of vehicle
dynamics model for the DV has an impact on the results as details neglected in
the vehicle model reduce the potential performance of the process due to loss of
information. Since several sources of errors related to the vehicle dynamics are
eliminated, the approach will give more accurate information regarding the use-
fulness of the neural networks, and was used for the evaluation for regression and
classification, for all neural network designs, and for all types of input, namely SDP,
CDP, applicable selection, and theoretical selection.

The second approach is most useful in combination with the completion of
the first approach. As the second approach includes the physical vehicle in the
evaluation process, the evaluation results can be compared to the evaluation results
from the first approach to see how well the neural network performs on the physical
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6.1 DV performance evaluation

vehicle. However, as previously mentioned, some difficulties exist as to deciding
the root causes of the differences in results.

The third approach would be useful to evaluate for at least two possible reasons.
One, if the neural network can predict better than the existing estimation method in
the physical vehicle, or two, if the NN can continue to train after being installed in
the vehicle. However, the amount of logged data required for the third approach was
not available during the underlying work and the approach could not be evaluated.
The lack of logged data from the PV strengthens the case for the problems of the
testing process presented in the introduction to the thesis.

6.1 DV performance evaluation

The following section presents the performance of the neural networks for the re-
gression and the classification problems for approach one, thus the networks are
trained and evaluated using the digital vehicle. The same training data has been
used for all networks, and the architecture and design follow the descriptions in
Section 5.2.

Regression
The results for the neural networks using regression differ from the classification
problems as a right or wrong cannot be presented as clearly. Thus, the performance
was measured using mean absolute error (MAE), which can be described using:

MAE =
∑

n |yi− ti|
n

(6.1)

where yi is the estimate from the neural network, and ti is the actual friction
value.

The neural network using the applicable input selection, achieved a MAE of
0.09. Whereas the same network using the theoretical input selection achieved a
MAE of 0.06.

Classification
The results for the classifications are presented using the accuracy in terms of how
many percentage of the data that was placed into the correct friction category.

More details for the accuracy are given by confusion matrices which display
how the network tried to place the data for each category. Each row in a confusion
matrix represents the estimations of the network for the category of that row. Thus,
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Chapter 6. Process evaluation

a number at location (x,y) in the confusion matrix represents the percentage of
input data for the category y that the network predicted belong in category x. Hence,
an optimal confusion matrix using normalised values, should contain ones in the
diagonal direction, and zero for every location where x 6= y.
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6.1 DV performance evaluation

SDP using the applicable input selection The neural network using the SDP ap-
proach and the applicable input selection achieved an average accuracy of 85.1%
with the distribution according to Figure 6.1 below.

Figure 6.1 The confusion matrix for the classification using SDP and the applica-
ble input selection.

From the confusion matrix it can be seen that the model mostly predicts scenar-
ios with ice as snow. This result can be altered by for example changing the ranges
for the categories, or improving the neural network model. However, changing the
ranges post-result was deemed to not provide any value to the evaluation of the pro-
cess. Neither is the purpose of the thesis to find an optimal NN, thus were the results
kept.
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Chapter 6. Process evaluation

SDP using the theoretical input selection Using the same network as in Figure
6.1, but increasing the inputs to include all theoretical inputs achieved an average
accuracy of 91.8%. By using the theoretical input selection instead of the applicable,
the accuracy for all categories improved but no large change can be noted.

Figure 6.2 The confusion matrix for the classification using SDP and the theoreti-
cal input selection.

The neural network model using the theoretical input selection does also mostly
predict ice as snow, and the reasoning for the previous result apply.
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CDP using the applicable input selection The neural network for CDP using the
applicable input selection uses 42 input neurons, and the hidden layers have 64 neu-
rons each. This yields an average accuracy of 89.2%. By providing the network with
the additional statistical inputs, the accuracy has increased by 4.1% in comparison
to using SDP for the applicable input selection.

Figure 6.3 The confusion matrix for the classification using CDP and the applica-
ble input selection.

