
LU TP 20-02
January 2020

Liquid-Liquid Phase Separation of

HP Lattice Proteins:

A Finite-Size Scaling Analysis

Markus Ernstsson

Department of Astronomy and Theoretical Physics, Lund University

Master thesis supervised by Anders Irbäck



Abstract

Biomolecular condensates are dense droplets of proteins and nucleic acids inside living cells
that form through a liquid-liquid phase separation (LLPS) process, in which intrinsically
disordered proteins (IDPs) often play an important role. Furthermore, it has been shown
that several of these IDPs can form similar droplets on their own. Understanding the forces
driving the LLPS of IDPs, and how the process depends on the amino acid sequence, is a
challenging task. One difficulty is that the systems amenable to computational modelling
are limited in size. It is therefore important to analyse and understand how simulated
properties depend on the system size. A finite-size scaling theory for droplet formation
through phase separation exists. This thesis explores the usefulness of this theory in the
study of biomolecular LLPS, using a minimal lattice-based hydrophobic-polar (HP) protein
model. By Monte Carlo methods, computer simulations of two HP sequences of length
10 are conducted for a range of system sizes, with up to 640 chains. A finite-size scaling
analysis of the simulation results reveals that only one of the two sequences undergoes
LLPS. Furthermore, it is found that the temperature at which droplet formation sets in
converges slowly to its value for infinite system size. Hence, finite-size scaling analysis
is useful both in deciding the phase behaviour of the sequences and in determing the
underlying phase diagram.



Populärvetenskaplig sammanfattning

I v̊ara celler finns en rad olika organeller som samlar upp molekyler för att sedan utföra
olika uppgifter — likt mikroskopiska varianter av kroppens organ. Klassiska organeller
har ett membran som separerar deras inre fr̊an cellens miljö. Det finns ocks̊a organeller
som saknar ett omgivande membran. Dessa droppliknande anhopningar av proteiner och
nukleinsyror kallas biomolekylära kondensat. De kan bildas och lösas upp spontant, till
följd av exempelvis en ändring i temperatur. Vid bildandet separeras en vätskelik droppe
med hög täthet, det biomolekylära kondensatet, fr̊an en omgivning som ocks̊a är vätskelik
men har lägre täthet — tänk en oljedroppe i vatten.

Proteiner är l̊anga kedjor uppbyggda av olika aminosyror, och bestäms av sekvensen av
aminosyror längs kedjan. Många proteiner har en kompakt och väldefinierad tredimen-
sionell struktur, som är viktig för funktionen. Det finns dock ocks̊a proteiner som i sin
fungerande form är strukturellt oordnade. Vid bildandet av biomolekylära kondensat har
det visat sig att strukturellt oordnade proteiner ofta spelar en central roll. Dessutom har
man funnit att vissa av dessa oordnade proteiner har förm̊agan att bilda likartade droppar
p̊a egen hand. Denna förm̊aga beror p̊a aminosyrasekvensen — om aminosyrorna kommer
i annan ordning längs kedjan kan förmågan g̊a förlorad. Hur det kommer sig att vissa
proteiner har, medan andra inte har, förm̊agan att bilda denna typ av droppar är viktigt
att klarlägga för att först̊a mekanismerna bakom bildandet av biomolekylära kondensat
inuti celler.

Att modellera bildandet av proteindroppar är en utmaning p.g.a. systemens storlek och
komplexitet. För att undersöka de grundläggande drivkrafterna används därför ofta fören-
klade modeller, där proteiner beskrivs som länkade kedjor av kulor och varje kula rep-
resenterar en aminosyra, snarare än en enskild atom. I dessa modeller används ocks̊a en
förenklad beskrivning av hur aminosyror attraherar eller repellerar varandra. Med en mod-
ell p̊a denna detaljniv̊a kan datorsimuleringar av relativt stora system utföras. Dock n̊ar
man inte systemstorlekar motsvarande verkliga proteindroppar. För att kunna dra slut-
satser fr̊an simuleringarna om droppbildning krävs därför att man analyserar och först̊ar
hur resultaten beror p̊a systemstorleken. För detta ändam̊al finns lyckligtvis ett teoretiskt
ramverk som tidigare har testats med framg̊ang p̊a enkla modeller för kondensation av
vanliga vätskedroppar.

I detta examensarbete används detta teoretiska ramverk för att analysera simulerings-
resultat för tv̊a korta aminosyrasekvenser i en enkel proteinmodell, erh̊allna för en rad
olika systemstorlekar. Resultaten för små system antyder möjligheten att b̊ada dessa
sekvenser bildar droppar liknande biomolekylära kondensat. En systematisk analys av
systemstorleksberoendet visar dock att s̊a är fallet bara för den ena av de tv̊a sekvenserna.
För denna sekvens äger vidare droppbildning rum bara när temperaturen understiger ett
visst tröskelvärde. Denna tröskeltemperatur visar sig bero relativt starkt p̊a systemstor-
leken. De teoretiska förutsägelserna gör det möjligt att fr̊an simuleringsresultaten p̊a ett
kontrollerat sätt uppskatta tröskeltemperaturens värde i stora system.
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M. Ernstsson 1 INTRODUCTION

1 Introduction

In eukaryotic cells, there are specific types of structures known as biomolecular condensates.
These structures can be described as membraneless organelles that serve the purpose of
concentrating proteins and nucleic acids for a multitude of different cell processes [1, 2].
Biomolecular condensates are spherical structures which are able to coalesce and also
exchange contents rapidly with their surroundings. They are liquid-like droplets of proteins
and nucleic acids, and form through a liquid-liquid phase separation (LLPS) process. In
many cases, it turns out that intrinsically disordered proteins (IDPs1) play a major role in
this process. Furthermore, it has been shown that several different IDPs can go through
a LLPS process on their own [3–5]. However, the forces driving the LLPS of IDPs, and
the dependence of the process on the amino acid sequence, remain elusive.

Understanding the underlying reasons for the observed phase behaviour of IDPs and their
role in LLPS is of great importance. There are several theoretical and computational
methods for studying and modeling LLPS. A widely used analytical method is the Flory-
Huggins mean field theory [6, 7]; however, it does not take into account the amino acid
ordering along the chain. A different field of methods which do consider the ordering is
molecular simulation with explicit chains. These computational methods remove the need
of certain approximations made in analytical models while making structural properties
easily available. Therefore, despite being computationally costly, an increasing number of
explicit-chain simulations of biomolecular LLPS has been reported in recent years [8–14].
Another recent method involves the use of statistical field theory. By transforming the
polymers into fields, the formation of biomolecular condensates can be explored by means
of field theory simulations [15,16]. This approach may alleviate the system size constraint
present in explicit-chain simulations.

However, no matter how one simulates a system, it must be finitely sized. Hence, un-
derstanding how properties of the system depend on its size is of utmost importance.
A quantitative approach to this problem is offered by finite-size scaling theory [17–19].
The usefulness of this approach in the study of biomolecular LLPS was recently ex-
plored by Nilsson and Irbäck, using a simple off-lattice hydrophobic-polar (HP) protein
model [20].

This thesis investigates droplet formation in the minimal lattice-based HP protein model
of Lau and Dill [21], using finite-size scaling theory. In this coarse-grained model, proteins
are realised as chains of beads, with each bead being either H or P. Using Monte Carlo
(MC) methods, the phase behaviour of two distinct sequences is examined: an alternating
sequence, called Φ (HPHPHPHPHP), and a “blocky” sequence, called Θ (HHHHHPPPPP).
For each sequence, several different system sizes (up to 640 chains) are simulated, keeping
the monomer concentration, ρ, fixed (1%). To determine whether or not these sequences
undergo LLPS, the finite-size scaling properties of the specific heat are investigated.
Additionally, the finite-size scaling analysis makes it possible to investigate the shape
of the underlying phase diagram in a systematic and controlled manner. Through the
finite-size scaling analysis, it is found that one of the sequences, Φ, undergoes LLPS, while
the other, Θ, does not. The same conclusion was reached by Nilsson and Irbäck [20], who

1IDPs are proteins that do not have to fold into a specific conformation to function.
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M. Ernstsson 2 METHODS

studied the same two sequences using a different model.

