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Abstract

In this thesis we explore the connection between spectral stability and nonlinear
stability of evolution equations. Using semigroup theory a result on nonlinear insta-
bility from spectral instability is proven. This result is then applied to two examples:
Travelling heteroclinic solutions of the Kuramoto-Sivashinsky equation and constant
solutions of the Lugiato-Lefever equation.
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Populärvetenskaplig Sammanfattning

Ickelinjär stabilitet är en typ av beteende för ickelinjära evolutionsekvationer som
beskriver om stationära lösningar förändras mycket under sm̊a störningar av startvärdet.
Detta beteende är viktigt inom flera omr̊aden d̊a det hjälper att först̊a hur exem-
pelvis v̊agor utvecklas med tid: Vissa v̊agor förändras inte trots sm̊a störningar
medan andra förfaller. I denna masteruppsatts undersöks instabilitet av lösningar
till tv̊a olika ekvationer: Kuramoto-Sivashinsky-ekvationen och Lugiato-Lefever-
ekvationen. Kuramoto-Sivashinsky-ekvationen studerades av Yoshiki Kuramoto för
att beskriva lösningar till reaktions-diffusions-ekvationer och av Gregory Sivahinsky
för att beskriva laminära förbränningsfronter. Lugiato-Lefever-ekvationen har stud-
erats av Luigi Lugiato och René Lefever för att beskriva ljusv̊agor i optiska kaviteter.
Stabilitet av dessa lösningar är viktigt att först̊a eftersom det förklarar varför vissa
v̊agor uppst̊ar spontant och ej faller samman.
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1 Introduction

In the theory of linear ordinary differential equations it is well known that the spec-
trum of the matrix yields information about the asymptotic behaviour of solutions.
If the nonlinear part behaves well it is also true for nonlinear ordinary differential
equations. The purpose of this thesis is to investigate how the theorems relating
spectral instability to nonlinear instability translates to partial differential equations.
For this purpose we consider evolution equations as ordinary differential equations
in infinite dimensional Banach spaces.

Linear autonomous evolution equations are studied using semigroups, and the
theorems on nonlinear instability for nonlinear differential equations can then be
stated as depending on two parts: The linear part generating a semigroup and the
nonlinear part. A few different theorems are stated in the thesis, most of which
were proved in the late 1990’s. The different theorems make different assumptions
on the spectrum of the linear part and the smoothness of the nonlinear part. The
guiding principle of these theorems is that stronger conditions on the linear part
can compensate for weaker conditions on the nonlinear part. There is no definite
answer as to when spectral instability implies nonlinear instability and it remains
an open question.

We focus on one of the theorems with relatively weak conditions on the lin-
ear part and consider two main examples. The Kuramoto-Sivashinsky equation,
in which the nonlinear part has derivatives, but the semigroup is smoothing and
the Lugiato-Lefever equation which has a simpler nonlinear term, but a less nice
semigroup.
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2 Preliminaries

2.1 Closed Linear Operators

It is often useful to consider differential operators as operators defined on a subspace
rather than as bounded operators from one Banach space to another. In this context
the operator is rarely bounded, as this would imply that it could be extended to the
whole space. However in most cases however they will be closed.

Definition 2.1. Let X and Y be Banach spaces and T : D(T ) ⊂ X → Y be a
linear operator defined on a linear subspace D(T ) of X. We say that T is closed if
xn → x in X and Txn → y in Y imply that x ∈ D(T ) and y = Tx.

The sum of two closed operators is not necessarily closed, as can be seen with
the example T + (−T ) = 0 for any closed operator (T,D(T )) defined on a strict
subset of X. In this case (T + (−T ), D(T )) is not a closed operator since there
exists a sequence xn → x such that x /∈ D(T ), but clearly (T + (−T ))xn → 0. The
sum of a closed operator with a bounded operator is however always closed. If T
is injective we may consider the inverse of T , T−1 : rg(T ) ⊂ Y → D(T ) ⊂ X. The
inverse of a closed operator is always closed. These two statements are summarized
in the following lemma.

Lemma 2.1. Let X and Y be Banach spaces and T : D(T ) ⊂ X → Y be a closed
linear operator and B : X → Y a bounded operator. Then T +B : D(T ) ⊂ X → Y
is closed. If T is injective then T−1 : rg(T ) ⊂ Y → X is closed.

We mention the following classical result.

Theorem 2.1 (Closed Graph Theorem). Let X and Y be Banach spaces and T :
X → Y be a closed linear operator defined on X. Then T is bounded.

For an operator only defined on a subspace D(T ), the closed graph theorem says
that if D(T ) is closed then T is a bounded operator on D(T ). The next lemma is
an important result for characterizing the approximate point spectrum.

Lemma 2.2. Let X and Y be Banach spaces and T : D(T ) ⊂ X → Y be an injective
closed linear operator. Then T−1 is bounded if and only if rg(T ) is closed in Y .

