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Abstract

Designing hardware using High Level Synthesis automates parts of the digital hard-
ware design process. By automating the process control is passed from the designer
to the tool, thus it is highly important that the tool generates high performance
hardware in terms of area and speed. This thesis explores the tool performance
of Vivado HLS using two designs implemented anew with High Level Synthesis
and Hardware Description Language. The evaluations are done based on hard-
ware performance and functional verification times and how these scale to larger
designs.

When using High Level Synthesis one should have a good idea of what hardware
that is ideal for the given design in order to design high performance hardware.
The synthesis process of generating Register Transfer Level-code from C or C+-+
is highly dependent on syntax, especially as designs grow larger. This could be
satisfied by having a good balance of pre-defined libraries and design specific code
and keeping native C data types for high functional verification speed.

There are different ways of designing using High Level Synthesis this thesis aims
to explore these and highlight their pros and cons. Thus providing guidelines and

ideas for how to work with High Level Synthesis in different situations.

Keywords: HLS, HDL, VHDL, C, C++, Vivado, FPGA, Xilinx
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Popular Science Summary

Newer digital circuit technologies are rapidly arising which allow for higher clock
frequency, better energy efficiency and a higher number of transistors in a given
area. All these enhancements opens up for more complex designs. This will in
turn increase the development, simulation and verification time taken by the de-
signers. The marketing window for a product is usually short and products needs
to be ready for marketing within that window. Otherwise it might lead to huge
economical set backs for the developers of the product.

Initially, digital circuit design took place at transistor level, which meant that de-
signers had to place every single transistor which is a time consuming process. As
the designs became more complex the development time increased a lot. A hard-
ware description language called VHDL, at first used for document the behaviour
of ASIC’s (Application Specific Integrated Circuit) became very popular for also
describing hardware. This reduced the development time a lot since every line
of VHDL corresponds to several transistors. Today HDL coding languages like
VHDL and SystemVerilog are the contentious industry standard and the preferred
way of designing hardware. But as the designs have gotten even more complex
and demanding large bases of VHDL code, techniques to design hardware at a
higher abstraction levels have emerged. This way of designing hardware has been
around for some years and has been met with some scepticism. So we might be
facing a another shift in industry standard if it turns out to give the same benefits
as VHDL did back then.

HLS (High Level Synthesis) is a way which lets the development take place at a
high level language instead of a low level one. This will speed up development time
since functions does not have to be implemented from scratch and also because it
requires little knowledge of the hardware compared to HDL coding.

HLS has been around since 1994 but was not seen as matured enough for pro-
ducing effective hardware in terms of resources and speed. Today there exists a
"smorgasbord" of different vendors which offers HLS, to mention some Cadence’s
Stratus, Xilinx’s Vivado HLS, Mathworks HLS and Mentor’s Catapult with more.
This thesis will focus on Xilinx’s Vivado HLS and evaluate if it can bee seen as
mature enough for competing with traditional HDL coding and if there will be
any time gain during verification.

il
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Chapter ]_

Introduction

Automation of industries could be argued, together with IT, as one of the biggest
drivers of the modern economy. Automation could simply be put as the aim to
complete a given task with as little human interaction as possible. Achieving this
has several benefits’ perhaps the most sought after would be to free up human at-
tention and effort from more mundane tasks to work on innovation and progress.
The word automation could refer to many different areas and implementations. It
could refer to anything as simple as software program performing a set sequence
of tasks on a computers file system to advanced mechatronic implementations in
modern manufacturing processes.

The potential gains of automation are large but while there are many gains of
automation it too has its downsides. The lack of contextual understanding that
machines or tools, posses could affect the result of the task it is to perform in
a negative way. Where the lacking of contextual awareness yield a sub-optimal
result the automation process require more sophistication. Generally where un-
derstanding why something is performed would increase the quality of the result
by adapting to the specific circumstances of the specific task at hand. In such
a case the progress of automation could be staggered. To surpass this problem
most commonly the context of the problem at hand needs to be integrated into the
automation process. Regarding simple and isolated tasks this is possible. As for
more complex tasks integrating all possible outcomes and context becomes almost
impossible which would yield in worse performance for some situations.

The gain in execution speed and versus the loss of contextual awareness is perhaps
the most common dilemma one would face when when deciding if automation is
the right course of action. The maturity of the automation process do often weigh
heavy in these cases. Introducing a new way of working should yield in a more
efficient way of working then what it previously was.
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Automation affects almost all industries including digital hardware design.
The most common way to design digital hardware would be with Register Trans-
fer Level- (RTL) coding, that is describing digital hardware through code on a
cycle- and bit accurate level. This was introduced with HDL-Synthesis in the mid
1980s [5]. HDL-Synthesis [5] tools aimed to take an RTL design and transfer it
to a gate-level ASIC netlist consisting of logical gates. In doing so it automated
the process of digital hardware design from the placement of logical gates and
transistors to designing it in RTL-code.

The next step of abstraction for digital hardware design could be High Level Syn-
thesis, or HLS. Which is a way of designing hardware by using the same coding
syntax that is normally used for software design. HLS is an attempt to automate
parts of the hardware design process by increasing the abstraction level from the
traditional ways of designing hardware using RTL to designing hardware by de-
scribing its functionality in classical software syntax.

This thesis is aimed to be an analysis of HLS. The analysis will be done using Vi-
vado HLS 2018.3. A development environment from Xilinx which uses C-, C++-
or System C syntax to design hardware. The hardware results presented in this
thesis is not guaranteed to be repeatable using any other tool or target hardware.
But the methodologies used when working with Vivado HLS could be applicable
when working with other HLS vendor tools. This should be achieved by giving
an insight into working with HLS, what the benefits and drawbacks there are and
how they can be leveraged to fit into different situations.

HLS has the potential to bridge the knowledge gap to hardware design, pushing
design up on a system level requiring only software, or less hardware, knowledge.
To do this the tool needs to prove sufficient performance that it can, in a trusted
manner, produce hardware as good, or better, than with RTL. If this is not the
case the tool needs to provide additional benefits, not existing with RTL, that can
make up for the loss of performance. By analysing the state of Vivado HLS this
thesis hopes to show the state of the tool but also HLS in general.

The analysis will be conducted by creating a digital hardware design in RTL
and then the design should then be recreated using HLS. The HLS designs will be
divided into two designs. One design should mimic the RTL-codes functionality
and behaviour by coding as close to bit and cycle accurate as possible using C-++.
This design aims to recreate the RTL design but using the HLS tool. The other
HLS design aims to maximize abstraction by using provided libraries with a more
software approach to designing.

Designing with HLS can produce hardware with results much resembling those
generated using RTL-coding. If the goal is to design high performance hardware
in terms of area and timing, the logic functionality and hardware should be de-
termined before the design is done in HLS. The C/C++ syntax should then be
written so that the functionality resembles the goal design. This pushes the tool to
generate hardware using the same logic and timing as to goal design. HLS could
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also generate hardware using normal software syntax with the right settings. De-
signing using normal software syntax in general produces digital hardware that
consumes more logic with worse timing results. HLS is sensitive to syntax and
using pre-defined libraries makes it easier for the tool to synthesize the hardware
but it can also decrease the performance when simulating in C.

It should be noted that qualities of designs is heavily dependent on the designer
and the experience they posses. Before this thesis neither of the authors has
done any previous work using HLS and their experience with RTL is restricted to
academics only.

1.1 Thesis Structure

This thesis aims to compare the results produced as well as the workflow of Vivado
to that of RTL when designing digital hardware aimed for FPGAs. It should also
provide guidelines for people designing in HLS with an analysis of how the tool
performs in different scenarios. Even if the design and practical work is done us-
ing Vivado HLS methodologies and workflow practices used throughout this thesis
should be applicable, to some extent, if one should choose to design in HLS using
different tools.

This thesis will be structured into six different parts, excluding the introduction.

1. Background - This chapter aims to explain why and what that was con-
ducted throughout this thesis. It will also cover some basic digital hardware
concepts the reader should be familiar with to understand the results and
analysis. It will also give a brief introduction to RTL design concepts and
how it was conducted throughout this thesis.

2. Xilinx Vivado HLS - This chapter should serve as an general introduction
to HLS, more specifically to Vivado HLS. The aim is to get the reader
familiarized with HLS design concepts and also how the differ as well as
connects to digital design using RTL.

3. Case Study - Is about the hardware components, or designs, used throughout
this thesis. Their specifications and an overview of their functionality will
be presented as well as how they are intended to be used to analyse and test
the Vivado HLS tool.

4. Results - In this chapter the quantifiable results are presented. It presents
graphs and tables of the different designs implementations as well as the
results of the design process it self. It aims to only present quantifiable and
measurable results for the reader to extract.

5. Analysis - Aims to present the reader with a more in depth analysis of the
results. Why the designs ended up the way they did and how they differ
from each other. It will also bring up problems and hurdles one could face
when designing hardware using HLS and how these could be prevented or
solved.
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6. Conclusions - Should conclude the thesis results and analysis with a concise
description of HLLS and its current state. In this chapter the authors opinions
and experiences will be presented. These are not to be taken as facts but
the opinions of two master students using HLS for digital hardware design
for the first time.

The thesis is aimed at Vivado HLS and how it can be used for hardware design
with measurable results as the main resource of analysis. Throughout the thesis
the impact HLS might have on workflow methodologies in different parts of digital
hardware design will be covered. Even so it is important as a reader to keep in mind
that this is not an evaluation of methodologies used when designing hardware but
the hardware produced as a result. The methodologies are brought up because
they present one of the differences, and potential gains, when designing digital
hardware in HLS compared to RTL.
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Background

To follow along in this thesis a basic knowledge of hardware design, how it is done
and what’s the reason behind it, is recommended. Even so the following chapter
will briefly cover the methods, concepts and theory used throughout this thesis.
The content of this chapter should be kept in mind when reading the rest of this
thesis, which will hopefully explain the reasoning and decisions made throughout
this work.

2.1 Motivation

Hardware development is in many aspects costly and resource demanding. Due
to modern tools requiring a lot of detail to create functionality the design aspects
can take a lot of time, get large and slow down development. Developing using
HLS has the potential to allow the focus to be shifted from a bit-wise design to
a more modular design approach. Which has the potential to reduce the devel-
opment time and speed up the time to market for hardware and IP:s if it can
reach sufficient performance compared to the tools used today. Other than design
speed, HLS has the potential to speed up verification by moving it from an RTL
environment to system-C/C. This could speed up the verification process signifi-
cantly since the entire RTL model does not have to be simulated in order to do a
functional verification.

High Level Synthesis tools have several potential benefits that could speed up
the design of hardware. They include:

e Higher abstraction level for easier design
e Faster design verification from higher level simulation

While High Level Synthesis has several potential benefits for both hardware design
and verification, it also presents potential drawbacks. By increasing the abstrac-
tion level the designer gives up control of design aspects that modern HDL tools
provide. This could potentially lead to different types of implementation problems
where design architectures are not as efficiently, in terms of area and timing of the
circuit, implemented as they could be had the designer been given more control.
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To evaluate the performance of Vivado HLS this thesis aims to use three
different approaches.

e Basic RTL design using VHDL
e C-++ design using an bit exact coding approach
e C-++ design using a "Ultra High Level" -style of coding

These design ways do represent three abstraction levels of coding, ranking from
lowest to highest in the list. A higher level of abstraction would generally be seen
as better from a design speed perspective, but with a lower level of customization
and performance.

Exploring different abstraction levels when designing could provide important in-
sight to how well the tool performs in different scenarios. Even though a higher
abstraction level would make hardware design more accessible. An approach to
hardware design using C/C++ while having a goal implementation in mind, in
terms of hardware as well as functionality, could have potential benefits of efficient
hardware- and DSP design together with the design speed potential of software.

Through out this thesis the quality and efficiency of the hardware produced by
different design methods, using high level synthesis and VHDL, will be analysed
to determine how well they work. For each level of abstraction the design will be
evaluated on the following parameters.

e Area

e Speed

e Time for Synthesis
e Simulation Time

This should provide a better view of the current state of the tool and what trade-
offs that is being made when used in comparison to traditional RTL design using
Verilog or VHDL.
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2.2 FPGA Fabric

To understand the measurement of area efficiency, which is a very important indi-
cator of the quality of the generated hardware, it is important to understand the
basics of how hardware is mapped onto the FPGA. The target FPGA circuit for
this thesis is the Xilinx Zync Ultrascale ZU27DR [9]. The FPGA holds a set of
standard building blocks and programmable interconnections to design different
logic implementations. The three basic building blocks discussed throughout this
thesis are:

e DSP48 - The DPS48 slice in the Ultrascale architecture is the main slice
for multiplication. The DSP contains a multiplier, adders, a multi-purpose
ALU, and pipeline registers. By default multiplications are mapped to the
DPS-slice, if possible the multiplication can be combined with other basic
arithmetic operations [1].

e Block RAM - RAM’s with programmable width and depth. Block RAM
usually used for storing large amount of data such as comprehensive look up
tables and large registers, data which would only need to be partly updated
or accessed. This ultrascale+ arcitecture feature 38 Mb of block RAM [3].

e CLB - Is the main resource to implement general-purpose sequential- and
combinational circuits on and FPGA [2]. It holds several blocks of hardware
functionalities such as Look-up Tables(LUT), Shift Register Logic(SRL), Flip
Flops(FF) and High Speed Carry Logic(Carry8) to implement logic and
arithmetic operations. All this logic is contained within one CLB ’slice’,
which then has several interconnects to other CLB-slices as well as other
parts of the fabric to create the FPGA-architecture.

