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Popular Science Summary

The mobile industry is looking to achieve much higher data rates when making the
transition from the fourth generation (4G) of mobile technology to 5G. One way of
accomplishing this is by using the frequency spectrum where the frequencies have
a wavelength of millimeter length, the so called millimeter wave spectrum. This
spectrum was previously not used because signals on these frequencies are difficult
to deal with, but with more advanced techniques it has become a possibility. One
of these advanced techniques that enables the usage of this spectrum is called
beamforming and is based on focusing the transmitted signals in a more narrow
direction than what was done earlier. These focused signals are called beams.
The cell tower can modify the signals that it sends out so that they are focused
in the direction of where the intended receiving cell phone is positioned. Due
to the narrow beams, the cell phone’s movements needs to be taken care of and
the direction of the transmitted beams needs to be updated. To help the cell
tower in selecting which direction to transmit in, the cell phone can report channel
measurements on a set of beams and tell on which one it experiences the best signal
quality. Therefore, as long as the cell tower provides a set of beams where at least
one beam results in the cell phone experiencing good signal quality, the movement
of the cell phone can be handled and good signal quality can be sustained. If the
cell tower selects wrong beams in the set, it results in the cell phone experiencing
non-optimal or bad signal quality.

With this in mind, the goal of this thesis has been to select a set of beams
for a moving cell phone to measure signal quality on and that results in the cell
phone experiencing good signal quality. The selection of beams has been done by
using a machine learning algorithm. Machine learning is a sub-field of artificial
intelligence and with the help of machine learning the algorithm could experiment
with different beams in the set and observe if the selected beams gave a good
result or not. It could then learn from its decisions to get better over time and
eventually only select beams that had been proven successful in the past.

The machine learning algorithm’s performance was then compared to an al-
ready existing algorithm for selecting the beams and the results shows that the
machine learning algorithm can reach significantly better performance. The two
algorithms have been compared by looking at how good throughput the cell phone
experiences, which is a measurement of how well the signal quality is.
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Abstract

Ericsson has an interest in investigating if the fast-growing concept known as
machine learning can be applied to beam management, in a 5G NR environment
using mmWave frequencies. Because of the high path-loss at mmWave frequencies
and high throughput demands of 5G NR systems it is crucial to the UE to always
stay connected to the most suitable beam, to provide highest possible throughput.
To obtain the required fine alignment of each single beam, optimization of beam
management operations, such as beam tracking is essential.

The type of machine learning algorithm used is called reinforcement learning.
The algorithm will aim to always connect the UE to the most suitable beam -
by comparing RSRP values from a selection of beams, that are picked based on
the current serving beam. The machine learning algorithm will initially pick a
candidate beam set based on baseline (which is explicitly programmed), however
after multiple iterations, when the algorithm is considered experienced, decisions
will instead be based on machine learning.

The algorithm will be trained from scratch over 50 different seeds i.e. 50
different environments with different properties to increase the reliability of the
performance of the machine learning. The performance of the machine learning
algorithm will be evaluated by comparing the cell downlink throughput of machine
learning and baseline.

When reviewing the result, it is clearly illustrated that reinforcement learning
can be applied to beam management in mmWave environment to boost the average
cell downlink throughput compared to baseline.
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Chapter 1
Introduction

1.1 Background and Motivation

The demand for high speed mobile broadband has been one of the key aspects in
the transition from fourth generation (4G) mobile technology to 5G. To meet these
higher user throughput demands, the millimeter wave (mmWave) spectrum with
its huge bandwidths has been considered as an enabler of the higher data rates
requirement specified for 5G. However, mmWave frequencies makes the channel
conditions highly vulnerable to propagation loss, especially when the distance be-
tween transmitter and receiver increases. To deal with this, beamforming will
be an important and necessary tool to use. The basic idea of beamforming is
to concentrate the transmission signal from the antenna in the direction of the
intended receiver and therefore significantly improving the received signal power.
This is done by altering the phase of the signals from each antenna element in a
way that the signals add up constructively in the intended direction and destruc-
tively in other directions. To establish and retain a suitable beam for an intended
receiver, the beams require fine alignment. This is achieved through a set of opera-
tions collectively known as beam management which includes beam establishment,
beam refinement and beam tracking. Achieving perfectly aligned beams between
transmitter and receiver requires an intelligent beam tracking algorithm that in
an efficient way can select the most suitable beam based on the mobility of the
receiver.

1.2 Purpose

The purpose of this thesis is to investigate how well machine learning, more specif-
ically reinforcement learning, can be used to find the most suitable beams in the
beam tracking process. The proposed machine learning algorithm will be evalu-
ated in comparison to an already existing beam tracking method, which further
on will be referred to as the baseline algorithm.
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2 Introduction

1.3 Problem Formulation

Ideally, beam tracking would be solved by an algorithm that always assigns a beam
to the user equipment (UE) where it experiences the best possible channel quality.
Preferably this should be done while minimizing the number of measurements and
only performing channel quality measurements on a small number of beams to
reduce the power consumption. However, trying to optimize all these parameters
lies outside the scope of this thesis.

The problem in this project was limited to predicting a set of beam candidates
that Channel State Information Reference Signals (CSI-RS) should be measured
on by the UE. The predicted set should have one or more beams that gives high
Reference Signal Received Power (RSRP) when the measurement is reported back
to the base station. The beam with the best reported RSRP is then expected to
be a good choice to perform a beam switch to. CSI-RS and RSRP are two well
known quantities in the standardization of mobile technology done by 3GPP [1].

1.4 Previous Work

In recent years, the interest in machine learning has significantly increased. Mnih
et al [2] used a variant of Q-learning in combination with a neural network to
train an agent to play seven Atari 2600 games. The method achieved great results,
outscoring a human expert on three of the games. Machine learning has also gained
positive results in e.g. speech processing and computer vision [3]. Thanks to these
successes, the possibility of implementing machine learning in telecommunication
has started to be investigated.

Ekman [4] used supervised learning to try to optimize handovers between base
stations by finding the target beam with the highest possible RSRP. The report
shows that 25 candidate beams were needed to achieve a 90 % beam-hit-ratio, i.e.
the best possible beam is selected, and around 15 candidate beams were needed
to achieve a 90 % sector-hit-ratio (the best sector is selected).

