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Abstract

Face-to-face fundraising is a method used for raising money by having fundrais-
ers working on public spaces. Fundraisers either ask for one time donations,
or sign up people to give on a monthly basis, in this thesis the focus is on the
latter. For this method to be useful all fundraisers must meet their target goal,
meaning that they must get a certain amount of sign ups when they work. By
using data on fundraiser results for Sweden for UNHCR we study how fundrais-
ers develop. Using a Poisson regression model with mixed effects we examine
whether fundraisers become better over time, whether the results differ between
cities and if helpful predictions can be made. On a population level it is found
that fundraisers become 0.9% better for each week worked. This differs for all
fundraisers, and at the extremes some fundraisers become ∓7% better/worse
over time. It is also found that the results in most cities are rather equal, with
the exception that the results are 30% higher in Stockholm. Lastly we used
the model for predicting some results using the data of the first 5 weeks of two
fundraisers. In both cases the prediction intervals are too broad to determine
whether the fundraisers will reach the goal or not.

Keywords: fundraising, poisson regression, mixed effects, GLMM, bootstrap.
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Introduction

1 Introduction

Face-to-face fundraising is a method for raising money that is often used by
charitable organizations. It is the act of asking the public for contributions by
stopping people on public spaces such as busy streets or shopping malls. Many
programs are run so that people sign up to contribute on a monthly basis,
making this an effective strategy to secure funding the long run. Most often
this work is performed by paid employees or contractors, and some estimates
say that this method of raising money gives a 1:3 turnout (Nguyen 2019).

To what degree this method is successful depends fully on the performance
of each individual fundraiser. Because of this it is important that each hired
fundraiser get the signups needed. When hiring new fundraisers there is always
a risk that the new fundraiser won’t reach the target goal, there is no certainty
until they started working. But even when the fundraisers started working
practically interpreting the results of fundraisers turn out to be a difficult task.
Most often the results are very volatile, maning that the results vary from week
to week so that it is difficult to distinguish the trend from the deviations. It
might also be difficult to evaluate new fundraisers since it is believed to be a
learning curve in the job. So even if the results initially are low it might be a
good investment to keep the fundraiser who then gets a chance to evolve.

From a statistical perspective the central problem lies in the relationship
between the time a fundraiser have worked and the how well they perform in
terms of signups. Modelling this relationship is complicated mainly due to two
reasons. The first reason is that the relationship is on an individual level, not on
a group level. The second reason is that the random variable signups is a count
data. These two issues will be further discussed in section 3 where a Poisson
regression model with mixed effects will be proposed to approach this problem.
This is a model for count data that can capture individual variation, it falls
under the broader term Generalized Linear Mixed Models (GLMM).

This thesis is written in collaboration with Sweden for UNHCR1. They are
the organisation responsible for collecting money in Sweden for UNHCR and
have been running a face-to-face program since 2011. The program is active in
various different cities, but the most consistent ones are located in Stockholm,
Gothenburg and Malmö.

Face-to-face fundraising on the streets is one of many methods that Sweden
for UNHCR use for raising money, other methods include the usage of ads and
recruiting over the phone. Last year they raised 284 million SEK, in which 83%
of that money were sent directly to UNHCR.

The current goal of Sweden for UNHCR is that each fundraiser should get an
weekly average of 0.33 signups per hour fundraised. If the lasting trend is that

1UNHCR (United Nations High Comissioner for Refugees) is a United Nations program
working to assist refugees. They have the international mandate to aid displaced people all
over the world, and they work to secure everyone’s right to seek asylum and safe refuge. When
an acute crisis emerges they provide assistance in form of clean water, sanitation, health care
and shelter. They also provide support for people who wishes to return home or resettle.
(UNHCR 2019)
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the fundraiser doesn’t reach this goal they don’t get extended contracts. But
bearing in mind that the results are volatile and that fundraisers may evolve, the
results are interpreted with caution. Currently all coordinators make an quali-
tative assessment of each fundraiser trying to figure out who has the potential to
reach the goal or not. They especially look for individual circumstances such as
temporary stress or personal issues that might explain deviance from the target
goal.

Objectives. The objective of this study is to explore how fundraisers evolve, in
particular the difficulties that come with evaluating new fundraisers.

(i) Is there a learning curve for fundraisers?

(ii) What variables affect the results of fundraisers?

(iii) To what extent are predictions possible?

Answering these questions can hopefully provide coordinators with a new
perspective in how fundraiser results can be interpreted. Whether or not fundraiser
results increase substantially over time is crucial when it comes to deciding if
newly hired fundraisers should be kept. Whether or not circumstances such
as city or season have an effect on the results could also improve the decision
making.

5



Data

2 Data

In this section the data material is described. The data is provided by Sweden
for UNHCR, and contains all results since 2015. Firstly the variables available
are presented in Table 1.

Table 1: Variables in the data.

Variable Description Values

Signups Amount of signups 1, 2, ...

Recruitment
Hours

Amount of hours spent
fundraising that week

[0, 40]

City The city that the fundraiser
worked in that week

1 = Gothenburg
2 = Stockholm
3 = Malmö
4 = Uppsala
5 = Linköping-Norrköping
6 = Bor̊as
7 = Jönköping
8 = Väster̊as
9 = Karlstad
10 = Trollhättan
11 = Helsingborg
12 = Falun-Borlänge
13 = Halmstad
14 = Eskilstuna

Week Week of the year 1, 2, ..., 52

Weeks
worked

Amount of weeks worked 1, 2, ...