Proof. If rg(T ) is closed in Y then T−1 : rg(T ) ⊂ Y → X is closed in Y and defined
on the Banach space rg(T ), therefore T−1 is bounded by the closed graph theorem.
Conversely, suppose T−1 is bounded and let y ∈ rg(T ) and yn → y in Y , yn ∈ R(T ).
Write yn = Txn with xn ∈ D(T ) and estimate

‖xn − xm‖X = ‖T−1T (xn − xm)‖X ≤ C‖T (xn − xm)‖Y = C‖yn − ym‖Y .

It follows that xn is a Cauchy sequence. Since X is complete there exists a limit x.
The fact that T is closed now implies that x ∈ D(T ) and y = Tx. Hence y ∈ rg(T ).
Since y was arbitrary, rg(T ) is closed.
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2.2 Spectral Theory

This section contains the necessary spectral theory for semigroups and stability.
The decomposition of the spectrum is adapted for this purpose and is perhaps not
standard. In particular, the residual spectrum may contain eigenvalues.

Definition 2.2. Let X be a Banach space and T : D(T ) ⊂ X → X be a closed
linear operator. The spectrum of T , σ(T ) ⊂ C is defined as the set of complex
numbers λ such that λ − T : D(T ) ⊂ X → X is not bijective. The resolvent set
ρ(T ) is defined as the complement of the spectrum. For λ ∈ ρ(T ) we define the
resolvent

R(λ, T ) = (λ− T )−1.

Since λ − T is bijective for λ ∈ ρ(T ) the resolvent can be defined on X and by
Lemma 2.1 and the closed graph theorem we get that R(λ, T ) : X → X is bounded.
As for bounded operators, the spectrum of a closed linear operator is always closed.
However for unbounded operators it is not necessarily bounded and may be empty.

Definition 2.3. Let X be a Banach space and T : D(T ) ⊂ X → X be a closed
linear operator. The point spectrum of T , σp(T ) ⊂ C is defined as the set of λ ∈ C
such that λ−T : D(T ) ⊂ X → X is not injective. The approximate point spectrum
of T , σa(T ) ⊂ C is defined as the set of λ ∈ C such that λ− T : D(T ) ⊂ X → X is
not injective or rg(λ−T ) is not closed in X. The residual spectrum of T , σr(T ) ⊂ C
is defined as the set of λ ∈ C such that rg(λ− T ) is not dense in X.

By definition σp(T ) ⊂ σa(T ). Furthermore we have

σ(T ) = σa(T ) ∪ σr(T )

since if λ − T is injective and rg(λ − T ) is both closed and dense then λ − T is
bijective and so λ ∈ ρ(T ). However, the decomposition is not necessarily disjoint.
The approximate point spectrum is important for at least two reasons: It is the
part of the spectrum where the spectral mapping theorem for semigroups fails and
it contains the boundary of the spectrum. Fortunately there exists a characterization
of the approximate point spectrum that says we can find approximate eigenvectors,
which explains the name.

Lemma 2.3. Let T : D(T ) ⊂ X → X be a closed linear operator. Then the
following statements are equivalent.

(a) λ ∈ σa(T ).

(b) λ− T is not injective or (λ− T )−1 : rg(T ) ⊂ X → D(T ) ⊂ X is unbounded.

(c) There exists a sequence {xn} ⊂ D(T ) such that ‖xn‖ = 1 and ‖Txn−λxn‖ → 0
as n→∞.
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Proof. To prove (a) ⇐⇒ (b) observe that the case in which λ− T is not injective
is trivial. Hence it is sufficient to show that, when λ − T is injective, rg(λ − T ) is
not closed if and only if (λ− T )−1 is unbounded, but this is just Lemma 2.2.

To prove (b) ⇐⇒ (c) suppose first that such a sequence xn exists. If some xn
satisfy (λ − T )xn = 0 then λ − T is not injective so (b) holds, otherwise we may
define

yn =
Txn − λxn
‖Txn − λxn‖

.

Then ‖yn‖ = 1 and ‖(λ−T )−1yn‖ → ∞. Hence (λ−T )−1 is unbounded. Conversely,
if λ− T is not injective (c) holds trivially and if λ− T is injective, but (λ− T )−1 is
unbounded then there exists yn such that ‖yn‖ = 1 and ‖(λ−T )−1yn‖ → ∞. Define

xn =
(T − λ)−1yn
‖(T − λ)−1yn‖

.

Then ‖xn‖ = 1 and ‖Txn − λxn‖ → 0.

Lemma 2.4. Let T : D(T ) ⊂ X → X be a closed linear operator. If λ ∈ ∂σ(T ),
the boundary of σ(T ), then λ ∈ σa(T ).

Proof. Let λ ∈ ∂σ(T ) and λn ∈ ρ(T ), λn → λ. Then

‖(λn − T )−1‖ ≥ dist(λn, σ(T ))−1 →∞

where the inequality follows from the fact that if µ ∈ C with

|µ− λn| < 1/‖(λn − T )−1‖

then we can define

(µ− T )−1 = (λn − T )−1(I − (µ− λn)(λn − T )−1)−1 =

∞∑
k=0

(µ− λn)k((λn − T )−1)k+1

and so µ ∈ ρ(T ). Now by the uniform boundedness principle there exists x ∈ X
such that ‖(λn − T )−1x‖ → ∞. Let

yn =
(λn − T )−1x

‖(λn − T )−1‖
.