Similarly, Bonneau [5] investigated if reinforcement learning could be used for
handovers in a 5G system. The proposed algorithm tried to optimize the trade-off
between signal quality, number of measurements to find a better beam and the
number of handovers. Even though promising results were obtained in a small
scale system, long computation times prevented the method from being successful
on a larger scale.

Klautau et al [6] primarily focused on generating realistic data sets that can
be used for deep learning (a subcategory of machine learning) based problems that
are related to mmWaves and beam management. The proposed data set was then
applied to let deep learning predict the beam selection in a vehicle-to-infrastructure
(V2I) 5G environment. However, it was considered to be out of the scope of the
paper to investigate the performance of different deep learning architectures.

With the previous mentioned reports in mind, it has not yet been thoroughly
investigated how well reinforcement learning can be used to handle the beam track-
ing procedure. Hence, in this thesis we apply our implementation of reinforcement
learning and analyze how well it performs in comparison to already existing meth-
ods.
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1.5 Delimitations

There are multiple questions and topics that can be discussed in future related
studies that were not covered in the scope of this thesis. One delimitation is the
concept of wide beams. Beam management in 5G networks will include wider
beams that a UE measures channel quality on and connects to. Once a selection
of a wide beam has been made, channel quality measurements of more narrow
beams that are mapped to the selected wide beam are measured and reported
by the UE. The best reported narrow beam is then selected by the base station.
However, in this thesis only switches between narrow beams are considered, and
thus the step of connecting to a wider beam is left out.

The simulation environment was limited to one cell containing one base station.
Therefore handovers between multiple base stations were not considered in this
work.

Another delimitation is that the optimal size of the candidate beam set was
not explored. To optimize the power consumption, it is possible that fewer beam
candidates could be used and still achieve the same results. If the algorithm is
intelligent enough it is reasonable to believe that the best beam candidate can be
found as many times as the algorithm with more beam candidates.

Finally, the optimal transition for when the algorithm is trained enough, and
should increase the number of decisions taken based on previous experiences was
not investigated. Instead, the timing of this transition was decided based on
obtained observations of how quickly the algorithm learned over time.

1.6 Disposition

Introduction

Gives the reader a short introduction including background, motivation and pur-
pose for the thesis.

Background

Describes the background more in depth and explains some of the key features
that are expected to play an important role in the transition from LTE to NR.

Telecommunication Theory

Explains the procedure of signal quality measurements between UE and base sta-
tion. Also briefly mentions orthogonal frequency-division multiplexing (OFDM).

Machine Learning

Describes the theory behind reinforcement learning and further explains how it is
implemented in this thesis.



4 Introduction

Method/Simulation Overview

Contains information about the simulation environment, the chosen parameter
setup and the available data.

Results

Results of how the algorithm is performing in the different scenarios.

Discussion

Thoughts about how the algorithm possibly could be further improved and future
work.



Chapter 2
Background

2.1 5G NR

The applied 5G technology (3GPP Release 15)[1] is based on today’s well-known
LTE technology, but with the difference that 5G aims to satisfy much higher de-
mands on different categories. For instance, 5G will result in much higher end-user
data rate, lower latency and lower power consumption. To meet the requirements
set and to allow potential future development the new radio access technology,
NR is used. 5G NR features many new and improved LTE technologies such as
Massive MIMO, millimeter waves (mmWave) and beam management [7][8, pp.
4-6].

2.2 mmWave

MmWave frequencies (technically in the 30 to 300 GHz spectrum but often referred
to the 3GPP Frequency Range 2 (FR2) which includes frequencies from 24.25 GHz
to 52.6 GHz) is one of the new features in 5G NR that can contribute to both
higher bandwidth and bit rate. However, mmWave require new and more advanced
technology to perform on the expected level, because of the short wavelength. The
link between two antennas using mmWave frequencies suffer from high path-loss,
severe channel intermittency and are blocked by various obstacles. Moreover,
to handle these issues directional transmission links are required, which can be
achieved from the technique known as beamforming. However, to achieve this,
fine beam alignment is required through usage of a couple of operations known as
beam management [9].

2.3 Beamforming

Beamforming is a technique used for high frequencies (mmWaves) in NR for di-
rectional signal transmission. This is achieved by combining elements in a phased
array in such a way that some signals will experience constructive interference,
and some will experience destructive interference [10]. By using a combination
of elements transmitting signals of different phases, all signals will add up to one

5



6 Background

focused directional beam. If the direction is set towards a UE, it is a key-enabler
to counteract the big path-loss obtained in the antenna links using mmWaves [11].

Different techniques are used to achieve different results of beamforming, namely
analog beamforming (ABF), digital beamforming (DBF) and hybrid beamforming
(HBF).

2.3.1 Analog Beamforming

In fully implemented ABF, the entire antenna array is connected to one radio
frequency (RF) chain. This technique is a simple and effective way to generate
high beamforming gains from a large number of antennas, but with less flexibility.
Since ABF only use a single RF chain, it only allows one communication beam at
a time, hence resulting in decreased throughput [12].

2.3.2 Digital Beamforming

In fully implemented DBF, every antenna element is connected to one separate RF
chain. This technique offers high performance and high degree of freedom, but with
a drawback. Each RF chain requires separate FFT/IFFT blocks, digital-to-analog
converters and analog-to-digital converters, which increases cost and complexity
of the system significantly [11].

2.3.3 Hybrid Beamforming

HBF is a combination of digital and analog components, which provides the pos-
sibility to use multiple RF-chains, but much fewer than the number of antenna
elements. Therefor this technique will provide higher performance than ABF, and
with less complexity as DBF [13].

2.4 Beam Management

To be able to make a fine alignment of receiving and transmitting beams, a set of
operations called beam management is performed. This set of operations consists
of beam establishment, beam refinement and beam tracking and the goal is to
always obtain the optimal beam for the UE, i.e. the beam with the best channel
quality [9].

2.4.1 Beam Establishment

Beam establishment includes the procedures that describe how a beam pair is ini-
tially established in the downlink and uplink transmission directions. A connection
is then set and if communication continues it can be assumed same beam will be
used to transmit data [8], pp 332.
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2.4.2 Beam Refinement

Beam establishment is applied for wide beams, however after establishment it is
preferred to refine the beam shape. For instance, this is done to make the beam
more narrow compared to the wide beams used for initial beam establishment [8],
pp 243.