These are the standard FPGA fabric components used to build up different hard-
ware logic and will be used in order to measure the area efficiency of Vivado HLS.
The number of logic blocks used in a design matters also for timing reasons. If
the logic needs more LUT’s or FF’s it could effect the timings of the circuit. The
reason why it could affect timing is that if the design does not fit in CLB some
of it might have to be spread over several CLB’s were communication delay for
the signal to travel to the next CLB can affect timing in a negative manner. The
routing of the FPGA fabric allows for easier communication within a block than
between several of them because there can not always be an available CLB close
and a longer communication route may therefore have to be taken. Inefficient
usage of the block RAM- or DSP- fabric could be even worse than CLB mapping,
since the placement of these are less frequent on the FPGA-board and there are a
limited number of them. If something does not map to a RAM or DSP, it might
have to be built from CLB’s leading to a increase in utilization for RAM case.
In the DSP case it will mainly be the timing that will be affected, since DSP are
rather complex and developed to be efficient at their capabilities it will require a
high number of CLB’s to perform this, see [1] and [16].

Different FPGA manufacturers has different fabric architectures and building blocks.
Thus the same design might have different utilization depending on the FPGA
provider. During this thesis Xilinx Vivado HLS is used to program a Xilinx
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FPGA. This could cause a biased view and different result might be obtained if
using FPGA-boards from different vendors, due to inefficient mapping and other
mismatches.

It is important to understand these basic FPGA architecture blocks to understand
the analysis of the area efficiency. Because of the structure of filed programmable
gate arrays the number of blocks, or slices, used to implement the hardware func-
tionality will determine how area efficient the final design is. The number of slices
used is also affected on how the hardware algorithm is optimized and implemented
but these are kept constant as much as possible through out this thesis.

2.3 Abstraction Levels and Design Hierarchies

This section should briefly clarify some terms used throughout this thesis. It is
mainly to those how are not as familiar with digital hardware design and the
different terms one usually uses to describe components of a design. The section
also covers briefly what abstraction levels are referring to which is used frequently
throughout this thesis to describe the design methods.

2.3.1 Design Hierarchies

The digital designs used in this project can be divided into two parts, top-module
or system level and sub-module or component. An example of these can be seen in
figure 2.1 where the left is a component usually performing a function or arithmetic
operation with a set of I/Os. The right part of figure 2.1 is the system level or
the top-module used to describe how different components are connected as well
as the top level inputs and outputs.

Figure 2.1: Design hierarchy levels used in this thesis component
(left) and system (right).

It should be noted that functionality can be divided into several sub-modules,
or components. How this division is done is decided by the designer.
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2.3.2 Abstraction Levels

Abstraction levels are used to describe the different ways of designing hardware
that was used throughout this thesis. Where the lower abstraction levels are
designs where the functionality and logical hardware are more meticulously ex-
pressed. Higher abstraction levels indicates a reduction of the level of detail re-
quired, leaving the left out details to be performed by the tool. An example of the
abstraction levels can be seen in appendix B.

To compare the HLS implementations with the RTL implementations three ab-
straction levels will be used. VHDL is the abstraction level closest to hardware.
VHDL is design on a logic level and after HDL-synthesis it is converted to a netlist.
The netlist is mapped onto physical hardware units which will be used to measure
the utilization efficiency of HLS. The VHDL model will be used as the baseline
performance measurement as it is a form of RTL design which is one of the most
common ways to design hardware today.

The HLS implementations will be divided into two abstraction levels, Bit-Ezact
and Ultra High Level. The goal of the bit-ezact model is recreate the hardware
described in this chapter and to recreate or surpass, if possible, the VHDL de-
sign using HLS. Using syntax that both in timing and functionality is intended to
force the HLS-synthesis to create RTL that function and maps to hardware as the
VHDL design does. This should be achieved by coding as close to clock- and bit
accurate as possible.

The Ultra High Level model goal is to demonstrate the performance of a design
using higher abstraction level style of coding. In this case higher abstraction level
is achieved by using libraries, syntax and arithmetic operations as one would in
classic software design. It should be noted that the syntax is altered in a way so
that it generates functional hardware and uses directives to improve HLS-synthesis
result so that the design meets the initial requirements, see section 4.2.

2.4 Hardware Optimization and Structure

In digital hardware design there are several different optimization methods that
could be utilized in order to increase the performance of a circuit. Throughout this
thesis some of this optimizations will be implemented to meet specific hardware
requirements. Therefore this section of the report aims to present some of these
optimization methods, why they are used and how they affect the circuit they
are applied to. A brief introduction to hardware hierarchy is also presented in
this section. Even though the hierarchy is not a optimization method by itself it
is important to understand the basic concept to fully grasp the results presented
later in the report.
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2.4.1 Pipelineing

Pipelineing is the insertion of registers at strategic places in a circuit to divide its
functionality over as many clock cycles as the number of inserted registers [12].
As an example of this see figure 2.2 showing a made up datapath and figure 2.3
showing the same datapath with inserted registers. If in this dataflow graph rep-
resentation of a fictitious circuit uses addition that requires two nanoseconds to
complete and multiplication that requires four nanoseconds the circuit in figure
2.2 would take ten nanoseconds in total to complete. Which would require the
datapath to have a clock cycle with at least a ten nanosecond period, if register
setup and hold times are discarded. One way of pipelineing the datapath can be
seen in figure 2.3 where, if once again register setup and hold times are discarded,
a clock period of four nanoseconds would be possible. With the use of pipeline-
ing the clock period were decreased which is one of the main advantages of this
optimization method. Introducing pipeline stages in the datapath has one other
advantage. It exploits hardware parallelism, meaning that the next operation in
the datapath show in figure 2.3 can start after one clock cycle. Effectively allowing
the hardware to have three active calculations in parallel which allows the circuit
to produce one result every fourth nanosecond instead of every tenth. One should
also note that in this case the total execution time increases from ten nanoseconds
to twelve because the additions execute during one clock cycle even if it is finished
before increasing the time compared to the non-pipeliened version of the datapath.
This example summarises the main pros, clock speed and parallelism, and cons,
increased hardware and possible longer execution time, of pipelineing a circuit.

@
&
o
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h -fr

Figure 2.2: Dataflow graph ex- Figure 2.3: Dataflow graph ex-
ample with no pipelineing. ample with pipelineing.

| reo |

| Reo |

2.4.2 Loop Unrolling

Unrolling is an optimization method to reduce the number of clock cycles required
to implement a iterative algorithm. Unrolling is done by performing several itera-
tions each cycle, or if the loop is completely unrolled all iterations are performed in
parallel [12]. An example of a loop that could be unrolled can be seen in figure 2.4.
This loop could be implemented using a single adder which looks like figure 2.5
calculating one addition per cycle. By unrolling this loop the resulting hardware
could look like that of figure 2.6
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void top function(int& A)
{
for{int i = 1; i < 4; i++)

A +=1i;

}

Figure 2.4: Example of software loop that could be unrolled.

.

A
1 —> ] A 1 :E
S N )
3 —>
7T
clk 3—;\/
Figure 2.5: Hardware implemen- Figure 2.6: Hardware implemen-
tation of loop before un- tation of loop after unrolling.

rolling.

The normal benefits of unrolling is a lower latency circuit that has to utilize
more hardware to perform its calculations.
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Chapter 3

Workflow and Xilinx Vivado HLS

This chapter will introduce Vivado HLS to the reader and give basic knowledge
of the tool. Presenting briefly how the tool works and the process of generating
RTL from C/C++. It also aims to present the workflow used in this thesis, both
for the RTL- and HLS design and verification. Understanding the workflow and
how it changes when designing in HLS compared to RTL is an important aspect
to consider when evaluating the tools because the workflow can affect the design-
and verification process and their speed.

3.1 Xilinx Vivado HLS

The tool used to design HLS throughout this thesis was Xilinx Vivado HLS and
the tool used to do RTL design was Xilinx Vivado. The most significant difference
between the two, that Vivado HLS is using C - or C++ code and Vivado using HDL
code. It is assumed that the reader has some experience or previous knowledge of
designing hardware using HDL and this thesis will not cover that in any detail.

3.1.1 HLS-Synthesis

High Level Synthesis is used to generate functional RTL from C/C++ source code.
The synthesis itself is when the source code is interpreted and used to generate
functional RTL. This process of generating RTL-code will throughout this thesis
be referred to as HLS-Synthesis to differentiate it from HDL-Synthesis which is
used to generate a netlist from RTL-code [5].

The synthesis process is the critical factor that enables HLS to be used for hard-
ware design. The synthesis process could be described briefly in three parts. First
the tool identifies key parts of the code. There are usually six attributes of the
code that the tool has to identify, Functions, Top Level I/0, Types, Loops, Arrays
and Operators [8]. These part all needs to be handled to correctly to synthesize
the C/C++ code. Second the tool has to identify the control parts of the C-code.
This is usually the start and end of a function call or internal loops. Using these se-
quences the tool creates a CFG to determine the order of operations. The tool then
identifies the different operators used in the code and they are then placed within
the different parts of the Control Flow Graph (CFG) [8] so that they are performed

13
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in the correct order. Using this CFG with the different operators integrated the
tool can then structure RTL to replicate the C functionality in hardware. Third
the tool has to schedule which operations that should be performed on which clock
cycle.

The structure of the CFG and its internal operators can be changed using di-
rectives, or C-pragmas [8]. This could tell the tool to implement different hard-
ware optimization options, such as unrolling a loop (see section 2.4.2) for lower
latency or pipelineing (see section 2.4.1) a function to increase the throughput of
the hardware.

3.1.2 Customisation, Optimization and Constraints

Vivado HLS has several features and options to optimize and customize the hard-
ware design implementation [8]. Note that all of them wont be covered in this
thesis but this section aims to present the ones that one needs to know to under-
stand the thesis results and analysis.

Arbitrary Precision

Arbitrary precision data types are provided from a Vivado HLS library. They are
used in Vivado HLS for doing bit exact models and calculations. Assigning a vari-
able to be of arbitrary precision type allows for more exact design beyond the stan-
dard C/C-++ data types [14]. The arbitrary data types can be of ab_ fizred< WL,
N> or ab_ufized< WL, N> where the data type can be set with word length, WL,
and integer length, N, to create a fixed-point or unsigned fixed-point implementa-
tion. The arbitrary precision data types ab_int<N> and ab_ uint<N> which will
create a N-bit integer number [8].

Directives or Pragmas

By default the key attributes from the HLS-Synthesis are synthesised in standard
ways. An array is for example by default synthesised as a BRAM [8]. How
the tool should synthesise the source code could be modified with pragmas or
directives. This allows the designer to perform different optimization methods by
telling the tool specifically how a part of the code should be synthesised, or mapped
to hardware. The directives mostly commonly used throughout this project are
Pipeline, Unroll, Array Mapping. Pipeline has been explained in section 2.4.1 and
are applied to functions to tell the tool that all the operations in that function
should be pipelined. Unroll has been explained in 2.4.2 and is applied to loops
to reduce the loop-iterations. Array mapping is used to change how an array is
synthesised in HLS. This was often used to force the tool to synthesise arrays into
registers instead of BRAM. For a full explanation of which directives there are and
how they should applied we refer to the Vivado HLS user guide [8].
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Constraints

A constraint when writing HLS is that memories has to be defined on compile
time, i.e. you can’t use memories with dynamic range, since it is not possible to
synthesise a memory of unknown size. Therefore one cannot use pointers with
offsets to access values. Normal C/C++ code would most likely contain a pointer
to an array index then with the use of offset different values can be accessed. This
is not the case in HLS where pointers are allowed but arrays has to be statically
defined at compile time in some part of the code in order for the code to pass
synthesis.

3.2 Design and Verification Workflow

To evaluate the HLS effect on design and verification it’s important to have a
good overview of the work flow when designing in HLS and in VHDL. In this
chapter the design methodology used for this thesis is presented first and why it
was chosen. Then a version of a VHDL workflow is presented, as a starting point,
to be compared with the recommended HLS workflow. In the end of this chapter
the differences will be compared and the possible impact these might have will be
discussed.

3.2.1 Design

Hardware design-flow is usually done in one of two ways, using a top-down- or
bottom-up design methodology. The bottom-up methodology is used because it
was regarded as a preferable methodology when working with HLS design. In a
bottom-up methodology the system functionality is divided up in smaller blocks
which are designed separately first and then connected afterwards using a pre-
defined interface.

There are especially two advantages of this design methodology. First the bottom-
up methodology will allow the designer to evaluate the performance of each indi-
vidual block by itself, thus knowing its limitation before it’s implemented inside
the entire system, or top model. This will make it easier for the designer to know
what performance limitations that are existing before the top model implementa-
tion is done.

Secondly the saturation of Moore’s Law [10] causes higher frequencies to cost
more to achieve, which in turn is pushing the development towards more parallel,
or multi-core, computing. This would be better utilized by running the synthesis
of several design blocks in parallel instead of in one single core.