If one considers chains of length one where the single bead is an H, then the HP protein
model reduces to the so-called lattice gas (LG) [22]. The LG system is equivalent to the
standard Ising model with ferromagnetic nearest-neighbour interactions, which has been
extensively studied. This equivalence makes the LG system an ideal testbed for studies of
droplet formation. Indeed, Zierenberg and Janke recently performed a finite-size scaling
analysis of droplet formation in the LG system [23].

Therefore, to test our methods developed for HP proteins, a finite-size scaling analysis of
the 3D LG model is performed and the results are compared to those of Zierenberg and
Janke [23] as well as to existing data for the Ising model. Generally, good agreement is
found with the results of Zierenberg and Janke, with a minor difference concerning the
scaling of the maximum specific heat.

This thesis is organised as follows. Section 2 describes the biophysical model and numerical
methods used, and outlines the finite-size scaling theory for droplet formation developed
by Refs. [17–19]. Section 3 presents the results obtained for the LG system and for the
two HP proteins Φ and Θ. The thesis ends with a discussion and summary in sec. 4.

2 Methods

2.1 The Ising Model

The Ising model is an extensively studied model of phase transitions. It models magnetism
using nearest-neighbour interacting spins in a lattice. The Hamiltonian of the Ising model
can be written as

H = −J
∑
〈ij〉

σiσj − µmh
∑
i

σi, (2.1)

where σi = ±1 is the value of spin i, J is the interaction energy between spins, µm is the
magnetic moment, and h is an external magnetic field. The first sum is over all pairs of
spins σi and σj that are nearest neighbours on the lattice. It has been assumed that all
spins have the same interaction energy and that all experience the same external magnetic
field. Depending on the value of J , one can model different types of magnetic behaviours:
J > 0 yields ferromagnetism whereas J < 0 results in antiferromagnetism. Throughout
this thesis, the focus is on the ferromagnetic case. A quantity of interest in the Ising model
is then the magnetisation per spin,

m =
1

N

∑
i

σi, (2.2)

where N is the total number of spins (or lattice sites since they are equivalent). With
this so-called order parameter, it is possible to study the phase behaviour of the Ising
model.

As already stated, the Ising model exhibits phase transitions, but this only occurs in two
dimensions and higher. Ising showed that there are no phase transitions for the one dimen-
sional case [24], and Onsager proved that the two dimensional case did have transitions [25].
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These conclusions were both obtained through exact solutions. For higher dimensions,
there are only numerical approximations such as low/high-temperature expansions [26,27],
renormalisation group theory [28], or Monte Carlo simulations [29].

In two and higher dimensions, for zero external magnetic field and low temperature, it turns
out that two distinct phases coexist, characterised by magnetisations ±m. The system
tends to be in either of these two distinct states. As the system transitions between
the states, there is a discontinuity in the magnetisation, which means that the system
undergoes a first-order phase transition. Increasing the temperature, there will be a point
at which the magnetisation becomes zero, beyond which only a single phase exists. The
temperature at which this occurs is known as the critical temperature, Tc. The transition
from two distinct phases to only one, i.e. crossing the critical temperature, will lead to a
divergence in the specific heat,

CV
N

=
1

N

dE

dT
, (2.3)

which is a second-order phase transition.

2.2 The Lattice Gas Model

A simple model for gases (and liquids) is the lattice gas (LG) model [22]. It consists
of particles on a lattice with nearest-neighbour interactions. Each lattice point can be
occupied by at most one particle. Therefore, the energy function of the LG model can be
written as

E = −K
∑
〈ij〉

ninj, (2.4)

where ni = 0, 1 is the occupation number of lattice site i and K is the interaction energy
between particles. A model property when studying the phase behaviour of the LG model
is the concentration,

ρ =
1

N

∑
i

ni, (2.5)

where N is the total number of lattice sites. In the grand canonical ensemble, the LG
Hamiltonian can be written as

H = −K
∑
〈ij〉

ninj − µ
∑
i

ni, (2.6)

where µ is the chemical potential. In this ensemble, the concentration is no longer fixed,
since both the energy and number of particles is allowed to fluctuate.

If the occupation number ni is rewritten in terms of the Ising model’s spins σi through
ni = 1

2
(1 + σi), the LG Hamiltonian (eq. (2.6)) can be written as

H = −K
4

∑
〈ij〉

σiσj −
K + µ

2

∑
i

σi + C, (2.7)

where C is a constant. Putting J =̂ K/4 and µmh =̂ (K + µ)/2 results in the Ising
Hamiltonian, eq. (2.1), up to a constant. This means that the thermodynamic behaviour
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of the Ising model is the same as that of the LG model, since the constant does not
influence the behaviour. However, it is important to note that the standard Ising model
at given T and h corresponds to the grand canonical ensemble in the LG model.

As the LG model is equivalent to the Ising model, there exists a critical temperature
Tc below which two phases coexist, characterised by high and low concentrations, ρH(T )
and ρL(T ), respectively. At a given temperature T ∗ < Tc, there exists a specific value
of the chemical potential which results in a first-order phase transition between the two
phases. This is equivalent to the first-order transitions observed in the Ising model with
zero external field h = 0.

If the concentration is instead fixed so that the total number of particles is constant, then
the canonical ensemble is obtained. This is the same as keeping the magnetisation constant
in the Ising model. In such an ensemble, for some temperature T ∗ < Tc and concentration
ρ such that ρL(T ∗) < ρ < ρH(T ∗), the LG system is in a mixed two-phase regime, bounded
by the so-called binodal curve, as shown in fig. 1. This means that there is a region in
the system with a high concentration, ρH(T ∗), while the rest of the system has a low
concentration, ρL(T ∗). Hence, the system will inhabit both phases at the same time, with
a droplet of high/low concentration existing in a background of low/high concentration.
Similarly, an Ising magnet also exhibits droplets under equivalent conditions, although
the droplets are defined by high or low magnetisation instead of concentration.

T

m

−1

1

m+(T ∗)

m−(T ∗) T ∗

Two-phase

regime

Positive magnetisation
phase

Negative magnetisation
phase

Tc

(a)

T

ρ

0

1

ρH(T ∗)

ρL(T ∗)

T ∗

Two-phase
regime

Dense
phase

Dilute
phase

Tc

(b)

Figure 1: Schematic illustrations of the phase diagram of an Ising magnet and a lattice gas. The so-called
binodal curve (solid line) is shown for both models where the maximum T -value is the critical
temperature Tc. Two coexisting phases and the corresponding temperature T ∗ are shown.
Note that T ∗ and Tc are not the same in the two different models. (a) The two phases of the
Ising model are characterised by high and low magnetisations, m±. (b) The two phases of the
LG model are characterised by high and low concentrations, ρH/L.

2.3 The HPModel: AMinimal Explicit-Chain Protein Model

Studying real-life protein folding and droplet formation in a way that is as true-to-life as
possible entails the use of all-atomic studies, where the resolution lies in the atomic world.
This, however, also brings forth the problem of having a stupendous number of degrees
of freedom in such model. Hence, fully atomistic models are very demanding in terms of
computational power and time. It is therefore useful to simplify protein modelling with
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more coarse descriptions of proteins. The broader resolution is still enough to attain an
insight into how proteins interact and form globular clusters. An extensively used simplified
model is the minimal lattice-based hydrophobic-polar (HP) protein model [21].

