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Abstract 
 

Adaptation of modern Unmanned Aerial Vehicle (UAV) and multispectral sensor 

technology in agriculture can enhance the capacity to accurately monitor crops. But this 

technology comes with its own set of challenges. The major challenge is the understanding of 

radiometric distortions, which is particularly important while comparing data over different 

lighting conditions. The study developed and assessed a methodology for extracting 

radiometrically corrected reflectance values for multi-temporal datasets. The empirical line 

method is used to calibrate the images using spectrally stable panels. The methodology is 

assessed by studying the association between three vegetation indices namely Normalized 

Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Difference 

Vegetation Index (DVI) with corresponding crop yield, crop height and fixed tower sensor 

data. The radiometric correction techniques delivered reasonably satisfactory results which 

was revealed by very strong Pearson correlation (r = 0.87 - 0.95) between fixed tower and 

UAV sensors. The investigation also identified that the vegetation indices dependency varied 

positively with (fresh) yield of legume ley, from moderate to high, on the first harvest date 

(11th May 2019) as well as on the second harvest date (26th July 2019). The Pearson 

correlation (r) and Spearman rank correlation coefficients (rs) ranged between 0.55 and 0.89 

on the first harvest date and between 0.49 and 0.79 on the second harvest. Comparable results 

were obtained for other crops but only at certain stages of crop development. The analysis 

revealed moderate to high positive relationship (r = 0.45 – 0.87) between vegetation indices 

(NDVI and SAVI) and crop height except on 21st August 2019 dataset, where the 

relationship was rather weak (r = 0.19 and 0.04). DVI showed similar trend (r = 0.62 – 0.81), 

except in the case of 26th July 2019 and 21st August 2019 datasets, where correlation 

coefficients were r = 0.19 and r = -0.02 respectively. It was also observed that 6 datasets over 

the growing period are not enough to clearly see the complete crop phenology, although the 

comparison of NDVI, SAVI and DVI indicated similar patterns. The inability in reflecting 

the complete phenology of various crops was mainly due to less frequent data acquisition at 

development stages. Nonetheless, very high positive correlation between vegetation indices 

from UAV sensor and fixed tower sensor validated the capability of UAV sensor to monitor 

the crops over various stages. 
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 Introduction  1. 
A rapid increase in food demand has increased pressure on the agriculture sector, 

which in turn is further affected by the climate change. United Nations (UN) sustainable 

development goal (SDG) #2 advocates sustainable agriculture to achieve food security and 

improved nutrition. The Food and Agriculture Organization of the United Nations (FAO) 

states the requirement to double global food production by 2050 to meet the demand of 

rapidly increasing population which population which must be attained against the backdrop 

of climate change and shortfall of resources (FAO, 2009). It is estimated that 90% of increase 

in global crop production (80% in developing countries) is expected to come from higher 

yields and increased cropping intensity till 2050 (FAO, 2009). To accommodate these 

changes, we need to find an effective way to monitor the crop growth and yields. 

Furthermore, monitoring crop growth and crop production is highly crucial in understanding 

productivity (Singh, n.d.) (Fan et al., 2011). Growth and yield of the crops are affected by 

many factors including genetic potential, soil types, management practices, biotic stressors 

(pests, fungi, bacteria, weeds etc.,) and abiotic stressors (drought, salinity, low or high 

temperatures etc.,) (Dadhwal, 2004). To understand the impact of these factors, especially the 

stressors, there is a need to develop techniques that assesses the structure and function of 

plants during various growth stages. This can provide valuable information on required 

measures to be taken for increasing crop yield and productivity. Effective early intervention 

can help improve crop health, production efficiency and reduce losses. Various types of RS 

(Remote-Sensing) sensors and platforms are applicable for this purpose. 

 Observations from the Unmanned Aerial Vehicles (UAV) remote sensing can help 

detect various soil characteristics and identify plants under stressful conditions that can affect 

crop yield and productivity. UAV-based crop yield estimation could help individual farmers 

to monitor and assess the crop growth and identify problems early, avoiding low yields due to 

lack of timely monitoring (Vega, Ramírez, Saiz, & Rosúa, 2015).   

UAV platforms provide birds-eye-view of the area and can carry a wide array of 

sensors for monitoring and mapping the agricultural land. UAVs are not only limited to 

agriculture; they have been widely used in forestry, mining, urban planning, and land 

management. Many organizations have developed UAVs in different shapes and sizes for 

specific applications. Factors which determine the choice of UAV for remote sensing are: 

weightlifting capacity, flight stamina, ease of flying, ease of handling, stability in wind, 

availability of landing space, and the area to be mapped (Hunt, Cavigelli, Daughtry, 

McMurtrey, & Walthall, 2005). UAVs also known as drones can be divided into two broad 

categories: Fixed-wing and Rotary-blade. Each category has its advantages and 

disadvantages.  



2 

 

Fixed wings UAVs, as the name suggests, use rigid wing structure to generate lift and 

are propelled forward by the thrust from the engine or the propellers. Whereas, Rotary wings 

UAVs have multiple rotors (usually 4-8) to provide thrust as well as lift. Fixed wing UAVs 

provide longer range, greater stability, higher endurance, and linear flight but are more 

expensive than their rotary wing counterparts. Fixed wings UAVs need larger landing area, 

are less compact and are more challenging to fly. Whereas, rotary wing UAVs are less 

expensive and provide greater maneuverability and higher payload capacity. Furthermore, 

rotary wing UAVs are compact and easy to use, but they are less stable in wind and have 

shorter range (DroneDeploy, 2017). Rotary wing UAVs are better for mapping and 

monitoring small areas. They have the ability to hover mid-flight and their slower movement 

allows the user to have the desired image overlap to make high quality maps. Fixed wing 

UAVs are better for mapping or inspecting pipelines and electricity lines or any other linear 

areas. UAVs can carry various type of sensors including Red Green Blue (RGB), 

multispectral, thermal or even Lidar sensors for earth observation and data acquisition 

(Effiom, 2018).  

In recent times, light-weight multispectral sensors enabled UAVs have become more 

efficient airborne imaging platforms. They offer cost-effective data collection methods with 

high spatial resolution and desired temporal resolution. Furthermore, such UAVs have a high 

tolerance against atmospheric disturbances and cloud cover.  

Though the UAVs are typically more suitable for small regions, they can also be used 

to complement regional-level crop estimation for more accurate results. Traditionally, data 

samples are collected from in situ measurements, surveys, and crop-cutting experiments in 

many developing countries (Singh, n.d.). The local UAV based crop estimation can enable 

farmers to plan their farming related finances more effectively. By upscaling estimations, 

policy makers can plan the distribution of agricultural resources in national and international 

markets. Policy makers can expediently plan effective policies for import and export of crops  

and thus effectively assist in developing agricultural economies (GSARS, 2017). 

Recent developments in UAV remote sensing technologies provide better image 

quality in different spectrums and higher processing capabilities, which can be adapted for 

Precision Agriculture (PA). PA requires ultra-high spatial (appx. 1cm) as well as high 

temporal resolution imagery. The unavailability of such resolution from satellite imagery, 

high costs (procurement and operational) associated with it, and often cloud cover make it 

difficult to accurately provide valuable outputs for PA (Hunt et al., 2005). The high-

resolution images and the maps of different crop growth stages obtained from the UAVs are 

critical in PA to support the cropping management strategy of farmers (Bendig et al., 2015). 

In addition, accurate information on the developing stage of crop growth requires finer 

temporal resolution than satellite image. The finer temporal resolution imagery of agricultural 
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fields from UAV observation can help provide dynamic solutions and quick decision making. 

Thus, compared to the satellite acquisitions, UAVs, with their capacity to provide finer 

spatial and temporal resolution data for a study area of the size of farming lands shows  cost 

effectiveness to the data collection process (Vega et al., 2015). 

Previous works have established a credible ground for extracting crop parameters 

using UAV-based sensors (e.g., RGB, thermal, multispectral and hyperspectral sensors) of 

varying complexity and conceptual settings (Bendig et al., 2015; Candiago, Remondino, De 

Giglio, Dubbini, & Gattelli, 2015; De Biasio, Fritz, & Leitner, 2013; Di Gennaro et al., 2018; 

Possoch et al., 2016; Zhou et al., 2017). The process of extracting plant parameters are 

continuously evolving through the use of spectral data. The vegetation reflectance captured 

by multispectral sensors are found to be good estimators of crop biomass, yield, canopy 

percentage, leaf area index (LAI) and chlorophyll content (Daughtry, Walthall, Kim, de 

Colstoun, & McMurtrey, 2000; Gitelson, 2004). Vegetation indices (VIs) are methods based 

on processing the measured electromagnetic radiation, used by scientists to assess physical 

and chemical properties of vegetation. VIs takes advantage of differences in the reflectance of 

plants at different bandwidths. These are reliable metrics that are effectively used for 

diagnosing the health condition of plants, and consequently, these metrics provide important 

information about plants that may be potentially stressed (Pettorelli, 2013).  

Past researches have demonstrated the enormous potential of UAV imagery for 

monitoring and assessing many agricultural and environmental factors (Zhang & Kovacs, 

2012). These techniques allow farmers to overcome the shortcomings of conventional 

methods. For example, traditionally herbicides were applied in a homogenous way over an 

entire field. However, because there is variations in the distribution of weeds in the field, by 

employing UAV technology, farmers can benefit from precision agriculture by making patch 

specific corrective actions (Gómez-Candón, De Castro, & López-Granados, 2014).  

 Like PA, plant phenotyping relies on extensive studies of various stages of crop 

cycle. Plant phenotyping is the study related with quantitative measurement of the structural 

and functional properties of plants. This is especially important in terms of food security  in 

the context of climate change and resource scarcity (Laboratory, 2019). UAVs can provide 

high temporal resolution time series which can be used for monitoring crop growth, crop 

health and the effectiveness of the crop management strategy. A study by Yu et al. (2016) 

investigated the relationship between crop yield of soybean fields with phenology data. The 

team developed a dual-camera high throughput phenotyping (HTP) platform on a UAV and 

collected time series of soybean fields. They used random forest supervised classification to 

determine crop geometry and found high correlation with the yield. The researchers improved 

the model significantly by introducing plot row length (calculated as the ratio of ‘number of 

“crop” pixels in the row’ and ‘total number of the three center rows of pixels’ for each plot) 
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as covariate. From the perspective of image resolution and time of data collection, Vega et al. 

