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Abstract

In the Machine Learning field, more and more of the data collection is commercialised, even with monetary
rewards to people and organisations for providing input data for models. Even if data collection is not
associated with direct costs for the researcher, there are many cases where there are indirect, or circumstancial,
costs associated with it.

An established concept in game theory is "Shapley Values", which has had a lot of success in the field
of statistics and machine learning over the last number of years, for example as a technique for variable
importance estimations. Now, researchers have proposed using Shapley Values also to quantify the worth,
or value, of an observation in a model (Data Shapley Values). However, little effort has earlier been spent
to properly evaluate these in an Ordinary Least Squares setting, especially since there is already a very
established way of quantifying an observations influence (Cook’s Distance), which should be reasonably well
aligned.

Hence, this thesis sets out to explore the use of Data Shapley in Linear Regression models, with the purpose
to research if this is a valuable concept for a researcher using OLS models. This thesis will try to approach
the topic by answering the following specific questions: * What is a suitable set of parameters for estimating
Data Shapley-values for linear regression models? * How well does Data Shapley values and Cooks Distance
values agree on the valuation of an observation? * Is it possible to use Data Shapley values to detect outliers
also in linear regression models?

Data Shapley is studied in some detail with the use of four different datasets and models, and Data Shapley
values that are estimated using three different metrics and four different configurations of the estimation
algorithm. Results are compared with Cook’s Distance for evaluation.

The main conclusion from this research is that Data Shapley is a serious contender to Cook’s Distance in
capturing the worth of an observation. It performs better than, or at least as well as, Cook’s Distance
in capturing the low value observations, but it also performs significantly better than Cook’s Distance in
capturing good observations as well.
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1 Introduction

In April 2019, the authors Amirata Ghorbani and James Zou (2019) released the paper Data Shapley:
Equitable Valuation of Data for Machine Learning, which has subsequently received some attention in the
field. The objective of the authors’ study was to find a way to estimate the worth of a specific observation
used in a model, and they propose a concept called Data Shapley specifically for this purpose. The paper was
accepted to be presented on the International Conference on Machine Learning (ICML) in 2019, has been
referenced in other publications several times since its release, and had an entire episode of the very popular
podcast Linear Digressions.

The paper above is - at least according to the author of this thesis - focused heavily on complex models
where the purpose is to perform classification predictions. For example, in all the empirical examples shown
in the paper, the measure of quality of the model has been accuracy ((TP + TN)/(TN + TP + FP + FN),
where TP=True Positive, TN=True Negative, FP=False Positive and FN=False Negative - a metric only
applicable to so called classification problems), and only one case is something other than a Neural Network.
Data Shapley should certainly be general enough to also handle simpler regression models, including something
as fundamental as Ordinary Least Squares (OLS). However, in the paper there are no mentions of work
regarding identification of suitable use or modifications for example for OLS models.

Hence, this thesis sets out to explore the use of Data Shapley in Linear Regression models, with the purpose
to research if this is a valuable concept for a researcher using OLS models. This thesis will try to approach
the topic by answering the following specific questions:

• What is a suitable set of parameters for estimating Data Shapley-values for linear regression models?
• How well does Data Shapley values and Cooks Distance values agree on the valuation of an observation?
• Is it possible to use Data Shapley values to detect outliers also in linear regression models?

Naturally, there are many mentions of yet undefined concepts in this section, and these will be described in
the next chapter.

Worth mentioning, is that this report does not set out to completely exhaust the topic around Data Shapley
for linear regression models, and it is likely that many more questions are yet to be explored. The report will
for example only look at ordinary least squares models.

Also, the specific models used in the empirical study, does not make any claim of being “the” most suitable
model for the specific case. Some effort has been spent in order to get realistic and reasonably well fitting
models, but they are still built primarily for the purpose of studying the corresponding Data Shapley values.

All empirical research for this thesis is performed in R (R Core Team 2019).
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2 Earlier Research

In this chapter, a brief introduction to some of the foundational concepts underpinning the measurements of
influence and valuation of observations will be presented. First and foremost, Cook’s Distance will be explained
in some detail. Afterwards, the necessary foundation will be laid to understand the Data Shapley values. The
understanding of Data Shapley values requires an understanfding about both Monte Carlo-techniques and
Shapley values (note the difference between “Shapley values” and “Data Shapley values”), so some time will
also be spent on those topics. The author assumes the reader has prior knowledge of multiple linear regression,
and foundational related concepts. This includes for example calculating residuals and measurements like
Adjusted R2.

2.1 Measuring Influence of an Observation

In statistics, when one has identified a model and estimated the best fit, an important aspect is to investigate
model diagnostics. As the model has been fit, there have most likely been some assumptions made and
investigating the model through a variety of methods can for example reveal violations of these assumptions,
including non linearlities, heteroskedastic errors and outliers.

However, according to Cook and Weisberg (1982):

“A related question that cannot be easily addressed by those methods is that of stability, or the
study of the variation in the results of an analysis when the problem formulation [. . . ] is modified.
If a case is deleted, for example, results based on the reduced data set can be quite different from
those based on the complete data[. . . ]. We call the study of the dependence of conclusions and
inferences on various aspects of a problem formulation the study of influence.”