From the confusion matrix, it can be seen that the additional inputs made the
network better at classifying the ice category and changed from an accuracy of 13%
to 82% which provided a substantial amount of the overall accuracy gain. Worth
noting is that the accuracy for the dry asphalt category worsened. As the vehicle log
data used for all DV performance evaluations is the same, and SDP is a subset of
CDP, the result should not be seen if the two neural network models were trained
and evaluated a large amount of times.
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CDP using the theoretical input selection The neural network for CDP using
theoretical input selection, uses 102 input neurons, and the hidden layers have 64
neurons each. This yields an average accuracy of 94.3%.

Figure 6.4 The confusion matrix for the classification using CDP and the theoret-
ical input selection.

In comparison to using SDP for the theoretical input selection, the neural net-
work model now predicts the ice 96% of the time instead of 21%, and 14% better
than using CDP for the applicable input selection. For the other categories, the net-
work predicts with an approximately equal accuracy in comparison to SDP for the
theoretical input selection. However, the snow and dry asphalt categories were hard
to improve due to the already high accuracies.
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Figure 6.5 Heatmap showing all data points over lateral slip in the x-direction,
and longitudinal slip in the y-direction, where the slip data is divided into a matrix
combining longitudinal slip from Figure 5.2 and lateral slip data from Figure 5.3.

Figure 6.5 presents all data points for the lateral slip in the x-direction and
longitudinal slip in y-direction. The value in each square represents the number of
occurrences divided by a factor of 100 for that combination of longitudinal and
lateral slip. The longitudinal slip values are in the range from 0 for index 0, and 0.5
for index 19. The lateral slips range from -0.25 to 0.25 for 0 and 19 respectively.
It can be noted that few of the data points contain both a high lateral and high
longitudinal slip, implying that the network is not trained for such occurrences and
cannot be correctly evaluated for such conditions.

67



Chapter 6. Process evaluation

Figure 6.6 The heatmap is the same as for Figure 6.5 but shows the distribution of
miss-classified data for the same longitudinal and lateral distribution instead.

The heat map in Figure 6.6 presents the percentage of data points for each
group of longitudinal and lateral slip that have been classified incorrectly. The axes
correspond to and use the same values as in Figure 6.5.

From the results of the regression and classification, it can be noted that the the-
oretical input selection performs better than the applicable input selection for each
configuration of the network. This is expected behaviour as the inputs in the appli-
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cable input selection are a subset of the inputs in the theoretical input selection, that
is, applicable ⊂ theoretical. However, some of the inputs used for the theoretical
input selection can currently not be measured on the physical vehicle and the results
are thus not usable for the PV.

Using the same mathematical reasoning, the results using CDP are expected to
always be better than using SDP, as SDP ⊂ CDP and all value contributed from
SDP is included in CDP.

6.2 PV performance evaluation

For the second approach, the neural networks are trained on the generated data and
evaluated on the data logs from the physical vehicle, and the same data logs used
for the vehicle validation are used for the evaluation. The neural network model is
trained using the CDP approach with the applicable input selection, and has been
used for all evaluations on data from the physical vehicle.
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Evaluation scenario 1 For evaluation scenario 1, the neural network had an accu-
racy of 60.5%.

Figure 6.7 The confusion matrix for the PV evaluation for scenario 1.
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Evaluation scenario 2 For evaluation scenario 2, the neural network had an accu-
racy of 43.1%.

Figure 6.8 The confusion matrix for the PV evaluation for scenario 2.
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Evaluation scenario 3 For evaluation scenario 3, the neural network had an accu-
racy of 37.4%.

Figure 6.9 The confusion matrix for the PV evaluation for scenario 3.
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Evaluation scenario 4 For evaluation scenario 4, the neural network had an accu-
racy of 73.7%.

Figure 6.10 The confusion matrix for the PV evaluation for scenario 4.