(2015) tried to establish the relation between normalized difference vegetation index (NDVI) 

and crop biomass for sunflower crop in southern Spain. They found statistically significant 

correlation coefficients of linear regressions for NDVI and grain yield, aerial biomass and 

nitrogen content except during the early phase in the growing season. However, the study did 

not find any effects from the image resolution (30 x 30 and 100 x 100 cm pixel size) and the 

time-of-day (i.e., midday and afternoon) of image acquisition on results. 

On the other hand, Yue et al. (2017) used a completely different approach for 

estimating crop yield and growth monitoring. The primary objective was to correctly estimate 

the AGB (i.e., Above Ground Biomass) from a hyperspectral sensor mounted on UAV. 

Images from hyperspectral sensor was then used to calculate crop height and reflectance of 

winter wheat crop and these 2 parameters were compared with band specific VI’s. The study 

emphasized more on accuracy of crop height model for AGB estimation. The result showed 

incorporating additional parameters such as crop height model significantly improved the 

accuracy of AGB estimations.  

There are few studies done to estimate crop yields from UAV datasets such as 

Senthilnath, Kandukuri, Dokania, and Ramesh (2017), Hunt et al. (2005), Ziliani, Parkes, 

Hoteit, and McCabe (2018) and Yemane Tumlisan (2017). However, many of the researchers 

worked only with RGB sensors. These RGB sensors have limited capability for agricultural 

applications and the researchers were unable to explain the effect of radiometric variations or 

they do not focus on it at all. Radiometric accuracy is important while working on 

phenological data since the images from separate times are exposed to different illumination 

conditions and can significantly affect the results. 
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 Research Aim and Objectives 2. 
The aim of this thesis is to quantitatively assess the relationship between crop 

phenology and three different vegetation indices derived from multispectral UAV imagery. 

This aim is achieved by developing and applying a novel method to derive radiometrically 

correct vegetation reflectance from UAV imagery. The relationship between vegetation 

indices and crop yield will be tested in a Swedish agricultural area, and the temporal pattern 

of the crops’ phenological stages (i.e. sowing, emergence, maturing and harvest will also be 

analysed using 6 datasets collected over the growing season. The underlying assumption 

being that ‘greener crop will have higher yield’. 

It is postulated that radiometrically corrected imagery will provide an accurate 

estimation of both crop yield and crop phenology, where higher VIs would correspond to 

higher yield and biomass. The following research questions are formulated to test this 

hypothesis and reach the objectives: 

2.1.  What is the accuracy of the method for deriving radiometrically correct images from 

multispectral UAV imagery? 

2.2.  What is the relationship between vegetation indices derived from multispectral UAV 

imagery and crop yield of selected crops in a Swedish agricultural area? 

2.3.  Which vegetation index (NDVI, SAVI, or DVI) gives best estimation for crop yield? 

2.4.  How well do NDVI, SAVI, and DVI explain crop phenology stages? 
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 Scope of Research and Study Area 3. 
The research conducted was exploratory in 

nature and based on routine data collected 

from the SITES (Swedish Infrastructure for 

Ecosystem Science) spectral monitoring 

program (http://www.fieldsites.se). SITES 

Spectral Program collects data from their 

fixed and mobile platform through 

multispectral sensors and phenology 

cameras. Apart from recording incoming and 

reflected solar radiation they also design 

short-term and long-term crop experiments, 

which include preparation of soil, sowing, 

adding manure and fertilizers, irrigation, 

harvesting, crop rotation and recording all 

the observations and measurements in a 

database. SITES extend opportunities for 

researchers to use the data collected at their 

stations. Researchers utilizing this facility 

usually focus on design, sustainable 

development and assessment of 

agroecosystems in conventional and 

ecological farming. 

In this study, data was used from one of the eight SITES Spectral stations namely 

Lönnstorp situated in Sweden. The central point of the study area is located at longitude 

55.6688⁰ N and 13.1095⁰ 
E (figure 1). The Lönnstorp site is classified as humid continental 

climate according to the Köppen climate classification and is classified as Nemoral biome 

zone according to the Walter classification system. The station was established in 1969 but 

the area was conventionally farmed until 1993. Later, parts of it were converted into certified 

organic farming. The infrastructure is mainly used by SLU Swedish University of 

Agricultural Sciences (Sveriges lantbruksuniversitet) for agricultural research with emphasis 

on cropping system dynamics. The SITES Lönnstorp station has 60 hectares of conventional 

farmland and 18 hectares of certified organic farmland.  

SITES started a long-term experiment called SITES Agroecological Field Experiment 

(SAFE) in 2015-2016. SAFE consist of four replicates of the experiments, each of this 

replicate is called as a block namely SAFE A, B, C and D. Due to time constraints, in this 

study, data is analyzed only from SAFE A, which consists of one replicate.  

Source: (Swedish University of Agricultural Sciences, 2018) 

Figure 1: Location of SITES field research stations.  

http://www.fieldsites.se/
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The study area lies in the south-west of Skåne, situated 12 kilometers northeast of 

Malmö (Sweden) at Lönnstorp. The infrastructure jointly belongs to SLU and SITES. The 

facility consists of 14-hectare SAFE experiment. The area is approximately 14 meters above 

mean sea level and the soil type is loam consisting of 15% clay and 3 % organic matter. This 

research station was selected because it is equipped with the necessary infrastructure and it 

offers facilities to conduct experiment in southern Swedish agroecosystems. The total area of 

the actual plot is slightly more than 2 hectares. 

 
Figure 2: SAFE A block with 18 plots divided into 4 cropping systems namely Agro-ecological 

intensification (AI), Organic (ORG), Perennial (PER) and Reference (REF). based on data from 

SITES.  

 

SLU and SITES collaborated in designing the experiment to incorporate multitude of 

different cropping patterns with varieties of crops. The objective of utilizing multiple crops 

with different management strategies was to get more variability and heterogeneity in the 

available space.  The drawback of this method is that it reduces the number of samples of 

each type. The research evaluates four management strategies namely organic, conventional, 

agro-ecological intensification (AI) and perennial (figure 2). Eight plots employing AI 

management system were sowed with Legume ley; four plots employing organic 

management system were sowed with legume ley, spring wheat/faba bean (intercropping), 

winter wheat and spring barley/lupine (intercropping), respectively; four plots were 

designated as the reference system and were sowed with winter wheat, sugar beet, spring 
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barley and oilseed rape (hairy vetch), respectively; and the last two plots were sowed with 

perennial wheatgrass Kernza® (Thinopyrum intermedium) and Kernza®/Lucerne (alfalfa)  

intercropping, respectively as shown in figure 3. All the crops, except legume ley, were sown 

only on a single plot; this restricted the sample size of these crops to just one. Some of the 

plots in the field were sown and harvested at different dates; furthermore, few of these plots 

with intercropping had more than one crop. Figure 3 shows the distribution of crops in study 

area. Additionally, the data using UAV was collected for all the plots at the same time 

irrespective of the different sowing and harvesting dates. Additionally,  we gathered data 

from only a single season, the summer of 2018, which incidentally turned out to be warmer 

and drier than average (Liberto, 2018). Although the RGB dataset was available to us, we 

used only multispectral data because the NIR (i.e., Near Infrared) band is sensitive to 

vegetation and the derived indices are good indicators of the greenness in the vegetation 

(Mutanga et al. 2012). 

 

 
Figure 3: False colour composite (11

th
 May 2018) of study area representing polygons with all the 

crops and management system in SAFE A.  
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 UAV Image Processing Framework 4. 
4.1. Geometric Correction 

Photogrammetry in remote sensing is defined as the process of extracting reliable 

spatial measurements of physical entities from captured images. The objective is to derive 

three-dimensional information from two-dimensional data. Geometric correction is one of the 

most important steps in Photogrammetry; it helps reduce the error between physical objects 

present in the image with respect to its location in the real world. Traditionally, geometric 

correction in UAV remote sensing is based on ground control points (GCPs). GCPs are the 

point features that are easily and distinctly identifiable in the aerial images and have known 

geolocations or highly accurate recorded ground coordinates. A GCP determines the 

relationship between the raw image and the ground by associating the pixel and line image 

coordinates to the x, y, and z coordinates on the ground (PCI Geomatics, 2018); this process 

is known as geo-referencing. It is important to have an optimum number of GCPs evenly 

distributed to increase the accuracy of geo-referencing. With the advent of advance Global 

Positioning Systems (GPS) and Inertial Measurement Units (IMU) technologies, we can 

achieve high accuracy of geo-referencing (Petovello, 2003). 

Since UAVs capture images at much lower altitudes than satellites,  they produce high 

resolution imagery (Hunt et al., 2005). Even though UVAs based imagery resolution is as 

high as a centimeter per pixel the downside of lower altitude is reduced ground footprint of 

the sensors, thus more images are required to generate the orthomosaic (Wijesingha, 2016). 

In simple words, orthomosaic can be defined as a single scene formed by stitching together   

geo-rectified tiles of images. To manage the sequencing and orientation of substantial number 

of images captured, various computer vision techniques are implemented, such as Structure 

from Motion (SfM). Many organizations have developed software packages capable of 

performing SfM processes. Some popular open source packages are APERO, MICMAC, 

VisualSFM and OpenMVG; in addition to the open source packages are commercial software 

such as Agisoft Metashape and Pix4D (Dall'Asta & Roncella, 2014).  

The basic principle underlying these SfM software is that the orientation and 

sequencing of the images generate an image block that is used to construct a three-dimension 

structure of the scene. To enable this functionality, the software rebuilds the position of the 

camera and determines their relative orientation. During this process, the algorithm extracts 

and matches the features in the images. It initializes with two images and subsequent images 

are added at the end of the sequence. Furthermore, BBA (Bundle Block Adjustment) is 

performed to reduce re-projection error. The lower error leads to higher quality of the 

resulting sparse point cloud, orthophoto and dense point cloud (Agisoft LLC, 2018). 
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4.2. Irradiance Compensation 

The change in irradiance occurs because of the difference in the solar elevation angles 

and the change in relative distance of the sun. Bi-directional reflectance from the agricultural 

surface is non-Lambertian (not perfectly diffused) in nature i.e. the alteration in brightness 

due to the angle of view. The bi-directional reflectance effect also depends on the 

illumination conditions and is affected by varying intensity of subpixel shadows on the 

surface (Beisl & Woodhouse, 2004). 