VHDL

The RTL workflow used in this thesis starts with a system description, overall and
for each individual part. Using the system description a RTL-design and a RTL-
testbench are designed using VHDL. The two designs are then used for behavioral
simulation to verify that the design is logically correct. If the design does not
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perform as expected the design has to be modified and the behavioral simulation
re-run until the design works correctly. If the design functions as expected in the
behavioral synthesis it goes through HDL-synthesis to generate a netlist. During
synthesis the design is tested for timing errors and latches [15]. Should these test
fail one has to redo the RTL-design once again. If the HDL-synthesis passes it
generates a functional netlist that can be used in Place and Route where the design
is mapped to a FPGA circuit. Should this fail one has to go back to the RTL-
design step, if it passes a bit-stream to program the hardware onto the FPGA can
be generated. An overview of the HDL workflow can be seen in figure 3.1.

System Description
‘P{ RTL-Design

Fail

RTL-Testbench

HDL-Synthesis

_____________ Netlist

RTL-Place & Route

7777777777777 Netlist Mapped to
Fabric

Place & Route Errors.

No

Generate Bitstream

Figure 3.1: Description of the HDL workflow used in this thesis.

Vivado HLS

Designing in HLS starts with the system description of the design which describes
the goal functionality. The system description is then used, together with existing
software libraries, to create a system design and testbench in C or C++. Running
the testbench as a main function the functionality of design is verified. Should
it not pass changes have to be made to the design, if it passes it can go through
HLS-synthesis. HLS-synthesis generates RT'L-code and provides an estimate of the
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hardware performance, timing and utilization. If the performance estimate are not
good enough, directives [8] can be applied to improve them and change the hard-
ware. In the worst case the C design has to be changed to improve the estimates.
Once the estimates are good enough C/RTL-Cosimulation is performed, which
verifies the RTL with the same testbench. Should the C/RTL-Cosimulation fail
the directives or C design has to be altered to solve it. Once C/RTL-Cosimulation
passes the design RTL can be exported to go through the flow of figure 3.1. The
difference here is that the functional verification of the RTL is automated and
done with a testbench written in C/C++. An overview of the HLS-workflow can
be seen in figure 3.2.

CiC++
Libraries

System Description

CICH ‘ CiCe= ‘

. Test
Design Bench

Passing
Tests
2

Yes

HLS-Synthesis
************ RTL-Code

Meetin
Requirements

g
3
Yes

C/RTL-
Cosimulation
____________ Behavioral Tested
RTL-Code
RTL Passed
Test
Yes

[ HDL-Synthesis J"‘[ Netlist J

Figure 3.2: Description of the HLS workflow used in this thesis.

Apply
Directives
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3.2.2 \Verification

In this section of the report the verification process used throughout this thesis is
presented. Verification could differ between different industries and even between
different projects therefore the verification method, specification and process used
are presented in this section. This should give some understanding of how verifica-
tion could be performed and aims to improve the understanding of the verification
results and analysis.

Verification is an integral part of hardware design. Before hardware can be sent
into production or to be put in commercial use comprehensive testing has to be
done in order to ensure design functionality and rated performance. The verifica-
tion process is designed to emulate, even if limited, the process used in modern
industry. It has to be noted that due to the time limiting factor of this thesis
more advanced verification methods, which is a industry standard, for testing in-
tegrated circuits such as UVM [13] could not be used to test verification with HLS.

The metric used for evaluating verification is the simulation time for designs. These
times will give a quantitative measurement on the time reduction when simulating
functionality on a higher abstraction level in C/C++ versus RTL-simulation. This
will be done by simulating for both smaller design on an IP-level as well as on a
larger system level. The goal is to describe the verification processes and measure
time differences to show how verification could change, for better or worse, with
HLS.

To analyse the verification performance of HLS the main focus is the verifica-
tion time i.e. how fast can the circuit be simulated and the logic functionality
verified compared to traditional hardware design verification in HDL. This is of
high relevance to industrial companies since larger hardware designs often contains
large quantities of logic thus use up large areas on FPGA fabric and takes longer
time to simulate.

Verification Flow

Verification for the traditional hardware design languages, VHDL or Verilog, are
usually done on three levels which are listed below and shown in figure 3.3.

1. Component Level where each component or block is tested individually.

2. Verify System Level functionality with a mathematical model emulating the
desired functionality of the implemented RTL design.

3. Advanced software from Xilinx, or similar vendors, which is used to toggle
all switches and explore all branches in the given design.



Workflow and Xilinx Vivado HLS 19

Testbench Testbench

Multiplier Multiplier

Component level System level System level

Multiplier

Figure 3.3: Verification levels

The verification in HLS is conducted with the same methodology as described in
figure 3.3. The difference is that the testbench and design are written in C/C++.
The top of figure 3.1 and 3.2 shows the behavioral verification, on each verification
level, it is done in C/C++ for HLS and VHDL for the HDL design.

Verification Specification

The low level component verification is done using small test benches in VHDL
for each component. These test benches uses static inputs to verify the basic func-
tionality that is correct outputs for given inputs, latency of the circuit matches
expectation and that enable-, reset- and valid signals behave as expected with
correct timings.

Design in HLS will not use this verification step in the same way. In HLS de-
sign the code will be verified on a module level where each sub component input
and output could be compared but this will not include any timing- or control
signal verification since it’s expected that the tool handles that when the code is
synthesised. The timing- and control signal are mostly automated, or abstracted
away, giving only limited customization options, mainly through directives.

The top design verification is done using both functional verification, for design
specific cases, as well as constrained input testing, for regions more commonly
used for frequency translators. The functionality tested for are:

e Fixed Operation Testing - where the component is feed with static inputs,
either fixed or zero, to verify its behaviour for the edge cases.

e Functional Testing - Verifying the function of the component by feeding it
a set of known inputs, and comparing it with a set of known outputs. This
should be done for different variations of inputs to cover as many cases as
possible.

e Hardware Functionality - Verify behavior at edge cases which causes over-
flow. As well as verification of hardware rounding due to the limited number
of bits in the data-path.
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e Random Vector Testing - Generate random inputs and run through a work-
ing software model. Use the same inputs and the generated outputs to verify
the functionality of the hardware.

Verification Method

To do verification a model of the system has been implemented in python to-
gether with code for generating system inputs- and outputs then saving them to
a file. The python model also contains a main part that is used to define various
test cases which are used to verify the functionality of different parts of the system.

The RTL verification for the VHDL-design will be done using a VHDL test-bench
reading an input file then computing the output using the RTL-logic then writ-
ing the logic-output to an output file. The output file will be compared with
the one that was generated using the python script, see appendix ?7?|, for all the
implemented designs, including HLS. Doing the HLS verification the same input-
and output files, from the script, will be used to verify but the test-bench used is
designed in C++. Because Xilinx HLLS RTL co-simulation verifies the generated
RTL-logic with the same stimuli that is used for the C-verification earlier in the
HLS work flow, figure 3.2, the input- and output files can be used to verify both
C functionality as well as HLS generated RTL.



Chapter 4

Case studies

In order for Vivado HLS to be evaluated it has to be used for designing hardware.
This section describes the hardware design used throughout this thesis and explains
why they were chosen. This chapter is also presenting the specification of the
hardware that is to be used to have common design goals for each of the abstraction
levels that are tested.

4.1 Modules

In this section the different modules and hierarchies used throughout this thesis
are presented. The design is divided according to section 2.3.1 to divide the func-
tionality into separate modules in order to ease the design process. The modules
where chosen because they contains complex arithmetic operations in order to
test the tool. They also uses all the main resources of an FPGA, DSP’s, BRAM’s
which allows analysis of utilization choices. The two models can also be chained
together in order to create a large design.

4.1.1 Frequency Translator Module

The frequency shift module is used to modify an input frequency by shifting it up
or down. Frequency translators are commonly used in communication applications
to shift signals to other frequency bands. Its basic functionality can be described
with a block-diagram, see figure 4.1.

Q
~
h 4 h 4
' ™
» »
Sin/Cos Generator Complex Multiplier
R Q
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Figure 4.1: Block-Diagram for an overview of the frequency trans-
lator.
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The sine and cosine generator uses one LUT for cos angles and one for sin
angles respectively. To clarify the LUTs and their outputs will be referenced to
as SROM, for the sine values, and CROM, for the cosine values, in the upcoming
sections.

Accumulator

The accumulator and the cosine and sine generator together works as a digital
oscillator. It will rotate its phase with a static step size (see figure 4.2) depending
on the phase resolution in the sine- and cosine generator ROMs address-space.
Throughout this thesis they have been separated to ease the analysis of each
hardware implementation.

Figure 4.2: Schematic picture of the accumulators function.

The phase step size can not be smaller than the highest possible phase resolu-
tion, which will be the same as an accumulation of one, and has to be a multiple
of the resolution in the SROM and CROM. The frequency generated by the accu-
mulator can be described with equation 4.1

Jeik - N
faccum = W

(4.1)
where fyccum is generated frequency, fei is the on chip clock frequency, pwl is the
number of bits used for the address space in the SROM and CROM respectively
and awl is the accumulator word-length. IV is the integer step size with which the
accumulator is increasing. The SROM and CROM size has to be multiplied with
20wl=pwl i equation 4.1 because the memory represents one of eight segments for
an entire 27 rotation and the bits which are not used to address the memories are
used in the truth table 4.1. The circuit itself is a simple accumulator circuit which
can be seen in figure 4.3.
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FPhase Phase
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Figure 4.3: Description of the accumulator circuit used for calculat-
ing the next phase value.

Sine and Cosine Generation

The sine and cosine values are generated using a ROM, where function values
of cosine and sine between zero and forty-five degrees are stored then modified
according to table 4.1 to represent a full rotation. The whole sine and cosine
generator can be seen in figure4.4. The 13-bit input phase will be split up so that
the three MSB’s will be used to determine what segment the angle is in, see table
4.1, and the lower 10-bits will be addressing the space according to table 4.1. The
outputs from the SROM and CROM is then used to determine the sine and cosine
value from the input phase, see table 4.1.

Segment \ si

20 | SROM v "
Phase - 2]
[9:0] o -

1201 Address Calculat SROM s t Calculat g
ress Calculator CROM N egmen dlculatar N

Address CROM — Cos

[9:0] [9:0] ) [12:0]

Figure 4.4: Block-Diagram overview of the cos-/sin Generator

Segment Address | ROM Address COS SIN
0 k CROM | SROM
1 ko —k SROM | CROM
2 k -SROM | CROM
3 ko — k -CROM | SROM
4 k CROM | -SROM
5 ko — k -SROM | -CROM
6 k SROM | -CROM
7 ko — k CROM | -SROM

Table 4.1: Truth table for address and value representation depend-
ing on the segment address.
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The cosine and sine generator together with the accumulator is often refereed
to as an Numerically-Controlled oscillator or NCO. In this report the accumulator
and trigonometric calculations are separated into different components to make it
easier to analyse the different parts of the frequency translator.

Complex Multiplication

The complex multiplication is used to mix the I and Q values from the sine and
cosine generator with a fixed complex number z; = @;+jI;. The complex multipli-
cation uses the three multiplication algorithm [11], thus it needs three DSP-blocks
on the FPGA-fabric to be represented. The complex multiplier is designed using
the Xilinx template in order to optimize the mapping to the FPGA-fabric, thus
giving the best possible benchmark to be compared with the HLS. The real and
imaginary calculations can be seen in equations 4.2 and 4.3.

1= ar(br + bl) — bi(ar + ai) (42)

Q = ar(br + bz) + br(ai - ar) (43)

There are other ways of doing complex multiplication in hardware but it requires
more multiplications and thus more DSP-units to keep the throughput to one.

4.1.2 Power Meter

The other module that were implemented is a power meter. A power meter cal-
culates the power of the I and Q signals.

The power is calculated by squaring I and QQ and adding them up according to
the formula 4.4, this gives the instantaneous power. The average power is then
calculated by shifting in the instantaneous power values into a shift register which
holds the eight previously calculated instantaneous power values. A rolling aver-
age is then calculated by summing up all of the eight entries and dividing them
by eight to get the average, the division is in this case a three step right bit-shift
since eight is a power of two.

A schematic picture of the module can be seen in figure 4.5.

PPeak = I2 + Q2 (44)
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Figure 4.5: Block-Diagram overview of the power meter

4.1.3 Top-Module

The top-module which ties the power meter together with the frequency trans-
lator is show in figure 4.6. The "Valid FREQ" indicates when valid data from
the frequency translator can be obtained at "I out" and "Q_out", whereas the
"Valid PWR" indicates when valid data from the power meter can be obtained
at "PWR_out".

Valid_FREQ

Valid_IN [@15]
(!P_‘I\nS Frequency
10:18] Translator
Q_in Q_out
[0:15] . » [0:15]

Step PWR_out
10:12] Power Meter — [0:15]
\ Valid_PWR

Figure 4.6: Block-Diagram overview of the top module

Note the top-model is used to describe an implementation that is connecting
the frequency translator and power meter together. The purpose of the top-model
design is to be used in the large system simulation experiment conducted to test
simulation- and synthesis times of HLS when using large systems.