ID Identification number for
each fundraiser

There are mainly two issues with the data, whereas one can be dealt with.
The first issue is that the data set does not cover all years the program has been
active, because of this it is not possible to follow the fundraisers that started
before 2015 from their first working week. Since the initial progress is in focus
in this thesis, and we do not really know how long these fundraisers have worked
it is decided to drop those fundraisers from the data. This is relatively easily
done since it is known that all fundraisers with a ID number higher than 511
started working during or after 2015. The second issue with the data is that
there might be a potential bias due to fundraisers not getting extended contracts
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when results are low. This has the implication that it is not possible to follow
how the fundraisers that start of the lowest develop over longer periods. This
can not be dealt with, but should be kept in mind when interpreting the results
later on.

2.1 Descriptive statistics

In this section some descriptive statistics regarding the data is presented. Note
that this is without the complete data set, still with the fundraisers that started
before 2015.

Firstly in Table 2 the data available is described divided by city and year.

Table 2: Amount of observations divided by city and year.

City

Year
2015 2016 2017 2018 2019 Total

Gothenburg 418 266 244 213 199 1340

Stockholm 400 384 651 864 562 2861

Malmö 119 176 324 280 321 1220

Uppsala 54 91 184 27 356

Linköping-Norrköping 47 82 129

Bor̊as 0

Jönköping 34 34

Väster̊as 67 37 104

Karlstad 79 106 23 208

Trollhättan 7 2 9

Helsingborg 38 39 77

Falun-Borlänge 95 95

Halmstad 41 41

Eskilstuna 27 27

Total 1184 1067 1645 1523 1082 6501

As seen in Table 2 there are totally 6501 observations, one observation is
the result of one fundraiser on a particular week. Totally there are 796 different
fundraisers in the data, implying that the fundraisers work 8.2 weeks in average.

To further study the duration that fundraisers work in the organisation we
can take the maximum value of the variable weeks worked for each each indi-
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vidual. This lets us see how long the fundraisers stay. In Figure 1 the duration
is visualized in a histogram.

Figure 1: Histogram over the amount of weeks that fundraisers work.

We can here see that most fundraisers work less than 12 weeks. Further
description is given below.

Table 3: Summary statistics for the duration that fundraisers work.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 3 4 8.2 8 130

From the summary statistics we can conclude that 75% of the fundraisers
work less than 8 weeks, the mean of 8.2 is due to some fundraisers working
really long in comparison to the others.

To study how the results differ among cities a boxplot is presented in Figure
2 where signups per hour is presented for each city. For every city 50% of the
observations lies within the blue box, and the black line in the box is the median.
The two lines going out from the boxes are called whiskers, and their length are
equal to 1.5 times the value at the top of the box minus the value at the bottom
of the box. Values that are lower or higher than the whiskers are called outliers,
and those values are represented with a dot. Each dot therefore represent the
result of a fundraiser on a certain week, when the results were unusually high
(or low). The dashed line represent the 0.33 threshold which fundraisers must
meet.

Since there are not that many observations for some cities it does not really
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make sense analyzing them in to detail. Instead it is decided to analyze the five
cities with the most signups, treating the other cities as a group.

Figure 2: On the Y axis we see signups per hour, and each boxplot is calculated
using all values of signups per hour for that particular city.

Worth to be noting here is that Stockholm seems to perform better than the
other cities and that the other cities are rather equal.

In Figure 3 the mean hours worked throughout the year is shown. It is
here clarified that the fundraisers work more hours over the summer period,
approximately from week 20 to 40.
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Figure 3: On the X axis is the mean of the hours worked and on the Y axis is
each week of the year.

In Figure 4 the mean signups per hour over the year is presented. This
plot indicates a positive trend from week 20 up to week 40, and some other
patterns that might indicate a seasonal relationship. However in Figure 5 a
similar plot is presented but divided by year. Now the results seem mostly
constant throughout the year, ranging from 0.2 to 0.4 signups per hour - with
some random deviation from year to year. The exception is around week 33-40
where the result seem to be more volatile, and for most years the results are
unusually high.
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Figure 4: Signups per hour is represented on the Y axis, and each week of the
year on the X axis. Each dot on the plot represent the mean of all results on
that particular week.

Figure 5: This plot is similar to 4, but now we calculate the mean of the results
for each year, and plot each year with a separate line.
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3 Methodology

In this section the methods used in this thesis will be described. First the reader
is provided with some theoretical background about the underlying concepts
before the model used is presented. Following this the model assumptions and
some tools for examining these are discussed.

The calculations are done in the statistical software R version 3.4.4 (R Core
Team 2019). Main packages used for analysis will be presented throughout the
text.

3.1 Theoretical background

3.1.1 Linear Mixed Models

When examining the linear relationship between a dependent and independent
variable, regression analysis a popular method. It can provide insight in how
strong a relationship between two variables are, and can be used for predictions.
The model can be written as (Sheather 2009)

Yi = β0 + β1xi + εi, (1)

εi ∼ N(0, σ2
ε),

here β0 and β1 is the intercept and the slope respectively, and ε is normally
distributed random deviation from the expected value. A regression analysis
approach for analyzing fundraisers could explain signups per hour using weeks
worked as an explanatory variable.

Figure 6: Signups per hour for each individual is plotted on the Y axis, and
weeks worked for each result on the X axis. A regression model is adapted to
the data, with weeks worked explaining signups per hour.
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This model however is not sufficient. It does not recognize the dependency
in all observations, namely that they are the result of individual developments.
It instead treats all observations as a big group. The parameter estimations of
this model will likely be misleading, and all predictions for individual fundraisers
will be the same no matter how the individual fundraiser perform - and this will
likely be misleading.