Illumination conditions change over time due to cloud cover, solar angle, atmospheric 

condition and the time of the day. This affects the amount of incoming radiation which 

consequently affects the radiance. Images taken within an interval of a few minutes may have 

variation in illumination condition. Irradiance compensation is done to reduce this effect of 

varied illumination conditions and to make the data comparable. 

In dual sensor pair setting, as explained by Jin and Eklundh (2015), the reflectance 

(R) is computed by taking the ratio of the irradiance from the sunshine sensor (upward 

looking) and from the camera (downward looking). Since, there is constant bias in the 

calibration method because of the different angles of the sensors, it is resolved by introducing 

a constant factor (k), which is defined as, 

𝑅 =
𝐼𝐶

(𝑘∗𝐼𝑠)
        ( 1) 

Where, 𝐼𝐶 is the irradiance from the camera, 𝐼𝑠 is the irradiance from the sunshine 

sensor, and k is computed as ratio of two sensors’ sensitivities. 

4.3. Radiometric Correction 

The radiance recorded by the sensor mounted on the UAV may differ from the actual 

electromagnetic radiation reflected from the surface. Radiometric correction is a procedure in 

which the pixel values are calibrated to improve the quality of remotely sensed data resulting 

in approximately true reflectance values. This process is essentially important when images 

captured over different time period are compared. Omitting this process would result in  

reduced orthomosaic quality, inaccurate reflectance values and subsequently unreliable 

vegetation indices (Dunford, 2009; Mitchell, 2010; Wang & Myint, 2015).  

The radiometric distortions are predominantly due to factors such as variations in the  

sensitivity of the sensors, differences in sun elevation and angle, uneven topography, and 

atmospheric interferences (Japan Association of Remote Sensing, 1999). Radiometric 

distortions are broadly classified as follows:  
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4.3.1. Distortions due to sensors  

Variations in the functionality of the sensors due to degradation over time causes 

errors like bad pixilation, line or column dropouts and striping. Specifically, the sensors, 

which use optical lenses are vulnerable to vignetting, that is the fringe of the image appears 

darker than the center. Vignetting is caused due to the angle of the incoming rays to the 

optical axis of the sensor. 

4.3.2. Distortions caused by variations in solar angle and the 

topography 

Among the factors to be considered when performing UAV data collection are solar 

angle, viewing angle and topography. Solar angle and viewing angle causes variations in 

radiance. Solar angle and topography are the main elements that define Bi-Directional 

Reflectance Distribution Function (BRDF). BRDF simply explains the variations of radiance 

when the objects are viewed from different perspectives (i.e. angles). 

4.3.3. Distortions caused by atmospheric interferences 

Gases present in the atmosphere absorb and scatter solar radiations, which causes 

distortion in the images captured. Even though UAV imagery is not directly affected by the 

presence of clouds, the presence and the absence of clouds indirectly affect the images. On an 

overcast day, the light is diffused which may result in uniform/even reflectance. Whereas, on 

a sunny day, the condition of the light is sharp and it may result in glares on the surface. The 

atmospheric factors such as fog, presence of aerosols and BRDF also affects the captured 

images. 

4.4. Sensor Calibration 

Sensor calibration is performed in two ways: absolute and relative. In absolute 

calibration, the DN values of the image are transformed into surface reflectance values. On 

the other hand, in relative calibration, Lambertian reflectance panels with different degree of 

reflectance are used to normalize the sensor output (Guo et al., 2019). The more general and 

relatively simple method of sensor calibration is the Empirical Line Calibration (ELC). The 

ELC assumes that the relationship between the sensor radiance and the spectrally stable 

reflectance panels is linear (Clark, Suomalainen, & Pellikka, 2011a, 2011b). For ELC, it is 

important to select appropriate reflectance panels of different brightness. 

Unlike traditional methods used for satellite imagery, UAV technology do not yet 

have a well-defined systematic method for radiometric calibration; therefore, further research 

is required to bridge this gap (Clemens, 2012; Wang & Myint, 2015). 
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4.5. Phenology and Vegetation Indices 

Plants produce carbohydrates through photosynthesis utilizing water, carbon dioxide 

and sunlight. Chloroplast cells in the leaves contain the pigment chlorophyll that absorbs 

photons in the sunlight. This absorption is in the visible spectrum especially in the blue and 

the red bands (Grant, 1987). Healthier plants go through rapid photosynthesis and 

consequently absorb more radiation in the blue and the red parts of the spectrum; this 

behavior correlates with the health of chloroplast cells (Gausman, 1977). Healthy vegetation 

absorbs red and blue bands while reflecting NIR. On the other hand, stressed vegetation often 

have unhealthy and damaged chloroplast cells which tend to absorb less red light and also do 

not reflect as much NIR (SARE, 2019). The response curves for the healthy and stressed 

vegetations are shown in figure 4 

 
Figure 4: Spectral response curve for healthy (green), stressed (red), nitrogen deficient (yellow), and 

necrotic (blue) redrawn from SARE (2019). 

 

This spectral response for plants sets it apart from it surrounding features (soil, water, 

etc) and allows use of metrics such as vegetation indices (VIs). The VIs are mathematical 

combinations of spectral bands indicative of plant characteristics. The primary usage of VIs is 

to indicate the amount of vegetation in terms of percentage cover for an area of interest (e.g., 

Leaf area Index (LAI), biomass, water use, plant health and crop production) (Jackson and 

Huete, 1991). 
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5. Methodology 

5.1. Research Design 

The descriptive correlational research design was employed for this research. This 

design explains the relationship between two phenomena where independent variables cannot 

be altered. Stangor (2019) defined descriptive correlational research as “A research designed 

to discover relationships among variables and to allow the prediction of future events from 

present knowledge.” The design is chosen to statistically measure the relationship between 

variables. This is because relationships between crop yield/crop, biomass and vegetation 

indices are considered to be causal. In this study, the vegetation indices are independent 

variables which are assumed to be influenced by crop yield/ biomass. All the variables during 

the study are measured independently and are not altered. Broadly, the design involves 

measuring different variables and assessing the relationship between them. This is done 

without involving any changes to the independent variables. 

 
Figure 5: The flowchart shows the methodological framework incorporated in the study. 

 

Since this study involved phenology of crops, the images captured at different time 

periods cannot be compared unless they are radiometrically corrected. In this analysis, 

radiometric corrections were performed manually by compensating for exposure and 
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reflectance. This radiometrically corrected dataset is used to calculate vegetation indices. The 

processing and analysis incorporated in the research is outlined in Figure 5. 

5.2. Platform and Sensor 

The data was collected using the following UAV: 3DR Solo quadcopter manufactured 

by 3D Robotics, Inc. (US).This UAV is displayed in Figure 6 and was fitted with a Parrot 

Sequoia multispectral camera as well as a sunshine sensor. 

 

 

Figure 6: 3DR Solo UAV mounted with Parrot sequoia multispectral sensor and sunshine sensor. 

Photo: by Ashish Vivekar. 

 

5.3. UAV Characteristics 

3DR Solo quadcopter is considered as one of the first commercial smart UAV 

designed to capture aerial photos and video. The 3DR Solo has flight endurance of 

approximately 20 minutes when equipped with the sensors (payload 420 grams). Fully loaded 

solo weighs 1.8 kilograms including 500 grams of rechargeable smart lithium-polymer (li-po) 

battery (Anderson and 3DR staff 2015). Further specification of the 3DR Solo UAV is listed 

in Table 1. 

https://3dr.com/
https://www.parrot.com/us/
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Table 1: 3DR SOLO Specifications (Anderson and 3DR staff 2015) 

3DR SOLO Specifications 

Flight time 25 minutes; 20 minutes with payload* 

Range  0.5 miles (0.8 km) 

Max speed  55 mph (89 km/h) 

Max payload  420 g 

Autopilot Pixhawk 2 

Frequency 2.4 GHz 

Weight        3.3 lbs. (1.5 kg) / 3.9 lbs. (1.8 kg) with GoPro® and Solo Gimbal 

Dimensions 10 in. tall (25 cm), 18 in. (46 cm) motor-to-motor 

* Flight time varies with payload, wind conditions, elevation, temperature, humidity, flying style and pilot skill. 

5.4. Sensor Characteristics 

A Parrot Sequoia multispectral camera (Left, figure 7) with irradiance (sunshine) 

sensors (Right, figure 7) was used to capture images and acquire data for the study area. It is 

a lightweight camera specially designed to be mounted on small UAVs. This camera comes 

with an inbuilt GPS that records the location information and embeds a geotag to the 

recorded images. The multispectral camera captures four narrow bands of wavelength namely 

green, red, red edge and NIR. The sensor can provide information on the vegetation vitality 

by capturing the amount of light plants absorb and reflect. The green band indicates the 

chlorophyll content in the leaves, while the red band indicates variations in biomass and 

moisture. The Red edge indicates nutrient stress. Even though, all the bands indicate specific 

information, the NIR and red bands are most commonly used for studying plant 

characteristics since these wavelengths have contrasting characteristics of vegetation that is 

NIR wavelength has strong reflective properties while red has strong absorption (Parrot 

Sequoia, 2017). Specifications of these sensors are listed in table 2. 

Table 2: Parrot Sequoia multispectral sensor and Irradiance sensor specification (Parrot Sequoia, 

2017) 

Specification 

Body Sunshine sensor 

4 spectral cameras 4 spectral sensors with the same filters (body) 

Green: 530-570 nm 

Red: 640-680 nm 

Red Edge: 730-740 nm 

Near Infrared: 770-810 nm 

GPS 

Resolution: 1280 x 960 IMU + Magnetometer 

Focal length 3.98 mm  

10 bits Global shutter  

Up to 1 FPS  
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Figure 7: Parrot Sequoia multispectral sensor (left) and Irradiance sensor (right) (Parrot Sequoia, 

2017). 