One of the very established and widely used metrics for diagnosing influential observations, is Cook’s Distance,
Di. This can be briefly summarized as the total changes in the regression model when observation i is
removed from it. To understand this in more detail, one need to understand a few foundational concepts:

2.1.1 Leverage

Leverage is a metric that tries to capture if an observation xi 1) is away from the bulk of x’s and 2) how
attracted the regression line is to this point (Sheather 2009,p. 54). However, Leverage by itself usually does
not tell the full story by itself. A model may contain observations of both “good” and “bad leverage”. To
explain this, let’s look at three examples:
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Figure 1: Three examples of Leverage

2



In Figure 1(a) above, the marked point would not be called a leverage point, since the effect on the regression
line is minimal when the observation is omitted, and the observation is not far away from the other x’s.
However, in Figure 1(b) the observation is further away from the other x’s, and it is also affecting the
estimated regression line quite drastically. This would therefore be a “Bad Leverage”-point. In Figure 1(c),
the observation is located away from the other x’s, and the regression line is most likely heavily using this
observation. However, since it does not deviate much from the “true” parameter, this would be a “Good
Leverage”-point.

Leverage is easiest calculated in the diagonal on the n× n matrix H, called the Hat matrix. If

Ŷ = Xβ̂ = X(XTX)−1XTY = HY (1)

then

H = X(XTX)−1XT (2)

The diagonal (hii) now captures the magnitude of the change to the regression line when including observation
i.

2.1.2 Standardized Residual

As for example Sheather (Sheather 2009) states, a challenge with using residuals is that these do not have
the same variance, due to these being a function of both σ2 and hii (Cook and Weisberg 1982,p. 18). This is
especially problematic in the case of high leverage points. The advice is therefore to standardize (also called
studentized, for example by Cook and Weisberg (1982)) with the following calculation:

ri = ê

s
√

1− hii
(3)

where ê = yi − ŷi is the raw residual and s = σ̂, namely

s =

√√√√ 1
n− p

n∑
j=1

ê2
j (4)

where p = number of parameters.

2.1.3 Cook’s Distance

So, with the definition of both Leverage and Standardized residuals we are ready to define Cook’s Distance
as defined by Cook (1977). Here, the total influence an observation has is being captured as it is coming from
either a high standardized residual, a high leverage value or both. Formally, the Cook’s Distance Di for a
particular observation i is defined as

Di = r2
i

p

hii
1− hii

(5)

where p = number of parameters.
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2.2 Shapley Values in Game Theory and Statistical Learning

To transition from an established way of measuring influence, we can now introduce a potential alternative -
the concept of Data Shapley values. To understand Data Shapley values, the context need to be set from
“classical” Shapley values. Again, note that Shapley Values refers to the general concept, whereas Data
Shapley and Data Shapley Values (sometimes abbreviated as DSV or just DS) is the specific use of assessing
value of observations. Both concepts are described below.

Shapley values is a established concept in game theory and was introduced in 1953 (Shapley 1953). It tries
to describe the expected gain of a cooperation, given the individual actors that participate. Also, inversely,
what individual value does each actor contribute with to the overall gain of the cooperation.

Formally: for a set N (of |N | actors) a subset of S (i.e. a coalition of |S| actors, also denoted n, which will be
described later) has a value function v(S) (the “worth” of the coalition), that describes the total expected
sum of payoffs the actors in S can obtain by this specific collaboration. A Shapley value φj is then, for an
individual actor {j}:

φj(v) = 1
|N |

∑
S⊆N\{j}

(
|N | − 1
|S|

)−1
(v (S ∪ {j})− v(S)) (6)

where |N | and |S| are the sizes (cardinality) of the sets. This formulation is in line with the original formulation
by Shapley. However, in this thesis |S| will often be the specific number of observations selected for a model
(out of all available observations |N|). Since the number of observations often are notated n in statistics, this
will be favored throughout this thesis.

To better understand the Shapley Value concept let us take an example:

A football team wants to set the salary of the players in the team based on their value to the team and a
fixed amount is available for distribution to the players. The total set of players include all the regular players
and all reserves. That means the set of N has > 11 actors (i.e. |N | > |S|), which means there are multiple
variations of subsets with |S| = n = 11, meaning the players on the field at any given match). One could also
quantify the performance of the team (for example by the ratio GamesWon

GamesLost or GoalsScored
GoalsAgainst ). Some players will

then be more valuable to the team than others: With some players active on the field, the team is more likely
to perform well according to the definition. Likewise, some other players do likely not contribute as much to
the overall performance. Shapley values quantify a particular team composition’s marginal contributions to
the overall performance and distributes the marginal contribution evenly between the actors, which is then
repeated for all different team compositions. That is, how much of the metric GoalsScored

GoalsAgainst can be attributed
to each individual player.

Take for example an attacker: In some compositions, there will be too many attackers and to few midfield
players or defenders. An attacker that is for example adding more value in a pure forward position than they
decrease value in a midfield or defending position would have an overall positive contribution - and a higher
Shapley value than a player who is equally good at attacking but worse as a defender or midfielder. Of course,
there would have to be many games played with many different subsets of players and team compositions,
including suboptimal ones. Therefore, it may be challenging to calculate these values in this specific scenario.

2.2.1 Properties of Shapley values

Properties of Shapley values have been the subject of many studies (Pal and Bharati 2019) and here some of
the most central properties are summarized. The properties listed in this section are also the ones that Zou
and Ghorbani highlight as key for the Data Shapley concept (2019).