Another solution is to perform a regression analysis for each individual sep-
arately, but then all other results will be ignored. Since there aren’t that many
observations per individual these models would likely be insignificant.

The solution to these problems is to introduce the concept of random effects.
Models with random effects are widely used in psychological studies where the
goal is to draw conclusion on individuals, or the group as a whole with individual
variation taken into consideration. A model with only random effects can be
written as (Bauer 2011)

Yij = v0i + v1ixij + εij . (2)

In the case of fundraisers Yij would represent signups per hour for individual
i after working j weeks and xij are the amount of weeks worked for individual i,
after j weeks. v0 and v1i are the individual intercepts and slopes. The random
effect model basically uses a categorical variable with a level for each individual,
allowing for different estimations on each level (Bates 2010).

This model can highlight how the relationship between weeks worked and
signups per hour for all fundraisers on an individual level. But often it is of
interest to also estimate what the common characteristics of the population is,
then the model above can be expanded to include a fixed effect

Yij = β0 + β1xij + v0i + v1ixij + εij . (3)

This model as both the the fixed effects that are common population, β0
and β1, as well as the individual random effects v0i and v1i. These types of
models are often referred to as mixed effects models since they have both fixed
and random effects.

In general terms one could define random and fixed effects this way. Fixed
effects are levels which we chose before the study. This has the implication that
we only can make statements about those levels. Random effects on the other
hands have levels which we don’t choose on beforehand. They are rather seen as
sample of all the possible levels; from this sample we wish to draw conclusions
about the population of levels. Montgomery (2013)2

For fundraisers this could mean that for example cities could be a fixed effect,
we can only draw conclusions about the cities we have data on and results can’t

2But as the Swedish saying goes ”Kärt barn har många namn”, it should be noted that
many of these concepts go under different names in different disciplines and contexts. For
example mixed effects models might sometimes be referred to as multilevel models, hierarchical
linear models or random coefficient models. The same goes for the term random effect, which
may have different meaning or denominations in different literature. (McElreath 2016)
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be generalized to other cities. But the effect for each fundraiser is regarded as
random.

As an initial analysis a model based on this method is applied to the data.
Using the lme4 package by Bates et al. (2015) in R a linear mixed effects
model is applied, using signups per hour as dependent variable and worked
weeks as independent variable, with a fixed intercept and slope aswell as random
intercepts and slopes for each individual. In Figure 7 a plot is provided with a
sample of 10 individuals, it shows the intuition of the model.

Figure 7: Each graph shows the results for one fundraiser, with weeks worked
on the X axis and signups per hour on the Y axis. Above each graph is the
individual ID number. The regression line in each graph is the sum of the fixed
effects coefficients and the random effects coefficients.

As the graph shows the intercepts as well as the slopes differ for all indi-
viduals, capturing the individual characteristics. Mixed effects models bases its
predictions both on the population parameters and the individual deviations.
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It assumes that there are characteristics common to the population so that in-
stead of basing predictions solely on the individual result, it uses the population
information as well. This has the implication that the predictions are pulled
towards the population mean. (Bates 2010)

A linear mixed effect model could be sufficient investigating how fundraisers
develop, but it is a bit misleading. In this model the explained variable is be
signups per hour, which is a quota of the two variables signups and hour. Agresti
(2007) suggests using a count data model when explaining a rate such as this
one. Intuitively this can be motivated by the fact that signups is the random
variable of interest, not the amount of hours worked. A count data model lets
us explain the amount of signups a fundraiser gets given that they have worked
for some t hours. One of the most common models for count data is Poisson
regression. (Agresti 2007)

Poisson regression is a model which falls under the the broader term Gener-
alized Linear Models. In the next section the components of Generalized Linear
Models (GLMs) is described, and just as before this model will be expanded
to include random effects. To make the definitions more compact and general
matrix notation will be used further on.

3.1.2 Generalized Linear Mixed Models

The regression model presented earlier eq. (1) require that the dependent vari-
able Y follows the normal distribution, but as just shown this may not always
be the case in real world situations. To escape the assumption of normality, one
can use Generalized Linear Models (GLMs). As the name suggests, they are a
generalization of the normal linear models, and can be used to model data that
follows several different distribution that are a part of the exponential distribu-
tion family (ex. Binomial, Poisson, Negative-Binomial). It can be shown that
the regression model presented earlier eq. (1) is a special case of the GLM. The
concept of GLMs where first brought up by Nelder and Wedderburn (1972).

All GLMs consists of three components, the random component, the system-
atic component and the link function (Agresti 2007; Nelder and Wedderburn
1972)

(i) The random component specifies the underlying distribution of the de-
pendent variable. Hence the observations Y1, Y2, ..., Yn = {Yi} = Y, are
independent observations from a distribution connected to the exponential
family.

(ii) The systematic component describes the linear predictors in terms of a
set of p explanatory variables x, and p coefficients β. The linear predictor
is denoted η.
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Let

X =


1 x1,1 x1,2 . . . x1,p−1

1 x2,1 x2,2 . . . x2,p−1
...

...
...

. . .
...

1 xn,1 xn,2 . . . xn,p−1

 ,β =


β0

β1
...

βp−1


Then η can be described as a vector in the following way

Xβ = η (4)

(iii) The link function, g(·), is the connection between the linear predictor η
and µ which is the expected value of Y .3

g(µ) = η (5)

Correspondingly µ can be described as:

µ = g−1(η) (6)

If we let x′i be row i in the model matrix, then the fitted value for each Yi
can be described as

µi = g−1(ηi) = g−1(x′iβ) (7)

This is the basic components of all Generalized Linear Models. This is
essentially the same for Generalized Linear Mixed Models, the only difference
is that the systematic component is expanded to include random effects as well.
To do this we first go through some definitions.