 

5.5. Fixed Tower Sensor 

Two downward looking sensors are attached to a 10-meter-high mast which is 

positioned between two plots. These sensors continuously monitored data from two different 

plots. The first sensor monitors a perennial wheatgrass crop called Kernza at approx. 264 

degrees; the second sensor monitors an intercrop of Kernza and Lucerne at approx. 84 

degrees, both of this upward and downward looking sensors record measurement every ten 

minutes in red (630 nm) and NIR (800nm) bands. The mast also holds upward looking 

radiance sensor. The timestamp of the data acquisition of the fixed tower sensor data and the 

UAV flight data are matched for optimum comparison purposes. 

5.6. UAV Mission and Flight Plan 

The UAV missions are planned and carried out by SITES officials as part of their 

regular monitoring program. The data for this study was collected six times throughout the 

growing season from 11
th 

May 2018 to 17
th

 September 2018. Favorable wind and lights 

conditions were taken into consideration so that less windy days with cloudy conditions were 

chosen for the flights as often as possible. Cloudy and overcast conditions provide diffuse 

light which reduces the glare and harsh shadows and thus reduces specular reflection (Maine, 

2018). The study area is relatively windy throughout the year and requires a stable UAV, 

such as the 3DR Solo, and an experienced UAV pilot. 

Mission Planner, a free open source and community supported software application 

was used to create the flight plan. The flight plan designed to attain 80% of front overlap and 

75% of side overlap while maintaining a height of 60 meters from the ground. The average 

speed of the UAV is set at eight meters per second. The flight plan (as shown in Figure 8) is 

saved as waypoint mission and used for all the six flights. Figure 8 shows the UAV being 

deployed for the data collection. Each flight contains approximately 450 images. Before 

every flight, fixed GCP markers and reflective panels are placed in field with known 

coordinates and reflectance respectively for future reference. 
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Figure 8: The figure shows the snapshot of flight plan created on Mission Planner software. Yellow 

line shows the path and direction of the flight, The basemap is from Google Earth. 

 

 
Figure 9: Reflectance panels setup during actual UAV data collection mission at Lönnstorp..Photo: by 

Ashish Vivekar. 
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5.7. Ground Control Points 

The study area had six evenly placed tiles which were used as GCPs. The distribution 

of GCPs that were used is depicted as red dots in Figure 10. The coordinates of the tiles were 

collected using high-precision RTK (Real Time Kinematics) device. The GCPs were 

measured in SWEREF 99TM coordinate system. Vertical coordinates were measured in 

RH2000 height system. The GCPs were consistent for all the flights and were marked with 

black and white chequered tiles. These GCPs were then used for geometric correction during 

the SfM process. 

 
Figure 10: Marked GCPs overlaid on Google Earth (RGB) image dated (30th May 2018). 

 

5.8. Reflectance Panels 

Before each flight, three Labsphere's Spectralon® reflectance panels of different 

shades were placed on the field. These panels were cleaned and placed on a dark green tarp in 

such a way that they were not affected by shadows. The panel used were approximately 25 x 

25 cm (10 x 10 inches), They need to be big enough to covers area several times of the pixel 

size of the sensor. It must be placed on the same elevation as the study area of interest and 

should exhibit high Lambertian reflectance standards (Smith & Milton, 1999). These 

reflectance targets have the property to diffuse incident light and maintain the contrast over 

the range of the illumination condition. These panels are ideal for post-flight reflectance 

calibration of the images. White, grey, and dark grey panels with the known reflectance of 

50, 20, and 5 percent respectively were used in this study (see Figure 11). 
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Figure 11: Reflectance Panels RGB image (Bright 50%, Dark 5% and Grey20%) RGB image from 

UAV. based on data from SITES. 

 

5.9. Crops and Management 

The observation regarding sowing date, fertilization and other management practices 

were recorded by the officials of SITES. The study area was divided into 25 small plots of 

various sizes; these plots are divided into 4 cropping systems as mentioned previously in the 

study area section (Section 3). The crop yield data was recorded per plot. Crop yield data 

were collected as fresh and dry weight (in kg/ha). 

In case of legume lay and sugar beet, both the fresh and dry yields were recorded, 

whereas only dry weight data was recorded for all other crops. Samples of legume ley were 

collected from patches of 0.25 square meters area from each of these 9 plots. The total weight 

of the fresh and the dry biomass were recorded for the first harvest, whereas, for the second 

harvest the fresh and the dry weight of legume ley grass, clover, and weeds were recorded 

separately. To maintain consistency in the analysis, only total fresh and total dry biomass is 

used from both the harvests of legume ley.  

While, in case of other crops (spring wheat & faba bean, winter wheat, spring barley 

& lupine, spring barley, winter oilseed rape, wheatgrass (Kernza) and Kernza & Lucerne) dry 

weight of straw and kernels were measured from patches of one square meter. Only in case of 

sugar beet, samples were collected from two rows of eight meters with area of 7.68 square 

meters.  
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5.10. Software Application 

Agisoft Photoscan was the software package used for generating orthomosaics and 

dense point clouds from drone imagery. ENVI, Python IDE and MATLAB were used for 

performing radiometric corrections. Microsoft Office was used for data visualization, data 

management and writing the report. Google Earth and mission planner applications were used 

for making the flight plan and visualization.   

5.11. Image Processing 

5.11.1. Data Cleanup and Metadata Analysis 

The entire dataset was manually checked for quality (corrupt, blurred and dark 

images). For pre-processing, the data was cleaned and sorted. The images taken during 

landing and takeoff (where altitude was lower than usual flying height) were identified and 

discarded as takeoff and landing were manually handled to take pictures of reflectance 

panels, Apart from this, blurred and distorted images and images from the diagonal path (to 

improve efficiency while performing solar angle compensation) were identified and deleted. 

5.11.2. Exposure Compensation 

The image dataset collected at different times was exposed to different illuminating 

conditions. For optimum comparison it was particularly important to calibrate the data sets. 

The factors influencing exposure are overcast conditions, changes in International 

Organization of Standardization (ISO also known as film speed), aperture size, shutter speed, 

and solar angle. For data collection, the sensors aperture size was set to static; however, the 

ISO and the shutter speeds were set to automatic. The ISO was relatively stable but shutter 

speed (also called as exposure time) varied from 0.001 to 0.0001 seconds. Especially, in case 

of narrow Red-Edge band (730–740 nm), the shutter speed was quite slow (approx. 0.001 

seconds), except in the case of the July dataset. 

In this study, each dataset consisted of about 450 multispectral images. To generate 

high accuracy mosaics, even the slightest variations in illumination between image tiles was 

considered and compensated accordingly. The variations arose because of changes in 

direction of flight and different composition of each frame. The most effective way to adjust 

the effect of illumination would have been to set a constant value of exposure for each image 

before it was taken. However, this was not possible since the setting in Parrot Sequoia does 

not permit to have only shutter speed as automatic. The system either permits to have all 

settings (shutter speed, aperture and ISO) fixed, or the aperture fixed while the ISO and the 

shutter speeds can be automatic.  The preset automatic shutter speed in the Parrot Sequoia 

could not be changed without changing the ISO. To compensate for differences in the 

exposure setting when the images were taken, it was decided to normalize the relative 

exposure of every image. In other words, we selected exposure value from one image in the 
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dataset and adjusted all other images by compensating for the changes in shutter speed and 

the ISO of the selected image. The exposure compensation for this step was evaluated using 

Equation 2. 

𝐷𝑁𝐸𝐶 = 𝐷𝑁 ∗
𝑘2

𝜏𝐾 
       ( 2) 

Where, 

𝑘 is the aperture F number, 𝜏 is the exposure time in seconds, 𝐾 is the ISO of the 

multispectral sensor, and DN is Digital number. 

5.11.3. Orthophoto Generation 

Orthophotos and DEM (Digital Elevation Model) are generated using Agisoft 

PhotoScan Professional (Agisoft LLC) version 1.3.2. Images gathered via UAV sensors were 

imported into the application. The camera position for all the images were aligned to build 

the sparse point cloud with high accuracy. For precise geo-referencing, accurate model 

construction and further optimization, camera positions of the 6 GCP markers were used. To 

make the process quicker, we created mesh enabling the software to guide us near the 

probable place of markers so that we can easily locate GCP on the photo to place the marker. 

To achieve even higher accuracy in calculating the internal and external parameters of the 

camera, it was recommended by the user manual of the software to use the ‘Optimize Camera 

Alignment’ setting. This step is suggested if GCP coordinates are known precisely. 

Generally, the SfM algorithms require high computing power. Even with a powerful 

workstation (Intel core i7-6700 @ 3.40Ghz with 64 GB RAM), it took 5-8 hours to process 

one data set (processing time depends mostly on the hardware configuration). Batch 

processing was used to run multiple commands concurrently. This process resulted in dense 

point cloud, DEM, and orthomosaic for each dataset. 

5.11.4. Reflectance Correction and Calibration 

For the purpose of this study, Empirical Line Correction (ELC) was used; this is a 

target-based reflection correction method. This approach calibrates digital numbers at sensor 

irradiance for each band with reflectance coefficient of the targets. By using reflectance 

panels of known reflectance in the field the reflectance values and observed values were 

compared and subsequently the data was normalized accordingly. The reflectance factors will 

have a linear relationship with the reflectance panels of different reflectance (here 50%, 20% 

and 5%) for each band. Using the reflectance targets, the absolute reflectance values were 

calculated; this enabled comparing the data captured during different flights. 
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The reflectance values collected by cameras from reflectance panels are prone to 

errors due to the inability to compensate for the position of the Sun relative to the target and 

the sensor.  Relative position of the sun changes with the time of the day as well as with the 

time of the year. 

 
Figure 12: Wavelength dependence of reflectance for the reflectance panels (Plotted by Dr. Hong Xiao 

using Spectralon Documentation). 

 

Generally, the optical properties of the Spectralon panels make them optimal for 

measuring canopy reflectance and BRDF correction; It supports the detection of the effects of 

emitted light other than surface properties (Georgiev & Butler, 2007). In this study, the 

wavelength dependent reflectance values measured from three Spectralon panels of varying 

brightness from 5% (bright), 20% (grey) and 50% (dark grey) were used. The reflectance 

variation of the panels for varying brightness of the panels is depicted in Figure 12 as shown 

above. The reflectance values of the panels are used as per the documentation of the 

Spectralon. The true reflectance values for the panels in various bands are mentioned in Table 

3. When the reflection values are close to saturation i.e. DN value above 60000, it may lead 

to unreliable results. Therefore, it was decided to discard the DN values which were above 

60000; only unsaturated values were used for developing regression models. In some cases, it 

was observed that the values of band 1 (green) and band 2 (red) reached its saturation limits. 