• Efficiency: The sum of individual Shapley values for each actor are equal to the total performance of
the collaboration:
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∑
i∈N

φi(v) = v(N) (7)

• Symmetry: If two actors (i, j) have the same Shapley values φi(v) = φj(v), then

v(S ∪ {i}) = v(S ∪ {j}) (8)

• Linearity: Not only can actors value be added up within a collaboration (Efficiency), one actors total
value across multiple collaboration can also be added, so that:

φi(v + w) = φi(v) + φi(w) (9)

• Null player: The Shapley value of a null player is 0 The Shapley value ϕi(v) = 0 if v(S ∪ {i}) = v(S)
for all coalitions S that do not contain i.

It should be noted that there are several other variations on describing the same fundamental properties.
The Nobel Prize winner Aumann (1994) mentions for example that the Linearity (also known as Additivity)
and Null Player properties can be replaced with a Monotonicity property. The properties presented here
should however be adequate to understand the fundamentals of the Shapley Value concepts and is aligned
with the founndation for Data Shapley.

2.2.2 Shapley values for Variable Importance

As a side note, Shapley values have been proposed throughout history to be used to analyze variable
importance - the relative importance that each variable adds to an overall model. As Pal and Bharati (2019)
note, this method has been proposed with different names for example by Lindeman, Merenda, and Gold
(1980), Kruskal (1987), and Lipovetsky and Conklin (2001).

In essence, the proposal from these authors have been the following:

Assume there is a dataset with which one fits a variant of a model like: y = β1x1 +β2x2 +β3x3 + ...+βpxp+β0,
where the variant is either the full model or a subset of xi:s.

One could then see the relative contribution of variable xi as the average increase in a performance metric (for
example R2 as proposed by Lipovetsky and Conklin (2001) across all the model permutations that include xi
from all the permutations that do not.

Shapley values have also been proposed for model interpretability in the Machine Learning community, by
Lundberg and Lee (2017) in a form called SHAP (SHapley Additive exPlanations). This as well is in essence
the normal concept, but including some more efficient way to compute or estimate them.

2.3 Monte Carlo-simulations for estimations

This report will include minimal detail on the fundamentals of Monte Carlso methods, and the interested
reader would go elsewhere for these details (for example Harrison (2010); or Robert and Casella (2010)). For
the reader to have some context, a minimal introduction will however follow here.

Monte Carlo methods could refer to a large variety of approaches where simulations are used as a foundation
to numerical analysis. It has been around for hundreds of years, but was more rigorously established during
the Manhattan project. It is important to understand that:

“There is no single Monte Carlo method – any attempt to define one will inevitably leave out
valid examples – but many simulations follow this pattern:
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-model a system as a (series of) probability density functions (PDFs);
-repeatedly sample from the PDFs;
-tally/compute the statistics of interest.” (Harrison, 2010)

Harrison (2010) also continues to state “Monte Carlo simulation is now a much-used scientific tool for
problems that are analytically intractable and for which experimentation is too time-consuming, costly, or
impractical.”. It will later become obvious that we are facing a challenge where Monte Carlo-methods are a
good fit, due to the first piece of this statement - the problem is very challenging to solve analytically.

2.4 Data Shapley for valuation of observations

“As the legal system moves toward recognizing individual data as property, a natural problem to
solve is to equitably assign value to this property”

As the quote says, Zou and Ghorbani (2019) identifies a need to assign a quantitative value of a particular
observation. Here follows a brief explanation of this concept, first by defining some of the core concepts, and
then by going into the principles for the calculation.

Zou and Ghorbani lets D be the set of all observations {1,2,. . . ,n} and S be any subset of D (S ⊆ D). Note
that D here equals N in more traditional notation (see section 2.2). Other key definitions are

• Learning Algorithm A : Different algorithms or model types will have different valuations for the
same observation. Therefore, the “learning algorithm” will be the most basic foundation for identifying
the valuation. In this study, this is of curse constrained to be linear regression models.

• Performance Score Value V (S,A ) or just V (S): A Performance Score is a measure of model
quality, for example R2, R2

Adj , AIC, etc. Performance score will depend on algorithm and which set of
observations is being used to fit the model.

• Data Value φi(D,A , V ) or just φi: This is the value of the particular observation {i}, adhering to
the principles mentioned below.

Seen in the light of Shapley values, the Performance Score V(S) here corresponds to the function v(S) from
previously (again, see section 2.2), whereas the Data Value φi is the Shapley Value φj .

The Data value should, according to the authors, have a property of equitability, which the authors define as
fulfilling the following principles:

1. The valuation φ is zero for an observation {i} that does not change the performance
2. The valuation φ for an observation {i} is constant for any subset S belonging to the full dataset S-{i}
3. The valuation φ is proportional to the performance metric of the model such that φ(V1) + φ(V2) =
φ(V1 + V2). E.g. if observation {i} has φ = 10 and {j} has φ = 12, both measured in SSE (that is, one
can expect a decrease of SSE of 10 respective 12 when {i} or {j} is added in), then when both are
added in, the SSE decreases with 10+12.

And as one can see here, these principles are based on the mathematical properties of Shapley values.