4.1.4 Large System

The large system is implemented by connecting n modules from figure 4.6 in series
where I out and @ out from each model are connected to the next I in and
@ _in. The first I _in and @ _in as well as n inputs of step are used in the large
system as inputs. The I out and @ out from the last component as well as
n outputs of PWR_out are used as the large system outputs. This allows for
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separate reading of the signal power after each component. Figure 4.7 shows the
design that is to be used for testing larger simulations using Vivado HLS. The
Comp. Block are the module show in figure 4.6. The controller is supposed to set
all step sizes as well as the first real- and imaginary input and to read all power
calculations done in the design.

L —
Comp. Comp. Comp Comp
Elock 0 Block 1 Block n-2 Block n-1
e
Power_0 [Power_1 Power_n-2 Power_n-1
Step_0D Step_1 Step_n-2 Step_n-1
Q_out

Q_in

Controller

I_out

Figure 4.7: The large system design used to test long simulations.

The actual design done in HLS is the Comp. Block show in figure 4.7 connected
in series with n step inputs, n power outputs as well as the real- and imaginary
inputs and outputs. The controller-unit is a behavioral test bench designed in
C++.

4.2 General Design Specifications

All the design should keep consistent goals so that each of the designs can be
compared in a fair manner. This should make it so that the hardware keep ap-
proximately the same performance, if it is possible, and the difference will be
mainly hardware utilization and design aspects. The design have the following
hardware specification, see 4.2.

Clock Frequency 400 MHz
Throughput 1 cycles/output
Goal Latency Freq. Translator 6 cycles
Goal Latency Power Meter 1 cycle

Data-path Specification

16-bit | fixed point signed with 6 integer-, 10 decimal-bits

Overflow saturate
Rounding truncate
Address-path Specification
13-bit unsigned integer
Overflow wrap around
Rounding not needed

Table 4.2: Design specification
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The address width for the frequency translator is 13-bits to represent the phase
which was chosen so that the cosine and sine memories would have a 10-bit address
space which would match the memory modules on the Xilinx FPGA-fabric [3]. The
full 13-bits of the phase will not be used for memory addressing, it can be read
more about in this section 4.1.1.
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Chapter 5

Results

Throughout this chapter the results of the case studies are presented using graphs
and tables with brief descriptions of their content. The results will be divided
into four main parts first comparing HLS- and HDL-synthesis then the simula-
tion and synthesis times. The third section will cover the timing results from the
case studies and the forth section will cover the hardware utilization and how the
implementations mapped onto hardware. This chapter only aims to present the
result of the different measurements that were done in this thesis. The discussion
and analysis of the tool are presented in chapter 6. All designs were done target-
ing the FPGA circuit ZU27DR FPGA [7]. The results were generated by a RTL
simulator from Xilinx using the Vivado design environment and the libraries for
the ZU27DR FPGA.

The simulation-, synthesis- and place and route times are all measured in CPU
time. This was deemed to be a good way of comparing the different design mo-
ments against each other since elapsed time is not as repeatable and would depend
on what system the design is done on.

All the functional verification have been done using the same input and output
samples generated from a Python reference model. The input stimuli has been
randomly generated from normal distributions. The input frequency used was
generated from a normal distribution using normal value 4 = 5M Hz and stan-
dard deviation ¢ = 100K Hz. Where as the input step, generating the internal
frequency, for the frequency translator used a normal value p = 50 and standard
deviation o = 10 where, from equation 4.1, each step corresponds to an internal
frequency step of approximately 49K H .

When presenting the results there are differences between the VHDL design and
the HLS designs. The choice was made to not design RTL testbenches for the HLS
generated design but to use the C/RTL-Cosimulation provided by Xilinx Vivado
HLS to verify the behaviour of the generated RTL.
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5.1 HLS- versus HDL-Synthesis

It is important to emphasize on the difference between HLS- and HDL synthesis.
Where HLS-Synthesis is used to transform C or C++ to RTL-code and HDL-
Synthesis is used to transform RTL-code into a netlist which can be mapped onto
hardware. Vivado HLS provides estimates of hardware performance after HLS-
Synthesis. These estimates usually contains information if the design is going to
meet timing and the logic consumption of the circuit. In table 5.1 the estimates
of frequency translator and power meter implementations can be seen.

Bit-exact Ultra High Level
HLS-synthesis ‘ HDL-synthesis | HLS-synthesis ‘ HDL-synthesis
Frequency translator
Clock Period 2.5 ns 2.5 ns 2.5 ns 2.5 ns
Slack 0.311 ns 0.576 ns 0.311 ns 0.615 ns
LUT’s 661 128 746 188
FF’s 399 165 915 199
Power meter
Clock Period 2.5 ns 2.5 ns 2.5 ns 2.5 ns
Slack 0.211 ns 0.445 ns 0.148 ns 0.657 ns
LUT’s 420 179 437 234
FF’s 156 156 163 163
Table 5.1: Result-matrix of the comparison between the HLS-

synthesis and the HDL-synthesis.

The estimation are, and was throughout, underestimating the performance of
the hardware that the generated RTL was going to implement. In table 5.1 the
hardware estimates shows an overhead of 200% for some cases. This is mainly
due to HLS-Synthesis not making any hardware optimizations such as removing
signals bound to zero or, implementing division or multiplication with a power of
two with shifts.

HLS-Synthesis did also provide timing information which for the single component
implementations ensured that timing was going to be met after HDL-Synthesis as
well. This was not the case for the large system which passed HLS-Synthesis tim-
ings but not HDL-Synthesis which contained to long physical paths and limited
the large system design.

5.2 Synthesis- and Simulation Times

In this section the synthesis- and simulation times will be presented for each of the
case studies. The section will cover the performance for each case study and the
abstraction levels related to it. Each of the simulations are done with one million
input samples for each respective abstraction level and component.
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The C/RTL-Cosimulation times, presented in tables 5.2 and 5.3, shows the
CPU time measured from the C-testbench. The CPU time to run the actual
C/RTL-Cosimulation after it has synthesised is down to ms.

5.2.1 Frequency Translator - Synthesis- and Simulation Times

The C-simulation times for the frequency translator is approximately eleven times
faster for the bit-exact implementation, see table 5.2. This is mainly due to the
use of arbitrary precision datatype library used so that datatypes are synthesised
into fixed-point. The bit-exact C simulation is also faster than the behavioral
simulation.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

C simulation N/A 00:00:03 00:00:33

RTL CO-Simulation N/A 00:01:16 00:01:11
Behavioral RTL-simulation 00:00:25 N/A N/A

HLS-synthesis N/A 00:00:30 00:01:19

HDL-Synthesis 00:00:52 00:00:47 00:00:46

Place and route 00:01:27 00:02:30 00:02:43

Table 5.2: Result-matrix of the comparison between CPU time of the
simulation and build times of the frequency translator, format
hh:mm:ss.

5.2.2 Power Meter - Synthesis- and Simulation Times

The times presented in table 5.3 shows no noticeable differences in any of the
synthesis- and simulation times for the power meter. The power meter imple-
mentation shows a reduction between functional simulation using C compared to
behavioral simulation.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

C simulation N/A 00:00:10 00:00:12

RTL CO-simulation N/A 00:00:26 00:00:26
Behavioral RTL-simulation 00:00:23 N/A N/A

HLS-synthesis N/A 00:01:12 00:01:10

HDL-Synthesis 00:01:05 00:01:02 00:00:59

Place and route 00:01:12 00:01:49 00:01:40

Table 5.3: Result-matrix of the comparison between CPU time of
the simulation and build times of the power meter
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5.2.3 Large System - Synthesis- and Simulation Times

In table 5.4 the functional verification- and synthesis times of a large system is
presented. The goal of these measurements are to represent the verification- and
synthesis times that one could expect when designing a larger and more complex
system that utilizes more hardware where Number of devices indicates the number
of frequency translator and power meter pairs used.

The results for the HLS bit-exact C simulation (see table 5.4) time is taken from
simulations which were using C data types. That is double for floating point cal-
culations and int for the integer calculations. Should the same C-simulation be
done with the Vivado HLS libraries for fixed point and integer it would increase
the simulation time for the bit-exact model as for the ultra high level implementa-
tion. The ultra high level is forced to use the arbitrary precision libraries because
the Vivado HLS libraries for complex multiplication and cosine and sine generator
are using them. Thus the C-simulation times are higher for the ultra high level
design than the bit-exact. The difference between behavioral simulation for RTL
and C simulation (using native C data types) is grows larger as the design size
increases. This can be seen in table 5.4 which has seven minutes and seventeen
seconds compared to thirteen second difference in table 5.3.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

Number of devices 100 100 100
Number of inputs 1 000 000 1 000 000 1 000 000
C-Simulation N/A 00:00:20 00:20:01
HLS-synthesis N/A 00:09:24 00:13:30

Behavioral-RTL CO-simulation 00:07:37 N/A N/A
HDL-Synthesis 00:07:13 00:08:42 00:05:43
Place and route 00:15:35 00:15:20 00:06:48

Table 5.4: Result-matrix of the comparison between CPU time of
the simulation and build times of the big design

The HLS-synthesis time varied depending on which of the abstraction levels
used. This is shown in figure 5.1 where the HLS-synthesis time is plotted against
the number of components, or top-modules from section 4.1.3. The difference
between the bit exact implementations are that the control mone uses pipeline
directive in the top-function and singe data points as inputs and outputs and
directive for no interface logic. The bit-exact stream uses the dataflow directive
in the top-function with the Vivado library for streams as inputs and outputs and
handshake directive for interface logic.
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Figure 5.1: Plot of how the HLS-Synthesis time changes with the

number of components.

5.3 Timing Results

The following section will present the timing results achieved for each of the case
studies. The timing goals for the hardware can be found in table 4.2.

5.3.1 Frequency Translator

The frequency translator met the timing goals for the lower abstraction level,
namely the VHDL and bit-exact implementations, see table 5.5. The ultra high
level implementation did not meet the timing goals where a latency of ten clock
cycles was achieved. The increase in latency was due to algorithmic differences in

the cosine and sine calculations.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

Frequency [MHz] 400 400 400
Slack [ns] 0.340 0.576 0.615
Latency (CCY’s) 6 6 10

Table 5.5: Result-matrix of the timing results for the frequency

translator.

5.3.2 Power Meter

The power meter met the timing goals that were stated, see table 5.6. The bit-
exact design had the smallest margin to meet the timing requirement of 400MHz.
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VHDL RTL HLS Bit-Exact HLS Ultra High Level

Frequency [MHz] 400 400 400
Slack [ns] 0.601 0.445 0.657
Latency (CCY’s) 1 1 1

Table 5.6: Result-matrix of the timing results for the power meter.

5.3.3 Large System

The timing results from the large system can be seen in table 5.7 and 5.4. All
designs meet the timing after place and route. The VHDL margin remained with
a higher number of components where the HLS implementation failed timing.
Resulting in a upper limit of 100 components for the large system after which
timing would no longer pass for the HLS implementations.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

Frequency [MHz] 400 400 400
Slack [ns] 0.054 0.02 0.138
Latency (CCY’s) 500 899 507

Table 5.7: Result-matrix of the timing results for the large system.

The latency of the VHDL- and ultra high level implementation where less
than expected, see table 5.7. This is assumed to be because of the tool manage to
optimize the design, since it is a chain of the same functionality.

5.4 Hardware Mapping and Area Consumption

In this section of the results the utilization of the FPGA fabric and the how the
different abstraction levels mapped onto hardware will be presented. All of area
usage is presented with the post-synthesis results to make a cross comparison
between all implementations. The HDL-synthesis results are also all run with -
mode out_of _context settings to ignore mapping to the FPGA I/0 as they are
not used in the case studies. Each sub-section will cover the area utilization and
hardware mapping for each case study and its respective abstraction level. The
results will be structured by case study, first the frequency translator results will
be presented then the power meter and last the large system design results.

5.4.1 Frequency Translator - Hardware Mapping and Area Consumption

The hardware utilization of the designs are increasing as the abstraction level is
increased but the overhead for the bit-exact design is not as large as for the ultra
high level. The bit-exact implementation functions in a very similar way as the
VHDL implementation thus the smaller overhead, which is mainly due to differ-
ences in control signals and implementation of quantization logic after the complex
multiplication. The number of components used in the frequency translator as a
whole can be seen in table 5.8.
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Looking at table 5.8 the ultra high level implementation has more overhead than
both the VHDL- and bit-exact implementation. Compared to the VHDL model
the overhead is 71% for the LUT’s, 75% for the FF’s, three more DSP’s and half
of the BRAM’s. In table 5.11 the number of LUT’s are 36 more and the number
of FF’s are twelve less. While using three DSP compared to none for the VHDL
model and only one BRAM not two. The increase in DSP units are most likely due
to the trigonometric calculations being done with a version of Taylor expansion
using a Xilinx library function instead of a LUT. The reason to the reduction in
number of FF’s are due to the fact that HLS-synthesis did not divide the cosine
and sine generator into a clearly defined sub module and most likely some of the
leaf cell FF’s in table 5.11 belongs to the cosine and sine generator module.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

LUT’s 110 128 188

FF’s 114 165 199
DSP48’s 3 3 6
BRAM’s 2 2 1

Table 5.8: Result-matrix of the Number of components used for the
different abstraction levels of the frequency translator.