The values for bright (0.5) panel from band 1 and band 2 from all six datasets were discarded 

to maintain consistency. Consequently, the values from dark grey (0.05) and grey (0.20) 

panels were used to calculate regression models for band 1 (green) and band 2 (red) while 
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values from all three reflectance panels were used for generating regression models for band 

3 (red edge) and band 4 (NIR). These regression models were then used for band wise 

reflectance calibration for each image using values listed in table 3. 

Table 3: Band-wise reflectance of Labsphere Spectrolon Plate 

Known Reflection 

 Band 1 Green 

(550nm) 

Band 2 Red 

(660 nm) 

Band 3 Red-Edge 

(735 nm) 

Band 4 NIR 

(790 nm) 

Bright Panel (50%) 0.4991  0.5167  0.5281 0.5357 

Grey Panel (20%) 0.2121  0.2240  0.2322 0.2381 

Dark Panel (5%) 0.0377  0.0393  0.0406 0.0416 

 

 

In figure 13, the regression lines show the dependency between DN values by the 

UAV-based sensor and the reflectance values of Spectralon Panels measured for each band 

(red, green, red edge and NIR). Three Spectralon panels representing different light 

intensities were used. These are noted with B(right), G(rey) and D(ark) and correspond to the 

light reflectance of 50%, 20% and 5%, respectively. The DN values were taken from the 

images captured on 11 May 2018. Similar relationships were computed for the flights 

conducted on 13 June 2018, 26 July 2018, 21 August 2018, and for the flights on the 4
th

 and 

17
th

 of September 2018, respectively. The graphs for the corresponding relationships are 

mentioned in the appendix section B (figure B1-B6). 

 
Figure 13: Correspondence between DN values at Sensor (UAV multispectral) and reflectance based 

on Spectralon Documentation.  
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5.12. Vegetation Index Calculation 

5.12.1 NDVI (Normalized Difference Vegetation Index) 

NDVI is the most commonly used index of vegetation greenness and photosynthetic 

capacity (Walker et al. 2012). It is a simple numerical indicator for remotely measuring the 

reflectance pattern of green vegetation ‘greenness’ from an aerial platform (Rouse Jr, Haas, 

Schell, & Deering, 1974). The index assesses the presence of vegetation in the target area by 

using red and near infrared bands (NIR) of electromagnetic radiation. This particular 

combination of the bands was chosen for the normalized difference formulation which uses 

one band (red) of the strong absorption and one band (NIR) of high reflectance/weak 

absorption of chlorophyll (Gitelson, 2004). The index, however, tends to saturate at high 

values of leaf area index (LAI). High values of LAI can be characterized by dense vegetation, 

especially, during leaf production and leaf senescence periods (Wang et al. 2005). The usual 

range of NDVI values are from -1 to 1 in where negative values represent water bodies, 

values close to 0 represents snow, rock, sand or bare soil; and positive values between 0.1 – 

0.3 represents shrubs and grasslands; while higher values represent dense forests (Pinzon & 

Tucker, 2014; Tucker et al., 2005). The absolute value of NDVI are sensor specific and direct 

comparison between NDVI measured from different sensors may not yield correct results (for 

e.g. AVHRR and MODIS sensors may have different NDVI values for the same location). In 

general, higher vegetation density corresponds to higher NDVI values. Additionally, 

unhealthy and sparse vegetation reflects more red and less NIR than healthy and dense 

vegetation; whereas, bare soil reflects moderately in both red and infrared and results in 

lower values (Rouse Jr et al., 1974). Mathematically, NDVI is computed using the following 

equation (Equation 3). 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
      ( 3) 

5.12.2 SAVI (Soil-Adjusted Vegetation Index) 

The background soil reflectance can considerably influence NDVI values (Epiphanio 

and Huete 1995) by up to 20%. To ascertain if NDVI values were influenced by background 

soil, SAVI is calculated. This index is similar to NDVI, but it helps to overcome the effects of 

soil brightness. Soil color, soil moisture, and other properties of the soil influence the spectral 

properties of the vegetation. SAVI attempts to minimize the effect of background soil 

brightness by using a canopy background adjustment factor, L, which is a function of 

vegetation density representing the proportion of vegetation in a certain area. It often requires 

prior information about the area’s vegetation amounts being analyzed. 
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Huete (1988) suggests an optimal value of L=0.5 to account for the first-order soil 

background variations. This index is best used in areas with relatively sparse vegetation 

where soil is visible through the canopy. The general equation for SAVI is computed as 

follows in equation 4. 

𝑆𝐴𝑉𝐼 =  
(1+𝐿)(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑+𝐿)
      ( 4) 

SAVI is usually used in areas where vegetative cover is low (< 40%). The adjustment 

factor values i.e. L ranges from 0 to 1; where 1 is very high vegetation and 0 is very low 

vegetation. In general, value of 0.5 (L = 0.5) is used for intermediate vegetation cover. The 

precise value of L can be arrived at by trial and error. It is calculated as a factor which gives 

equal VI values for dark and light soils. The value of L=0.5 was selected for this research. 

Consequently, the general equation is represented by equation 5. 

𝑆𝐴𝑉𝐼 =  
1.5∗(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑+0.5)
      ( 5) 

 

5.12.3 DVI (Difference Vegetation Index) 

This index is very sensitive to the amount of vegetation and readily distinguishes 

background soil from vegetation (Mróz & Sobieraj-Żłobińska, 2004). Similar to NDVI and 

SAVI, in DVI, zero indicates bare soil, values less than 0 represents water, and those greater 

than 0 represents vegetation. The DVI is evaluated using the equation 6 as represented below 

(Tucker, 1979). 

𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑       ( 6) 

 

5.13. Vegetation Height Calculation 

Vegetation height is calculated as the difference between the bare earth surface model 

(DTM) and the Digital Surface Model (DSM) and represented as the Crop Surface Model 

(CSM) as depicted in Figure 13. Ideally, the DTM should have been extracted from the 

dataset when there are no crops in the field. Since such dataset was unavailable, it was 

decided to use previously available datasets. The datasets were analyzed based on the harvest 

dates and the visual inspection. Plots with no plant cover were selected for extracting the 

terrain model. The DTM was generated using the points from the plots with bare soil. The 

same surface was extrapolated for the whole study area with the assumption that the study 

area is flat and uniform. 
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Figure 14: Crop height is calculated as the difference between DTM and DSM extracted from dense 

point cloud. 

 

The image captured from each flight data provided the corresponding surface models 

referred to as CSMs. To measure the height of the crops, the difference between the CSM and 

DTM is calculated (Figure 14). This facilitated analyzing the variation of crop growth 

spatially and temporally. The height of the crops at each flight date was calculated from 

CSMs of different dates. These crop heights were then used for establishing the associations 

with vegetation indices; the findings of which is mentioned in the result section. 

5.14. Correlation Analysis 

Broadly, ‘correlation is used to refer to an association, connection, or any form of 

relationship, link or correspondence’ and statistically how two variables co-vary. The usual 

range varies between -1 to 1, where -1 indicates perfect negative correlation, 0 indicates no 

correlation, and 1 indicates perfect positive correlation (Mukaka, 2012). Pearson and 

Spearman correlation coefficients were calculated for crop yields and the vegetation indices 

to identify the dynamics between them. Pearson and Spearman correlation were selected 

because these provide insights about the relationship (monotonic or linear). While a full 

significance test was not performed, the results were interpreted using a general rule (Hinkle, 

Wiersma, & Jurs, 2003) as described in table 6. The size and the sign of the coefficient 

indicate the degree and the direction of the correlation respectively. 

Table 4: Correlation coefficient and its interpretation general rule by Hinkle et al., (2003). 

Size of Correlation Interpretation 

0.90 to 1.00 (- 0.90 to - 1.00) Very high positive (negative) correlation 

0.70 to 0.90 (- 0.70 to - 0.90) High positive (negative) correlation 

0.50 to 0.70 (- 0.50 to - 0.70) Moderate positive (negative) correlation 

0.30 to 0.50 (- 0.30 to - 0.50) Low positive (negative) correlation 

0.00 to 0.30 (0.00 to - 0.30) Negligible correlation 
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6. Results 
This section presents the results of the analysis. 

6.1. The radiometrically corrected multispectral UAV imagery showed similar trends 

of NDVI, SAVI and DVI with the one computed from the fixed tower sensors. The processed 

values for the chosen vegetation indices from UAV sensor as well as sensors placed at the 

tower for plot 25 (Sensor on tower record reflectance for this plot only) is presented in the 

figure 15, 16 and 17 respectively. These figures suggest that UAV sensor overestimated the 

vegetation indices in general and there was stable offset between these two (UAV and fixed 

tower sensor). Following figures also depict high inter day variation in fixed tower sensor 

readings (blue points) especially in the month of May, June and August.  

 
Figure 15: Variation of NDVI values from UAV and Tower Sensor. 

 

 
Figure 16: Variation of SAVI values from UAV and Tower Sensor 
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Figure 17: Variation of DVI values from UAV and Tower Sensor 

 

Having considered the consistent pattern of overestimation, the correlation of VIs 

obtained from both sensors shows very high association (r>0.85) as shown in Table 5. 

Surprisingly, SAVI from UAV sensor exhibits very high correlation with all three VIs from 

fixed tower sensor.  

 Table 5: Correlation between VI values obtained from tower sensor and UAV sensor Data 

 NDVI Fixed Tower SAVI Fixed Tower DVI Fixed Tower 

NDVI from UAV sensor 0.86 0.67 0.63 

SAVI from UAV sensor 0.90 0.94 0.93 

DVI from UAV sensor 0.85 0.94 0.95 

 

Besides comparing the vegetation indices from the two sensor platforms an attempt 

was also made to perform correlation analysis of crop heights with selected vegetation 

indices. The plant height obtained from CSM of each plot was correlated with mean VIs of 

respective plots; the results are tabulated in Table 6. Scatterplots in Figures 18, 19 and 20 

illustrate the relationship of crop height with specific VIs on 3 different dates. Scatter plots 

for remaining relationships are provided in appendix section D (Figure D1, D2 and D3). 