We denote i fundraisers, and j the the number of weeks that the fundraiser
have worked. We let M denote the number of fundraisers, and ni the number of
weeks that each fundraiser have worked. Thus

∑M
i=1 ni = N is the total number

of observations in the data.
In Table 4 all other symbols are defined.

3If no transformation of µ is neded, meaning that µ = η, it is said that we use the identity
link function.
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Table 4: Matrix notation

Symbol Size Description

Yi ni × 1 Dependent variable vector for indi-
vidual i

Xi ni × p Fixed effects model matrix for indi-
vidual i

β p× 1 Fixed effects coefficients

Zi ni × q Random effects model matrix for in-
dividual i

vi q × 1 Random effects coefficients for indi-
vidual i

Ψ q × q Covariance-variance matrix for the
random effects.

The model can be described as

g(E[Yi|vi]) = g(µi) = ηi = Xiβ + Zivi (8)

vi ∼ N (0,Ψ) (9)

Ψ =


σ2
v0 σ2

v0,v1 . . . σ2
v0,vq−1

σ2
v1,v0 σ2

v1 . . . σ2
v1,vq−1

...
...

. . .
...

σ2
vq−1,v0 σ2

vq−1,v1 . . . σ2
vq−1

 , (10)

in this model β is a parameter describing the characteristics of the population
as a whole, and vi are the random effects demonstrating how individuals vary
from the population characteristics. vi is assumed to be an unobserved random
variable, with an underlying multivariate normal distribution. Since we assume
that vi is random variable, it cannot be a parameter. Instead we describe vi
with the parameter Ψ which can be understood as a measurement of how much
the individual random effects vary between each other. (Agresti 2007)

The diagonal elements of Ψ are the variance components for each random
effect, and the other terms are the covariance between the random effects. Some-
times it can be valuable to skip the covariance terms, this reduces model com-
plexity (Bates et al. 2015).

The linear predictor for a certain individual a certain week is (Hedeker 2005):

g(E[Yij |vi]) = g(µij) = ηij = x′ijβ + z′ijvi. (11)

The model will then explain the results of a single fundraiser i after working
a certain amount of weeks j.
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The estimation of β allows us to draw conclusions of the population charac-
teristics with all the variation between individual eliminated. The condition on
vi means that we wish to draw conclusions on certain individuals with a cer-
tain value of vi. If we do not condition on vi all point estimations on different
individuals will be the same since the expected value of vi is 0.

Estimating the parameters of the model is often done the maximum likeli-
hood estimation. It is a common method for estimating parameters in a model,
and it can intuitively be understood as a method for choosing the parameters
so that the observed sample is the most likely. In likelihood estimation in the
discrete case one sets up the joint probability mass function of the observed
sample, and sets this as a function to the parameter(s) of interest. Generally
the parameter(s) of interest is denoted θ. (Hogg, Tanis, and Zimmerman 2015)

The joint pmf of the sample with θ as the argument is what is referred to as
the likelihood function

L(θ|Y ), (12)

when the function is defined, parameter estimation is done by choosing the
value of θ that maximises the function. This is equivalent with maximising
the likelihood4 of the observed sample. One of the pros with using Likelihood
estimation is that the estimates are asymptotically normally distributed. (Hogg,
Tanis, and Zimmerman 2015)

The conditional pmf for GLMMs is defined as (Hedeker 2005; Casals et al.
2015)

f(Yi|vi) =

ni∏
j=1

f(Yij |vi). (13)

The assumption that we can multiply the individual observations together
for the joint probability of each individual is called the conditional independence
assumption. It means that the ni observations for each individual, conditional
on vi, are independent each other. (Hedeker 2005)

To obtain the marginal pmf one has to get rid of the condition of vi. Follow-
ing Hedeker (2005) we can multiply the expression with the pmf of the random
effects to obtain the joint distribution of Yi and vi, and then integrate vi out∫

f(Yi|vi)f(vi)dvi =

∫
f(Yi,vi)dvi = f(Yi|β,Ψ). (14)

This is an integral evaluated over Rq, solving it require us to integrate over
the multivariate distribution of the random effects. The lme4 package used in
this thesis does an analytical approximation using Laplace approximation, for
a further discussion of Laplace approximation and other methods available for
solving this integral see Bolker et al. (2009).

The marginal pmf tells us the probability of the observed data for individual
i, when we don’t know their random effect. We view their random effect as a

4Generally probability is described as a function of the data given the parameter θ, but in
the likelihood function it is the other way around. Because of this one can not state that we
maximises the probability, instead we say that we maximize the likelihood.
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random variable with a variance we can estimate. To obtain the joint pmf for
the whole sample we can multiply their probabilities with each other, given that
their results are independent each other. (Hedeker 2005)

L(β,Ψ|Yi) =

M∏
i

f(Yi|β,Ψ). (15)

The parameter estimations is done by selecting the values of β and Ψ that
maximizes eq. (15).

When it comes to estimate the random effects vi a philosophical discussion
arises. What are random effects? In some cases they are just model errors which
one wishes to eliminate (Bolker et al. 2009). In other situations however they
have a natural part of the model, such as in this thesis where all predictions
will be done on an individual level, conditioned on each random effect. The
difference between conditional and unconditional inference is a central concept
in GLMMs and will be brought up throughout the the thesis.

In this thesis the random effects play a vital role, and it is therefore desirable
to estimate them. But since they are not parameters they can’t be estimated in
the same manner as β. Instead it is said that the random effects are predicted.
(Bates 2010)

The prediction of vi is done by maximizing the conditional density of the
random effects and Yi given the estimated paremeters, (Bates 2009)

v̂i = arg max
vi

f(Yi|vi)f(vi), (16)

these predictions of the random effects can be called mode values, since they
are the maximum of a probability density function.