2.4.3 Beam tracking

Beam tracking is an operation that handles beam switches both along the vertical
and horizontal axis by utilizing a two-dimensional antenna array [14]. The main
purpose of beam tracking is to find the best possible serving beam among a set of
narrow beams, which is decided based on reference signals [8], pp 243.
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Chapter 3
Telecommunication Theory

This chapter explains the theory behind the signal quality measurements that
takes place in wireless communication systems. Both how it works in present 4G
systems and how it is expected to be in the next generation of wireless networks
is explained. The theory is provided for the reader to get a better understanding
of how our proposed solution works in detail.

3.1 OFDM

The transmission scheme used in downlink in LTE is OFDM. In uplink, DFT-
spread OFDM is used which is also based on OFDM techniques [15], pp 31. Be-
cause of its robustness to time dispersion and usage of both time and frequency
domain when defining signal and channel structure, it was found to be a suitable
candidate for 5G as well [8], pp 61. In OFDM, a frequency band is divided into
multiple orthogonal smaller frequency bands called subcarriers that each carry
parts of the transmitted data [16]. Furthermore, the subcarriers are separated
in such a way that at each sample point in the frequency domain only one of the
subcarriers has a non-zero value, which is illustrated in Figure 3.1. This makes the
subcarriers independent and they do not influence one another, they are so called
orthogonal. Besides the unwanted phenomenon called inter carrier interference,
the problem that a delayed OFDM symbol can overlap with an adjacent symbol
also exists. This occurs in the time domain and is called inter symbol interference.
It is countered by having a guard interval, or time gap, between the symbols. The
guard interval is filled with a copy of the last part of the symbol and is called
Cyclic Prefix (CP).

Figure 3.1: OFDM subcarriers [17].

9



10 Telecommunication Theory
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Figure 3.2: The LTE physical time-frequency resource.

3.2 Time-Frequency Structure

The LTE transmission resources can be visualized in a time-frequency grid, see
Figure 3.2. In the time domain, transmissions are organized into frames of length
10 ms. Each frame is divided into ten subframes of length 1 ms. A subframe is
further divided into two slots of length 0.5 ms. Finally, a slot is divided into a
number of OFDM symbols which is the smallest unit in the time domain. A slot
consists of seven OFDM symbols if normal CP is used in the OFDM symbols,
or six if extended CP is used. In the frequency domain, the smallest unit is a
subcarrier. The subcarrier spacing in LTE is 15 kHz. This was chosen because
it was found to offer a good balance between frequency errors and unnecessarily
large overhead from the cyclic prefix [8], pp 61. A resource element, consisting
of one subcarrier during one OFDM symbol, is the smallest physical resource
in LTE. Resource elements are grouped into resource blocks which consists of 12
subcarriers (frequency domain) and one slot (time domain). Finally, the minimum
scheduling unit consists of two consecutive resource blocks within one subframe



Telecommunication Theory 11

which is called a resource-block pair [15], pp 78.
A couple of things differ in NR. Unlike LTE with carrier frequencies up to

only approximately 3 GHz, NR needs to support carrier frequencies varying from
sub-1 GHz up to mmWave frequencies. Having one fixed subcarrier spacing for
all of these different deployment scenarios is not possible, and therefore a range
of spacings are supported. Changing the subcarrier spacing also leads to changes
in the cyclic prefix (which also changes the time of an OFDM symbol) due to the
nature of OFDM. The supported spacing in NR and corresponding cyclic prefix
are shown in Table 3.1 [8], pp 105.

Subcarrier Spacing (kHz) Cyclic Prefix (µs)
15 4.7
30 2.3
60 1.2
120 0.59
240 0.29

Table 3.1: Subcarrier spacing supported by NR.

In the time domain, NR uses frames of length 10 ms and subframes of length 1
ms just like LTE does. A subframe is then divided into slots consisting of 14 OFDM
symbols each. Since the length of an OFDM symbol varies with the subcarrier
spacing, so does the duration of a slot. The different slot durations are illustrated
in Figure 3.3.

Figure 3.3: Frames, subframes and slots in NR.
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In the NR frequency domain structure, just like in LTE, a resource element
consists of one subcarrier during one OFDM symbol and is the smallest physical
resource. However, unlike LTE a resource block is 12 consecutive subcarriers in
the frequency domain. This is different from the LTE definition where it consists
of 12 subcarriers in the frequency domain and one slot in the time domain. The
reason why an NR resource block is defined in the frequency domain only is the
flexibility in time duration for different transmissions which was not the case in
the original LTE release [8], pp 109.

3.3 Reference Signals

For a UE to measure channel quality there are downlink reference signals that
occupy specific resource elements in the time-frequency grid. In the first release
of LTE, this was done with cell-specific reference signals (CRS). The structure of
a single CRS is illustrated in Figure 3.4. A CRS occupy the first and seventh sub-

F
re

q
u
e
n
c
y

Time

Reference symbol

First slot Second slot

Figure 3.4: Structure of CRS within a resource block pair.

carrier during the first OFDM symbol and the fourth and tenth subcarrier during
the fifth OFDM symbol. These resource elements are called reference symbols
and have predefined values. When a UE tries to estimate the downlink power it
measures the power of the CRS and reports the result to the base station. More
specifically, it measures the linear average received power over the CRS specified
resource elements. The measured result is called Reference Signal Received Power
(RSRP) and is reported in the logarithmic scale power unit dBm.

In LTE release 10 (released in 2011) the channel-state-information reference
signal (CSI-RS) was introduced. CSI-RS will also be used in NR. It was initially
introduced to support more advanced multiple-input and multiple-output (MIMO)
techniques which was something that CRS could not do. CSI-RS usually occupies
one, two or four resource elements depending on how many antenna ports that are
used [8], pp 135. Multiple CSI-RS can be used to measure signal quality over a
number of channels, or beams, where each CSI-RS is connected to a specific beam.
The beams can be seen as focused, directed streams of data using beamforming
techniques. Just like in LTE, it is the linear average over the power contributions
of the resource elements that carry CSI reference signals that is measured. The
UE measures the RSRP on each of the beams in the beam set and reports back
to the base station. The measured RSRP values are used as support for beam
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management decision making.
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Chapter 4
Machine Learning Approach

This chapter will begin with an introduction to machine learning and different
common machine learning concepts. Focus will later shift to one of the main
concepts of this thesis, namely reinforcement learning. Reinforcement learning
can be done using several different types of algorithms, however this thesis will
only investigate the algorithm called Q-learning.