The authors also summarise their work with saying about Data Shapley method that:

• “It is more powerful than the popular leave-one-out or leverage score in providing insight on what data
is more valuable for a given learning task”

• “Low Shapley value data effectively capture outliers and corruptions”
• “High Shapley value data inform what type of new data to acquire to improve the predictor”

There are some more details to cover, specifically regarding the performance metric used, but this is covered
in the introductory section to the empirical results.
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2.4.1 Truncated Monte Carlo

The computation of Data Shapley values will most likely be incredibly heavy, due to the “exploding”
combinatorics of datasets with many observations. Therefore Zou and Ghorbani also propose an algorithm
(Truncated Monte Carlo) to estimate Data Shapley Values by Monte Carlo approximation methods:

Algorithm 1: Truncated Monte Carlo Shapley
Input : Train data D = {1, ..., n}, learning algorithm A , performance score V
Output: Shapley value of training points: φ1, ..., φn
Initialize φi = 0 for i = 1, ..., n and t = 0
while Convergence criteria not met do

t← t+ 1
πt : Random permutation of train data points
vt0 ← V (∅,A )
for j ∈ {1, ..., n} do

if |V (D)− vtj−1| < Performance Tolerance then
vtj ← vtj−1

else
vtj ← V ({πt[1], ..., πt[j]},A )

end
φπt[j] ← t−1

t φπt−1[j] + 1
t (vtj − vtj−1)

end
end

One way to understand this is by seeing the outputs of the algorithm as a matrix:

Here, 10 observations (rows) have had 5 completed iterations (columns) generating values and is currently
working on the 6th. An iteration starts with randomly reordering the observations. Values are then generated
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by adding the observations one by one to a model estimation. For each observation added, the ∆Performance
(i.e. model performance with observation - model performance without observation) is entered into the
appropriate place in the matrix. Once the model performance reaches a certain level (maximum identified
model performance (with all observations) - model performance with observation < C ), all remaining cells in
the iteration are set to 0 (because the added value would be small).

As one can see, this algorithm is perhaps not a perfect fit with the general principles of Monte Carlo
techniques described by Harrison (2010) that were mentioned in section 2.3. Potentially, one could see the
Data Shapley values as a value that is being estimated by drawing random samples from a distribution that
is both constrained (to retain the propoerties of Shapley values) and very complex (since it would have to be
conditioned on which observations are already in the model). However, given that there is a great deal of
simulation in the randomization of the order of dealing with the observations, it can most likely be seen as a
Monte Carlo method.
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3 Method for the empirical study

Throughout this chapter, the Data Shapley concept will be studied from many different perspectives. When
evaluating models estimated with reduced set of observations, Adjusted R2 will be used, and some residual
analysis will also be performed.

One important consideration appears when looking at the Data Value-function φi(D,A, V ), which is built up
from what Ghorbani and Zou (2019) calls a “Black Box Oracle”, the Performance Score V (S,A). When A is
used to estimate a regression model, it is - as indicated above - no longer possible to use the performance
metrics that the authors mainly work with. Hence, A need to be another metric that captures the concept of
model performance. In this study, we will investigate the use of the following different metrics: Residual Sum
of Squares (SSE), Explained Sum of Squares (SSR) and Adjusted R2.

This means that the Data Shapley values will have different distributions and different characteristics when
describing “high” vs “low” valued observations. If R2

Adj is used, values are likely to be both positive and
negative, whereas when SSR or SSE is used, Data Shapley values should mostly be positive. More details on
this will follow later in this chapter.

No package for calculating Data Shapley values was found by the author, so the Truncated Monte Carlo
algorithm was implemented in R. It is built in a way where it is easy to select different performance metrics
for estimating the Data Shapley values for easy experimentation.

Final analysis of Data Shapley values will be performed in a similar fashion to how Ghorbani and Zou (2019)
performed their analysis. Given a predefined model for a specific dataset, the following pseudocode will be
applied in an iterative process:

Algorithm 2: Valuation Scoring
Set V = Empty Set
Set i = 0
while i ≤ 20 do

Remove the n = i observations with the lowest Data Shapley values
Fit model with current set of observations, and get R2

Adj

Append V with R2
Adj

end

Given that an observation has a specific value in the overall estimation of the correct set of parameters in a
model, the quality of the model - in this study identified by R2

Adj - should increase.

3.1 Introduction to Data Shapley for Linear Regression models

Ghorbani and Zou (2019) focus mainly on complex models used for classification tasks, and no or very little
emphasis on simple linear regression models. There has been some work performed with a logistic regression
model, but the quality of this model was mainly measured in Prediction Accuracy - a specific concept that
does not translate well to a linear regression model. Therefore, there is a need to explore the different
considerations for using the Data Shapley-method for linear regression models. In this study, the following
performance metrics will be used:

Residual Sum of Squares:
∑n
i=1 (ŷi − yi)2 , in some cases in this thesis also referred to as SSE

Explained Sum of Squared:
∑n
i=1 (ŷi − ȳ)2 , in some cases in this thesis also referred to as SSReg or SSR

Adjusted R Squared: 1 − SSres/dfe

SStot/dft
, where SSres is Residual Sum of Squares from above and SStot =
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∑n
i=1 (yi − ȳ)2, dfe is the error degrees of freedom n− p− 1 (number of observations-number of parameters

estimated) and dft is the total degrees of freedom (n− 1)

These metrics all qualify as Performace Score metrics, since they can be seen to capture how accurately the
model can describe the data - for example a lower Residual Sum of Squares, the better the model fit. This
metric is also clearly related to the magnitude of the errors. I.e a model where the residuals are very small
will have a better performance tham a model with larger residuals.