With the description of mixed effect, GLMs and the connection between
them we can now go describe the Poisson regression model which is used in this
thesis.

3.2 Poisson Regression with Mixed Effects

Poisson regression models are a category of GLMs that are often used when
modelling count data. In its simplest form they explain a dependent variable Y ,
with a set of independent variables X, and assumes that the dependent variable
Y follow a Poisson process.

The Poisson distribution expresses the probability of having Y events occur-
ring in a certain time frame, with λ being the mean amount of events happening
in that certain time frame.

The Poisson distribution has the following properties

E[Y ] = V [Y ] = λ, (17)

meaning that the variance and the expected value are both equal to λ. Also,
the Poisson process can only take positive integers as values, an attribute that
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makes it especially useful to model random events such as signups. Since the
amount of signups a fundraiser gets can also only be positive integers. (Hogg,
Tanis, and Zimmerman 2015)

Most often the Poisson regression model uses a log transformation as the
link function (Agresti 2007). One reason for this is that this guarantees that
the estimates is positive, something which wouldn’t be guaranteed if we used
the identity link function (Rodŕıguez 2007). Given the log link function, the
relationship between λ and X can then in accordance with eq. (5) be described
as

logE[Yi] = log λi = ηi = x′iβ.

Assuming a Poisson distribution on Y gives (Hogg, Tanis, and Zimmerman
2015)

Yi ∼ Po(λi),

P (Yi|λi) =
e−λiλyii
yi!

.

To conclude, the Poisson regression estimate of Yi is the mean of a Poisson
process with a certain parameter λi that is decided by exp (−x′iβ)

If we assume that signups per hour follows a Poisson distribution, we can
use Poisson regression to study this situation. But since the amount of hours
worked for each fundraiser each week differs, the model needs to be adjusted. As
mentioned earlier, λ represent the mean amount of signups occurring in a certain
time frame, if the time frame differs we can define the situation as (McElreath
2016)

λ =
µ

t
, (18)

here µ is the amount of events occurring, and t is the duration of the time frame.
The model can then be written as

log (µi/ti) = ηi = x′iβ.

By the logarithmic rules this term can be moved over to the right side. That
term is then what is often called an offset term. It will have an multiplicative
effect on our estimates of Y , the logarithmic transformation makes sure that it
is on the same scale as Y so that (Agresti 2007).

log (µi) = log(ti) + x′iβ, (19)

µi = ti exp(x′iβ). (20)

Note that ti is not an explanatory variable, it is only a different way of view-
ing the Poisson process that lets us use Poisson regression. The interpretation
of β is still signups per hour.

To add random effects to this model, we follow eq. (8)
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log(µij) = ηij = log(tij) + x′ijβ + z′ijvi. (21)

This is the complete Poisson GLMM that will be used in this thesis. To
apply this model to the data the lme4 package by Bates et al. (2015) will once
again be used.

3.3 Diagnostics

In this section some techniques for model building and model evaluation will
be discussed. Mainly R2 and AIC will be used for comparing different models.
When it comes to checking the model assumptions some diagnostic plots will
be used for informal validation. Testing whether the fixed effect parameters are
significantly different from zero Wald Z-test is used.

In addition to this it will be discussed how the model can be used for predic-
tions, and how to measure the uncertainty in these predictions. Bootstrapping
will be proposed to compute approximate prediction intervals.

3.3.1 Akaike’s Information Criterion (AIC)

A common difficulty in model building is the trade-off between model simplicity
and goodness-of-fit. If the model is to simple it might miss important informa-
tion, but if it is to complex it might become overfitted. What this means is that
the model might explain the observed data really well, but fails in explaining
unobserved data. Some of the characteristics of the sample might just be be-
cause of randomness, and not because of the underlying characteristics common
to the population.

A popular tool for assisting in this trade of is Akaike’s Information Criterion
(AIC) (Sheather 2009). It rewards goodness-of-fit and punishes model complex-
ity, and one should always strive after a model with as low AIC as possible. The
general AIC is defined as (Sheather 2009; Lian 2012)

AIC = −2
[
logL(θ̂|Y )−K

]
(22)

Here K is the amount estimated parameters in the model, and L(θ̂|Y ) is
the maximum value of Likelihood function with respect to θ (see eq. 12). This
result has it roots in the Kullback–Leibler divergence, and generally it can be
said that K is a bias correction due to the same data being used for estimating θ
and maximizing the likelihood function. Furthermore AIC is a measurement of
a models capability to explain new data, compared to other models. (Sheather
2009; Lian 2012).

In a GLMM context this is referred to as marginal AIC, which can be written
as (Lian 2012)

mAIC = −2
[
logL(β̂, Ψ̂|Yi)−K

]
. (23)
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Here L(β̂, Ψ̂|Yi) is the maximum of the marginal likelihood eq. (15), and
similarly to the previous equation K is once again the amount of estimated
parameters, which is the coefficients of β and variance components in Ψ. (Lian
2012)

mAIC should be used in GLMM when the fixed effects are the primary focus.
In the case of fundraisers it would be useful if the main interest was to predict
results for entirely new fundraisers with a random effect that is unknown. In
this thesis this is not entirely the case, since we wish to draw conclusions on
fundraisers after that they have worked for some weeks, letting us predict their
individual random effects. This means that the conditional inference is central
in this case, and this calls for the use of the conditional AIC which was first
derived by Lian (2012)

cAIC = −2
[
logL(β̂|Yi, v̂i)−K

]
. (24)

In this expression L(β̂|Yi, v̂i) the value of the conditional likelihood, with
any estimator of vi and β. The conditional likelihood describes the probability
of the sample, conditioned on the random effects. It can thus be written as

L(β|Yi,vi) =

M∏
i

f(Yi|vi;β), (25)

here we do not need to integrate out the random effects as in the marginal
likelihood.