VHDL Implementation of Frequency Translator - Area Consumption and Hard-
ware Mapping

The VHDL implementation functionality mapping can be seen in figure 5.2. It is
implemented according to the reference figure and aims to use as few components
as possible. The step input of the frequency translator is connected directly to the
accumulator then feedback through a set of registers.

accumulator

-]
CS_reg[12:0] J
— 13 FF's
5 c
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Ps[12:0] 1112:0] (E/\_ouz o S:”‘: :Tiis gi |\ 0[12:0)
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st | <T RTL_MUX
vin | | ‘

accum

Figure 5.2: RTL Analysis of the VHDL Accumulator implementa-
tion.

The VHDL model implementation of the cosine and sine generator can be
seen in figure 5.3, which is an hardware implementation much like the goal design
shown in figure 4.4.
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Figure 5.3: Functional RTL Analysis of the VHDL model for Cosine
& Sine Calculations.

The complex multiplication was done using three DSP-slices structured so
that the common factor was calculated in one DSP (see figure 5.4) and the two
unique factors was calculated (see figure 5.5 and 5.6) separately in one DPS each.
The structure of the three DSP-slices can be seen in figure 5.7. The VHDL model
implements the same equation as described in the case study chapter, see equation
4.2 and 4.3.
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Figure 5.4: Functional RTL-Analysis of the common factor calcula-
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Figure 5.5: Functional RTL-Analysis of the complex multiplication
for the imaginary output.
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Figure 5.7: Three DSP48-Slice implementation representing the ar-
chitecture used for all implementations.

A more detailed description of the logic components distribution used for the
VHDL implementation of the frequency translator can be seen in table 5.9 and
figure 5.8. The majority of the logic LUT’s are used in the cosine and sine gen-
erator and all the BRAM’s. The majority of the registers are placed within the
complex multiplication as it is needs three clock cycles, while the accumulator and
cosine and sine generator needs one and two cycles respectively. Leaf cells, in
table 5.9, refers to logic that is not used in any sub-module of the system.

Accumulator Cosine and Sine Calc. Complex Multiplier Leaf Cells
LUT’s 20 69 16

5

FF’s 13 39 48 14
DSP 0 0 3 0
BRAM 0 2 0 0
CARRYS 2 0 0 0
SRL 0 0 0 0

Table 5.9: Detailed result-matrix for the VHDL Frequency translator
showing the number of components.

In figure 5.8 the utilization of the VHDL implementation is displayed as a
bar chart to visualize how the logic is distributed.
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Figure 5.8: Bar chart showing the number of components for the
VHDL implementation of the frequency translator.

Bit-Exact Implementation of Frequency Translator - Area Consumption and
Hardware Mapping

The bit exact model implemented the accumulator in the expected way as the
VHDL model. It uses 13 registers, 13 look-up tables and two carry8 units, see
table 5.10, and functions as figure 5.9.
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=
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Figure 5.9: RTL Analysis of the BE Accumulator implementation.

The cosine and sine generator for the bit-exact implementation is much harder
to analyse and to display any functional results from the algorithms. Exactly which
function that maps to hardware is hard to determine. Because the HLS modules
are cluttered with logic AND-gates and multiplexers they become hard to inter-
pret. One can assume that the hardware has much in common with the VHDL
implementation because the area consumption are much alike, see table 5.9 and
5.10. The complex multiplication is done in the same way for the bit-exact
implementation as it was in the VHDL implementation, see figure 5.7.

In table 5.10 a more detailed distribution of the bit-exact frequency translator
implementations utilization of the FPGA-fabric is presented. This can be com-
pared to the number of components used in table 5.8. Leaf cells, in table 5.10, are
harder to map, but the increase in leaf cells compared to the VHDL implementa-
tion (see table 5.9) comes from an increase in logic for control- and quantization
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logic. The increase in FF’s in the complex multiplier is due to less registers being
absorbed into the DSP slices. This is assumed to be because circuits timing which
are less relaxed because of the control signals in the bit-exact model require the
registers to stay outside the DSP48-slice.

Accumulator Cos and Sin Calc. Complex Multiplier Leaf Cells

LUT’s 13 86 1 38
FF’s 13 46 64 42
DSP 0 0 3 0

BRAM 0 2 0 0
CARRYS 2 0 0 0
SRL 0 0 0 0

Table 5.10: Detailed result-matrix for the bit-exact Frequency trans-
lator showing the number of components.

In figure 5.10 the utilization of the bit-exact implementation is displayed as
a bar chart to visualize how the logic is distributed.
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Figure 5.10: Bar chart showing the number of components for the
bit-exact implementation of the frequency translator.
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Ultra High Level Implementation of Frequency Translator - Area
Consumption and Hardware Mapping

The ultra high level implementation of the accumulator is implemented in the
same way as the VHDL- and bit-exact implementation. The only difference is the
registers used at the bottom left in figure 5.11 which are used as input registers.
This is assumed to be the reason the accumulator uses twice the number of
LUT-, FF- and CARRYS units, see table 5.11. The extra registers are assumed
to be added from the library function used for cosine and sine calculation which
includes the accumulator.

B el

_phflence W 1 fu 315 p2i

26 LUT's

4Carrys's

L

13FF's
EILRIC

Figure 5.11: RTL Analysis of the Ultra High Level Accumulator
implementation.

The cosine and sine generator was implemented using a CORDIC-like iterative
algorithm. The exact hardware mapping is not included because it is too large to
include in the report in a good way. The complex multiplication is done in the
same way as was done in the VHDL implementation and the bit-exact implemen-
tation, see figure 5.7.

The ultra high level implementation of the frequency translator used the most
logic of the the frequency translator implementations, see table 5.8. The more de-
tailed logic distribution of the ultra high level (see table 5.11) shows that much of
the increase in LUT’s comes from the differences the cosine and sine calculations.
The increase in FF’s is mainly due to the longer latency of the circuit (see table
5.5) requiring more registers to keep it pipelined.

Accumulator Cos and Sin Calc. Complex Multiplier Leaf Cells

LUT’s 26 105 0 46
FF’s 26 27 0 146
DSP 0 3 3 0

BRAM 0 1 0 0
CARRYS8 4 0 0 0
SRL 0 16 0 17

Table 5.11: Detailed Result-matrix for the ultra high level frequency
translator showing the number of components.
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The extra number of DSP48-slices (see table 5.11) are due to the difference in
how cosine and sine are calculated when using the Vivado HLS library. These
results were obtained using a 13-bit wordlength for the address and a 10-bit
wordlength for the phase resolution.

Figure 5.12 visualise the area consumption of the ultra high level design.
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Figure 5.12: Bar chart showing the number of components for the
ultra high level implementation of the frequency translator.

5.4.2 Power Meter - Area Consumption and Hardware Mapping

In table 5.12 the number of components used by each abstraction level implemen-
tation the power meter is presented. The most efficient implementation in terms
of area is the VHDL implementation, followed by the bit-exact and the ultra high
level has the least efficient implementation.

VHDL RTL HLS Bit-Exact HLS Ultra High Level

LUT’s 115 179 234

FF’s 113 156 163
DSP48’s 2 2 2
BRAM'’s 0 0 0

Table 5.12: Result-matrix of the area consumption of the power
meter for all three abstraction levels.

Figure 5.13 shows the multiplier block used in both HLS designs, see figure A.2
and A.3 for where the blocks are used. This block consists as seen of a multiplier
and register which are both absorbed into a DSP48.
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Figure 5.13: The common multiplier block used in both HLS designs

VHDL - Power Meter Area Consumption and Hardware Mapping

Here table 5.13, 5.14 and 5.15 reports the number of components used for the
power meter post-synthesis for the VHDL, bit-exact and ultra high level design
respectively. The schematics for the VHDL implementation of the power meter
design can be seen in Appendix A, see figure A.1.

Sum Squarefadd shift-register Adder tree Control logic Leaf Cells

LUT’s | 115 16 0 67 32 0
FF’s | 113 0 112 0 1 0
DSP 2 2 0 0 0 0

BRAM 0 0 0 0 0 0
CARRYS 9 0 0 9 0 0

Table 5.13: Detailed result-matrix for the VHDL power meter show-
ing the number of components.
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Figure 5.14: Bar chart showing the number of components for the
VHDL implementation of the Power meter.
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In table 5.13 and figure 5.14 one can see the number of components used for
the power meter and in figure A.1 the corresponding schematic.

The two registers seen in figure A.1 after the multiplications which squares I and
Q are absorbed into the DSP48, which also is the case for the following addition
which is done in the DSP48 where Q is being squared. The overflow detection
which is the equal block also done within the DSP48. One can also see in figure
A.1 that the final division with the number of 8 entries in the shift-register is done
with a 3 step right-shift which equals a division of 8.

To summarize the schematic seen in figure A.1, the control logic consists of a
register delaying the "valid" signal one clock cycle for it to be in synchronization
with the "powerout" and it also controls a LUT at the input which switches the
inputs of I and Q to naught if they are not valid. The data path of I and Q then
continues from the LUT to a DSP48 respectively to be squared, from their DSP’s
they are added and checked for overflow by checking if the most significant bits
are equal to zero. The result of the most significant bits controls a LUT which
saturates if overflow has occurred. The sum is then passed from the LUT to reg-
ister "cshiftreg reg[0]" and to the last addition where its added with the sum of
the entries in shift register. The shift register consists of seven serialized registers
which are starting from "cshiftreg reg|0]" which output is coupled to an adder
and the input of the next register "cshiftreg reg[1]", the result of the adder goes
to the next adder to be added with the output of the next register and so on.

Bit-Exact - Power Meter Area Consumption

A detailed distribution of the logic used for the bit-exact implementation can be
seen in table 5.14. It can be seen that the utilization of the bit-exact design in
table 5.14 and figure 5.15 is higher, the leaf cells here are also assumed to be used
for control, quantization and saturation logic. It can be seen in the corresponding
schematic A.2 that it has logic for detecting and control of overflow after every
addition and also control logic for enabling registers and data paths, additional
registers can also be seen.

For a summation of the schematic for the bit-exact in figure A.2, the control
logic consists of a "ap _start" signal which starts the system by enabling registers.
The control signal also features some latching capabilities. The bit-exact hardware
mapping can be found in appendix A, see figure A.2.

Sum Squarefadd shift-register Adder tree Control logic Leaf Cells

LUT’s | 179 81 0 93 5 67
FF’s | 156 0 105 49 2 0
DSP 2 2 0 0 0 0

BRAM 0 0 0 0 0 0
CARRYS8 | 19 6 0 13 0 10

Table 5.14: Detailed result-matrix for the Bit-exact HLS power me-

ter showing the number of components.
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Figure 5.15: Bar chart showing the number of components for the
Bit-exact HLS implementation of the Power meter.

The data path begins with I and Q getting squared the most significant bits
are then checked for overflow by a series of XOR-, AND- and OR-gates which is
implemented by a look up table which controls a multiplexer to saturate if overflow.
The I and Q are then both added together and added one by one last at the adder
tree. The shift register consists of serialized registers whose outputs are grouped
ad summed up and checked for overflow by letting the most significant bit control
a multiplexer which can saturate if overflow.

Ultra High Level - Power Meter Area Consumption and Hardware Mapping

The number of components used for the ultra high level design listed in table
5.15, which shows a more detailed distribution of the used logic, and figure 5.16
has even higher utilization due to higher bit-width to some additions, compare its
corresponding schematic A.3 to the schematic of the bit-exact A.2. The hardware
mapping of the ultra high level power meter implementation can be found in
appendix A, see figure A.3.

Sum Squarefadd shift-register Adder tree Control logic Leaf Cells
LUT’s | 234 66 0 162 6 137
FF’s | 163 0 112 49 2 0
DSP 2 2 0 0 0 0
BRAM 0 0 0 0 0 0
CARRYS8 | 25 4 0 21 0 18

Table 5.15: Detailed result-matrix for the ultra high level HLS power
meter showing the number of components.
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Figure 5.16: Bar chart showing the number of components for the
ultra high level HLS implementation of the Power meter.

The control logic of the ultra high level design are almost the same as the bit
exact with the only difference that the ultra high level has one additional LUT,
see schematic in figure A.3. The beginning of I and Q data path are also the same
until after they are added together and added last to the adder tree. The shift
register for the ultra high level also consists of the same configuration of serialized
registers, the difference here is that the bit width for the first additions in the
adder tree are one bit more.

5.4.3 Large System Area Consumption

The large system were limited by the HLS implementations where neither of
the abstraction level managed to meet the timing when using more components.
The implementation of the large system synthesis reveled that the quantization
method used can have a large impact on the HLS-synthesis result. Running HLS-
synthesis using 100 components (see figure 4.7) yielded in a big difference depend-
ing on which quantization method used. Changing from saturation to wrap around
brought down the utilization of LUT’s from 89% to 32%. This is because wrap
around is the simplest way of handling overflow and uses no extra logic. To imple-
ment saturation for arithmetic operation, depending on the datapath specification,
requires significantly more logic to check for different types of overflow. This scales
out of hand as the design grows larger and shows the importance of knowing how
these things are implemented in hardware and how using as simple representation
as possible reduces the logic utilization.
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In table 5.16 the utilization of the large system is presented. The bit-exact
implementation has the worst result in terms of area where the overhead for the
bit-exact is 28% compared to the VHDL implementation. This is assumed to be
because of both the original overhead from the single component as well as the
control- and interface logic which took the most time of the HLS-synthesis for the
large design.