4.1 Introduction to Machine Learning

Machine learning is said to be a subset of artificial intelligence with the ability
to learn and improve based on experience without having to be explicitly pro-
grammed. This means that the computer can predict and decide what action to
take depending on patterns or by reading big amounts of data. Machine learning
is usually divided into three different sub-fields, supervised learning, unsupervised
learning and reinforcement learning.

4.1.1 Supervised Learning

Supervised learning is based on mapping single inputs to outputs from big amounts
of input and output data. The mapped data will be analyzed to produce a function
with the ability to map new data.

4.1.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning is used when only the input data
is known. Since the learner is only given the inputs is the purpose of unsupervised
learning to find underlying patterns among the input values itself. Usually this
method will not provide as good result as supervised Learning, mainly since the
outcome is unknown and it is thereby impossible to determine how accurate the
found method is.

4.1.3 Reinforcement Learning

The goal of reinforcement learning is to find what action to take from different
states based on a reward system. Reinforcement learning will fully trust the so-

15



16 Machine Learning Approach

called reinforcement agent to make the best action based on earlier cumulative
rewards.

4.2 Reinforcement Learning

The procedure of reinforcement learning can be described by Figure 4.1. The agent
decides what action to take based on earlier experiences or sometimes random,
based on a stochastic variable. An action (At) will affect the current state/position
(St) in the environment followed by an announcement to the agent that the current
state has been updated with (St+1). Moreover, the agent will also be announced
with a reward value, that is either positive or negative based on the outcome of
the current action. The reward Rt+1 is thereby determined in association with
St, At and St+1. All parameters are named based on the variable ‘t’, which is a
discrete time variable.

Agent

Environment
Rt+1

St+1

RtSt

t

At

actionstate reward

Figure 4.1: Block-scheme over Reinforcement learning process.

4.2.1 Q-learning

The Q-learning algorithm is used to obtain a high performance by validating each
action taken. The validation is based on the accumulated previous outcomes of
the current action (At) from the current state (St), best possible outcome from the
next state (St+1) and a reward-value, that is set based on validation of the outcome
of current action (At) from current state (St). The Q-learning algorithm uses (4.1)
each time an action is performed to validate ((St), (At)) and to obtain a Q-value.
Each calculated Q-value is then used to update an element in a two-dimensional
matrix, called the Q-table. Multiple Q-table updates needs to be performed to
get a reliable Q-table that consists of trustworthy values where all ((St), (At))
combinations have been explored. Therefore, the training will initially start with
what is known as ’exploration’ to explore the environment and learn which actions
from which state are considered beneficial or not for a good performance. After
some training the Q-learning algorithm will start to make a transmission towards
more ’exploitation’ of Q-table to perform only the known beneficial actions to
obtain a high performance. To optimize the Q-learning algorithm to solve a specific
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problem, the behavior of (4.1) can be improved by adjustment of the learning rate
(α) and the discount factor (γ). The importance of these values will be explained
in the following sections.

Q(St, At)← Q(St, At) + α · (rt + γ ·max
A

Q(St+1, A)−Q(St, At)) (4.1)

Learning rate, α

The learning rate can be set to a value between zero to one and determines to what
extent new information should override old information. After rewriting (4.1) the
term (1 - α) · Q(St, At) can be found, illustrating that if α = 1 only the most
recent information will be considered, and α = 0 results in not absorbing any new
information. An incorrectly chosen α can have bad consequences on the Q-table
and result in that the Q-table never converges. If the Q-table never converge it
will continue to try to learn without a stop and without reaching a final goal. To
obtain the best possible result in this thesis different learning rates have been tried
out during simulations, namely
α = [0.1; 0.2; . . . ; 0.9].

Discount Factor, γ

The discount factor determines the importance of a good or bad decision from St+1

by adopting a value between zero to one. (4.1) states mathematically that based on
the value of γ,maxAQ(St+1, A) will have various impact on the calculated Q-value.
If γ = 1 the agent will strive to reach a high reward in a long-term perspective,
while γ = 0 will make the agent extremely short-sighted and only consider current
rewards. For beam tracking as in this thesis, it is the instantaneous current data
throughput a beam provides that is the most relevant. Therefore, γ = 0 is chosen
for all simulations, to completely neglect the fact that a future decision will affect
the decisions regarding the current data throughput.

Epsilon, ε

Epsilon is variable created to balance the relationship between when to use ex-
ploitation and exploration. As described above, exploitation and exploration are
two different ways to make decisions, hence to interact with the environment. Ex-
ploration is important to make sure that most states are visited at least once and
to allow the Q-table to change if environment changes. ε is assumed to be a dy-
namical value between 1 to 0 and it is compared to random number. If the random
number is smaller than ε will exploration be used. During training ε successively
decreases with a specified decay rate, to make a fair transition from more explo-
ration to more exploitation. In this study ε was initially set to one with a decay
rate = 0.9998. ε got reduced by the decay factor according to (4.2), every time
a positive reward was obtained. The decay rate of 0.9998 was chosen based on
the simulation time. It was essential to not reach a too low epsilon too fast to do
continuous exploration at the same time as only exploitation should be applied in
the end of the simulation. Furthermore, ε was also the reference for which phase
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of the training the Q-algorithm was set to at the moment, but this will be further
explained in chapter 5.

ε = ε · decayrate (4.2)

Reward, rt

In this thesis the reward is calculated according to (4.3). A positive reward is
therefore only obtained when one of the beams from the beam candidate set has
better RSRP than the current serving beam.

rt =

{
RSRPprobingBeam −RSRPcurrentBeam, if rt > 0

0, otherwise
(4.3)

Q-table

The Q-table spans up the state-action space and is of the dimensions number
of possible states × number of possible actions. Each time a new Q-value is
calculated for a specific state-action pair, the new Q-value will replace the old
Q-value in accordance with (4.1) in the Q-table at position (St, At). The initial
Q-table applied in this thesis is illustrated in Figure 4.2 and consists of 64 actions
× 64 states:

• State: A state in this thesis is referred to a narrow beam.