The HP model consists of amino acid sequences of only two types of amino acids: hy-
drophobic (H) and polar (P). These sequences are represented as chains of beads which
are self-avoidingly walking on a lattice. The beads interact with beads of other chains
as well as beads on the same chain through nearest-neighbour interactions. Though not
with nearest chain neighbours. However, it is only the H amino acid bead which is attract-
ive; the P’s do not interact with other beads. This leads to an interaction energy of the
form

E =

{
−ε, if both amino acids are hydrophobic

0, otherwise
, (2.8)

where ε is an arbitrary positive energy scale. For each H-H interaction a factor of −ε is
added to the total energy.

If a chain has a length of one where the single bead is an H, then the LG model is obtained
with K = ε. Therefore, the HP model can be used to simulate the LG model. Hence, an
HP program can be tested by simulating one-bead H chains and comparing to existing
LG and Ising results.

In this thesis, a program simulating the HP model in a three-dimensional cubic lattice
with periodic boundary conditions is constructed and used. Each point in the lattice can
be occupied by at most one bead and neighbouring beads on a chain are restricted to lie in
neighbouring points on the lattice. For simplicity, units will be chosen so that ε = 1. The
main focus of this thesis will be two HP sequences of length 10: an alternating sequence
Φ (HPHPHPHPHP), and a “blocky” sequence Θ (HHHHHPPPPP). All models will be
simulated with a fixed concentration of ρ = NNc/V ≈ 0.01, where N is the number of
chains, Nc is the number of beads on a chain, and V is the volume, i.e. the total number of
lattice sites. Since the system is discrete, the concentration will not be exactly 1%.

2.4 Markov Chain Monte Carlo Basics

In a canonical system, the probability distribution of microstates s is the Boltzmann
probability

P (s) =
1

Z
e−βE(s), (2.9)

where β = 1/(kBT ), kB is the Boltzmann constant, and the partition function Z =∑
s e
−βE(s) is a normalisation factor. Note that the expression is for discrete states, and

as such, discrete energies. As the goal is to study the thermodynamical behaviour of HP
chains, including single-bead H chains (LG model), the Boltzmann probabilities for all
conformations need to be calculated. This is not a feasible task to perform analytically but
by using Monte Carlo (MC) simulations, one can sample the correct distribution through
importance sampling by generating configurations.

MC methods are algorithms that make use of random sampling. Independent samples
are randomly drawn from the ensemble in order to estimate the probability of interest.

5
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However, due to the large amount of degrees of freedom involved, this can not be done in
practice. Instead, a Markov chain can be used as the basis of the MC method, a so called
Markov chain Monte Carlo. A Markov chain is a sequence of events where the probability
of each new state only depends on the current state. Thus, new states are generated as
“perturbations” of the current state rather than being randomly drawn directly from the
ensemble pool. This procedure can be described as having a transition probability

W (s→ s′) = P (s′|s), (2.10)

which states the conditional probability of a new state s′ given that the previous state
was s.

In order for eq. (2.10) to converge to the desired probability distribution, the Markov
chain has to fulfill two conditions [30]:

• It is ergodic, i.e. any state s′ can be reached from any other state s.

• The desired distribution P (s) is stationary, that is
∑

sW (s→ s′)P (s) = P (s′).

The second condition states that the desired distribution P (s) is an invariant distribution
of the chain, i.e. that P (s) is an eigenvector to the transition probability W (s→ s′) with
eigenvalue 1. This can be fulfilled in several ways, but an often useful property which
satisfies the second condition is detailed balance. Detailed balance is fulfilled when the
transition probability W (s→ s′) satisfies

W (s→ s′)P (s) = W (s′ → s)P (s′). (2.11)

This equation states that, in the stationary state P (s), transitions from s to s′ occur with
the same frequency as transitions from s′ to s.

A simple and general method for achieving detailed balance, and satisfy ergodicity, is the
Metropolis-Hastings algorithm [31, 32]. There, the transition probability W (s → s′) is
split into two separate probabilities: a proposal probability U(s→ s′) and an acceptance
probability A(s→ s′),

W (s→ s′) = U(s→ s′)A(s→ s′), s 6= s′. (2.12)

Equation (2.11) can then be rewritten as

A(s→ s′)

A(s′ → s)
=
U(s′ → s)

U(s→ s′)

P (s′)

P (s)
. (2.13)

There are several choices of acceptance ratios that satisfy eq. (2.13) [32]. The Metropolis
choice,

A(s→ s′) = min

[
1,
U(s′ → s)

U(s→ s′)

P (s′)

P (s)

]
, (2.14)

will be used going forward. In the case where the proposal probabilities are symmetric,
U(s → s′) = U(s′ → s), and the Boltzmann distribution is used, eq. (2.14) simplifies
to

A(s→ s′) = min
(
1, e−β∆E

)
, (2.15)

where ∆E = E(s′)− E(s).

6
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2.5 Move Set

There are several types of moves or updates which can be used to simulate the HP model.
The ones used in this thesis are

• One-bead updates,

• Pivot updates,

• Rigid-body updates of single chains and clusters of chains.

All updates are counted as moves no matter the outcome. The bulk of the updates are made
up of one-bead moves, while cluster updates are the least common ones. The occurrence
of pivot updates is dependent on the length of the chain: the longer the chain is the
less likely it is to pivot. The rigid-body update only handles translations; rotations are
handled by the other two types of updates.

2.5.1 One-Bead Update

A one-bead update works by trying to move a random single bead on a random chain. It
operates differently depending on whether it is an end-bead or an internal bead. A bead
on the end has four possible positions to move to, depending on if all of them are empty.
An internal bead only has one possible position to move to, and only one type of move to
get there: the kink-jump, as illustrated in fig. 2(a). Though, any move has to satisfy the
acceptance probability as described in eq. (2.15).

2.5.2 Pivot Update

The pivot update operates by pivoting a random chain around a random bead on the chain.
Which side of the chain that is kept still is randomly chosen in a uniform manner. The
other side is then rotated or reflected in a random plane, as shown in fig. 2(b). Similarly to
the one-bead update, the move has to satisfy the acceptance probability, eq. (2.15).

Kink-jump. Pivot.

Figure 2: Illustrations of a kink-jump (a) and a pivot update (b).

2.5.3 Rigid-Body Updates

When chains are moving around they can form clusters. Sometimes, several clusters can
form far from each other. In such cases, if there are only single-chain moves, then these
clusters might never coalesce; they are too far apart for a single chain to stretch between
them. In order to prevent isolation of clusters, cluster updates can be utilised.
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A cluster update would need to build a cluster and then move it in some way. This can,
in the most naive way, be to take a cluster (all the chains that share at least one H-H
interaction), then try to move it and accept the move with the acceptance probability,
eq. (2.15). However, this would violate detailed balance. If a cluster is joined with another
cluster, then it is impossible to go from this new cluster back to two separate clusters
using this naive method. In order to conserve detailed balance, there must not be any
energetic changes.

A cluster update which conserves detailed balance while allowing the merging of two,
or more, clusters is the Swendsen-Wang cluster algorithm [33, 34]. It is a fairly simple
algorithm which dynamically builds a cluster according to the following steps:

1. Choose a random chain i as the seed of a cluster.

2. Each chain j in contact with i is added to the cluster with probability 1 − eβEi,j ,
where Ei,j is the total interaction energy between chain i and j.

3. Continue adding chains in accordance with step 2 for every new chain added to the
cluster.

4. End when no more chains can be added.

This cluster is then trial-moved as a rigid body, and if it does not satisfy self-avoidance
the move is rejected; otherwise, it is accepted. The built-in acceptance check relieves the
external, post-move check. It also enables for single-chain cluster moves, i.e. a single chain
moving.