VHDL Bit-Exact Ultra High Level

LUT’s | 25104 32153 19605
FF’s | 25100 37205 19355
DSP 500 500 600

BRAM 200 200 102

Table 5.16: Detailed result-matrix for the large system showing the
number of components.

It is worth noting that the ultra high level design actually has the least area
consumption for the large system, see table 5.16. This is most likely arose from
the HLS tool being able to optimize the chain in the large system in a way that
was not done in the other implementations.



Chapter 6

Analysis

This chapter aims to represent the four main points of investigation for this thesis
and present them accordingly. This is done by analysing and discussing the re-
sults from the case studies in more detail. This chapter will be divided into four
sections of analysis, synthesis- and simulation time, hardware utilization, timing
and workflow.

6.1 Simulation- and Synthesis Times

The HLS-synthesis process is important as it is used to generate RTL code from the
C source code. There are mainly two things that affect the synthesis and simulation
times, C/C++ syntax and libraries. The syntax affects what hardware that is
generated as well as its performance but can also have an impact on synthesis-
and simulation times. The usage of libraries affects the HLS-synthesis results and
time in different ways depending on how they are used. In this section the synthesis
and simulation times are analyzed discussed as well as the performance estimates
and the readability of the generated RTL.

6.1.1 Syntax Effect on Synthesis

The syntax of the C/C++ code can have an impact on how the source code is
synthesised into RTL. False dependencies causes the tool to reduce timing per-
formance and latency by implementing dependencies in hardware that was not
intended.

6.1.2 Libraries and Their Affect on Synthesis- and Simulation Times

The libraries used provided by Vivado can affect the synthesis and simulations in
different ways. Often they affect the synthesis, times and results, in a positive way
and the C run times in a negative way depending on the case. In this section the
library effect on simulation and synthesis are analysed.

Arbitrary Precision Data Types Pros and Cons

Using Vivado HLS-libraries can be beneficial by forcing the tool to synthesise in
certain ways. The library for arbitrary precision data types allows the designer
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to specify the number of bits that should be used after synthesis [8]. Which is
crucial for designers because using more bits than required can have large effects
on design performance and area.

An unwanted effect is that the C-simulations becomes slower. Thus affecting
the faster iteration times for functional verification in a negative way. Using na-
tive C data-types do decrease the simulation times of larger systems, see
table 5.4, when comparing behavioural RTL simulation to C-simulation. Keeping
native data types throughout the iterative design process, only verifying the code
with arbitrary precision types, would keep the fast iteration times promoted by
HLS advocates.

Streaming Interface to Reduce HLS-Synthesis Time

Vivado HLS provide a library for streaming- inputs and outputs. As for the case
of the arbitrary precision library this provides good effect on how the code is syn-
thesised into RTL. It adds input and output registers as well as easier interactions
with the interface directives which allows for integration in larger system using
the standard interfaces provided by Vivado HLS. Using the streaming interface
together with the dataflow directive [8] improves the HLS-synthesis times (see fig-
ure 5.1) compared to using single data point references as function attributes. As
the dataflow is used for task level parallelism it performs much better when used in
top-functions compared to the pipeline directive which works best for components,
or sub-functions.

The stream library has had one drawback that stands out during C-testbench
simulation during C/RTL-Cosimulation. When simulating with a larger number
of inputs, such as the one million used for the case study simulation, holding all
inputs in the stream causes the tool to simulate slower. While holding only ten
thousand inputs in the stream sped up the simulation by a considerable amount.
These result were never measured in CPU time. In elapsed time, however, simu-
lating ten thousand inputs using a stream holding a million input variables took
approximately ten minutes. While altering the test bench to alternate between
reading and simulating ten thousand at the time reduced the elapsed time down
to seconds. This problem could possibly be solved by allocating more memory to
the simulation.

6.1.3 Use Cases for Directives

Using loops that uses the loop index to access parts of an array. These could syn-
thesize with dependencies so that what ever operation that is done on the current
index has to be done before the next iteration can start, thus preventing pipeline-
ing on operations done on the same array. In this case the dependencies can be
removed in synthesis with the use of the directive dependence which would cause
the tool to remove dependencies either between loop iterations with inter or inside
loop iterations intra.
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Digital Signal Processing (DSP) applications often use the same hierarchy as de-
scribed in section 2.3.1. In the large system design for this thesis it was noted that
using the dataflow directive for the top-module to implement task level
parallelism, and input- and output streams, resulted in a better synthesis result
both in terms of hardware utilization and HLS-synthesis time than the pipeline
directive did. Using the pipeline directive on the top-module with single data
points as I/O increased the number of LUT’s in the design significantly. It also
caused the HLS-synthesis times to rise significantly as the design grew larger, see
figure 5.1.

6.1.4 HLS-Synthesis Estimations

When using the Vivado HLS tool for hardware design C/C---code is synthesised
into RTL-code, either VHDL or Verilog. It is important to note that there is a
difference between HLS synthesis, from C/C++ to RTL, and RTL synthesis, RTL
to netlist. Vivado HLS provides a performance estimate during HLS-Synthesis.
This estimate predicts initial timing and utilization numbers. The timing estimates
have been accurate, i.e. if a HLS-synthesised design meets the timing requirements
it does so in RTL-Synthesis as well. The accuracy of the utilization estimates are
not as good. It has for the duration of the thesis work always reported too high
estimates. This is assumed to be of design where the tool gives a pessimistic view
which then is improved during RTL-synthesis. But the overhead on the could be
large, more than 200% on the look up tables and the flip flops, see table 5.4.

6.1.5 Readability of Generated RTL

The Readability of the generated RTL during HLS-Synthesis is subjective but
also an important part of the workflow and should therefore be considered during
the analysis. The section about readability is based on the authors opinion and
experience and should not be considered as scientific quantifiable result. In the
ideal case one should not have to modify the generated RTL and in many cases
it probably wont be necessary. In specific cases however changing a certain signal
inside the RTL might be needed and thus the readability comes in to play.

The RTL generated by Vivado HLS could in a crude way be divided into two
type of files, top- and functional-files. The functional-files are for example the
files where the complex multiplication or, for the bit exact case, the trigonometric
memories are defined. These are quite easy to read and one could understand the
logic and follow the functionality without to much effort. The top-files, are con-
necting functionality-files and eventual control-logic, could be quite bloated. They
usually contain a lot of signals with names that are hard to interpret and logic
could be hard to follow. If one do not have a clear view of what a signal is meant
for it could be really hard to understand it without a schematic drawing of the
signals. An rule of thumb for designing in HLS is to give all functions and variables
as unique names as possible. Doing so can make the analysis result provided by
Vivado HLS and the RTL more readable.
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Synthesis of Design Hierarchy

In complex systems the top-function do in many cases consist of sub-functions.
By default Vivado HLS tries to reuse hardware for different operations meaning
that if the same sub-function is called twice in one top-function it will try to use
the same hardware for both calls. Depending on the timing requirements of the
circuit this could be beneficial but in some cases it is not.

6.2 Area Consumption and Hardware Mapping

This section of the report the hardware utilized on the FPGA board analysed and
discussed. It will cover the algorithmic mapping from the different parts of the de-
signs done in the case study as well as how the control-, quantization and rounding
logic generated automatically by the tool affects the on board utilization. It will
also cover how directives change the synthesis process by applying, or removing,
different hardware optimizations as well as how syntax can be modified to improve
utilization.

6.2.1 Algorithmic Mapping on to Hardware

In this section the hardware mapping of the different components in the case
study will be analysed. In general functional implementation the bit-exact and
the VHDL implementations are much alike. The ultra high level implementation
differs mainly because the library solution source code used do not implement the
same algorithm.

Complex Multiplier Mapping

The complex multiplication is implemented using the same DSP-structure
in all three of the abstraction levels, see figure 5.7. The difference is how
the complex multiplications were implemented where the bit-exact model was im-
plemented using equations 4.2 and 4.3 and the ultra high level using an library
implementation. The library implementation uses arbitrary precision data types
which have been affecting the C simulation times in a negative way, thus the bit-
exact implementation is recommended so that functional verification can be done
using native C data types. In the schematic the only noticeable difference is that
the bit exact HLS model has a single LUT implemented for the common term
in the three multiplication algorithm, see equation 4.2 and 4.3, connected to the
control signals for empty input and output streams.

Between the bit exact model and the RTL model there is a quite large differ-
ence in in the number of FF:s required in the system. One set of registers where
not absorbed into the DSP unit in the bit-exact when comparing to the VHDL
implementation. This is assumed to be because of the control signals constraining
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the timing so that the registers had to be used outside the DSP units. Four regis-
ters arises from the control signals for the input- and output FIFO control signals.
The ultra high level frequency translator uses more registers than the other which
arises from a longer latency from a fully pipelined circuit.

Cosine and Sine Generator Mapping

The bit exact model does not map and separate the 13-bit input address in the
same way as it was done in the VHDL design. In the VHDL model the three most
significant bits are used to determine which of the eight segments that the current
output phase should be in. In VHDL this can be done by selecting specific bits
with the downto-statment. When trying to mimic that functionality in C++ the
bit wise operator € was used with the decimal values so that the upper tree bits
always were zero for the address and the lower ten bits always were zero for the
segment. This did not carry out in logic similar to the VHDL model where the
segment is delayed and then used in a MUX to select the correct output. Instead
all 13-bits of the input address is forwarded in parallel with the 10-bits used when
addressing the BRAM. The forwarding of these bits will use more registers in the
final design than if it only would use the three bits as in the VHDL design. These
bits do get optimized away after HDL-synthesis as they are always zero. But this
is one of the reasons that the overhead in table 5.1 is less after HDL-synthesis
compared to HLS-synthesis.

Analysing the generated RTL from the bit-exact model the address input to the
cosine and sine generator are connected as selection bits to a MUX with inputs
that are either grounded or set bound to one. These bits are then connected to a
tree of and-gates together with the control logic. Exactly what this does is hard
to interpret. The cosine and sine generator is also synthesised as a top-model with
sub-blocks and therefore it has its own interface logic implemented with internal
control logic.

An interesting calculation done in the frequency translator is the sine and cosine
calculation and that is the main reason a frequency translator was implemented.
The trigonometric calculation done in the VHDL model, see figure 5.3, is the same
as the hardware goal design in section 4.1.1 after implementation. This imple-
mentation utilizes the hardware on the FPGA fabric by mapping cosine and sine
segments to one BRAM respectively. The bit-exact model which aims to recre-
ate the hardware of the design specification using HLS utilizes almost the same
amount of hardware as the VHDL model with 16% overhead on FF’s and 45%
overhead on the LUT’s. The number of DSP’s and BRAM’s are the same for the
two models, see table 5.8. Looking at the more detailed tables 5.9 and 5.10 the
cosine and sine generator uses seven more FF’s and 17 more LUT’s. The post
implementation schematics suggests that one of the reasons for this should be the
product of more developed control logic, i.e. valid- and enable signals. The VHDL
model did, for example, not implement chip enable logic for the cosine and sine
generator while this was the case for the bit exact model.
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In general for all three implementations were that the increase or decrease in
FF’s mainly depends on the latency of the design. This is because it is pipelined
to have a throughput of one causing one clock cycle latency to increase the number
of FF’s with at least 36, same as the number of bits in the data path.

Power Meter Mapping

In HDL the addition of the squared I and Q takes place within the second DSP48
or the one which squares Q and requires therefore no extra hardware. Whereas
in both HLS designs its done outside with extra dedicated hardware which is one
good reason why the HLS has higher numbers for the utilization. The first addi-
tion of the squared I and Q is not reused so another one is implemented for storing
the value in the register, increasing LUT utilization even more. The bit-exact and
ultra high level HLS designs both implements three groups of extra registers for
storing a sub part of the addition before being added together, see figures A.2 and
A.3. This will increase the use of FF’s compared to the VHDL since it does not
implement registers in the addertree. It can be seen in table 5.14 and 5.15 that
the ultra high level design has a greater LUT and CARRYS utilization than the
bit exact and this is due to the increased bit width of the early state adders in the
addertree, see figures A.2 and A.3 in appendix A.

The last division in the power meter where the summation is divided by the num-
ber of entries in the shift register are done as a bit shift in the VHDL design and
in both HLS designs. This can already be seen at RTL-level in the block diagrams
A.1, A2 and A.3 where there are no extra hardware implemented for the division.
However in both HLS-designs one had to specify that one wanted it done as a
bit-shift since the HLS tool did not convert the division to a bit shift despite it
being a power of two.