• Action: An action in this thesis is referred to a switch between two narrow
beams.

The number of states corresponds to the size of the applied beam grid, which
consists of 64 beams in total. To be able to perform a beam switch to any beam,
the number of actions needs to be the same as the number of states, i.e., 64 possible
actions.
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Figure 4.2: Initial Q-table with dimensions corresponding to beam
grid.
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Initially, before training has started, all elements in the Q-table are set to zero,
since no actions from any state should be favored to be performed more often. In
the Q-table in Figure 4.2 each row refer to one state and each column to one action.
If the user is connected to a narrow beam St and the machine learning algorithm
picks a candidate beams set consisting of the following six actions [A1t, A2t,
A3t, A4t, A5t, A6t] the Q-table will be updated at (St,A1t), (St,A2t), (St,A3t),
(St,A4t), (St,A5t) and (St, A6t). The number of actions chosen are based on the
number of beams being probed in baseline to be able to make a fair comparison
between the machine learning algorithm and baseline.
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Chapter 5
Method

This chapter describes the procedure of applying machine learning to beam man-
agement, more precisely beam tracking, in an Ericsson 5G NR simulator.

5.1 Data overview

The simulator offered much freedom regarding what logs that could be used to get
access to different data. The following logs seemed interesting:

• Cell downlink (DL) throughput

• Bit Error Rate (BER)

• Current serving beam index + corresponding RSRP-value

• User position, direction and movement speed

To be able to investigate the result of the machine learning algorithm and
also to compare the result to the baseline algorithm, a vital step was to find a
log providing a relevant Key Performance Index (KPI). Cell downlink throughput
was considered as the most promising KPI, mainly because of its relevance to this
thesis, but also because of its easy accessibility in the simulator. BER could most
likely also have been used, but was not further investigated in this thesis.

Even though cell DL throughput was a suitable parameter to evaluate the
result on, it could not be applied to train the Q-table. When training the Q-table
it was required to be able to evaluate the connection of each user at each beam.
Hence, RSRP turned out as a suitable replacement, which was reachable for each
user at each beam.

Logs regarding user position, direction and movement speed was also accessible
in the simulator but theses were never included in the machine learning algorithm
itself. However, those logs helped to increase the knowledge of movement patterns
of UEs and to create our own movement patterns for UEs.

5.2 Method and algorithm overview

The goal of the thesis is to implement a machine learning algorithm, or more
precisely a Q-learning algorithm in the Ericsson simulator to improve its ability
to pick more suitable beams for a candidate beam set.
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Simulation start

Calculating 

candidate beam set

Second iteration 

and forward

Beam switch and 

update Q-table

Figure 5.1: Block-scheme showing the structure of the implemented
machine learning algorithm.

CSI-RS reports are sent on each beam in the candidate beam set to the UE
and are used to make measurements and to calculate RSRP. The RSRP values
are compared to decide which candidate beam that can provide highest channel
quality. The Q-table will get updated when CSI-RS measurements have been sent
back to the base station. An overview of the algorithm can be seen in Figure 5.1.

5.2.1 Different phases

Depending on the value of ε the algorithm will be in either training phase, transi-
tion between training and test phase or in test phase.

1. The training phase is mainly exploiting the baseline algorithm. Until epsilon
ε is decreased to 0.25 the machine learning algorithm will only select one
beam to the candidate beam set, while the baseline algorithm will select the
rest of the beams. ε = 1.0 to 0.25

2. During the transition a combination of baseline algorithm and machine
learning algorithm will be used: ε = 0.25 to 0.05

3. When ε has decreased to 0.05 the machine learning algorithm is said to be
in the test phase. At this stage one beam will be chosen randomly from a
closest beam set to the candidate beam set, while the rest of the beams will
be decided based on exploiting the Q-table. ε = 0.05 to 0.0

The different values of ε that are set as transition points were decided based
on own experience after observing the result after running multiple simulations.

5.2.2 Simulation start

Initially, ε is set to one, which establishes the start of training phase. To maintain
a decent cell DL throughput the baseline algorithm is responsible for most beam
selections in this stage.
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5.2.3 Calculating candidate beam set

To help the machine learning algorithm to only consider the most reasonable beams
a closest beam set is created to select beams from. The closest beam set consists
of the current serving beam plus the 19 closest beams. The closest beams are
the beams that have the shortest distance to the serving beam where they hit the
ground. The reason 19 closest beams were chosen was to decrease the required
time of simulation to reach a good reliable Q-table. The candidate beam set will
hold six beams in total and the current phase decides how these beams are selected:

• training phase: {four beams chosen by baseline + one beam chosen by
machine learning + serving beam}

• transition phase: {two beams chosen by baseline + three beams chosen by
machine learning + serving beam}

• test phase: {five beams chosen by machine learning + serving beam}

A beam chosen by machine learning can either be decided based on the Q-table
or picked randomly from closest beam set. This decision is based on if a random
variable becomes greater than or less than the current value of ε. Initially most
beams chosen by machine learning will be picked out on random, but it strives to
exploit Q-table more with time. However, one random beam from closest beam set
will always be added to the candidate beam set to allow the Q-table in all phases
to have the possibility to adapt to new behavior among UEs.

5.2.4 Beam switch and update Q-table

When the candidate beam set is full, CSI-RS reports will be sent on each beam
and a RSRP value will be calculated for each beam. The RSRP value for each
respective beam in the candidate beam set will be compared to the RSRP value
of the serving beam to decide if a switch of serving beam would be beneficial
or disadvantageous. A positive RSRP difference according to (4.3) will trigger a
switch of serving beam and decrease ε according to (4.2). The Q-table will also
get updated, in line with (4.1) at each beam/action in the candidate beam set.
The state corresponds to the serving beam and each beam in the candidate beam
set corresponds to an action.