For simulations of the LG model (chains of length one), there is only one type of update:
single rigid-body translation. It works by randomly selecting a particle and then trying to
translate it a random, short distance in a random direction. The reason for the restriction
to this type of update for the LG model is twofold. Firstly, the LG simulations can reach
the desired energy ranges with this update, and it is faster than including a cluster move
as well. Secondly, only so-called multicanonical simulations are performed for the LG
model, and to avoid too many special cases, cluster updates are omitted.

2.6 Multicanonical Simulation

An effective way to avoid the suppression of intermediate states, which is prone in canonical
simulations, is to make use of so-called multicanonical simulations [35]. The principle
behind such simulations is to search an extended energy range in one simulation run instead
of combining several canonical simulations. What multicanonical entails in practice is a
non-Boltzmann sampling. The multicanonical distribution Pmc is a reweighted Boltzmann
distribution, Pc(E):

Pmc(E) ∝ W (E)Pc(E), (2.16)

where W (E) is a reweighting factor. The canonical distribution of a phase separation
is expected to be bimodal: two peaks corresponding to the two different states. For the
multicanonical distribution,W (E) is chosen so that Pmc(E) becomes “flat” in this bimodal
structure of Pc(E). Figure 3 shows the difference of the two distributions for the LG model
with 160 particles. The orange line shows the double-peak, i.e. bimodal, behaviour of the

8
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canonical distribution, whereas the blue line is the flattened multicanonical distribution.
The rare intermediate states in the canonical ensemble are more likely in the multicanonical
distribution, therefore, the energy landscape can be searched more effectively in the
multicanonical distribution.
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Figure 3: The jackknife estimated multicanonical distribution (blue) of the 3D LG model with 160
particles and ρ = 1%, as well as the reweighted canonical distribution (orange) at the estimated

transition temperature T
(N)
b .

Choosing the reweighting factor is not trivial. There are several ways of constructing
it [35]. One approach is to estimate the density of states Ω(E). The canonical distribution
can be thought of as the density of states reweighted by the Boltzmann distribution,

Pc(E) ∝ Ω(E)e−βE (2.17)

Therefore, for the multicanonical distribution to be “flat”, or rather constant, its weight
should be the inverse of the density of states,

Pmc(E) ∝ Ω(E)Ω−1(E) (2.18)

However, for complicated systems, Ω(E) is not a priori known; it must be estimated.

The Wang and Landau algorithm is a way to produce an estimate of the density of state,
usually called g(E) [36]. The algorithm starts with an initial guess, say g(E) = 1, then
proposes a new state s′ in the same way as the Metropolis algorithm and accepts it
according to

A(s→ s′) = min

{
1,
g [E(s)]

g [E(s′)]

}
. (2.19)

After the proposed state has been accepted or rejected, the histogram for the current
state, H [E(s)], is incremented, and the value of g [E(s)] is updated in the following
manner,

g [E(s)]→ fg [E(s)] , (2.20)

where f is a multiplicative factor. When the histogram of the different states H(E) is
sufficiently flat, f is updated in some decreasing manner (for instance, f →

√
f) and the

histogram is reset. The “walk” across the energy range is then repeated until f reaches a
small value.

9
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The density of states can be difficult to estimate, especially for complex systems, which
can result in slow simulations. Therefore, speeding up the estimation of Ω(E) is desirable.
One method of speeding up the estimation is to cut the energy range. While the entire
energy range of a system may be very large, the interesting part, for instance the range at
which droplet formation and dissolution occurs, can be much narrower. Therefore, instead
of wasting computation time searching the entire range, the energy range can be cut
at some energy Ecut > Emin (or Ecut < Emax) to shorten the search. For the system in
fig. 3, the entire possible energy range is [−349, 0], but is shortened by roughly 30% to
[−250, 0]. The states with E < −240 are heavily suppressed in the canonical distribution
and as such, no important samples are lost. As an example of the speed-up, fig. 4(a)
shows a multicanonical run and a part of a canonical run for N = 320. The canonical
simulation does exhibit transitions between states with and without a droplet, but they
are rare. The multicanonical simulation instead exhibits a much faster exploration of the
energy landscape and is thus more efficient. To demonstrate that the low energy states
are actually droplets, the evolution of the largest droplet in the canonical simulation is
plotted in fig. 4(b). As can be seen, it matches perfectly with the drops in energy.
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Figure 4: A comparison between the multicanonical (blue) MC evolution of the energy density E/N and
the canonical evolution (orange), as well as the evolution of the largest canonical droplet for

N = 320 at T ≈ T (N)
b . (a) The low and high energies correspond to states with and without

a droplet, respectively. While the canonical simulation “jumps” between the two states, the
jumps are rare. On the other hand, the multicanonical simulation scans the energy range
much more efficiently. The energy range is cut, but encompasses the energies of interest, as
seen from the canonical run. (b) The size of the largest droplet does, indeed, match perfectly
with low and high energies.

2.7 Simulation Details

The program which has been constructed for the task of simulating droplet formation
consists of one large C++ header that handles the entire simulation and a smaller cpp

file which includes the header. The program generates a random starting state and then
equilibrates the system so that its original state has been “forgotten”. This equilibration
is done for 1/1000 of the total length of the data collecting. The system reaches an
equilibrium state fairly quickly and the thermalisation time is therefore quite short. The
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time measurement used is sweeps : 1 sweep = NNc MC moves, where N is the number of
chains and Nc is the length of the chain. The simulation lengths vary depending on the
model and system size, and can be found in table 1.

Table 1: The simulation length in number of sweeps for different system sizes N for the LG model and
the two sequences Φ and Θ. The dashes indicate that those sizes were not simulated.

System
N 10, 20, 40 80, 160 320 640 1280, 2048, 2560 > 2560

LG 106 2 · 106 3 · 106 4 · 106 5 · 106 107

Φ 107 107 2 · 107 2 · 107 — —
Θ 107 107 107 107 — —

For the multicanonical simulations of the LG model, the simulation length is shorter than
for the full sequences. This is mainly due to the nature of multicanonical simulations
eliminating rare events. Simulating a system size of N ∼ 4000 takes roughly 1 day on a
modern desktop computer; the simulation time scales linearly with system size in the LG
model. Simulating the two full length sequences Φ and Θ takes a longer time than the
corresponding system size in the LG model. This is due to two reasons. Firstly, the cluster
update (which operates in a recursive manner) is the slowest type of update. Secondly,
due to the canonical ensemble, the energy landscape between the dilute one-phase and the
mixed two-phase is repressed, especially for larger system sizes. Therefore, for N < 320,
the simulation length is 107 sweeps, while it is 2 · 107 sweeps for N ≥ 320 for sequence Φ.
For sequence Θ, 107 sweeps is enough for all system sizes.

There are 16 individual trajectories, i.e. evolutions of the energy, generated for each
temperature for the Φ sequence and for every system size for the LG model. However,
for sequence Φ, multi-histogram reweighting (explained in section 2.8) was used for the
largest system size (640 chains). For sequence Θ, on the other hand, there are eight
trajectories generated. All temperatures in which the canonical simulations are performed
are displayed in table 2. When multi-histogram techniques are used, there are several
temperatures for one system size. All temperatures are chosen to be close to the maximum
of the specific heat through an iterative procedure.

Table 2: The simulation temperatures in units of ε/kB, for all the system sizes N for which sequence
Φ and Θ were simulated in. All temperatures are chosen to be close to the maximum of the
specific heat through an iterative procedure.

System
N 10 20 40 80 160 320 640

Φ 0.466 0.4786 0.491 0.505 0.519 0.5306 0.5375,
0.5387, 0.5395

Θ 0.64 0.69 0.72 0.736 0.736 0.735 0.744

2.8 Data Analysis: Histogram Methods and Jackknife

For greater detail regarding the methods presented in this section, see the book “Com-
puter Simulations of Surfaces and Interfaces” by Dünweg et al., specifically the chapter
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“Histograms and All That” by Janke [37]. However, the text below should be sufficiently
clear so that readers may themselves utilise the specific methods.