For all the three types of performance score, Linearity and Efficiency properties seem to hold since marginal
changes can be distributed among the observations. However, the interpretation of the Data Shapley value
for an observation may be more or less obvious. For example, one could see that if using Residual Sum
of Squares, adding an observation to a subset S will add two things: Added Sum of Square for it’s own
deviation between ŷi and yi, and the change in Residual Sum of Squares for all other observations currently
in the subset (as the model parameter potentially changes). This entire change will be associated with the
observation, and it must follow that any changes in the end must sum to the total. Notably here, a lower
value would be better, but Shapley value properties does not assume anything about the good or bad with
high or low values. However, for simplicity and consistency in this research, the sign in this case will be
changed so a decrease in Residual Sum of Squares will equate to a higher negative value of the same.

The same as above would hold for both Explained Sum of Squares and Adjusted R2, but here high values
are of course desirable. It is however here that the interpretation of the value becomes more challenging.
In the Explained Sum of Squares case, an added observation (xi, yi) will change both ȳ and ŷi for every
previous observation, plus add its own ŷj − ȳ to the V(S). Adjusted R2 will then be even more complex, due
to changes also to the degrees of freedom and Total Sum of Squares, over and above all the other changing
things in Explained Sum of Squares.

Furthermore, Ghorbani and Zou are not specific on how they identified convergence in the algorithm, so this
also need to be established up front. The method proposed is a monte carlo method, and therefore the idea
is assumed to be using the asymptotic behavior as n→∞, using the law of large numbers which states that,
if X1, X2, X3, . . . are independent and identically distributed random variables with mean µ and standard
deviation σ, then for any constant ε > 0 we have

lim
n→∞

Pr
(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= 0.

In this case, convergence can be seen to happen on two levels: As the individual observations get closer and
closer to their individual true Data Shapley value, and on the overall dataset level, as more and more Data
Shapley values are converging.

This can for example be seen in the following plot, generated for one of the datasets. Each line represents the
estimator of the Data Shapley value of a specific observation, and as can be seen in Figure 2, each estimator
has a slightly different convergence.
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Figure 2: Convergence of Data Shapley-values for individual observations

Convergence is in this study defined as when the standard deviation of (x̄): σ√
n
≤ c, where c is a small

constant. As more and more of the individual observations converge to their true Data Shapley value, we can
look at overall convergence of the algorithm by counting the number of observations that have σ√

n
≤ c.

3.2 Levels of Truncation

Truncation refers to the selected constant C in the Truncated Monte Carlo algorithm. This defines how close
the cumulative sum in an iteration can be to the corresponding value calculated for the full set of observation,
before setting the remaining observations value to 0. In this study “High Truncation” is used to refer to
situations with a large C (i.e. we stop an iteration earlier and set more observations data shapley value to 0).
“Low Truncation” refers to the opposite (i.e. small C ).

Important to note though, is that the actual magnitude of C will be dependent on the metric used to estimate
the Data Shapley value. When using SSE or SSR, C will also be dependent on the magnitudes of the
dependent variable, hence the factors below are multiplied with the SSE or SSR for the full model (i.e. with
all observations) for the corresponding dataset. For Adjusted R2 the values presented below are used exactly
as presented. The levels of C are as follows:

Truncation.Level C
Low 0.001
Low-Medium 0.010
High-Medium 0.050
High 0.100
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3.3 Datasets

Four different datasets will be used in this thesis. Some of the first observations in these datasets are presented
below, together with the model specification being used. Again, this thesis does not make any attempt to
model the relationships in the most suitable way, but effort has been spent to find at least something of
reasonable quality.

Model formulation is here noted using R syntax. For example, the formula “y~x” means “y is modeled as
a function of x” and “y~x+z” means “y is modeled as a function of x and z”. Formally, y~x+z means the
following model: yi = β1xi +β2zi +β0 + εi. One can also specify “y~.” as shorthand for using all the available
variables as independent variables.

For more details on the complete models and diagnostic plots, see Chapter 5.

3.3.1 Motor Trend Car Road Tests (mtcars)

A dataset containing information about performance of 32 cars (1973–74 models) (Henderson and Velleman
1981).

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Model: hp~vs+cyl+disp+drat

3.3.2 Swiss Fertility

A dataset with fertility and socio-economic indicators for 47 provinces in Switzerland in the late 1800’s
(Mosteller and Tukey 1977).

Fertility Agriculture Examination Education Catholic Infant.Mortality
Courtelary 80.2 17.0 15 12 9.96 22.2
Delemont 83.1 45.1 6 9 84.84 22.2
Franches-Mnt 92.5 39.7 5 5 93.40 20.2
Moutier 85.8 36.5 12 7 33.77 20.3
Neuveville 76.9 43.5 17 15 5.16 20.6

Model: Fertility~.

3.3.3 Taiwan Houseprices

A dataset containing real estate valuations in Sindian District, Taipei City, Taiwan (Yeh and Hsu 2018).

TransactionDate HouseAge DistanceToMRT ConvenienceStores Latitude Longitude HousePrice
2012.917 32.0 84.87882 10 24.98298 121.5402 37.9
2012.917 19.5 306.59470 9 24.98034 121.5395 42.2
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TransactionDate HouseAge DistanceToMRT ConvenienceStores Latitude Longitude HousePrice
2013.583 13.3 561.98450 5 24.98746 121.5439 47.3
2013.500 13.3 561.98450 5 24.98746 121.5439 54.8
2012.833 5.0 390.56840 5 24.97937 121.5425 43.1

Model: HousePrice~.