5.2.5 Second iteration and forward

The different sections will be repeated multiple times each second according to the
block-scheme in Figure 5.1. The value of ε will follow from each loop.
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Chapter 6
Simulation Overview

In this chapter, an overview of the simulation environment will be presented.
The available data, configuration parameters for the network and UE behavior is
discussed and explained.

6.1 Simulation environment

In this thesis an Ericsson simulator has been used to simulate data traffic in a
5G system. The simulator is a powerful tool that supports multiple 5G features
such as mmWave frequencies, beamforming and beam management procedures.
It also made it possible to perform simulations over many simulation seeds and
iterate a certain parameter of interest over many values. A simulation seed is one
version of all the possible random parameter configurations that can take place in
the simulation. Each parameter’s behavior is determined by the seed, and for any
seed the parameters are always determined in the same way so that the seed is
reproducible. The learning rate variable in the Q-learning algorithm was iterated
over values between 0.1 and 0.9 to identify which learning rate that gave best
performance. Running the simulations over multiple seeds, instead of just one,
added further credibility to the results since the proposed algorithm was tested in
different surroundings that were influenced by the randomness of the seed. The
simulations were run in parallel on powerful servers so that the simulation process
would not take an unreasonably long time.

All the simulations were run twice with the exact same simulator parameters.
The only thing that set them apart was that in one of the cases our proposed
machine learning algorithm was used for beam tracking, and in the other case the
already existing baseline algorithm was used.

The generated data was stored in log files that were post-processed in MAT-
LAB. In the next section the simulator parameters are listed and explained in
more detail together with a visualization of the simulation area.
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6.2 Simulator parameters

• Simulation time: 400 s

• seeds: 50

• throughput log sample period: 0.01 s

• carrier frequency: 28 GHz

• deployment scenario: 1 cell with 1 base station

• cell radius: 100 m

• antenna:

– height: 23 m
– zenith angle: 23◦

– number of narrow beams: 64
– number of antenna elements: 128

• UE:

– always has data to transmit
– number of UEs: 1 initial UE and then UEs arrive at an intensity of 20

per second until a maximum of 10 UEs are in the system.
– height: 1.5 m
– movement pattern:

∗ straight mover:
· speed: 4 m/s
· spawn randomly in the cell
· move straight in a random direction until a circle that cir-
cumscribes the hexagonal simulation area is reached
· bounce on the circle border and continue the movement in
the new direction

∗ road mover:
· speed: 10 m/s
· spawn at coordinates within a predefined area
· move horizontally (west-to-east mover) or move vertically
(north-to-south mover) until a circle that circumscribes the
hexagonal simulation area is reached
· turn around 180 degrees and continue the movement in the
opposite direction

Some of the parameters needs further explanation. The antenna zenith angle sets
how much the antenna should tilt towards the ground, where an angle of zero
degrees would mean that the antenna is directed horizontally. The number of
antenna elements tells how many individual antennas that are used to beamform
the signal.



Simulation Overview 27

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

100

Antenna

Figure 6.1: Illustration of the base station’s position and conceptual
beams drawn from it.

The simulation environment consists of UEs spawning in a hexagonal cell with
a cell radius of 100 m, i.e. the distance from the center of the hexagon to its six
corners is 100 m. Figure 6.1 illustrates the base station’s position in the simulation
area. It also shows the different beams that can be formed and where they hit the
ground. It should be noted that the beams’ width in the figure does not exactly
correspond to the beams’ width in the simulator. Nevertheless, the figure can still
be useful to the reader to get a clearer picture of what the beam setup looks like.
Especially useful is how the figure illustrates the four layers of beams that are
formed and the fact that beams can overlap each other.

When a simulation starts, UEs that spawns begin to move according to their
movement pattern. At the same time they try to establish a connection for data
transmission with the base station. Once this initial access procedure is finished the
UE is connected to one of the base station’s beams. The beam tracking algorithm
then tries to ensure that the moving UE always is connected to a beam with
good channel quality. The simulations were run in two scenarios where the UEs
movement patterns were different. With this setup, the proposed algorithm could
be compared in the two scenarios to see if having UEs with a more predictable
movement path had any impact on the algorithm’s performance.

6.2.1 Straight movers only

In the first simulation scenario only straight movers exists. This type of UE spawns
at a position in the cell that is determined by the randomness of the simulation
seed. The UE continues to move until the simulation ends. Figure 6.2 shows two
UEs starting position and movement in one of the seeds.
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Figure 6.2: Movement pattern of UEs of the straight mover type.

6.2.2 Straight movers and road movers

In the second simulation scenario both straight movers and road movers exists.
This scenario is supposed to represent a real-world scenario where UEs both move
in random directions and along straight paths. The road movers’ movement pat-
tern can be compared to how vehicles move along a road, repetitive and pre-
dictable. Figure 6.3 shows starting position and movement of road movers moving
from west to east and north to south, as well as a straight mover, in one of the
seeds.

6.3 Simulation errors

A total of 50 seeds · 9 iterations · 2 scenarios = 900 simulations were run when
testing the machine learning algorithm. When testing the baseline algorithm
50 seeds · 2 scenarios = 100 simulations were run (this test did not require any
iterating parameter). For some unknown reason six out of the 1000 simulations
were terminated before they could finish and no log files were stored from them.
Five of the errors happened when the machine learning algorithm was tested and
one error occurred when the baseline algorithm was tested. The interrupted sim-
ulations were distributed over four seeds, and out of fairness to the comparisons
between the two beam tracking algorithms, and also between the two simulation
scenarios, these four seeds were discarded when the results were processed.
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Figure 6.3: Movement pattern of UEs of the straight mover type.

6.4 Post-processing

The logged data was processed in MATLAB to be able to present the results in
a clear way. Besides MATLAB’s many useful tools two additional methods were
used, namely cumulative moving average and linear interpolation.