Running simulations of droplet formation can take a long time, especially when the
number of chains grows large and the individual chains themselves become long. Due to
this, it is beneficial to make use of some shortcuts. One such shortcut is called single-
histogram reweighting, first introduced by Ferrenberg and Swendsen [38]. Without too
much detail, one can describe it as follows. Assume a simulation has been made at an
inverse temperature of β0. Then the energy histogram Pβ0(E) ∝ Ω(E)e−β0E is known. In
principle, one can then derive the energy histogram at any inverse temperature β:

Pβ(E) ∝ Ω(E)e−βE = Ω(E)e−β0Ee−(β−β0)E ∝ Pβ0(E)e−(β−β0)E. (2.21)

By reweighting expectation values of functions f(E) with a factor of e−(β−β0)E, the norm-
alisation factor of Pβ(E) does not matter:

〈f(E)〉 (β) =

∑
E f(E)Pβ(E)∑

E Pβ(E)
=

∑
E f(E)Pβ0(E)e−(β−β0)E∑

E Pβ0(E)e−(β−β0)E
. (2.22)

This all works, in principle; however, due to the statistical errors that are prone to arise
from finite simulations, the accuracy of the reweighted expectation values is limited.
Therefore, the probability can not be accurately reweighed to any temperature, especially
temperatures far from the critical temperature Tc. The limitation on the accuracy means
that errors in the estimation of parameters are likely, and as such, they must be taken
into consideration. To this end, the jackknife procedure is applied. Note, that jackknife
only increases accuracy close to β. To increase the accuracy range, methods beyond
single-histogram reweighting can be utilised.

The jackknife method is a way of removing bias from the estimation of a parameter, O,
given several independent observations [39]. Shortly explained, the jackknife procedure
works as follows. Assume that N observations have been made, and from these an estimate
of O0 is produced. Then, a reduced estimate,Oi, is done for all N observations by removing
observation i, and estimating Oi using the remaining N − 1 observations. The jackknife
estimate, Ô, is then

Ô = NO0 −
N − 1

N

N∑
i=1

Oi. (2.23)

Single-histogram methods are useful, but if the observable is sensitive to β, then extra-
polating from a single temperature might not be enough. In those instances, a different
shortcut can be useful: multi-histogram reweighting [40]. It can be described in the fol-
lowing way. Consider that n simulations have been performed, each at a different βi,
i ∈ {1, 2, . . . , n}. Reweight all the different energy histograms Pβi to a common reference
inverse temperature β0. Then, compute the error weighted averages of all the n histograms
and merge them. Finally, reweight the joined histogram to any other β. For this technique
to work in practice, the different βi’s need to be spaced so that the resulting histograms
overlap sufficiently.
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2.9 Finite-Size Scaling Theory

The systems described in sections 2.1 and 2.2 were assumed to be infinite; however, this
is not the case in real life. As such, phase behaviour in finitely sized systems, especially
the formation of droplets from phase separation, is a topic which has been studied over
the years. Particularly, how systems scale with size, so-called finite-size scaling, has been
studied and tested on various systems [17–19, 23, 41]. By performing finite-size scaling
analysis, one can determine if certain systems phase separate or not. Certain key results
of these studies will be demonstrated in this section (though not as rigorously) as they
will be used to analyse the results of this thesis. The conventions and structure of the
paper by Nilsson and Irbäck will be used [20].

Take a large but finite d-dimensional system in the canonical ensemble containing N
particles in a volume V at temperature T ∗ < Tc, schematically illustrated in fig. 5. Unlike
in the infinite LG model described earlier (section 2.2), there is a region beneath the infinite

system’s binodal curve Tb(ρ) but above the finite system’s binodal curve T
(N)
b (ρ), see fig. 5.

In the lower part of the concentration, this region inhabits a supersaturated state. At
some concentration ρ

(N)
L (T ∗) > ρL(T ∗), the system will transition from the supersaturated

state to a mixed two-phase state. As mentioned in section 2.2, this mixed state consists of
a single large droplet in a dilute background. Now, consider the concentration ρ = N/V

to be in the supersaturated region, ρ < ρ
(N)
L (T ∗). If a particle excess δN is added to

the system, it can either be absorbed into the supersaturated background as a density
fluctuation with a free-energy cost which scales as a Gaussian, (δN)2/N , or a finite fraction
of the excess can form a dense droplet with a free-energy cost which scales as the surface
of the droplet, (δN)(d−1)/d. When these two costs become similar, then droplet formation
kicks in, and the linear size of the droplet R will scale as [17–19]

R ∼ (δN)
1
d ∼ N

1
d+1 . (2.24)

ρ

T

ρH(T ∗)

T ∗

ρL(T ∗)

(ρc, Tc)

Tb(ρ)

T
(N)
b (ρ)

Two-phase
regime

Figure 5: Schematic illustration of a finite-size phase diagram (dashed) and a infinite-size (solid) phase
diagram of the LG model (compare to fig. 1(b)). Given a density ρ and a temperature T ∗

inside the binodal curve Tb(ρ), an infinitely sized system will phase separate from a single bulk
phase into a mixed-two phase with high, ρH(T ∗), and low, ρL(T ∗), densities. On the left side
of the binodal curve, the mixed phase will consist of a dense droplet in a dilute background. In

a finitely sized system, the transition temperature T
(N)
b (ρ) is shifted. According to finite-size

scaling predictions, T
(N)
b (ρ) converges to Tb(ρ) in accordance with eq. (2.25) (arrow).
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Given eq. (2.24), the density shift ρ
(N)
L (T ) − ρL(T ) = δN/V will scale as ρ

(N)
L (T ) −

ρL(T ) ∝ N−1/(d+1). This scaling is equivalent to

T
(N)
b (ρ)− Tb(ρ) ∝ N−

1
d+1 , (2.25)

with ρ fixed rather than T . Equation (2.25) states that the finite-size transition temperat-

ure T
(N)
b (ρ) converges to the infinite-size transition temperature Tb(ρ) slowly. For a proper

first-order phase transition, the finite-size temperature shift scales as N−1 [42].

The transition is smeared as well as shifted. For fixed ρ, the smearing, or rather the width
wT , can be expressed as the temperature interval over which |β∆F | . 1 [19, 23], where
∆F is the free-energy difference between the single-phase state and the mixed-phase
state. Taylor expanding β∆F to leading order around the transition temperature T

(N)
b

yields

β∆F = (β∆F )|
T=T

(N)
b
− ∆E

kBT 2

∣∣∣∣
T=T

(N)
b

(
T − T (N)

b

)
, (2.26)

since ∂βF
∂β

= E. At the transition temperature, ∆F vanishes in the limit of large system
sizes as the two phases have equal probability. Assuming that there are no interactions
in the low concentration phase, ∆E is dominated by the droplet energy, which depends
on the droplet volume,

∆E ∼ Rd ∼ N
d

d+1 . (2.27)

By applying |β∆F | ∼ 1 and eq. (2.27) to eq. (2.26), the width wT should scale as

wT ∝ N−
d

d+1 . (2.28)

Another thermodynamical property that can be used to study droplet formation is the
specific heat CV /N (which was already mentioned in eq. (2.3)). At the point of transition,
the specific heat has a distinct peak. From the energy fluctuations, the specific heat can
be calculated using

CV
N

=
〈E2〉 − 〈E〉2

NkBT 2
. (2.29)

By using the specific heat, the transition temperature T
(N)
b and the width wT can be

computed. The position of the peak of the specific heat is T
(N)
b and the width is wT . As

such, the width of the peak will decrease in accordance with eq. (2.28), and the height
of the peak Cmax