Once again K is also a bias corrector but it is a bit more complex, see Lian
(2012) for details.

The cAIC4 package by Saefken et al. (2018) will be used to calculate the cAIC
for all models. It can do it both approximate using bootstrap or analytically by
Chen-Stein formula, it was decided to go by the latter.

3.3.2 R2

In linear regression R2 is a good tool for understanding how well a model ex-
plains a dependent variable (Sheather 2009). It can be understood as a propor-
tion of how much the model explains the observed variation, i.e.

Explained variation

Total variation

The coefficient of determination R2 can take any value between 0 and 1, and
when building models one should strive for as high R2 as possible. An estimated
R2 of 1 would mean that all variation observed can be explained by the model.
R2 is an useful measurement since it is an absolute value of the goodness-of-fit
for the model, has an intuitive meaning and it can be compared with other
models for other data materials (Nakagawa and Schielzeth 2013).

Estimating an R2 value for Mixed Effects models is not as straight forward
as in the linear regression case. Mainly due to the fact that we assume variation
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due to the data originating from different individuals - and it is not clear how
a definition of R2 should relate to this variability and whether the concept of
R2 is helpful in evaluating mixed effects models. There are also some dilemmas
when defining the unexplained variance, residual variance, in GLM models.
(Nakagawa and Schielzeth 2013)

One recent proposal of R2 for GLMMs is made by Nakagawa and Schielzeth
(2013), and they define two different R2 values that can be calculated for
GLMMs. They refer to marginal R2 as the variability explained by the fixed
effects only, and conditional R2 as the variability explained by the fixed and ran-
dom effects in the model. With some extension done by Johnson (2014), this
value can be calculated for GLMM models with random intercept and random
slope using the MuMin package by Bartoń (2013).

Let σ2
f be the fixed effect variance attribute, σ2

v the random effect variance

and σ2
ε the residual variance (Nakagawa and Schielzeth 2013), then the two R2

measurements are defined as

R2
m =

σ2
f

σ2
f +

∑q
v=1 σ

2
v + σ2

ε

(26)

R2
c =

σ2
f +

∑q
v=1 σ

2
v

σ2
f +

∑q
v=1 σ

2
v + σ2

ε

(27)

This does not have the same finesse as an R2 for linear regression model. In
general R2

m will be low since it ignores variability between individuals, whilst
R2
c will be high if we have great variability among individuals. R2

c is the closest
we can come to an regular R2 since it is the total variation explained by the
model, but it should be interpreted with caution.

Following Nakagawa and Schielzeth (2013) their R2 values will be used for
evaluating different models alongside the AIC criteria. They view their R2 as
a appropriate compliment to AIC since AIC does not tell anything about the
variation explained. Furthermore, R2 will solely be used to compare models,
and will not be interpreted more in detail.

3.3.3 Wald Z-test

In most models it is of interest to see whether a parameter is significantly
different from zero. If this is proved, one could argue that the parameter most
definitely is relevant. To test whether the fixed effects are signifantly different
from zero the lme4 package by default uses Wald Z test, making use of the
asymptotic normality assumption of the likelihood estimation. The Wald Z test
is defined as (Agresti 2007)

Zobs =
θ − θ0
SE(θ̂)

, (28)

it then compares this value with the standardized normal distribution to calcu-
late P-values. These are rough estimates, popular due to being easy to calculate.
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It is safer to use bootstap to calculate confidence intervals, and/or P-values, for
the fixed effects. But the computation time for this is rather unforgiving, forcing
us to stick to the Wald Z test. (Bates et al. 2015)

3.3.4 Diagnostic plots

As mentioned earlier in eq. (9), it is assumed that the random effects are
multivariate normally distributed. One efficient way of testing normality is
using a QQ-plot (Quantiles quantiles plot). What it does is that it takes the
observed data and plots it along the Y axis, whilst the theoretical quantiles
of the choosen distribution is plotted along the X axis. If the observed data
follows the theoretical distribution a straight line should be formed. In this case
the theoretical distribution is the normal distribution. (Sheather 2009)

To explore how the fitted values differ from the observed data two plots
will be used. They will give us an understanding of the model and can give
hints of the model adequacy. The first plot is to simply plot the fitted values
against the observed data, in a linear regression model, this should roughly be a
straight line if the model is correct. But since we assume a Poisson distribution
of Yij conditional on vi, the variance will increase for higher values - creating a
funnel resemblance. To solve this we will divide both values with the theoretical
standard deviation, which is the square root of the fitted value given that the
Poisson assumption holds.

Yij/
√
µ̂ij vs µ̂ij/

√
µ̂ij

We can also plot the standardized the residuals, also called Pearson residuals,
against the fitted values. The pearson residuals for the GLM Poisson case is
defined as (Agresti 2007)

pεij =
Yij − µ̂ij√

µ̂ij
.

The same principle will be followed when plotting

pεij vs µ̂ij .

These diagnostic tools are often used in linear regression where the residuals
are assumed independently normally distributed, this is not entirely the case in
the GLM nor the GLMM case. But they will give us a hint of the misspecification
of the model and can tell us if there are extreme outliers affecting the results,
or other potential misspecifications.