6.4.1 Cumulative moving average

Cumulative moving average is a calculation method to analyze time series of data
by averaging all of the previous data points up until the current data point. Viewed
simplistically it can be seen as smoothing the data. This is especially useful when
dealing with throughput data that can fluctuate a lot, even during short time
periods. The equation for calculating the moving average is

CMAn =
x1 + x2 + ...+ xn

n
. (6.1)

6.4.2 Linear Interpolation

Due to the fact that UEs perform beam switches at different times (and therefore
stores the RSRP values at different times) depending on which algorithm that is
used, interpolation of the RSRP values is required to compare the two algorithms
in a fair way. The interpolation of each UE’s RSRP values for a seed was done by

y = y0 · (1−
x− x0
x1 − x0

) + y1 · (1−
x− x0
x1 − x0

). (6.2)

This was done for all UEs in a seed, and by taking an average of all the UEs’
interpolated RSRP values, an average RSRP over time for a seed was given. The
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same procedure is done for all the seeds and an average RSRP over time for all the
seeds is then calculated. The same calculations are made both for Q-learning and
for baseline. Finally, the two interpolations are compared and an RSRP difference
at a specific time can be calculated.



Chapter 7
Results

This chapter presents the results from the simulations and shows the performance
of the proposed algorithm compared to the baseline algorithm in the two simulation
scenarios.

7.1 Optimal learning rate

The number of seeds where each learning rate value was the most optimal one for
the straight- and road mover scenario is shown in Table 7.1. The most optimal
learning rate for each seed was decided by comparing every learning rate’s sum of
the cell downlink throughput data for that seed.

Straight mover scenario Road mover scenario
Learning rate Best choice

0.1 1
0.2 6
0.3 7
0.4 8
0.5 4
0.6 5
0.7 4
0.8 5
0.9 6

Learning rate Best choice
0.1 4
0.2 6
0.3 8
0.4 5
0.5 4
0.6 7
0.7 5
0.8 5
0.9 2

Table 7.1: The number of times each learning rate was the most
optimal for a seed in the two scenarios.

The optimal learning rate value varied for the different seeds and every value
was the most optimal one for at least one seed. However, by looking at Table 7.1 it
can be concluded that the values 0.4 and 0.3 were the optimal values most number
of times for the straight mover scenario and the road mover scenario, respectively.

By varying the learning rate for each seed, an optimal performance can be
reached for the Q-learning algorithm. However, knowing beforehand which learn-
ing rate to use for which simulation seed is not possible. Therefore, the per-
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formance for when a fixed learning rate value was used on all the seeds is also
calculated. When the results are presented in the following sections, both the
optimal performance and the performance for the fixed learning rate is compared
to the baseline algorithm.

7.2 Straight mover scenario

The results for the straight mover scenario will be divided into two sub-chapters,
namely throughput results and RSRP results.

7.2.1 Throughput results

Figure 7.1 shows the averaged cell downlink throughput for the Q-learning algo-
rithm when using optimal learning rate, Q-learning with learning rate set to 0.4
and the baseline algorithm. As can be seen in the figure, the throughput of the
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Figure 7.1: Averaged cell downlink throughput for the straight
mover scenario.

Q-learning algorithm closely follows the baseline algorithm in the early stages of
the simulation. This is expected, because the Q-learning algorithm uses the base-
line algorithm to select candidate beams in the early training phase. However,
an increase in throughput for the Q-learning algorithm compared to the baseline
algorithm is noticed after a short while when candidate beams are selected based
on the results of previous selected beams. After the initial training phase, the Q-
learning algorithm’s throughput stays superior during the rest of the simulation.
The Q-learning algorithm even increases the throughput difference compared to
the baseline algorithm the longer the simulation runs. This is the case for both
the optimal and the fixed learning rate versions of the algorithm. As expected,
the optimal learning rate’s throughput is better than when a fixed learning rate is
used.
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The relative cell downlink throughput increase compared to the baseline algorithm
can be seen in Figure 7.2. The two plots are calculated by dividing the throughput
for the optimal and the fixed learning rate versions with the throughput for the
baseline algorithm. The figure shows that at the end of the simulation, when the
algorithm has had time to learn from previous decisions, a five percent increase
in cell downlink throughput is achieved for the optimal Q-learning algorithm. For
the algorithm with fixed learning rate the throughput increase is slightly lower,
but still around four percent better than the baseline algorithm.
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Figure 7.2: Relative cell downlink throughput for the straight mover
scenario.

Another way to illustrate the throughput increase for the Q-learning algorithm
is through a CDF plot, see Figure 7.3. The CDF plot shows that around 90% of
the throughput values takes a value less than or equal 5.6 Mbps for the optimal
Q-learning algorithm. For the fixed learning rate the 90% limit is just slightly
lower, while the baseline algorithm’s 90% limit is significantly worse at around 5.2
Mbps. Worth noting is that unlike figures 7.1 and 7.2, the CDF is not calculated
by averaging the throughput data. Instead it uses the actual logged data values.
The CDF plot confirms the Q-learning algorithm’s throughput increase observed
in figures 7.1 and 7.2.
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Figure 7.3: Cumulative distribution function of the cell downlink
throughput for the straight mover scenario.

7.2.2 RSRP results

The improved performance of the Q-learning algorithm can also be illustrated by
looking at the measured RSRP values that are reported by the UEs. In Figure 7.4,
the percentage of all RSRP values that were greater than a specified threshold is
shown. The threshold was set to -120 dBm. The bar diagram shows that around
81% of the RSRP values reached the threshold for the Q-learning algorithm. For
the baseline algorithm only around 79% of them reached the threshold.
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Figure 7.4: Percentage of RSRP values above -120 dBm in straight
mover scenario.
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Finally, an average interpolated RSRP difference is shown in Figure 7.5. The
interpolation method that was used is described in Section 6.4.2. The sample
points where the two algorithms are compared are every fifth second, which gives
80 RSRP difference bars. If the bars have a positive value, the RSRP difference is
in favor of the Q-learning algorithm and if they have a negative value the RSRP
difference is in favor of the baseline algorithm. The absolute value on the y-axis
tells how much better one algorithm performed at a specific time compared to the
other algorithm. The figure clearly shows that the average interpolated RSRP was
higher for the Q-learning algorithm in a majority of the sample times. Further-
more, at the sample times where the average interpolated RSRP difference was
in favor of the Q-learning algorithm a greater RSRP difference could be reached
(around 2.5 dBm) compared to when the average interpolated RSRP difference
was in favor of the baseline algorithm (around 0.7 dBm).
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Figure 7.5: Difference between interpolated values in machine learn-
ing and baseline over all measured RSRP values in straight
mover scenario.
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7.3 Road mover scenario

In this section, the results for the road mover scenario are presented. Just like
in the section for the straight mover scenario, the results will be divided into two
sub-chapters called throughput results and RSRP results.