V /N will grow with increasing system size. How the peak scales with N
can be derived from eq. (2.29). Assume that there are two states, 1 and 2. Then, if the
probability of having the energy of state 1 E1 is x, the probability of having energy E2 is
simply 1− x. Equation (2.29) therefore becomes

CV
N

=
1

NkBT 2

{
xE2

1 + (1− x)E2
2 − [xE1 + (1− x)E2]2

}
=

1

NkBT 2
x(1− x)(∆E)2,

(2.30)
where ∆E = E1 − E2. At the peak, both states are equally probable (x = 1/2) leading
to

Cmax
V

N
≈ (∆E)2

4NkBT 2
. (2.31)
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Combining eq. (2.31) with eq. (2.27) then yields how Cmax
V /N scales:

Cmax
V

N
∼ N

d−1
d+1 . (2.32)

This is slightly different to what has been suggested previously, namely a scaling of the
form Cmax

V /N ∼ Nd/(d+1) [23]. If it assumed that droplet formation is a first order phase
transition (which it is not), then this would be the scaling of the maximum specific heat
Cmax
V /N with respect to N . As the area under the peak is constant for a first-order phase

transition, Cmax
V /N ∼ w−1

T must hold. However, in the case for droplet formation, ∆E/N
vanishes in the large-N limit, therefore, the area under the peak should also vanish. Hence,
Cmax
V /N should grow slower than w−1

T ∼ Nd/(d+1) with N , as it does in eq. (2.32).

3 Results

The HP-program was first tested with LG simulations. System sizes from N = 10 all the
way up to N = 5120 were studied with multicanonical simulations (see table 1 for total
simulation lengths). The volume was adjusted so that ρ = 0.01 holds for all system sizes
(or as close as possible since the system is discrete). For each size, 16 runs are performed.
In each run, the entire energy span of interest ([Ecut, 0]) is traversed frequently. The results
were analysed and compared to known results from theory and simulations [23].

Then, the two sequences Φ (HPHPHPHPHP) and Θ (HHHHHPPPPP) were canonically
simulated at temperatures near the onset of droplet formation for a range of system sizes,
from N = 10 to N = 640. As in the LG simulations, the volume was adjusted so that
ρ = 0.01 is true for all the system sizes. For sequence Φ, 16 runs were performed for every
system size, while 8 were generated for sequence Θ. For both sequences, cluster formation
and dissolution occurred frequently in each run.

3.1 Multicanonical LG

The specific heat of a system which phase separates is expected to diverge. Plotting the
specific heat data from runs with system sizes of 10–640 particles (chains with only a single
H-bead) in fig. 6, it is clear that the specific heat diverges as the system size increases. As
the number of particles grow, the peak becomes higher and slimmer. This behaviour is
consistent with theory and experiments [23]. The HP-program therefore seems to properly
simulate a LG model; however, by comparing the data to the finite-size scaling prediction,
a stronger case for the validity of the program can be made.

Starting with the finite-shift of the transition temperature, the difference T
(N)
b − Tb is

predicted to scale as N−1/4 (eq. (2.25)). Figure 7(a) shows the data for T
(N)
b plotted

against N−1/4 with a fitted line of the form T
(N)
b = Tb + aN−1/4, where Tb and a are

parameters. This type of fit is indeed good, even for fairly small systems (N ≤ 40). The
transition temperature Tb predicted from this is TbkB/ε ≈ 0.626, which is in the vicinity
of the low-temperature expansion T0kB/ε ≈ 0.622 [23, 26]. However, even the largest

system (N = 5120) has a T
(N)
b which is roughly 10% below the transition temperature
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Figure 6: The specific heat CV/N plotted as a function of temperature T of the LG model for system sizes
N = 10, 20, 40, . . . , 640 as computed from the reweighted multicanonical data. The statistical
uncertainties are shown as shaded bands, however, they are very small and therefore not
visible. The specific heat exhibits a single peak that steadily gets higher and narrower with
increasing system size.

of the infinite system. This is expected given that the shift scales as N−1/4, i.e. that the
temperature converges slowly.

Moving on to the width of the transition, wT, i.e. the width of the specific heat. It is
predicted to scale as wT ∝ N−3/4 (eq. (2.28)). Therefore, wT against N is log-log plotted
in fig. 7(b). From this plot, it can be seen that for very small systems (N ≤ 20) not
much can be said about the scaling behaviour; larger systems are needed. For the small to
intermediate interval (40 ≤ N ≤ 320), a different scaling behaviour than the one predicted
from theory is observed, namely wT ∝ N−1. It is not until N ≥ 640 that the correct scaling
behaviour is observed. Therefore, if one only has data from the intermediate region, an
incorrect scaling behaviour is found. Nevertheless, for large N , the predicted scaling is
observed.

Lastly, the maximum specific heat Cmax
V /N is plotted as a log-log plot against N in fig. 7(c).

If ∆E ∼ N3/4, then the expected scaling is Cmax
V /N ∼ N1/2 (eq. (2.32)). As can be seen

though, for small and intermediate system sizes (10 ≤ N ≤ 2048), the maximum specific
heat seems to scale inversely proportional to the width wT. This is consistent with a first-
order phase transition, and what has been suggested in a previous paper [23]. However,
as mentioned in section 2.9, droplet formation is not a phase transition; the area under
the specific heat peak should become zero as N goes to infinity. By increasing the system
size to very large systems (N ≥ 2560), the scaling shifts to Cmax

V /N ∼ N1/2, as predicted
by finite-size scaling theory for droplet formation.

Given that the specific heat peak depends on ∆E, the scaling behaviour found for Cmax
V /N

should be reflected in how ∆E scales. Figure 8(a) shows a log-log plot of ∆E as a
function of N for intermediate to large system sizes (1280−5120). Indeed, for intermediate
system sizes, ∆E scales as N7/8. This scaling behaviour corresponds to Cmax

V /N ∼ N3/4,
which explains fig. 7(c). Increasing the system size, the correct scaling behaviour is found
(∆E ∼ N3/4), as expected, though it is not very pronounced. In fig. 8(b), the probability
distribution of the shifted and rescaled energy E∗ = (E + b)/N3/4, where b is a parameter
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Figure 7: Finite-size scaling of the LG model from multicanonical simulations with 10–5120 particles

(chains of length one). (a) The transition temperature T
(N)
b plotted as a function of N−1/4.

The line is a fit of the form T
(N)
b = Tb + aN−1/4, with a and the transition temperature

for infinite system size Tb as fit parameters. The fitted value of Tb is TbkB/ε = 0.626. The
theoretical value from low temperature expansions of the three dimensional Ising model is
TbkB/ε ≈ 0.622 [23,26]. (b) Log-log plot of the finite-size width of the transition wT against
N . The width is defined as the temperature interval over which CV > 0.8Cmax

V . The lines are
fits of the forms wT ∼ N−1 (green) and wT ∼ N−3/4 (blue). (c) Log-log plot of the maximum
specific heat Cmax

V /N against N . The lines are fits of the forms Cmax
V /N ∼ N3/4 (green), and

Cmax
V /N ∼ N1/2 (blue).
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independent of E, is shown for the three largest systems. By shifting and rescaling the
energy, it is possible to see that the probability distribution of the energy is bimodal. It
is also possible to see that the gap between the two peaks stays the roughly the same (as
already hinted from fig. 8(a)). Therefore, the scaling behaviour of the maximum specific
heat is reflected in the scaling of the energy difference.
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Figure 8: Energy difference between the mixed phase and the solved phase for five biggest systems, and

the canonical distribution for the three biggest system sizes at T ≈ T
(N)
b . (a) The scaling

behaviours of intermediate sized and large sized system match what is expected from fig. 7(c).
(b) The shifted and rescaled energy E∗ = (E+b)/N3/4 (with b = 0.15N) shows that ∆E/N3/4

stays roughly the same with increasing system size.