Table 6: Correlation between crop height and vegetation indices 

 Average Plant Height 

 11
th
 May 13

th
 June 26

th
 July 21

st
 August 04

th
 Sept 17

th
 Sept 

NDVI 0.51 0.47 0.65 0.19 0.73 0.87 

SAVI 0.57 0.72 0.45 0.04 0.74 0.85 

DVI 0.62 0.80 0.19 -0.02 0.73 0.81 
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Figure 18: Scatter plot of plant height vs NDVI (calculated from dataset of 17

th
 September 2018) n=18. 

 

 
Figure 19: Scatter plot of plant height vs SAVI (calculated from dataset of 13th June 2018) n=18. 

 

 
Figure 20: Scatter plot of plant height vs DVI (calculated from dataset of 4th September 2018) n=18. 

 

Moderate to strong positive correlation between plant height and vegetation index was 

observed in all cases except for the data collected on 21 August 2018. As most of the crops 

were already harvested on that date, and could partly explain the low correlation values than 

other dates.  
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6.2. To answer our second research objective ‘to identify the relationship between VIs 

derived from multispectral UAV imagery and crop yield of selected crops in a Swedish 

agricultural area’, we tested correlation between them.  

For clarity and consistency of results, categories were defined based on the crop type 

and the harvest date. 18 plots of crop were classified into two groups. All the nine plots with 

Legume ley were grouped together as ‘Legume ley’ and remaining nine plots were grouped 

as ‘Other crops’. Legume ley plots were harvested twice in the growing season and yield was 

measured after each harvest. The yield from first harvest and second harvest are labelled as 

‘first harvest’ and ‘second harvest’ respectively. The yield weight measurements were taken 

for fresh as well as dried crops and labelled as ‘Fresh weight’ and ‘Dry weight’ respectively. 

Other crop plots were classified again on the basis of harvest dates. They were grouped into 3 

subcategories: i) All crops (except Legume ley) ii) Remaining crops harvested before 26   

July 2018 and iii) Remaining crops harvested between 26 July 2018 and 21 August 2018. 

Table 7 shows the correlation coefficients (Spearman and Pearson) for all plots of 

Legume ley (n=9). Since, the first harvest was on 25 June 2018, the yield from the first 

harvest with the VI values calculated from the flight data before harvest was used. Similarly, 

for the second harvest, the VIs calculated from flights between the first harvest and second 

harvest were used. 

Table 7: Correlation analysis between Legume ley yield (first harvest) and corresponding vegetation 

index (9 plots). 

First Harvest 

NDVI  11
th
 May 13

th
 June 

Fresh weight Spearman 0.62 0.00 

Dry weight Spearman 0.58 -0.10 

Fresh weight Pearson 0.39 0.22 

Dry weight Pearson 0.17 0.05 

SAVI 

Fresh weight Spearman 0.63 0.17 

Dry weight Spearman 0.55 0.07 

Fresh weight Pearson 0.35 0.30 

Dry weight Pearson 0.05 -0.01 

DVI 

Fresh weight Spearman 0.45 0.25 

Dry weight Spearman 0.30 0.10 

Fresh weight Pearson 0.31 0.27 

Dry weight Pearson 0.01 -0.06 
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In the case of the first harvest, the VIs calculated from the flight conducted on 11 May 

2018 show moderately strong positive correlation with the yield. The stronger relationship 

(bigger correlation coefficients) indicates greater association between variables. The 

Spearman correlation coefficients were consistently stronger than the Pearson correlation 

coefficients and indicated the monotonic type of relationship between variables. Conversely, 

very weak relationship was observed when comparing the yield with the VI result of 13 June 

2018. Furthermore, the relationship was slightly stronger for the ‘fresh weight’ as compared 

to that of the ‘dry weight’ as shown in Table 7. 

On the other hand, for the second harvest of the Legume ley, the best relationship 

(characterized by correlation coefficient) was found in the beginning of the growing season 

i.e., on 26 July 2018 as mentioned in Table 8. A moderately strong positive correlation 

between VIs and crop yield for Pearson and slightly less positive correlation for Spearman 

was observed. In contrast to the first harvest, Pearson correlation was observed to be 

consistently higher than the Spearman correlation indicating a higher linearity in the 

relationship of the variables. Surprisingly, the VIs measured in the month of August showed 

moderately negative correlation (Pearson and Spearman) with both the fresh and the dry 

yield. Weak relationship was detected for the rest of the dates.  

Table 8: Correlation analysis between Legume ley yield (second harvest) and corresponding 

vegetation index (9 plots). 

Second Harvest 

NDVI  26
th
 July 21

st
 August 04

th
 September 17

th
 September 

Fresh weight Spearman  0.25 -0.38 0.17 -0.12 

Dry weight Spearman  0.35 -0.38 -0.12 -0.05 

Fresh weight Pearson 0.57 -0.49 0.42 -0.11 

Dry weight Pearson 0.55 -0.49 0.30 -0.17 

SAVI 

Fresh weight Spearman  0.53 -0.43 0.08 -0.15 

Dry weight Spearman  0.40 -0.47 -0.17 -0.13 

Fresh weight Pearson 0.78 -0.52 0.37 0.02 

Dry weight Pearson 0.63 -0.55 0.25 -0.15 

DVI 

Fresh weight Spearman 0.62 -0.47 0.10 0.03 

Dry weight Spearman 0.43 -0.50 -0.15 0.00 

Fresh weight Pearson 0.77 -0.45 0.37 0.04 

Dry weight Pearson 0.60 -0.52 0.26 -0.14 

 

By visual inspection we identified some patches in the Legume ley plots which 

looked very distinct but upon enquiry with the staff of SLU, it was found that a faulty sowing 

machine caused it. These patches were observed in all the six datasets for all the flight dates 

as seen in the Figure 21 for 11 May 2018. These three affected plots were omitted from the 

further analysis. Images of other dates can be seen in appendix section C Figure C1. 
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Figure 21: Orthomosaic of the study area in false colour composite (11

th
 May 2018), the patches are 

marked with red. 

 

The omission of these 3 affected plots improved the correlation coefficients 

(Spearman and Pearson); the improvements are seen in Table 9 and 10. Spearman correlation 

coefficient was higher than Pearson in all the cases (except in the case of Fresh weight with 

NDVI) indicating monotonic relationship. 

Table 9: Correlation analysis between Legume ley yield (first harvest) and corresponding vegetation 

index after the removal of affected plots. 

First Harvest 

NDVI  11
th
 May 13

th
 June 

Fresh weight Spearman  0.77 -0.49 

Dry weight Spearman 0.77 -0.37 

Fresh weight Pearson 0.80 -0.35 

Dry weight Pearson 0.72 -0.23 

SAVI    

Fresh weight Spearman 0.89 0.03 

Dry weight Spearman 0.66 -0.03 

Fresh weight Pearson 0.65 -0.10 

Dry weight Pearson 0.45 -0.13 

DVI    

Fresh weight Spearman 0.60 0.26 

Dry weight Spearman 0.26 -0.09 

Fresh weight Pearson 0.55 0.24 

Dry weight Pearson 0.32 0.05 
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The coefficient of determination, R
2
, tells what percent of the variation in data values 

is explained by the regression line. For fresh yield of legume lay, NDVI can explain about 

64% of variation from 11 May dataset whereas for dry yield the 51% variation is determined 

by regression line as seen in the Figure 22.  

 
Figure 22: Sample scatterplot for first harvest legume lay yield fresh (left) and dry (right) with NDVI of 

11
th

 May 2018, n=6. 

 

For the second harvest, the results are remarkably similar to the first harvest but with 

slightly stronger correlation for the yield with all three VIs. The data from 26
 
July 2018 had 

the highest positive correlation. The data from the 21
st
 August 2018 exhibited moderately 

strong negative correlation with the Pearson coefficients being slightly stronger as seen in 

table 10 below. 

Table 10: Correlation analysis between Legume ley yield (second harvest) and corresponding 

vegetation index, after removal of affected plots. 

Second Harvest 

NDVI  26
th
 July 21

st
 August 04

th
 September 17

th
 September 

fresh weight Spearman  0.49 -0.26 0.20 -0.09 

Dry weight Spearman 0.37 -0.60 -0.26 -0.14 

fresh weight Pearson 0.63 -0.61 0.45 -0.24 

Dry weight Pearson 0.45 -0.84 0.25 -0.47 

 SAVI      

fresh weight Spearman  0.77 -0.26 0.20 0.14 

Dry weight Spearman 0.54 -0.60 -0.26 0.14 

fresh weight Pearson 0.79 -0.59 0.48 0.19 

Dry weight Pearson 0.56 -0.82 0.29  -0.09 

 DVI      

fresh weight Spearman  0.71 -0.26 0.20 0.31 

Dry weight Spearman  0.37 -0.60 -0.26 0.26 

fresh weight Pearson 0.78 -0.49 0.51 0.26 

Dry weight Pearson 0.56 -0.74 0.31   -0.01 

 



34 

 

 
Figure 23: Sample scatterplot for second harvest legume lay yield fresh (left) and dry (right) with 

NDVI of 26
th

 July 2018, n=6. 

 

For all other crops, which consist of Faba bean/Spring wheat, Winter wheat/Insowed 

ley, Spring barley/Lupine, Winter wheat, Sugar beet, Spring barley, Oilseed rape, Kernza and 

Kernza/Lucerne on a single plot each, only the dry weight measurements were taken. Table 

11 describes the Spearman and Pearson correlation coefficients between dry weights (yield) 

of these crops with their corresponding VIs. Both correlation values exhibit a very strong 

positive correlation in both the datasets of September when almost all the crops were already 

harvested. These results are considered unreliable since the yield data is based on the crops 

which are harvested; whereas, the vegetation indices are not related with the yield. Since the 

harvest date of crops differs, it was decided to segregate the crops based on harvest dates to 

get more reliable result. 

 
Figure 24: Scatter plot shows relationship between VIs (NDVI, SAVI and DVI) calculated from 

September 17,
 
2018 dataset and dry crop yield (other crops), n=9. 
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 The best correlation coefficient for crop yield and VIs of all other crops for 17 

September 2018 dataset can be seen in the Figure 23. But the results cannot be considered 

reliable, as most of the crops were harvested long before that date. 