3.3.4 Wii MarioKart game prices on Ebay

Auction data from Ebay for the game Mario Kart for the Nintendo Wii video game console. This data was
collected in early October, 2009 (openintro.org 2019)

duration n_bids start_pr ship_pr total_pr seller_rate wheels
3 20 0.99 4.00 51.55 1580 1
7 13 0.99 3.99 37.04 365 1
3 16 0.99 3.50 45.50 998 1
3 18 0.99 0.00 44.00 7 1
1 20 0.01 0.00 71.00 820 2

Model: total_pr~.

3.4 Correlations between Data Shapley, Leverage and Cooks Distance

Ghorbani and Zou only briefly mention Cooks distance and Leverage as related work, but do not go into
either in detail. Although this could lead to the idea that either would be a good candidate to represent
an observations “Value”, this is likely not the case. As can be noted in the Earlier Research section above,
Leverage may not necessarily explain the full “Value” of an observation. This, since an observation may in
theory have either “good” or “bad” Leverage (see section 2.1). Therefore, this study initially looks at the
empirical correlations between Data Shapley and Leverage to verify the assumed weaker correlation, and
subsequently also Data Shapley and Cooks Distance. Based on the short reasoning here, Cooks distance
should be better at capturing the value of an observation than Leverage would.

Data Shapley values are estimated for the datasets described above and is here plotted with both Leverage
and Cooks Distance. As can be seen in these plots, the correlations between Cooks Distance and Data
Shapley values are far stronger than between Cooks Distance (R approx 0.7) and Leverage (R approx 0.04)
values. Similar characteristics are found also for the other three datasets, which seem to indicate a stable
correlation with Cooks Distance and a stable non-correlation with Leverage values.
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Figure 4: Correlation: Cooks Distance and Data Shapley Values (95% CI)
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Given that there is very little correspondence between Data Shapley values and Leverage - as was very much
expected - no further investigations will look at Leverage in this study.
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4 Empirical Results

The figures in section 3.3 are generated in the process of empirically studying the behaviour of Data Shapley
values and the Truncated Monte Carlo algorithm used to estimate them. Four different datasets are used in
the study, described in the Datasets section (3.2) above.

The following aspects are investigated:

• How does different levels of truncation affect the estimation and the estimates
• How does different performance-metrics affect the estimation and the estimates
• How effectively does Data Shapley values capture the value of the observation

First of all, we can have a look at the most fundamental: what does the distribution of the estimated Data
Shapley values look like, when using different performance metrics? To understand this, we can look at
histograms for example for two of the four datasets:
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Figure 5: Histograms for Data Shapley values fit with different Metrics
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As can be noted in the histograms in Figures 5(a) to 5(f), Data Shapley values estimated with SSE are
strictly positive. Data Shapley values estimated with R2

Adj are often centered just above 0, and with some
indications of both symmetry and outliers. Some observations have negative values, which means that they
add negatively to the model fit as they are added in.

We can also plot the cumulative sum of estimated (fig Data Shapley values for all configurations, and compare
with the corresponding values (SSReg, SSE, Adjusted R2) for the complete set of observations (the red line
shows the performance value for the full set of observations, V (D)). As can be seen in Figure 6, the Efficiency
property from Shapley values still hold very well.
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(d) Dataset: Fertility, Metric: Explained Sum of Squares
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(f) Dataset: Fertility, Metric: Adjusted R Squared

Figure 6: Cumulative Sum of Data Shapley values as more and more observations are added

Worth noting, is that when using Adjusted R2 as metric, the cumulative sum may very well be higher than
the final value for the complete set of observations. This is to be expected, based on the fact that negative
values are not uncommon in this distribution.

We can also look at the effects of different levels of truncation on the distribution. This can for example be
visualised by comparing a denisty plot for the Data Shapley values estimated at a very low level of truncation
with the denisty of a medium level of truncation (see Figure 7)
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Figure 7: Density plots of Data Shapley values estimated with different levels of truncation

As can be seen in Figure 7, a higher level of truncation actually reduces the variation of the estimated
values. This is an interesting finding, which brings us into the topic of truncation and the effect it has on the
estimation of Data Shapley values. To study this, we can set the truncation treshold to be a very small value
(e.g. 0.0001), and effectively almost disable truncation. We can then estimate the Data Shapley values with
different levels of truncation, to see how the estimates vary, by comparing them to the orignial un-truncated
estimates.

For example, the visualisations above that indicate that the Efficiency property holds, are plotted for the
estimates with the lowest level of truncation. However, whether the property still holds for higher levels of
truncation, we can also plot the same visuals again for truncated estimates.
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(b) Dataset: Fertility, Metric: Residual Sum of Squares
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(c) Dataset: mtcars, Metric: Explained Sum of Squares
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(d) Dataset: Fertility, Metric: Explained Sum of Squares
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(f) Dataset: Fertility, Metric: Adjusted R Squared

Figure 8: Cumulative Sum of Data Shapley values as more and more observations are added, using estimates
from truncated simulation

Here in Figure 8, it turns out that the Efficiency property still seems to hold with Data Shapley values
estimated with with adjusted R2, but seem to break down when truncating Residual Sum of Squares or
Explained Sum of Squares. This is certainly a consideration that should be taken into consideration when
estimating Data Shapley values. It is also the case that more truncation in the Adjusted R2 option, seem to
reduce the possibility to have a cumulative sum that exceeds that of Adjusted R2 for all observations. This is
logical, since truncation will happen once the estimates are close to the maximum value.