Based on the preceding analyses, the correct finite-size scaling relations are found for
the LG model, alhough large system sizes were needed to observe the correct scaling
behaviours for the width and the specific heat peak. It has thus been demonstrated
that the HP-program is able to simulate a system which phase separates into a single
large droplet. Therefore, further investigations of the longer sequences Φ and Θ can be
performed.

3.2 HP sequences

Moving on to the main focus, the two sequences Φ and Θ were analysed and compared.
As the specific heat should diverge for a phase separating system (as was shown in fig. 6),
the comparison between the two sequences begins with the specific heat. In fig. 9, the
specific heat data from simulations of a range of different system sizes for Φ (a) and
Θ (b) is shown (up to 640 chains). Sequence Φ’s peak grows higher and narrower with
increasing system size indicating a divergence. The same trend can be seen for sequence
Θ; however, at large sizes, the peak decreases and becomes slightly multimodal. This
behaviour suggests the presence of multiple droplets rather than a single large droplet.
However, given that sequence Θ clearly does not display the behaviour expected of a
system undergoing LLPS, no efforts were made to extend the temperature range in order
to definitely observe multimodality. Note that for small systems, the specific heat peak is
higher for sequence Θ than for sequence Φ.

To clarify the behaviours of the respective sequences, and to further specify whether or
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Figure 9: The specific heat CV/N plotted as a function of temperature T of the HP model for a range
of system sizes. The curves are computed using single- and multi-histogram reweighting
techniques [38,40] from canonical MC simulations at temperatures near the onset of droplet
formation. Statistical uncertainties are shown as shaded bands. (a) Sequence Φ features a
single peak that grows higher and thinner as the system size is increased (similar to the LG
model fig. 6). (b) Sequence Θ exhibits a similar trend, but only for small systems. For larger
systems, a precursor to a multimodal specific heat starts to appear, indicating the presence
of multiple droplets.

not they phase separate, the behaviour and evolution of the systems can be observed. In
fig. 10, snapshots of representative configurations of sequence Φ (a) and sequence Θ (b)
for N = 640 are shown. A single large droplet is observed for sequence Φ with a dilute
background containing small clusters, indicative of a LLPS. For sequence Θ, however,
multiple droplets can be seen, all of which are smaller than the single droplet formed by
sequence Φ. Studying how the systems’ evolve with time (runtimes shown in fig. 11), there
is a clear difference between the two sequences. In fig. 11(a), the evolution of the energy
density for the two sequences is shown. Sequence Θ appears to be in only one phase, with
rapid “jumps” in energy, possibly indicating a rapid formation and dissolution of small
droplets. Sequence Φ, on the other hand, forms a single large droplet which survives for
a longer period of time. Also, the energy in sequence Θ’s system does not become as low
as in the system with sequence Φ. This also demonstrates that no sequence Θ droplets
become as big as the sequence Φ droplets. Indeed, studying the evolution of the largest
droplet of each sequence confirms this. These evolutions are shown in fig. 11(b), and it is
clear that sequence Θ does not produce any large droplets and consequently it does not
undergo LLPS. Sequence Φ, on the other hand, does form a single large droplet which
lasts on average for & 106 sweeps. However, comparing sequence Φ to the LG (see fig. 4),
the “jumps” in energy and droplet size are not as sudden nor as big.

Finite-size scaling theory is based on the probability distribution of the energy being
bimodal. Therefore, fig. 12 shows the probability distribution of E/N for sequence Φ
for 320 and 640 chains at a temperature near the onset of droplet formation. It clearly
shows that for N = 320 there is no bimodal structure, and that for N = 640 there is
only a slight bimodality. Therefore, the correct finite-size scaling behaviours might not be
observed.
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(a) (b)

Figure 10: Snapshots of configurations displaying droplets representative of the different sequences at

system size N = 640 and temperatures T ≈ T (N)
b . Each bead is represented by a dot. (a) A

single large droplet can be seen for sequence Φ. (b) A few small droplets are observed for
sequence Θ.
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Figure 11: MC evolution of the energy density E/N for sequence Φ and Θ as well as the evolution of

the largest droplet for N = 640 and T ≈ T (N)
b . High and low energies correspond to states

without and with a droplet, respectively. The two sequences were simulated for different
number of sweeps and are therefore of different lengths (table 1). (a) Sequence Θ rapidly
shifts in energy, whereas sequence Φ has more pronounced energy states. (b) A large droplet
forms for sequence Φ which varies greatly in size. Sequence Θ does not grow any large
droplets, which further demonstrates that the sequence does not undergo LLPS.
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Figure 12: The probability distribution of the energy per number of chains for N = 320 and N = 640

at T = T
(N)
b . There is no bimodality for 320 chains and a slight bimodality for 640 chains.

The results so far suggest that sequence Φ may undergo LLPS, and that sequence Θ
clearly does not. Therefore, no further investigation regarding LLPS was performed on
sequence Θ. On the other hand, sequence Φ was further analysed using finite-size scaling
analysis.

The finite-shift of the transition temperature T
(N)
b − Tb should scale as N−1/4, if a system

undergoes LLPS (eq. (2.25)). Therefore, fig. 13(a) shows the data for T
(N)
b plotted against

N−1/4. A fit of the form T
(N)
b = Tb + aN−1/4, with Tb and a as parameters, shows that

eq. (2.25) does describe intermediate- to large-N data (80 ≤ N ≤ 640). The predicted

transition temperature from this fit is TbkB/ε ≈ 0.538. As already stated, T
(N)
b should

converge slowly. Indeed, for the largest system, the shifted transition temperature is
roughly 8% below the fitted value of Tb.

In fig. 13(b), the data for the width of the transition wT is plotted against N in a log-
log plot. The width is predicted to scale as N−3/4. For small systems (N ≤ 20), not
much can be said about the scaling behaviour. Increasing N , a scaling of wT ∝ N−1 is
observed, which is incorrect. This scaling is likely due to the present system sizes not being
sufficiently large. In fact, the same scaling behaviour (wT ∝ N−1) was observed for the

intermediate system sizes in the LG model. No correct scaling of w
−3/4
T was observed.

Finally, the maximum specific heat Cmax
V /N is predicted to scale as N1/2 (eq. (2.32)). In

fig. 13(c), Cmax
V /N is plotted against N in a log-log plot. Again, small systems do not

follow the predicted scaling behaviour, as would be expected since the predictions assume
asymptotically large N . The data for the four largest systems, however, fit very well with
the theoretical predictions.

Despite the fact that bimodality is not observed until the largest system size (N ≥ 640),
several scaling behaviours are correctly identified. Unlike for the LG model, the predicted
specific heat peak scaling is found for comparably small systems. The shift of the transition
temperature is found to match perfectly with the predicted scaling behaviour. However,
the correct scaling behaviour of the width of the transition is not observed. Instead, the
same intermediate scaling behaviour from the LG is observed. Hence, it is likely that the
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Figure 13: Finite-size scaling data of sequence Φ from simulations with 10-640 chains. (a) The transition

temperature T
(N)
b plotted as a function of N−1/4. The line is a fit of the form T

(N)
b =

Tb+aN−1/4, with a and the transition temperature for infinite system size Tb as fit parameters.
The fitted value of Tb is TbkB/ε = 0.585 (b) Log-log plot of the finite-size width of the
transition wT against N . The width is defined as the temperature interval over which
CV > 0.8Cmax

V . The line is a fit of the form wT ∼ N−1. (c) Log-log plot of the maximum
specific heat, Cmax

V /N , against N . The line is a fit of the form Cmax
V /N ∼ N1/2.
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system sizes studied are not large enough for the correct scaling behaviour to be observed
for wT . Nevertheless, based on the results, there are strong indications that sequence Φ
unlike sequence Θ, indeed undergoes LLPS.