7.3.1 Throughput results

Figure 7.6 shows the averaged cell downlink throughput for the Q-learning algo-
rithm when using optimal learning rate, Q-learning with learning rate set to 0.3
and the baseline algorithm. Similar to the straight mover scenario, the Q-learning
algorithm’s performance follows the baseline algorithm in beginning of the simu-
lation. An increase in throughput for the Q-learning algorithm compared to the
baseline algorithm is then noticed after a short while and the superior performance
of the Q-learning algorithm stays consistent throughout the rest of the simulation.
Furthermore, the throughput difference compared to the baseline algorithm is in-
creased the longer the simulation runs. This is true for both when an optimal and
a fixed learning rate is used.

0 50 100 150 200 250 300 350 400

time [s]

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t 

[b
it
/s

]

106 Average Cell Downlink Throughput

Optimal ML

Baseline

Learningrate 0.3 ML

Figure 7.6: Averaged cell downlink throughput for the road mover
scenario.

The relative cell downlink throughput increase compared to the baseline algorithm
can be seen in Figure 7.7. This shows that a throughput increase over six percent
is achieved at the end of the simulation for the optimal Q-learning algorithm. The
increase for the Q-learning algorithm with fixed learning rate is over five percent
at the end of the simulation.
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Figure 7.7: Relative cell downlink throughput for the road mover
scenario.

Figure 7.8 shows the CDF plot of the cell downlink throughput. The figure shows
that around 90% of the throughput values takes a value less than or equal 6.4 Mbps
for the optimal Q-learning algorithm. The fixed learning rate follows closely behind
the optimal version. Both perform better than the baseline algorithm whose 90%
limit equals around 6.0 Mbps. Just like in the straight mover scenario, the Q-
learning algorithm achieves a distinctive throughput increase compared with the
baseline algorithm. The CDF plot confirms the increase that was observed in
figures 7.6 and 7.7.
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7.3.2 RSRP results

In Figure 7.9 the percentage of all RSRP values that were greater than the thresh-
old -120 dBm is shown. The bar diagram shows that around 84% of the RSRP
values reached the threshold for the Q-learning algorithm. For the baseline algo-
rithm only around 82% of the RSRP values reached it.
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Figure 7.9: Percentage of RSRP values above -120 dBm in road
mover scenario.

Finally, Figure 7.10 shows an average interpolated RSRP difference. The inter-
polation method that was used is described in Section 6.4.2. The sample points
where the two algorithms are compared are every fifth second, which gives 80
RSRP difference bars. If the bars have a positive value, the RSRP difference is in
favor of the Q-learning algorithm and if they have a negative value the RSRP dif-
ference is in favor of the baseline algorithm. The absolute value on the y-axis tells
how much better one algorithm performed at a specific time compared with the
other algorithm. Similarly to the straight mover scenario, the average interpolated
RSRP was higher for the Q-learning algorithm in most of the sample times. An-
other result that matches the result obtained in the straight mover scenario is that
a greater RSRP difference could be reached in favor of the Q-learning algorithm,
around 2.5 dBm, compared with around 1.8 dBm for the baseline algorithm.
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mover scenario.
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Chapter 8
Discussion

8.1 Overall Results

The overall results show that the machine learning algorithm is better than the
baseline. The throughput diagrams in the results chapter illustrates a clear picture
of higher throughput both when using the same learning rate for all seeds and when
the optimal learning rate for each corresponding seed is being used. The RSRP
related diagrams shows a clear picture of improved RSRP when using the machine
learning algorithm.

The RSRP results can in this report be considered as a quality indicator,
applied to verify the throughput results achieved. All RSRP related diagrams
illustrates an average improvement of RSRP, which thereby strengthen the rea-
sonability of improved throughput. Achieving higher RSRP value is a clear sign
of improved beam selection. However, an additional interesting aspect to consider
would be the number of switches that are performed during a simulation. Each
beam switch is power consuming, (this is not discussed earlier) hence would a
greater number of beam switches from one of the algorithms impair its overall
result.

Another indicator that could have been investigated was CQI. Unfortunately,
could not the machine learning algorithm reach CQI values for beam switch and
it would have been extremely time consuming to allow it. RSRP is based on CQI,
thus would CQI be a more sensible indicator to apply.

The simulated throughput values reliability is tough to verify. Cell throughput
varies a lot dependent on the number of users is the system and the type of users
in terms of traffic model and if a user desires constant data flow or not. Therefor
is a comparison to reality not possible to make. But, on the other hand is RSRP
fairer to make comparisons with. RSRP values higher than -100 dBm are con-
sidered good and will provide a steady signal without any noticeable disturbance.
Unfortunately do the simulator seldom provide signals of this quality – neither
baseline nor machine learning algorithm. After analysis of the simulation environ-
ment is our conclusion that none of the beams transmitted from a base station in
the simulator will seldom be able to provide RSRP that meets real RSRP require-
ments. Because of this behaviour was it concluded required to decrease the target
RSRP to match the outputs of the simulator. The target RSRP was decreased to
-120 dBm, which is illustrated in Figure 7.4 and Figure 7.9.
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8.2 Future work

For future works more aspects than beam selection could have been investigated
to improve the results further. One aspect that was not covered in the thesis is
how the size of the candidate beam set could have affected the result. If fewer
beams in the candidate beam set could be used and still maintain an improved
cell DL throughput compared to baseline it would be a sign of better performance.
In addition to this, a deep neural network could have been applied instead of one
layer reinforcement learning to possibly find more advanced patterns of which beam
to connect to depending on previous actions. Another aspect is the relationship
between the value of epsilon at a specific time and the phase of the machine
learning algorithm. It was never deeper investigated how and when epsilon should
be decreased and when the transition between different phases should occur. A
last aspect that was not investigated was to train the Q-table based on user DL
throughput instead of RSRP. Since the performance of the algorithm is determined
with respect to throughput, it would be reasonable to try to do training based on
the same KPI. This was not possible in the simulation environment that was used
in this thesis, but could possibly be something to consider in future works related
to this.
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