Table 11: Correlation analysis between all other crops yield and corresponding vegetation index (9 

plots with 1 plot each for Faba bean/Spring wheat, Winter wheat/Insowed Ley, Spring barley/Lupine, 

Winter wheat, Sugar beet, Spring barley, Oilseed rape, Kernza and Kernza/lucern. 

All other crops except Legume ley (Dry weight) 

NDVI 11
th
 May 13

th
 June 26

th
 July 21

st
 August 04

th
 September 17

th
 September 

Pearson 0.18 -0.31 0.30 0.40 0.58 0.80 

Spearman 0.27 -0.08 -0.48 0.55 0.67 0.87 

SAVI 

Pearson 0.20 -0.19 0.38 0.46 0.59 0.81 

Spearman  0.25 -0.08 0.57 0.52 0.62 0.85 

DVI 

Pearson 0.19 -0.09 0.49 0.47 0.60 0.82 

Spearman  0.25 -0.10 0.48 0.50 0.68 0.85 

 

The relationship of yield and respective VIs of the three crops (Winter 

wheat/Unsowed Ley, Winter wheat and Oilseed rape) based only on harvest dates exhibited a 

very strong correlation coefficient with VIs of 11 May 2018. While the VIs of 13 June 2018 

exhibited weak positive correlation with the Pearson coefficient and moderate negative 

correlation with the Spearman coefficient in the case of SAVI and DVI. However, the 

Pearson and Spearman coefficients exhibited moderately positive correlations with the NDVI 

(Table 12). The results are considered unreliable because of the restricted sample size. 

 
Figure 25: The scatter plots show the relationship between VIs (NDVI, SAVI and DVI) calculated from 

May 11,
 
2018 dataset and the dry crop yields (other crops) harvested before July 26, 2018, n=3. 
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Table 12: Correlation analysis between all other crops yield harvested before 26
th

 July and 

corresponding VI (3 plots with 1 plot each for Winter wheat/Insowed Ley, Winter wheat, Oilseed rape. 

Other crops (except Legume ley) harvested before 26
th

 July 

NDVI 11th May 13th June 

Pearson 0.81 0.38 

Spearman  1.00 0.50 

SAVI   

Pearson 0.87 0.22 

Spearman  1.00 -0.50 

DVI   

Pearson 0.94 0.12 

Spearman  1.00 -0.50 

 

The VIs of crops (Faba bean/Spring wheat, Spring barley/Lupine, Spring barley and 

Kernza) which were harvested between 26 July 2018 and 21 August 2018, is tabulated in 

Table 13. On 26 July 2018, NDVI and SAVI showed a moderately strong positive correlation 

with the crop yield, whereas a weak negative correlation was observed in the case of DVI for 

both Pearson and Spearman coefficients. On 13 June 2018, all VIs exhibited moderately 

strong negative relationship with respective crop yields.  

 
Figure 26: The scatter plots show the relationship between VIs (NDVI, SAVI and DVI) calculated from 

July 26,
 
2018 dataset and the dry crop yield (other crops) harvested before August 21, 2018, n=4. 
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Table 13: Correlation analysis between all other crops yield harvested between 26th July & 21st 

August and the corresponding VI(3 plots with 1 plot each for Faba bean/Spring wheat, Spring 

barley/Lupine, Spring barley, Kernza. 

Other crops (except Legume ley) harvested between 26
th

 July and 21
st
 August 

NDVI 11
th

 May 13
th

 June 26
th

 July 

Pearson 0.18 -0.55 0.62 

Spearman 0.00 -0.80 0.80 

SAVI    

Pearson 0.18 -0.66 0.51 

Spearman 0.00 -0.40 0.60 

DVI    

Pearson 0.19 -0.43 -0.10 

Spearman 0.00 -0.40 -0.40 

 

6.3. The third research objective was to identify which among the NDVI, SAVI and 

DVI performed the best to estimate the crop yield. In the case of Legume ley, the best 

correlation observed was with the Spearman Correlation coefficient (rs) of 0.89 (for the first 

harvest) and 0.79 (for the second harvest) for the ‘fresh weight’ with SAVI. In the case of the 

other crops, the best correlation for the crops harvested before 26 July 2018 was rs = 1 for all 

the 3 VIs (with only 3 sample observations); whereas, the crops harvested between 26
th

 July 

2018 and 21
st
 August 2018 exhibited the best correlation with rs = 0.80 with NDVI. 

Since the relationship between the yield and VIs compared was not linear, it could not 

be precisely determined which of the VIs are best suited for estimating crop yield. Further 

experiments are needed to establish the VI that is the best fit for evaluating crop yield.  

6.4. The last research objective was to determine if the VIs explain the crop 

phenology. Although all three VIs exhibited similar trends in crop phenology, they did not 

reflect the actual crop phenology. Not enough flights data were collected during the growing 

stages for all the crops. The best crop phenology is explained by the Sugar beet crop (Figure 

27). 

 
Figure 27: Crop phenology of sugar beet derived from NDVI, SAVI and DVI. 
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 All the plots of the Legume ley exhibited similar phenology irrespective of the 

management practice employed (conventional or organic). In Figure 28, the Legume Lay 

phenology with the first harvest on 25 July 2018 is plotted.  

 
Figure 28: Crop phenology of Legume ley derived from NDVI, SAVI and DVI. 

 

Figure 29 displays the general phenological growth curves for any type of agricultural 

crop. It should be noted that the phenological pattern may vary with crop species. The plant 

development from emergence till harvest would generally have a representation of a bell-

shaped growth curve; the curve representing the changing VI values. None of the crops in the 

study area showed this pattern of change in VIs value as a measure of phenology. This is 

accounted for by the infrequent data capture during various growth phases of the crop. Hence, 

it is essential to synchronize the frequency of data capture with the major growth stages of the 

observed crops.  

 

Figure 29: Typical vegetation index curve for plant growth cycle (may differs with crop species). 

Modified from James Hunt, La Trobe University, AgriBio Centre for Agribiosciences. 

source;https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-

papers/2018/08/wheat-phenology-and-the-drivers-for-yield-in-the-high-rainfall-zone 

https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/08/wheat-phenology-and-the-drivers-for-yield-in-the-high-rainfall-zone
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/08/wheat-phenology-and-the-drivers-for-yield-in-the-high-rainfall-zone
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7. Discussion 

The Vegetation Index (VI) values observed in the study are relatively high compared 

to the literature. This could be the result of bias in reflectance values of the reflectance panels 

due of the angle of the camera or the variations in camera gain due to the fluctuations in the 

temperature. The study done by (Adler, 2018; Tagle, 2017) found that the NDVI values 

derived from radiometrically calibrated UAV data tends to have higher values when 

compared with the NDVI values calculated with that of handheld spectrometer. 

All the 3 VIs selected in this study relied on the Red and the NIR bands. Since the 

NIR band is more sensitive to lower reflectance values than the Red band, it may induce bias 

if the values in the higher reflectance are saturated. A study by Adler (2018) showed that the 

Spectralon panel exhibited comparatively high reflectance values than the actual panel 

reflectance, especially, in the NIR band at higher altitudes (i.e. > 60m) as compared to linear 

relation at 50% calibration data. This could be one of the reasons for the higher than normal 

vegetation index values observed in this study. This observation of the researcher is presented 

as a table in Appendix figure 20.  

The summer of 2018 was unusually warm; one of the hottest in the last 100 years and 

the temperatures were 2 degrees Celsius higher than the previous highest average monthly 

temperature at many places (Åström, Bjelkmar, & Forsberg, 2019). Especially, the month of 

July was exceptionally hot in southern part of Sweden. Data from SHMI (Sveriges 

meteorologiska och hydrologiska institut) shows that the monthly average temperature of 

June and July of 2018 was 3 degree Celsius warmer than that of May and July of 2019. This 

atypical warm season lead to drought like conditions. The scarcity of water and sweltering 

heat could have affected the growth of the crops. The staff of the SLU confirmed that the 

crops had less than normal size of leaves and plant height. This could be the impact of water 

scarcity and heat; however, surprisingly even with the smaller leaves and shorter height, the 

crop yield was normal. It is possible that the crops may have adapted and reduced the size of 

the leaves to compensate for the amount of sunlight they needed. The shunted height of the 

crops could be the result of reduced competition for solar energy or due to the scarcity of 

water. The size of the leaves and the height would affect the vegetation index. This may be 

one of the factors for low vegetation index values calculated in July and August 2018. 

Although the warm summer affected all the crops in the study area, the crop specific response 

to the heat stress would be different. Further research initiatives need to be undertaken to 

focus on understanding the response of each crop to heat stress to arrive at any conclusion.  

Vegetation indices for the dataset captured on 26 July 2018 has comparatively very 

low values than the other datasets. Even if this dataset had relatively better correlation with 

yield compared to the correlation with the same variable in other time frames, it was observed 



40 

 

that the images appeared relatively darker (Appendix C Figure C1). However, from the 

observation of the strong shadows of the trees in the study area, it was discerned that the day 

was particularly sunny and bright. After the analysis of the EXIF data (i.e. Exchangeable 

Image File), it was discovered that the automatic settings of the camera increased the shutter 

speed. It was found to be approximately 10 times quicker than other datasets in all the four 

bands but especially in case of the RedEdge and the NIR bands. In addition to this, it was also 

observed that the sensor temperature of the 26 July 2018 dataset was approximately 10 

degrees Celsius higher than corresponding datasets captured from the rest of the flights for all 

available bands (20 degree Celsius in case of Red edge band). Such arbitrary fluctuations of 

the sensor temperature could affect the DN values. Figure A1 (annex section A) exhibits the 

regressive relationship between the DN and the reflectance values of the reflectance panels. 

Adler (2018) also identified this behavior of Sequoia sensor to have introduced consistent 

noise (result of his experiment showing noise due to temperature increment is shown in annex 

Figure A2 in all four bands; this effect changes the pixel values as shown in annex Figure A3.  