3.2.1 Droplet characteristics

As has been shown in the comparison of the specific heat data of sequence Φ and Θ, the
two sequences have different phase behaviour, even though they have the same length and
constituent parts. To understand why this is, a more thorough study of some of the basic
structural properties of the droplets was performed. The data studied was gathered from
simulations with the largest system size (N = 640) and at temperatures near the onset
of droplet formation.

As shown previously, different types of droplets, or rather clusters, are formed depending
on the sequence. Therefore, the size, or mass, of the droplets formed is an important
characteristic of the phase behaviour. Figure 10 demonstrated that sequence Φ can form
more massive droplets than sequence Θ. However, to determine whether this is always
the case or not, a study of the cluster mass distribution for both sequences was performed.
The distribution is plotted in fig. 14 and shows that the most common droplet formed by
sequence Φ contains about 170 chains. Sequence Θ, on the other hand, typically forms
droplets with around 30 chains in them. Intermediate-sized droplets are statistically
suppressed for both sequences, but not by a great deal. This might be due to the lack of a
bimodal energy distribution. Nevertheless, a single large droplet is observed for sequence
Φ, which is expected if phase separation occurs [17–19].
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Figure 14: Mass fraction of clusters with Nclust chains achieved with the largest system size (640 chains)
at a temperature near the onset of droplet formation. Sequence Φ forms droplets of roughly
170 chains, and intermediate-mass clusters are statistically suppressed, though not by much.
Sequence Θ instead forms droplets with roughly 30 chains, i.e. in the intermediate-mass
range.

The internal structure of the droplets is also important. Therefore, the average bead
density around the center of mass of large droplets was studied. The density at a distance
r is defined as the concentration of beads in the volume V (r + l) − V (r), where l is
a constant. A large droplet is a cluster containing a number of chains greater than a
threshold (70 for sequence Φ and 20 for sequence Θ). The resulting density profiles for
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respective sequence are shown in fig. 15. From the density profile for sequence Φ (a), it
can be seen that the density is essentially constant for both small and large rcm so it
can be assumed that these regions are representative for the interior of droplets and the
dilute surrounding, respectively. Based on this assumption, the droplet density is over
100 times greater than the background density, where the total bead density is roughly
3.7 · 10−3. The droplets are, like the background, homogeneous in H and P. On the other
hand, sequence Θ’s droplets are denser and consist of almost only H beads. Given that
the sequence is split into one H half and one P half, a droplet with a mainly H core can
only hold a finite amount of such chains; it very quickly becomes crowded. Therefore,
sequence Θ’s droplets can only grow so large, despite an increase in system size.
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Figure 15: Bead density profiles calculated as a function of the distance rcm from the center of mass
of large clusters, obtained using N = 640 and a temperature near the onset of droplet
formation. The density at distance rcm is defined as the concentration of beads in the volume
V (r+ l)− V (r), where l = 0.25. A large droplet is a cluster with a number of chains greater
than a threshold (70 and 20 for sequence Φ and sequence Θ, respectively). The total density
is split into H and P densities.

It is clear that sequence Φ phase separates into a droplet with a dilute background, but
how liquid-like the droplets are remain unknown. By constraining the model to a lattice,
a droplet might become solid-like due to the restriction of movement, which would lead
to a poor model for LLPS. It can be expected that a liquid-like droplet would exchange
its constituents with the surrounding. It should also have a dynamic interior with chains
moving around even if they are in the center of the droplet. To clarify this, an analysis
of the rigidity of the droplets formed by sequence Φ was performed. For this purpose,
configuration data from every 1000th sweep is used, which is much shorter than the average
droplet lifetime of & 106 sweeps. As before, only large droplets (Nclust > 70) were used.
Two dynamical characteristics are studied: firstly, how rapid the exchange between the
droplet and its surrounding is, and secondly, how rigid the core of a droplet is. To analyse
the exchange with the surrounding, the chain contents of two consecutive snapshots with
a droplet are compared. From such an analysis, it is found that roughly 17% of the initial
chains in the droplet are lost by the next snapshot. This may seem like a small amount,
but considering that during a droplet’s lifetime, it loses, or replaces, 17% of its constituents
1000 times or more. This demonstrates that the droplet has a rather dynamic behaviour;
it rapidly exchanges with its surrounding compared to its lifetime.
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To study how rigid or dynamic the core of a droplet is, internal chain pairs were analysed.
This was done by first finding connected pairs of chains which each interact with at least
another 5 chains. This threshold ensures that only interior chains were studied and was
determined after manual inspection. Next, the fate of each pair was analysed in the next
consecutive snapshot containing a droplet, similar to the exchange analysis. From such
an analysis, it appears that the interior of the droplet is also dynamic. On average, 27%
of the pairs remain connected, while 62% of the pairs have separated due to internal
dynamics. Therefore, about 11% of internal chain pairs are broken due to at least one of
the chains leaving the droplet. This demonstrates that the droplets formed from a lattice
constrained model are dynamic in terms of their exchange with the surroundings and with
their internal configurations.

4 Discussion & Conclusions

Biomolecular condensates form through a LLPS process, which is often driven by IDPs.
However, the forces driving the LLPS of IDPs remain incompletely understood. Molecular
simulation has the potential to provide insight into the sequence-dependent LLPS of IDPs,
but deals with relatively small system, due to computational limitations. In this thesis,
finite-size scaling theory has been applied to analyse protein droplet formation in the
lattice-based HP model.

To ensure that the program developed and used is capable of simulating phase separation,
it was first tested on the simple LG model, in which droplet formation through phase
separation is known to occur. The simulation data was in good agreement with results
from previous simulations by Zierenberg and Janke [23]. Furthermore, the results matched
perfectly with predictions from finite-size scaling theory for droplet formation. Hence, the
program can be used to study phase separation in the LG system. However, it is worth
noting that in order to observe the behaviour predicted by finite-size scaling theory the
system must be sufficiently large (& 2560 particles).

As a main objective in this work, two HP sequences were studied in terms of their finite-
size scaling properties. The blocky sequence Θ was found not to undergo LLPS, but
instead formed aggregates reminiscent of micelles: hydrophobic cores with a polar shell.
By contrast, finite-size scaling analysis provides strong evidence that sequence Φ indeed
undergoes LLPS. However, for the width of the transition, the predicted scaling behaviour
was not observed, most likely due to insufficient system size. In fact, it is only for the
largest system size (640 chains) that a bimodal energy distribution is observed. The
predicted scaling behaviour of the maximum specific heat and the transition temperature
is observed already for the present system sizes. It is interesting to note that a bimodal
energy distribution is observed already for much smaller systems in the related continuous
model studied by Nilsson and Irbäck [20].

The above analysis does not show whether or not the droplets formed by sequence Φ are
liquid-like in character. This question was addressed through additional measurements.
It was found that the droplets have a rapid exchange with the surroundings, relative to
the droplets’ lifespans, and a dynamic interior, with chains relocating within droplets at
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a rapid pace. Thus, although the use of a lattice restricts the mobility of the chains, the
droplets formed by sequence Φ appear to behave more like a liquid than like a solid.

If one wants to determine the underlying phase diagram, the finite-size shift of the trans-
ition temperature, T

(N)
b − Tb, needs to be taken into account. It is worth noting that

the convergence of the transition temperature to its value for infinite system size is slow,
T

(N)
b − Tb ∼ N−1/4. In fact, in our simulations of sequence Φ, T

(N)
b is still 8% lower than

Tb for the largest system (640 chains). By using finite-size scaling theory, the shift of the
transition temperature can be estimated and accounted for.
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