3.3.5 Prediction

Lastly the model will be used for predictions, and this is done with a two-
sided purpose. Firstly prediction can be used as a tool for evaluating how well
adapted the model is to the data. This is a robust way for finding errors and
misspecifications in the model (McElreath 2016). Secondly it is of great interest
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to explore the predictive capabilities of the model since it is one of the underlying
purposes in the thesis.

The model can be used for two types of predictions, conditioned and un-
conditioned. Unconditional predictions are only made based on the population
parameters β. This type of prediction can be used to predict how a newly hired
fundraiser will perform, before they’ve even started working. Conditional pre-
dictions on the other hand can be made when we can predict vi, and wish to
see how an individual will progress.

It is of interest in this thesis to do conditional predictions. To recap what
has earlier been mentioned the point estimation of the model in eq.(21) is the
mean of a Poisson process which is decided by the linear predictioner η.

Given that we have observed our data Yi, and wish to make a prediction on
individual i using new data, and their predicted random effects v̂i, we can see
this prediction as a result of

tik exp

 x′ik︸︷︷︸
1×p

β̂︸︷︷︸
p×1

+ z′ik︸︷︷︸
1×q

v̂i︸︷︷︸
q×1

 (29)

where we say that index k represent some unobserved week.
Noteworthy is that the expression within the parentheses represents signups

per hour, which is what we originally strived to explain. To standardize the
results later we can divide all values with tij

The point estimation does not tell the whole picture though - it leaves out
the uncertainty. To capture the uncertainty of these predictions will be com-
plemented with a prediction interval. A prediction interval tells us the range
of which we can expect new values to fall under, with a certain degree of con-
fidence. The ciTools package in R by Haman and Avery (2019) lets us do this
using parametric bootstrapping. A simplified explanation of what the package
does is that it refits the model again and again, and for each fitted value it calcu-
lates the span of which 95% of the observations fall under. A bootstrap sample
of 1000 seems sufficient, increasing the sample does not change the intervals
noticeably.

This is a method which dates back to Efron (1979). The method can be used
to estimate for example variance, confidence intervals, prediction intervals in an
observed sample by simply resampling new data based of the observed data (or
from a fitted model, this is then called parametric bootstrapping). The method
is rather counterintuitive at first glance, just like pulling yourself upwards by
pulling your bootstraps.5

5In orginal paper from 1979 the author finishes off with the following: ”I also wish to thank
the many friends who suggested names more colorful than Bootstrap, including Swiss Army
Knife, Meat Axe,Swan-Dive, Jack-Rabbit, and my personal favorite, the Shotgun,which to
paraphrase Tukey, ’can blow the head of any problem if the statistician can stand the resulting
mess.’”(Efron 1979)
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4 Results

In this section the results of some Poisson models will be presented. The goal is
to create a model with as low AIC as possible, and with a high R2. Diagnostic
and prediction plots can be found in the Appendix.

When fitting the models with the lme4 package with all data available the
models failed to converge, one problem of this may lie in the fact that it is
difficult to estimate a parameter common to all fundraiser when some work
more than 100 weeks, and some only 2. Only using the data of the first 15
weeks fundraisers work solved the convergence problem. Another issue came
up when using the city variable, since all cities except Stockholm performed
pretty similar they where highly correlated - which made model fitting difficult.
Therefore it is decided to only use Stockholm as one variable, contrasting all
other cities against it.

4.1 Parameter estimation

One popular approach for selecting variables in a model is forward selection. The
method starts with a simple model, then adding explanatory variables until they
do not improve the model (Sheather 2009).

Following this method three models are presented in Table 5. Model one
has only a fixed and random intercept, in model two we add the variable weeks
worked as a fixed and random effect, this improves the model. Lastly we add
the city variable as a fixed effect. This last model seems to be the best in terms
of AIC and R2

m, model 2 does have a better R2
c , but the difference is minimal.

To conclude: model 3 seem to be the best and will be further explored down
below.6

6Since it is assumed that the fundraisers have a learning curve, implying that the devel-
opment diminish over time a quadratic term was added. This however seemed to be a to
complex model for the package to handle, and there were many reported errors when fitting
the model. Since we only look at the first 15 weeks of the development it might be reasonable
to assume a linear development.
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Table 5: Summary of parameter estimation and diagnostic values.

Dependent variable:

Signups

Model 1 Model 2 Model 3

Weeks worked 0.008∗ 0.009∗∗

(0.004) (0.004)

Other cities −0.363∗∗∗

(0.037)

Intercept −1.613∗∗∗ −1.637∗∗∗ −1.401∗∗∗

(0.022) (0.026) (0.034)

Random effects

Weeks worked 0.0010 0.0010

Intercept 0.255 0.2950 0.2667

Observations 4461 4461 4461

No. fundraisers 766 766 766

Log Likelihood −10276.0 −10232.6 −10186.1

Marginal AIC 20555.9 20475.1 20384.2

Conditional AIC 19743.95 19622.90 19598.07

R2m 0 0.0021 0.0692

R2c 0.5155 0.5219 0.5202

Note: For fixed effects the estimated coefficient is
reported, with the estimated standard error
in parentheses. For random effects the esti-
mated variance is reported. The city variable
uses Stockholm as the intercept and the other
cities in contrast to Stockholm. All results are
presented in the scale of the linear predictor.

The stargazer package in R by Hlavac (2018)
have been helpful in creating this and other
Tables in this thesis.
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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4.2 Diagnostics and prediction

All diagnostic plots can be found in Appendix A. In summary the random effects
seem normally distributed, and the residuals look fine. They should however
be interpreted with caution as they do not share the same properties as in the
linear regression case.