Comparing the result of the VIs from the Sequoia sensor with that of the fixed tower 

sensor, uniform offset was observed (i.e. the VIs calculated from the fixed tower sensor were 

consistently lower than the flight sensors). It was previously discussed that the 

radiometrically calibrated UAV data tends to overestimate the vegetation indices. But, in the 

case of the fixed tower sensors the sensitivity of sensors is taken as optimum (K-factor = 1) 

as though is it working as new. The performance of these sensors degrades with time and 

needs to be adjusted for better performance by changing the k-factor. Limited knowledge of 

the technology restricted the adjustment of the k-factor; therefore, the study did not make use 

of the sensitivity factor to explain the offset between the different sensors. The variations in 

the band width as well as the mean wavelength of the NIR and the Red band for the Sequoia 

and the tower sensor potentially could have impacted the vegetation indices. The reason for 

the overestimation in the VI values could also be explained by the fact that the mean NDVI 

values of the whole plot from UAV sensor is compared with the VI from the small footprint 

area of the fixed tower sensors.  

With regards to the second research question “do vegetation indices explain crop 

yield?”, the results indicated that the VIs are not great indicators of the crop yield for the 

crops of interest. However, vegetation indices can be good indicators for the yield; this 

strongly depends on the type of the crops being monitored. The correlation between VI and 

crop yield is appropriate and provides satisfactory results when the yield is directly dependent 

on the leaves (e.g. in the case of grass or leafy crops); it becomes less relevant when the yield 

depends on the small fruits of plant with many leafs (e.g. in case of Strawberries or potatoes). 

This is due to VIs being good indicators of the “greenness”, i.e. the intensity of the live 

vegetation. So, it is concluded that if the VIs of different types of crop is considered with 
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their corresponding yields holistically as a single relationship, it may result in poor 

relationship as found in this study. 

This raises the question why the relationship between each crop type along with their 

respective yield was not established. This would have been ideal, however due to the lack of 

historical crop yield data (i.e. data was available from only one growth cycle in most cases), 

and since the study was limited to only one replicate of the study area, it was not possible to 

generate and establish a reliable statistical relationship.  

Furthermore, different crops have different lifecycles and have very different 

reflectance values during the various growth stages. Guan et al. (2019) claimed that there is a 

relationship between VI and yield, and this relationship changes with phenological growth 

stage. They observed the strong relationship between NDVI and wheat yield only from the 

flowering stage till the ripening stage. This implies that not all stages of crop cycle are 

strongly related to the yield. This is a possible factor for the varying correlation between VIs 

and yield. The UAV data that would have captured those phenological stages of the crops to 

establish the relationship between VI at that stage with the corresponding yield was not 

available. Therefore, it remains inconclusive of how effective VIs could be used for 

predicting yield.       

Additionally, management routine such as application of fertilizers and herbicides can 

affect the reflectance of the crops. If the images were taken within a few days of fertilizer 

application, it would alter the reflectance response, since it takes few days for crops to 

completely absorb the chemicals. As per metadata available, the fertilization and herbicides 

are applied at different times for different crops and on few occasions, it was administered 

just a few days before image acquisition (Guan et al., 2019). Consequently, estimating 

phenological parameters becomes more challenging in the case of intercropping, where it is 

difficult to differentiate the radiometric characteristics of each species. The plots with 

multiple crops did not show clear phenology and need to be investigated by crop specific 

experiments to clearly understand the phenology. 

Considering, that the yield of crops is estimated on the basis of extrapolation from the 

data collected from one small sample patch (0.25 to 1 square meters) for each plot; this could 

introduce some uncertainties as the crops may have some intra-variability in the fields. Even 

the small bias could make substantial impact especially when the sample size is small 

In addition, the irradiance compensation was not done even though the data from 

sunshine sensor was available. In an optimal situation we could have used only irradiance 

data from the sunshine sensor and exposure compensated Sequoia images to get the surface 

reflectance. This entails having the same units for both the sunshine sensors and exposure 
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compensated images; and furthermore, that the sunshine sensor gives accurate data. 

Unfortunately, the alignment of the sunshine sensor (angle/direction with respect to the sun) 

influences the data in sunny condition (in case of direct light). Additionally, the orientation 

(roll-pitch-yaw) data from the sunshine sensor's IMU is not accurate; consequently, it was not 

possible to do the cosine correction with good results. In normal sunny conditions, the 

irradiance is stable during the short time period of a flight. So, the reflectance panels were 

used to get reflectance with the empirical line method. 

Furthermore, the images were collected for all the plots concurrently irrespective of 

the different sowing and harvesting dates. The interval between data collection was not 

uniform and varied throughout the season. Occasionally, the data was collected just after the 

harvest or long before the harvest resulting in inconsistent phenology.   
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8. Conclusions 
The primary objective of this study was to develop and test a robust methodology for 

calculating and quantifying vegetation reflectance from a multispectral sensor on a UAV 

platform. It can be safely concluded that the radiometric correction techniques incorporated 

in this study gave reasonably good results. 

However, the study did not find a strong relationship between the three popular VIs 

tested (i.e., DVI, NDVI, SVI) and respective crop yields for the various crops of interest in all 

the cases, Nonetheless strong associations were identified at different growth stages of crops. 

More research needs to be done to establish a reliable relationship between growth stages and 

yield of the crop. Therefore, there is not enough evidence to confidently say that vegetation 

index derived from multispectral UAV images can help estimate crop yield. 

Although all three VIs used in this study exhibited the same trend in the phenology, 

the correlation coefficient with the yield differed on the scale from low to moderate. We also 

compared the VIs from the UAV sensor with the corresponding VIs from the fixed sensor 

tower for one plot and found the same phenological trend in the data collected from both the 

sensors. However, there was a consistent but uniform difference in VIs collected from the 

UAV and fixed tower sensor. This indicates that there is a systematic error in either one of 

the sensors.  

Furthermore, to validate the reliability of radiometric correction and derived VIs, we 

compared the VIs of each plot with the crop height of the corresponding plots and found 

moderately strong positive correlation. Therefore, to conclude, even though there is still 

certain level of uncertainty involving radiometric calibration, the results of radiometric 

calibration in this study were good enough to be used for understanding vegetation 

phenomenon and the yields. 

In some cases, moderately positive to strong positive correlation between the VIs and 

the yield was observed. However, there were few dates when we observed very strong 

negative correlation. There are many factors which influence the outcomes and this prevents 

arriving at any conclusion with high confidence. 
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9. Recommendations 
The research revealed that there were many uncertainties in the data. To address this 

in further studies, we recommend making some modifications to the data collection strategy. 

Data collected more frequently such as on a fortnightly basis would have captured the finer 

detail of the phenological changes; this would reflect the various phenological stages.  Crops 

have different life cycle periods; the number of flight should be determined based on the crop 

type being monitored. Furthermore, flights should be avoided just after the field management 

practices (such as fertilizers & herbicides application and harvesting). A potential research 

would study the effect of pre- and post- application of fertilizer on collected data as well as 

its effects on the reflection behavior of the plants. Another suggestion is to collect the UAV 

data around noon and to keep the time of data collection uniform over all the flights.  

Since only a single sample per plot was collected from a very small area (0.25 square 

meters – 1 square meter), even a small error in measurement would change result to a great 

extent when it is extrapolated for the entire plot. It is recommended to take at least three 

samples per plot and to average the results. The recording of geolocation of sampling points 

establishes more accurate relationship between different crop parameters. Furthermore, 

instead of using the mean VI values for the entire plot, it is recommended to divide the plot 

into 5x5 meter grids to extract the VI values. This would enable capturing the spatial 

variation of the VIs in a more detailed manner than just depending on single average value of 

the entire plot. 

It is also suggested to use the data from all the replicates (SAFE A, B, C and D) to 

have sufficient number of samples for relevant comparison and crop specific analysis. 
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11. Appendix 
Appendix A 

Sequoia temperature vs image mean pixel value 

 
Figure A1: Sequoia Mean pixel value response to temperature (Adler, 2018), The plot shows the 

temperature versus the image mean pixel value for the Parrot Sequoias four individual camera sensors 

for a 35-minute dark current test with automatic camera setting. The x axis represents the image mean 

pixel value i.e. the mean value for the whole image. The y-axis represents the temperature in Celsius. 

Recordings were done at a 1.5 second interval. 

 
Figure A230: Dark current noise for green band in Parrot Sequoia (Adler, 2018), It shows first and the 

last image taken during the dark current test for the green band in the parrot sequoia camera. To the 

left is the first image taken and to the right is the last (1397
th)

 image.   
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Table following table shows the mean reflectance for each plate present in the field 

images for the different calibration data and capture height. Reflectance is expressed in 

decimal form where each plate has a target reflectance acquired from the manufacturer data 

from each spectralon reflectance panel i.e. column 2 corresponds to the calibration data 

acquired with the 50% reflectance is derived from assuming the spectral sensitivity within the 

band in uniform. * = error compared to the target in %. The calculated error is rounded to 

the closest integer. 

 
Figure A3: Predicted mean reflectance at 50% calibration for reflectance panels (Adler, 2018)  

 

Appendix B 

Following charts shows the linear relationship between reflectance of spectralon panels and 

DN values from image datasets. 

 
Figure B1: Relationship between DN and mean reflectance of panels for 11

th
 May 
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Figure B231: Relationship between DN and mean reflectance of panels for 21

st
 August 

 

 
Figure B3: Relationship between DN and mean reflectance of panels for 4

th
 September 

 

 
Figure B4: Relationship between DN and mean reflectance of panels for 13

th
 June 
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Figure B5: Relationship between DN and mean reflectance of panels for 26

th
 July 

 

 
Figure B632: Relationship between DN and mean reflectance of panels for 17

th
 September 
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Appendix C 

Orthomosaics in false colour composite derived from six different datasets gathered from 

UAV platform over a growing season. (Date of data collection in written below the images 

(a-f).   

a. 11
th

 May 2018 b. 13
th

 June 2018 

c. 26
th

 July 2018 d. 21
st
 August 2018 

e. 4
th

 September 2018 f. 17
th

 September 2018 

Figure C1: Orthomosaic of 6 UAV flights in false colour composite, Red (band 1), RedEdge(band 2), 

NIR (band 3). 
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Appendix D 

 
Figure D1and D2: Relationship between plant heights with respective NDVI and SAVI (all 6 datasets) 



55 

 

 

 
Figure D3: Relationship between plant heights with respective DVI (all 6 datasets) 
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