We can also look at the convergence across different levels of truncation. This, by plotting the number of
observations that have the σ√

n
≤ c over the number of iterations. In these plots, the first 100 iterations are

omitted (left as “burn-in” due to large variation in the simulations).
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(c) Dataset: Mario, Metric: Residual Sum of Squares
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Figure 9: Convergence Plots

As can be seen in Figure 9, the level of truncation has no significant impact on the convergence. Here,
the conclusion would be that truncation is fine and actually preferrable, since the total execution time for
the algorithm becomes significantly reduced with more truncation. However, comparing the actual values
estimated with very little truncation with values estimated with increasing level of the same, the following
pattern emerges (values estimated for the same dataset are on rows, with increased level of truncation the
further right one goes):
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Figure 10: Correlation between untruncated and truncated estimation of Data Shapley values, with increasing
level of truncation (Low, Medium/Low, Medium/High and High)

These plots in Figure 10 are presenting values for Data Shapley values estimated with Adjusted R2. The
solid line black represents the x=y line, whereas the blue line represent the least squares estimate of a linear
model over the data in each plot.
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As can be noted in Figure 10, an increase in truncation results in a strong bias in the estimated values. This
makes sense because when Data Shapley values are estimated from the generated data, the truncated values
will have somwhat of a zero inflated distribution, that will reduce the mean and hence the value estimate.
This overdisperion of zero values, could potentially be compensated by a standard b-coefficient in a y = ax+ b,
where b is set based on the level of truncation, but this is left for other researchers to look at.

However, depending on how Data Shapley values are being used in practice, this bias may not be a problem.
If for example the value of the observations are only ever to be compared between each other in a particular
model specification, then quite a bit more truncation can be allowed, since rank is reasonably well retained.
However, if there is a desire to have the Data Shapley value represent something with an actual interpretation,
then only very low levels of truncation would be acceptable. For example, a Data Shapley value of 0.05
estimated with low level of truncation with the performance metric set to R2

Adj would mean that this
observation has an average impact of raising R2

Adj with 0.05 percentage points everytime it is added in to the
model. With truncation that value may instead be for example 0.03, and has then lost much of its original
interpretation.

As the plots in Figure 10 above where only for Adjusted R2, we can also look at the extreme cases (Low and
High Truncation for both Residual Sum of Squares and Explained Sum of Squares):
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Figure 11: Correlation between untruncated and truncated estimation of Data Shapley values.

And as can be seen in Figure 11, the introduction of bias is visible here as well, although Explained Sum of
Squares seem to be a bit more robust than the other two options.

Finally, we can also investigate the value empirically, by refitting the models while gradually removing (i.e. one
by one) the 20 observations with the lowest estimated Data Shapley values.
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(b) Performance Increase, Fertility dataset
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(c) Performance Increase, Taiwan dataset
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(d) Performance Increase, Mario dataset

Figure 12: Increase in Adjusted R2 when removing low value observations

In Figure 12, Data Shapley values estimated using Explained Sum of Squares are mostly not performing as
well as they could, whereas when Adjusted R Squared or Residual Sum of Squares are used, the Data Shapley
value is as good as, or even better than Cooks Distance in capturing the value of the observations.

We can of course also look at this from the other direction: How does the performance decrease as high
valued observations are removed?
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(a) Performance Decrease, Mtcars dataset
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(b) Performance Decrease, Fertility dataset
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(c) Performance Decrease, Taiwan dataset
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(d) Performance Decrease, Mario dataset

Figure 13: Decrease in Adjusted R2 when removing high value observations

Here in Figure 13, when focusing on the high-value observations, it can be noted that Data Shapley Values
using Adjusted R2 is consistently and significantly outperforming Cook’s Distance. Using Explained Sum of
Squares seem to result in very erratic estimates, whereas using Residual Sum of Squares seem to reasonably
well align with Cook’s Distance (apart from in the Fertility dataset where one high value observation seems
to have been missed).

4.1 Outlier Detection with Data Shapley

Ghorbani and Zou’s proposal for Data Shapley includes using it for outlier detection, which the paper also
empirically successfully shows is possible. If this is a true property of the Data Shapley values, this may very

26



well still hold in a regression model. Therefore, we can estimate the Data Shapley values for a dataset that is
known to contain outliers. The Mario dataset that has been used previously has two observations that so far
has been omitted. These two observations are known to be Ebay-entries for entire Nintendo Wii consoles sold
together with the Mario Kart game and not only the game itself. Therefore, these would be outliers due to
incorrect measurements, and should probably be omitted.

If again, Data Shapley values are estimated with little to no truncation and using all three metrics, the
performance plot looks as follows:
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Figure 14: Detecting outliers by gradually removing low valued observations, Mario dataset

Interestingly, neither the R2
Adj nor the Explained Sum of Squares variants seem to capture the information

that the two observations are outliers, but the SSE variant certainly matches Cooks Distance in capturing
this property.
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5 Full Model Diagnostics

This chapter shows the residual plots and presents the model summaries for the four different models and
datasets (in their final form with all observations). As can be noted, these are in cases neither parsimonious
nor perfect models, and certainly include outliers that have not been dealt with. One example to point at
is the deviation from normality of residuals in the two last models, as can be seen in the corresponding
QQ-plots. However, this issue is probably not the most critical one, and it does provide a broader set of
models for the purposes of this study. All models also include a combination of significant and non-signoficant
relationships (at p < 0.05).