Next we wish to examine whether the model works well in predicting new
data. We do this by visualising the model predictions on two individuals. For
each individual their results after their fifth week are removed, so that we predict
unobserved results. As seen in the prediction plots in Appendix B the prediction
intervals a rather wide, which is expected since the results mostly are volatile.
Therefore it is difficult to rule out whether or not a fundraiser will reach the
goal, even if they initially are below it.
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5 Discussion

5.1 Interpretation of the results

The objectives presented earlier where the following:

(i) Is there a learning curve for fundraisers?

(ii) What variables affect the the results of fundraisers?

(iii) To what extent are predictions possible?

To answer these questions we first need to put the estimated parameters
from Table 5 in the correct scale. This is done below

Table 6: Interpretation of the parameter estimations

Parameter Estimation Meaning

Intercept e−1.401 = 0.2464 Fundraisers in Stockholm
generally start at 0.25
signups per hour.

Other cities e−0.363 = 0.6956 Results outside of Stock-
holm are generally 30%
lower.

Weeks worked e0.009 = 1.0090 The results improve 0.9%
for each week worked.

Regarding the first question we can prove a significant learning curve for
fundraisers generally, but it is not very big. We estimated that if someone
starts at 0.2 signups per hour and work 15 weeks, their results will improve to
0.223 approximately. We can not really state what will happens after 15 weeks
since we only use the initial data in this thesis. Since many fundraisers quit
working early on when the results are low there simply is not enough data to
draw valid conclusions on the long term development.

When taking the random effects into consideration we can see a more nu-
anced picture. The random effects vary from 0.06 to - 0.08, which tells us that
fundraisers at best become 7% better, while some become 6-7% worse over time.
These predictions of the random effects are of course also unsure, and has some
variability in them. But they tell us the range of how we can expect the best
and worst developments.

Regarding the second question it seems like whether or not fundraisers are
in Stockholm or not plays an important role in predicting the results. This
is the result of all models fitted where the city variables is used. It can not
however be stated if that is because of fundraisers in Stockholm being better,
or because it is easier to fundrais in Stockholm - but it should be looked in to.
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If it is the latter, coordinators could perhaps but higher demands on Stockholm
fundraisers than in other cities.

Lastly we can conclude that predictions based on the model tend to be
unsure since the predictions intervals are rather wide. Because of this it is
difficult to tell whether or not a fundraiser will reach the target goal in most
cases. In one sense this is expected since the results are so volatile, and to expect
otherwise would be misleading. We can still use the model however to get an
understanding of what direction the development is going, and how strong it is.

5.2 Future studies

Something that has been overseen in this thesis is the affect of potential au-
tocorrelation. Autocorrelation is basically a dependency structure where the
observed values are dependent on the previous values. Many times it can be
observed when examining a dependent variable over time, and it should be dealt
with.

Ben Bolker (2016) discusses possible approaches to solve this problem. One
solution is to incorporate a model term in to the random effects with a auto-
correlated dependency structure. The model is the same as before but with a
redfined vi

vi = v0,i + εi

v0,i ∼ N (0,Ψ)

Here v0,i is the regular random effect, earlier defined as vi, while εi is the
autoregressive component for each individual i. Applying this approach for
the problem of fundraisers could perhaps improve the model. But this is left
out for further studies, partly due to the fact that the focus in this study is
the first 15 weeks of fundraisers, and this leaves us with little data for doing
reasonable estimations of the individual autocorrelation structure. In appendix
C the autocorrelation for the residuals of 4 individuals are presented.

Another factor that has been overseen in this thesis is that some fundraisers
work less hours for some weeks, this could potentially impact how the fundrais-
ers develop. It would be interesting to see if a model which takes this in to
consideration could perform better. This can be achieved for example by hav-
ing total hours worked as a explanatory variable, this would however be difficult
to put in to practical use. Another solution could instead be to put weights on
the weeks worked based upon how many hours they worked each week.
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Appendix

A Diagnostic plots

Figure 8: The X axis represent the
observed quantiles for the predictions
of the random effect intercept, and
the Y axis the theoretical quantiles of
the standardized normal distribution.

Figure 9: The X axis represent the
observed quantiles for the predictions
of the random effect weeks worked,
and the Y axis the theoretical quan-
tiles of the standardized normal dis-
tribution.

In Figure 8 we see that the predictions of the random intercepts are almost
perfectly normally distributed. In Figure 9 the predictions of the random slopes
(weeks worked), they are not equally well normally distributed, the tails deviate
quite a lot from the theoretical distribution, but overall it is rather well.
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Figure 10: The X axis represent the
standardized observed values, and the
Y axis the standardized fitted values.

Figure 11: The X axis represent the
fitted values and the Y axis the resid-
uals.

In Figure 10 and 11 we study errors of the model in two different ways.
Generally they look fine. There are larger residuals around zero, but that may
be due to individual variation or due to the fact that we have more observations
around for the lower values.
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B Prediction plots

Figure 12: Prediction and prediction intervals based on the first 5 weeks of
fundraiser 1566. The blue dotted lines are 95% prediction intervals, the red
dashed line is the 0.33 threshold fundraisers must meet. To get the results in a
standardized form all values are divided by the amount of hours worked tij .
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Figure 13: Prediction and prediction intervals based on the first 5 weeks of
fundraiser 1349. The blue dotted lines are 95% prediction intervals, the red
dashed line is the 0.33 threshold fundraisers must meet. To get the results in a
standardized form all values are divided by the amount of hours worked tij .
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C Autocorrelation plots

Figure 14: In these plots the observed autocorrelation in the residuals for four
individuals are presented. The Y axis represent the observed autocorrelation,
and the X axis the different lags.
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