It can be noted that all evaluations performed on logs from the physical vehicle
perform worse than the DV evaluation at 89.2%. A worse performance was expected
as at least two major sources of error have been introduced:

First, the physical vehicle which is not equivalent to the digital vehicle as evident
from Section 4.

Second, differences in neural network input data. For the DV evaluation, the
network was evaluated on different test scenarios than it was trained on, but it was
still evaluated on straight line acceleration and sinusoidal turning. The logged data
from the physical vehicle include large turning manoeuvres, but those scenarios
differ from the scenarios used for training.

It should be noted that the logged data did not specify the friction quotient,
meaning that a regression evaluation for the physical vehicle could not be per-
formed, and the road surface used for the tests are assumed to fit into the range
of the dry asphalt category.
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6.3 Sensitivity analysis

In an effort to analyse the effect of changes to the vehicle model, a sensitivity analy-
sis was performed on the digital vehicle. It was presumed that the vehicle parameter
that will differ the most for the vehicles is the sprung mass as it is dependent on the
driver and eventual passengers.

Using similar test scenarios as previously but with a smaller data set, a baseline
performance was acquired with the same vehicle model that was used throughout
the underlying work. The weight of the vehicle was adjusted in six steps of 10%
from -30% to 30%, where each iteration ran the same test scenarios as the baseline
model.

The performance for each model was as follows:

Table 6.1 Sensitivity analysis for sprung mass.

Weight difference Absolute percentage point difference
-30% 20.0
-20% 5.0
-10% 16.4

0 0
10% 10.6
20% 8.2
30% 4.3

As the sensitivity analysis uses a smaller data set than previous evaluations, the
neural network model cannot achieve the same level of generalisation and is more
sensitive to inputs that it has not previously seen. Since all tests were run using
the same test scenario, the effect from using a smaller data set was expected to be
reduced. Still, from the results it can be seen that the performance of the neural net-
work is unreliable for input that it has not been trained on. The expected behaviour
was for the difference to the baseline performance to increase with a larger differ-
ence in weight, but the achieved performance is unexpected, which highlights the
need for extensive training.
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Conclusion

The process has shown that a setup which induces low static errors, that is, the
vehicle model is accurate, and the training data is similar to the evaluation data,
performs well. The optimal setup using the CDP approach with the theoretical
input selection, reaches an accuracy of 94.3% which is the highest accuracy that
was reached for the process. For an applicable process, the highest possible result
with the current neural network setup and input data is around 89.2%.

For the evaluation using approach two where the neural networks were evalu-
ated against the logged data from the physical vehicle, the network performed in
the range between 37.4% and 73.7%. This is a large span and is clearly worse than
for the first approach. However, two major sources of error have been introduced
and the results highlight the importance of having an accurate vehicle model, and
using training data that matches the environments and scenarios that the physical
vehicle could be exposed to.

Even though 37.4% is far from a desired accuracy, it shows that the process
with obvious inaccuracies in the models, produced results almost 50% better than a
process with no knowledge of the friction quotient while using a simplified vehicle
dynamics model, relatively simple neural network models, and a low amount of
data pre-processing.

The process evaluation in this thesis is a small insight into the expected benefits
from changing physical difficulties of the testing and development process into
programming and data science obstacles. The technologies used in the underlying
work can be expanded upon, where the vehicle model needs improvement, and the
possibilities of machine learning and data science have barely been utilised.

The process has been shown to be useful and provide value when it is used
according to the assigned task. Using simulation, the process removes sources of
error that are difficult to eliminate in the physical world, including the comparison
to the true value of the variables, and the accessible way to test for a large combina-
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torial set of environments and scenarios. However, the process has also introduced
sources of error to the friction estimation problem, including the digital vehicle
model and the neural network. Thus, the benefits of the process needs to be taken
advantage of for the process to show its strengths. If done correctly, a process that
can reduce development time and costs, remove physical risk, and increase relia-
bility has been presented. If the process is applied in an adverse way, the achieved
result is the addition of a set of errors to the development process.
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