5.1 Mtcars

Model: hp~vs+cyl+disp+drat
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Figure 15: Model Diagnostic Plots, Mtcars

Table 6: Model Estimates using all observations

Term Coefficient SE T-statistic P-value
(Intercept) -199.42 112.63 -1.77 0.088
vs -6.65 23.48 -0.28 0.78
cyl 26.52 10.92 2.43 0.022
disp 0.19 0.13 1.51 0.14
drat 39.02 18.69 2.09 0.046

28



5.2 Swiss Fertility

Model: Fertility~.
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Figure 16: Model Diagnostic Plots, Fertility

Table 7: Model Estimates using all observations

Term Coefficient SE T-statistic P-value
(Intercept) 66.92 10.71 6.25 < 0.001
Agriculture -0.17 0.07 -2.45 0.019
Examination -0.26 0.25 -1.02 0.32
Education -0.87 0.18 -4.76 < 0.001
Catholic 0.1 0.04 2.95 0.005
Infant.Mortality 1.08 0.38 2.82 0.007
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5.3 Taiwan Houseprices

Model: HousePrice~.
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Figure 17: Model Diagnostic Plots, Taiwan

Table 8: Model Estimates using all observations

Term Coefficient SE T-statistic P-value
(Intercept) -14437.1 6775.67 -2.13 0.034
TransactionDate 5.15 1.56 3.31 0.001
HouseAge -0.27 0.04 -7 < 0.001
DistanceToMRT 0 0 -6.25 < 0.001
ConvenienceStores 1.13 0.19 6.02 < 0.001
Latitude 225.47 44.57 5.06 < 0.001
Longitude -12.42 48.58 -0.26 0.8
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5.4 Mario Kart Prices

Model: total_pr ~ .
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Figure 18: Model Diagnostic Plots, Mario

Table 9: Model Estimates using all observations

Term Coefficient SE T-statistic P-value
(Intercept) 34.83 1.8 19.36 < 0.001
duration -0.53 0.18 -2.94 0.004
n_bids 0.24 0.09 2.6 0.011
start_pr 0.17 0.04 4.48 < 0.001
ship_pr 0.14 0.16 0.91 0.37
seller_rate 0 0 2.67 0.008
wheels 7.94 0.54 14.65 < 0.001
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6 Conclusions and Summary

Looking at the empirical results, it seems a Data Shapley value estimated with Adjusted R2, generally
outperforms Cook’s Distance, both in identifying low value observations and in identifying the high value
ones, in the case of small to moderate outliers.

If the objective is to detect large outliers or extreme values, one should probably instead use Residual Sum
of Squares i the TMC algorithm, but more experimentation is most likely required for better support for
that decision. However, seeing that the Data Shapley value in this case is pretty much on par with Cook’s
Distance, it is perhaps difficult to argue for a method as resource intensive and complex as this.

It is important to understand that the conclusions from this study are somewhat dependent on the interpre-
tation and “objective” of Cook’s Distance. Cook himself motivates the Cook’s Distance measure as “an easily
interpretable measure that [. . . ] will naturally isolate ‘critical’ values” (Cook 1977). In Cook and Weisberg
(1982), the motivation is a little richer:

“The ability to find influential cases can benefit the analyst in at least two ways. First, the study
of influence yields information concerning reliability of conclusions and their dependence on the
assumed model. [. . . ] Second, we shall see that cases in the p-dimensional observation space that
are far removed from other cases will tend to have, on the average, a relatively large influence on
the analysis. This, in turn, may indicate areas in the observation space with inadequate coverage
for reliable estimation and prediction.”

Empirically, Data Shapley values and Cook’s Distance seem to capture the same inherent property of an
observation, although it is referred to Value or Worth in one case and Influence in the other. One could
of course argue that these two are not the same thing, and that it therefore does not make much sense
comparing them. Even so, consider this study to have been to establish a “Shapley Influence” (instead of
exploring “Data Shapley”), and the results are still both valid and relevant.

Also, as a short reflection on the “Value” or “Worth” of an observation in a set of data: It is a very challenging
problem. Both Data Shapley values and Cook’s Distance assumes that an “agreement” with the general
pattern in the data is something good, and of course quite often this will be the case. There is however no
guarantee for this. If, due to poor experiment design, poor measurements, challenging phenomena being
measured or something completely different, some observations are of “higher true value”, these may not
be captured correctly. Let us for example consider a scenario that Ghorbani and Zou (2019) specifically
reference: A setup where multiple parties are involved in providing subsets of data for a common estimation
of a model. If in this case, one party were to do measurements with higher quality and smaller bias but
at the cost of being able to provide fewer than other involved parties, these could potentially be classed as
“non-conforming” and get a low Data Shapley value and a high Cook’s Distance.

To summarize:

We are no closer to bringing automated insights into the connection between “Influence” and
some “True Value” of an observation, but the Data Shapley method, gives a more accurate
measurement of the influence of an observation.
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