6.2.2 Quantization and Rounding Affect on Utilization

The HLS designs implements logic for checking overflow after every addition which
increases the use of LUT’s. This is done in a different way in the HDL were the
check is only necessary after the two multiplications and the addition of them since
the bit width of the bus is increased by 3 bits for the other additions which end
with a 3 step right shifts for dividing with the number of 8 entries, overflow can
therefore not occur there. Both of the HLS designs also implements a series of
XOR-, AND and OR-gates for checking for overflow which is implemented with
LUT’s. In HDL this done by checking if the six most significant bits are equal to
"000000" or "111111" which will indicate if an overflow has occurred, this operation
is done within the DSP which by an output signal called "PATTERNDETECT"
to control some LUT’s configured as a MUX to saturate if overflow has occurred.
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The output of complex multiplier in the bit-exact HLS model is connected
to 38 LUT’s which are assumed to be used for the Quantization- and Overflow
methods defined for the fixed point data path in the HLS model. Comparing with
the VHDL model the number of LUT’s after the complex multiplication are less.
This is the main reason to why the number of LUT’s are higher for the bit-exact
than the VHDL model, see table 5.10.

To have rounding integrated in the circuit is one aspect of HLS that could both
speed up design time as well as reducing the number of errors introduced in the
design even before verification has begun. At the same time the designer has to
be aware and keep in mind the extra logic required when implementing different
operations using these Quantization- and Overflow methods. If not it could po-
tentially cause the final design to be unnecessarily bloated using logic that would
not be required to meet the requirements of the system.

6.2.3 Automatic Implementation of Control Logic and its Affects on
Design Results

Through out the HLS designs control logic is used to enable different parts of the
circuit. These control signals are separated, one for the real and one for the imag-
inary input, even though both inputs only could be valid or invalid at the same
time. In some cases this might be useful and would enforce that all inputs are
valid in order for the circuit to produce valid outputs. For the circuit described
in chapter 4 one signal is enough for both the real- and imaginary input signal.
There could be directives or solutions that only uses one valid signal, but that has
not been uncovered in this thesis.

In the VHDL model of the frequency translator one set of imaginary input reg-
isters are absorbed into the internal registers of the DSP units used for complex
multiplication. In the HLS more registers are kept outside the DSP-units. This
is assumed to be because of timing reasons where the synchronous input signals,
both real and imaginary, of an empty input queue is used to control the calcula-
tions of the complex multiplier. In the HDL design the valid input signal is not
used to enable the multiplier. It is only used to signal if the output is valid, i.e. if
the inputs the calculations where done on where valid.

The first big difference is that both HLS designs implements control logic that will
enable all registers and some data-paths and it also features a latching capability
which will keep it going until the present inputs have passed through. This con-
trol logic is controlled by the input signal "ap _start" and output signal "ap _idle",
were a one in at "ap_start" starts the system and a one out at "ap _idle" indicates
that the system is idling hence no new values are being processed. Wheres in the
HDL design the registers and data-paths are always enabled. The HDL design
has one register for delaying the valid signal 1 clock cycle for syncing it with the
output. The HDL however has 32 LUT’s at the input for keeping the data valid so
no undefined data are stored in the shift-register, these might however be removed
if the hardware which is responsible for the input data gives valid data when the
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valid in is not set to one.

The control logic seems to be depending on the interface and syntax of designs.
The individual component designs yielded in less utilization and better latency for
the bit-exact models (see tables 5.8 and 5.12 for utilization and tables 5.5 and 5.6
for timing) but the large design utilization was worse for the bit exact implemen-
tation, see table 5.16. It is assumed to arise from the control logic implementation
as well as rounding and quantization. The logic implemented by the libraries does
at scale outperform the hardware generated by the bit-exact because of this.

Throughout the thesis work, especially for the big design, false dependencies and
feedback has been a returning concern. The way these could arise are many. Reuse
of hardware could be one of them, if-statements another. One has to be aware of
these kind of issues and how they can arise and be solved to efficiently design in
HLS. In some cases it could be solved by changing the syntax or trying a different
algorithmic approach. Other times it is solved by using directives telling the tool
how to synthesise in order for the sought after results to be achieved.

6.2.4 Data Typecasting to Reduce Logic Utilization

If for example a design like the power meter that has signed inputs, but has un-
signed right after the multiplier due to the power of two on both the I and Q
inputs. One should specify that the output is unsigned or it is automat-
ically interpreted as signed which will result in extra logic being used.
The tool does not optimize the for unsigned despite that it is not being used, this
will decrease area and improve timing, see figure 6.1 where TC'_ OU is an unsigned
data type.

process_sqrI:{II out = TC_OU(I in*I in);

process sqrQ:{QQ out = TC OU(Q in*Q in);
}

Figure 6.1: Cast to unsigned

In general it is a good practice to use unsigned over signed data types as
well as integer over fixed point when it is possible. This reduces the logic
needed to perform arithmetic operations and as the complexity of the hardware
increases this makes a difference in the performance of the generated RTL and
hardware.

6.3 Aspects of Designing Which Affect Timing

There are different aspects of a design that can affect the timing performance of
the final implementation. The two main ways are the use of directives and how
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the code is structured in the implementation, both of which will be covered in this
section.

6.3.1 Syntax Affect on Timing

The structure of the code can have an impact on the timing performance of its final
implementation. This subsection aims to present the ones that was encountered
during this thesis.

False Dependencies Reduces Timing Performance

When writing HLS code the compiler will synthesise a if, else if, else - statement
as a continuous datapath. This yields in hardware, after HLS-synthesis, where
each if-condition is tested each passing of the implemented datapath. To avoid
this, and reduce circuit latency, it is possible to use a switch-case - statement. One
can draw the comparison between the switch-case in C and the case statements in,
for example, VHDL. The tool behave like this when the same variable is used in
all the boolean conditions for the if-statements. The switch-case - statement
gets implemented with the same performance as a MUX in hardware.
Using the default - state in a switch gives rise to a false dependency and should
be avoided by specifying all cases if possible. Throughout this thesis conditional
statements has been used over if, else statements as it can have a similar effect on
the HLS-synthesis. But this has not been the case for all implementations.

Arrays are implemented either as registers or as BRAM in HLS. When imple-
mented as BRAM arrays can cause false dependencies when they are used at both
sides on an assign clause or twice in the same loop [17]. This implements a feed-
back where the operation on the next index can not start before the former has
finished. This could be solved by using one array for reading one for writing, or
by using the dependency directive. If two sequential loops operates on the same
array this could require one loop to finish before the next starts. This dependency
can be avoided by using the dataflow directive allowing task level parallelism.

Syntax Affect on Timing

When writing code for HLS one needs to consider in what order inputs are ready,
take for example an add function. If one input is from a multiplier and n other
inputs is from different registers, the one from the multiplier will arrive later in the
current clock cycle while the ones from the registers are available from the start.
If the one from the multiplier is written first then it will be first in the addertree
which means it will have to go through the whole adder chain and will therefore
increase the time required for the output signal to stabilize which will decrease the
slack. So signals which are to be expected later during the current clock cycle are
to be put last in the addition to prevent them from ending up first in the adder
chain, see where "II" and "QQ" are in figure 6.2.

In order to create a flattened addertree and not a long chain of adders the tree
structure had to be manually written in C++. When done on a single line in the
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C++ code the adders would always be synthesised as a chain of adders which, for
the power meter implementation, were sub-optimal and meant that the tool could
not meet the timing requirements. When the additions were written in parallel as
in figure 6.2 like an addertree, the tool managed to synthesise it correctly. But it
did not when written like the commented "process sum" in figure 6.2.

addl = shrgl;

add2 = shrg2 + shrg3;
add3 = shrg4 + shrg5s;
add4 = shrgé + shrg7;

PWRavg = (addl + add2 + add3 + add4 + II + QQ)>>3;
//process sum:{PWRavg = (PWRinst in + shrgl + shrg2 + shrg3 + shrg4 + shrg5 + shrgé + shrg7)>>3;//

s

Figure 6.2: Syntax for writing an adder-tree

Using Variables to Implement Registers

A variable declared as static implements a register but using it causes that variable
name to be occupied for the design. Using the same variable name in any other
part of the C-code will refer to that variable, or register, even if it is called from a
different sub-function. In figure 6.3 the sub-functions foo 1 and foo 2 should be
synthesised as two separate components connected under top function. In each
function call one would like to increase the internal registers of the foo functions
by one and set them to the output. If the static variables share the name var2, it
will be equal to two using the syntax in figure 6.3. In figure 6.4 each static variable
has a unique name an they won’t share register i.e. varl = var2 = 1.

void foo 1l(int& var)

{ void foo 1(int& var)
i =0 {
?;gtii [eg 0 static reg 1 = 0;
var = re'- reg 1 += 1;
= g: var = reg_1;
} }
void foo 2(int& var) void foo 2(int& var)
{ {
static reg = 0; static reg 2 = 0;
reg += 1; reg_2 += 1;
var = reg; var = reg_2;
}
}
) ) ) . void top function({int& varl, int& var2)
void top_function(int& varl, int& var2) { -
{ foo 1(varl);
foo 1(varl); foo_2(var2);
foo 2(var2); }
}

Figure 6.3: Example code show-

ing how static variables could
be shared.

Figure 6.4: Example code show-
ing how to avoid static vari-
ables sharing.
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Using temporary variables within algorithms causes the tool to implement reg-
isters in the places where the variable is implemented if it is needed to meet timing.
Coding with temporary variables also allows for different data type declarations
which can be useful to force different parts of the code to be synthesised with dif-
ferent bit-lengths, quanitzation- and overflow methods. The usage of temporary
variables are also implemented in the provided libraries and could then, perhaps,
be seen as good practice.

Shift Register Issues With Multiple Read

There is a library for a shift register provided by Xilinx called "SRL IP Library" [8],
this should have been something for the ultra high level design. Unfortunately this
library turned out to be very time inefficient when one wanted to use the function
to read the entries of the shift register and there were therefore not possible to
develop a design which would have met timing despite many attempts, so this
library had to be discarded for another implementation.

6.3.2 Directives Affect on Timing

Using the latency directive could force the tool to reduce the latency of the circuit.
In both the single component cases one could decrease the number of clock cycles
by setting an upper limit on the latency. This forced the tool to generate hardware
with lower latency which also reduced the number of FF’s needed in the data-path.

When using the directives to reduce latency to six for the frequency translator
design the HLS synthesis latency was reported as six clock cycles. After C/RTL-
Cosimualtion the latency of the circuit was reported as five cycles. But when
exporting the RTL into the Vivado HLS editor and running an RTL-Analysis the
datapath contained six registers as do the enable-signal path. The latency error
of the tool could perhaps be critical in some applications and why there is an dif-
ference between the C/RTL-Cosimualtion and the RTL code generated is unclear.

The large system was limited by the HLS designs not meeting the timing re-
quirements as more components was connected together. The failing paths was
due to path delays over 2ns for synchronization signals implemented automatically
by the HLS tool.

6.4 Changes in Workflow from HDL to HLS

This section of the analysis will cover a short analysis of noticeable workflow
changes both for design and verification when switching from HDL to HLS. This
has not been the main focus of the thesis but it is worth a mentioning to provide
guidelines and information how HLS can change the approach to hardware design.
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6.4.1 Design Differences

Perhaps the largest difference in projects when the design is done in HLS versus
classic HDL is that less human interaction is required to create the same func-
tionality. As an example quantization and rounding logic do not need manual
implementation throughout the design. This removes the possibility for bugs and
errors to be introduced in these parts of the design. While HLS is not as effective
as RTL designs when it comes to optimizing hardware, in terms of the speed and
area see table 5.8 and 5.12, it do automate parts of the workflow reducing the
possibility of design errors.

A change in verification and workflow is that for HLS the system model could
be the same as the hardware design model because both can be written in C or
C++. This would allow the system designer to simultaneously develop both the
system model and the hardware design model. The source code can not be written
as if it was a normal software program or model but has to be developed with the
hardware implementation in mind, as discussed earlier in this chapter. In larger
system designs this would allow the system and hardware design to be done by
the same person even for larger systems.

6.4.2 Verification Differences

The method of verification is changing when transferring from HDL- to HLS de-
signs. In traditional HDL the circuit functionality is verified using RTL behavioral
simulations. Meaning that the whole circuit is emulated in the computer running
the simulation. The behavioral simulations could be very time consuming for
large RTL simulations, see table 5.4, which could slow down the verification of
the functionality. With the HDL-workflow, see figure 3.1, the iterative process of
verifying and updating the functionality of the design is slowed down significantly.
If it is possible to use the simulation times of the bit-exact model, see table 5.4,
and solving the problem with HLS-synthesis time the behavioral verification could
be speed up by a significant margin. The gain of performing functional verification
scales with the design, as can be seen between the single component simulations
in tables 5.2 and 5.3 and the large system simulations from table 5.4.

When designing digital hardware using RTL system design the system model is
usually implemented in a high level programming language such as MATLAB or
Python. These languages are almost exclusively using floating point for all their
arithmetic operations and has limited support for fixed point binary operations.
This could cause problems when an RTL design is verified by a system model using
floating point precision. Since floating point is in most cases more accurate than
fixed point implementations this could cause a miss match between the system
model and the HDL implementation. See figure 3.1 and 3.2 for an overview of
the workflows. Because HLS is entirely written in C/C++, both design and test-
bench, the design could be verified using both floating point precision and fixed
point precision just by changing the data types in the header-file.
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Conclusions

HLS has potential to increase the abstraction level of digital hardware design com-
pared to HDL which is often used today. But to design in HLS do require previous
knowledge of hardware design to achieve good results. In this chapter the conclu-
sions from this thesis are presented together with areas for future work and ending
with the opinions of the authors.

In software design it could be argued that good code is easy to read and im-
plemented in as few lines as possible. Only in more demanding cases, if at all
depending on the compiler, does a software designer have to consider optimization
methods such as loop-unrolling and how things actually would map onto hardware.
Using C/C++ to design hardware is different compared to software development
in that case. To design efficient hardware with C/C++ and HLS the de-
signer needs to have the hardware implementation, and its underlying
logic, in mind when writing the code. In general one has to keep the target
device in mind when designing and HLS is no exception. Disregarding the target
FPGA fabric and the logic implementation will lead to inefficient hardware and
performance.

7.1 Synthesis- and Simulation Times

The HLS-libraries are useful to ensure the tool synthesises the design in a correct
way. They automate part of the RTL design process such as rounding and quanti-
zation logic after arithmetic operations, control signals throughout the design and
ensure timings are meet with registers. While they are beneficial for the HLS-
synthesis they have a downside for the C-simulations. Using non-native data
types and other library tools provided by Xilinx affects the simulation
times for C-simulations in a negative way. It is possible to work around
these in different ways, trying to get the best of both worlds, but one has to be
aware that these problems do exist. Many times using library components re-
moved the possibility to change data types and speed up C-simulations
which argues for using a bit-exact way of designing.
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The estimation of the timing done by the HLS-tool is conservative when com-
pared to the estimation done by the HLx-tool after export. This is also true for the
utilization estimates where there is a large overhead after HLS-synthesis compared
to RTL-synthesis, see table 5.1. These estimates are partly due to optimizations
done in HDL-synthesis such as removing signals bound to zero and di-
vision into shift is not implemented in HLS-synthesis. These optimizations
is done when the generated RTL is synthesised into a netlist which is the next step
of HLS workflow, see figure 3.2.

Due to the very long synthesis times for connecting several sub-components, see
table 5.4, it is better to use HLS to design logical components to a system sep-
arately. The tool is not equipped to synthesise the interconnections and timing
between several components in a large system in an effective way. These compo-
nents could instead be connected manually using another tool, for example RTL,
where as HLS seems better equipped to deal with DSP implementations where it
do not have to take control and timing of designs that utilizes the majority of the
FPGA fabric into consideration.

The C/C++ syntax has impact on how the source code is synthesised to RTL.
There is a trade-off to be made when designing hardware using Vivado HLS. The
bit-exact design which is more based on normal C/C-++ simulate faster, see ta-
ble 5.4, but perform worse than the ultra high level in HLS-synthesis, see figure
5.1. The ultra high level model is based heavily on libraries provided
by Vivado and are better suited for HLS-synthesis than the bit-exact
model, see figure 5.1. For the individual component designs these times were not
as noticeable and the utilization were better for the bit-exact model, which were
almost as good as the VHDL design, see table 5.8 and 5.12. This shows that HLS
has potential for fast synthesis as well as good hardware utilization if one can has a
good symbiosis between library functions and bit-exact hardware design. To keep
down the simulation times it is important to use native C data types [14]. But us-
ing them collides with some of the provided libraries that uses arbitrary precision
types as default which removes the possibility to speed up C-simulations. One has
to be aware of the fact that the Vivado libraries improve HLS-synthesis times but
reduce C-simulation times and not using them could have the reversed effect.

7.2 Hardware Utilization

The hardware mapping is good for the HLS implementations when writing in a
bit-exact way where most of the overhead comes from control-, interface-,
overflow- and quantization logic. The ultra high level model is not specified
in such a detailed manner and the resulting hardware perform worse for both case
study components.
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The tool generates control-, interface-, overflow- and quantization logic auto-
matically. This is in many cases a good feature and an example of an area where
the design and verification is made faster by always implementing this thereby
reducing the number of errors that can be introduced. At the same one has to be
aware of this fact and what method is used to implement this logic because when
not used as intended it introduce a large overhead on the hardware utilization.

Using the arbitrary precision library improves the hardware utilization
overall and allows the designer to chose quantization and rounding methods. This
allows for more accurate designs but as a designer one has to be aware of these
functionalities as well. The large system results show this in a clear manner where
changing quantization method from saturation to wrap around [8] re-
duced the hardware utilization of LUT’s from 89% to 32%. These func-
tionalities are implemented by default in Vivado HLS and if one is not aware of
these hardware solutions and when they are implemented could cause sever reduc-
tion in hardware performance.

The ultra high level design had the largest overhead for the single component
after HDL-synthesis implementations of the modules, see table 5.8 and 5.12. The
bit-exact implementations had a better result for these modules with less overhead
as well as more flexibility around the design and simulation to reduce the time re-
quired

In order to generate efficient designs using HLS a bit-exact design ap-
proach, with a previously defined hardware structure, is preferable to
a ultra high level approach in terms of hardware utilization as well as
simulation- and design speed. Overall using a bit-exact HLS approach in-
cludes the benefits of designing and verifying with C/C-++ while keeping, almost,
VHDL utilization performance. The ultra high level approach do overall perform
worse than the bit-exact approach for the individual components. Using existing
libraries and a standard C way of coding is more beneficial if how the hardware
should be implemented is unknown but the system functionality is defined. It could
be used for prototyping- and proof of concept designs where the optimization of
the hardware is not as high of a priority.

7.3 Timing

In general HLS did not have any problem to meet timing for the in-
dividual components. In the case study the timing where meet both for the
bit-exact- and the ultra high level designs. Despite that they were both pipelined
to achieve a relatively high clock frequency the designs had a throughput of one.
The bit-exact did even manage to have the same latency as the VHDL implemen-
tation and the ultra high level difference was mainly due to a different algorithmic
implementation. Using Vivado HLS also removed the possibility to imple-
ment latches in the design, which is a common mistake in RTL-design.
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There were problems with timings after implementation, HDL-synthesis and place
and route, as the design grew larger that arose even if the timings were met after
HLS-synthesis. Timing issues at this stage can be hard to debug as one has to
go back and change in the source code or directives to solve it. Except for the
large system design the timing errors got caught by the synthesis tool
before the HDL-synthesis and implementation.

7.4 Workflow

Automating parts of the design process such as quantization and overflow increase
design speed and reduce the possibilities of introducing errors. In the case stud-
ies much of the overhead from the bit-exact design arose from these type of logic
implementation that was automatically implemented. While it is a good feature
that these are done automatically as a designer you have to be aware of how
functionality is implemented in hardware in order to achieve as good
performance as possible.

The functional verification in C is faster than behavioral simulations
especially as the design grew larger, see table 5.4. This has a big impact on func-
tional verification as the behavioral simulation was speed up significantly. This
allows for faster verification but can also lead to a better coverage as more test
cases can be investigated due to the fast simulation times.

7.5 Future work

It has been observed during this thesis that more bugs are more easily found when
one simulates the RTL with the C/C++ based test bench, it would therefore be
interesting to see if it is possible to somehow measure the increase in fault coverage.

An investigation in how other HLS tool’s such as Cadence Stratus and Mentors
Catapult compare to Xilinx’s Vivado HLS tool in terms of usability and the ability
to create efficient hardware designs. Together with the possibility of implement-
ing HLS that is vendor agnostic would be an interesting continuation of this thesis.

An interesting analysis for future work would be to analyse if HLS-Synthesis be-
have differently when written in C or System-C as all impelemtations were done
using C++. This is also true for the target RTL implementation that has been
VHDL throughout this thesis. The efficiency of VHDL implementations versus
Verilog implementations has not been evaluated either.

7.6 Authors Opinions

This section goes through our thoughts and experience after working with HLS for
the duration of this thesis. It will cover the upsides downsides and how we think
the future of HLS will look like.
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Designing in HLS definitely has its advantages such as fast iteration times for
functional verification, see table 5.5, 5.6 and 5.4, while cutting down on im-
plementation tasks by automatically applying rounding, quantization and control-
logic. There is also the design speed, which is much more subjective to the de-
signers, where we believe HLS is better especially for DSP-design and algorithmic
implementations. The possibility to quickly change and try optimization
methods such as pipelineing or loop unrolling is definitely an advantage and al-
lows for more flexibility in case any alterations would be required.

When the designs are implemented the tool enforces good practice implemen-
tation of surrounding logic which we considered a good feature that removes the
possibility of introducing errors and mistakes but it does have down sides as well.
In this thesis the complexity of the components were kept low which reduced the
need for this type of logic and that we did not manage to do as much for the HLS
designs. As designer one has to be careful so that the tool do not implements more
control logic than necessary.

Implementing designs, especially large designs, you as a designer need to be
aware of surrounding logic such as control and quantization logic. When
and where it is implemented or the logic utilization can get much larger than in-
tended. We think much of the overhead, in HDL-synthesis times and area, of the
large system were caused by these type of logic implementation which did not exist
in our sparse VHDL implementation. This is true for arithmetic calculations as
well where integer calculations are easier than fixed point thus one should try to
do as much as possible with integers.

Vivado HLS works best for sub-modules and components, using it to gen-
erate and implement a large system by its entirety slowed down the GUI of the
tool considerably and HLS-Synthesis for larger designs were slower than for HDL-
Synthesis for the same design, see table 5.4. Vivado HLS can effectively implement
and synthesis a design from C- to RTL-code while the scale of the design is kept
at a moderate level. We think the interconnections and control logic of a
larger design is better left for an other tool or even to be done in con-
ventional HDL if the design is using a bit-exact approach. As was more evident
designing the large system where the majority of the HLS-Synthesis time was to
implement the interface, i.e. control logic, then the sub-modules and functionality
unless the interface was designed using pre-defined libraries.

The usage of libraries in the design had both positive and negative effects
throughout the work on this thesis. While the arbitrary precision library im-
proved HLS-synthesis result it did reduce the efficiency of verifying func-
tionality with C as the simulation times increased. One can work around this
and use native C data types for functional verification and only switch to arbitrary
precision data types in the later stages and for synthesis. It is problematic that
some libraries from Vivado only functions with arbitrary precision data types thus
the functional verification speeds are lost. Other libraries such as streams can be
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used all the time and should be used for the top-function in a data-flow application
since they improve the HLS-synthesis time for larger systems.

Overall HLS feels like a tool that follows the direction of the trends in the in-
dustry, and of automation in general. Where it is pushing the abstraction levels of
hardware design up, trading design specific control for speed. While HLS has been
around for a while and adopted by some we think it will only grow larger as it get
more users, leading to improved performance and better features. As the demand
for more complex designs grows fast and at some point there just wont be enough
designers to satisfy these demands. Combine this with the saturation of Moore’s
Law [10], we think could point towards higher demands on system designers. HLS
is a possible solution to this reducing the total number of designers needed for
a complex design allowing designers to focus more on system level features and
verification while leaving lower level synthesis to automation.
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68 Schematic of Power Meter Implementations

Appendix A

Schematic of Power Meter Implementations
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Figure A.1: Block diagram for VHDL design of the power meter
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Figure A.2: Block diagram for bit-exact HLS design of the power
meter
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Figure A.3: Block diagram for TLM HLS design of the power meter



Appendix B

Example of Abstraction Levels

As an example of the difference in abstraction levels between designing hardware
in HLS and VHDL consider the following circuit, see figure B.1.
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Figure B.1: Example component for abstraction level example.

This could be implemented using VHDL in the following way, see figure B.2.
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entity top_function is
Part  clk : in STD_LOGIC;
rst @ oin STD_LOGIC;
inl : in STD_LOGIC_VECTOR (15 downto 0O);
in2 : in STD_LOGIC_VECTOR (15 downto O);
ind @ in STD_LOGIC_VECTOR (15 downto O);
ind @ in STD_LOGIC_VECTOR (15 downto O);
output @ out STD_LOGIC_VECTOR (15 downto 037;
end top_function;

architecture Behavioral of top_function is

signal  next_inter_a, curr_inter_a : SIGNED({32 downto 0);
signal  next_inter_b, curr_inter_b : SIGNED(32 downto O);

begin

process{inl, ing, in3)
begin

next_inter_a <= SIGNED(inl)*SIGNED(inZ);

next_inter_b <= SIGNED(in33*SIGNED(ind);

output <= STD_LOGIC_VECTOR(curr_inter_a + curr_inter_h};
end process;

process(rst, clk)
hegin
ificlk = '1' and clk'event) then
if(rst = '0') then
curr_inter_a <= {others =» '0']);
curr_inter_b <= {others == '0'];
alze
curr_inter_a <= next_inter_a;
curr_inter_h <= next_inter_h;
end T}
end iT;
end process;

end Behawvioral;
Figure B.2: Example component implemented using VHDL.

Implementing the same functionality in HLS could be done in the following
way, see figure B.3.

void top_function(short& inl, shert& in2, short& in3, short& in4, short& output)

{
#pragma HLS PIPELINE
ouput = inl*inZ2 + in3*in4;

Figure B.3: Example component implemented using HLS.

It is evident that the complexity of the code is reduced by letting the tool
implement the RTL, see figure B.2, from the HLS implementation, see figure B.3.
OBS running the design in figure B.3 wont generate the code in figure B.2 they
are both designed for this example explicitly.
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