Then ‖yn‖ = 1 and (λ− T )yn = (λ− λn)yn + (λn − T )yn → 0 as n→∞.
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2.3 Sobolev Spaces

In this section we define the Sobolev spaces that are used in the thesis. There are
no deviations from the standard definitions. Denote by L2 = L2(R) the space of
square integrable functions on R with respect to the Lebesgue measure and equip it
with the standard inner product (·, ·).

Definition 2.4. By Hn = Hn(R) for n ∈ N we mean the set of functions in L2 that
have n weak derivatives which are also in L2. We define the inner product in Hn by

(f, g)Hn =
∑
k≤n

(f (k), g(k)).

We define the fractional Sobolev spaces Hs as usual using the Fourier characteri-
zation: Hs is the set of functions u ∈ L2 such that (1 + (·)s/2)2û ∈ L2 with the
norm

‖u‖Hs = ‖(1 + (·)s/2)2û‖L2

It is well known that these norms are equivalent to the norm above for non-negative
integers, see [4] Chapter 5.8 Theorem 8. For a Banach space X and T ∈ (0,∞] we
define the Banach space C([0, T ), X) as all continuous functions u : [0, T )→ X with
norm

‖u‖C([0,T ),X) = sup
t∈[0,T )

‖u(t)‖

and the space C1([0, T ), X) as all continuously differentiable functions, i.e. all func-
tions u such that

u′(t) := lim
h→0

u(t+ h)− u(t)

h

exists in the strong sense and u′ ∈ C([0, T ), X).

The following theorem is very useful when dealing with nonlinear differential
equations since it makes sure that multiplication of functions behaves well. It is
stated in generality, but will only be applied with s = 1 and n = 1.

Theorem 2.2. Consider Hs = Hs(Rn). For s > n/2 there exists a C > 0 such
that for any u ∈ Hs we have u ∈ L∞ with

‖u‖L∞ ≤ C‖u‖Hs

For u, v ∈ Hs

‖uv‖Hs ≤ C‖u‖Hs‖v‖Hs .

For a proof see [9], Theorem 3.4.
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3 Semigroup Theory

3.1 Strongly Continuous Semigroups

Consider the following initial value problem{
ut = Au

u(0) = u0.
(1)

Here u : [0,∞) → X and A : D(A) ⊂ X → X is a possibly unbounded linear
operator on the Banach space X such that D(A) is a dense linear subspace of X. If
we have a solution u(t) of (1) then we can write T (t)u0 = u(t). This idea naturally
leads to the definition of a semigroup:

Definition 3.1. Let X be a Banach space and T (t) : X → X, t ≥ 0 be a family of
bounded linear operators satisfying:

T (0) = I (2)

T (s+ t) = T (s)T (t) (3)

T (t)
s−→ T (0) as t→ 0. (4)

Then we say that T (t) is a strongly continuous semigroup of operators. The gener-
ator A : D(A) ⊂ X → X of a strongly continuous semigroup is defined as

Ax = lim
h↘0

T (h)x− x
h

where D(A) is the set such that the limit exists.

Since semigroups are supposed to describe solutions to autonomous differential
equations it is should be clear why properties (2) and (3) are part of the definition.
The reason for choosing strong continuity is not obvious at first glance, but it turns
out to be the perfect setting for a general theory: It is surprisingly equivalent to
weak continuity. Furthermore if one requires uniform continuity instead, A will be
bounded and the semigroup can be expressed as the exponential etA in the sense of
an absolutely convergent series. There are however many interesting cases between
strong continuity and uniform continuity, for example analytic semigroups which
are described below. Now we collect some important properties of the generator of
a strongly continuous semigroup:

Theorem 3.1. Let T (t) be a strongly continuous semigroup with generator A. Then

(i) A is a linear operator.

(ii) If x ∈ D(A) then T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax, ∀t ≥ 0.
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(iii) For x ∈ X

T (t)x− x = A

∫ t

0
T (s)xds

and for x ∈ D(A)

T (t)x− x =

∫ t

0
T (s)Axds.

(iv) A is closed and D(A) is dense in X. Furthermore, T (t) is the unique strongly
continuous semigroup with generator A.

(v) There exists M ≥ 1 and ω ∈ R such that

‖T (t)x‖ ≤Metω, t ≥ 0.

Remark 3.1. The integrals in Theorem 3.1 can be taken in the Riemann sense since
the function is continuous. Throughout the thesis, any integral should be regarded
in the same way.

A proof of Theorem 3.1 can be found in any text on strongly continuous semi-
groups, for example [3] Chapter II Lemma 1.3, Theorem 1.4 and Theorem 1.10. The
second property tells us that u(t) = T (t)u0 solves (1) for the generator A, so long
as the initial value is in D(A). This solution will be continuously differentiable in
the sense that u ∈ C1([0,∞), X) since

du

dt
(t) = T (t)Au0 → T (s)Au0 =

du

dt
(s).

as t→ s. If u0 6∈ D(A) we don’t have a classical solution, but by the third property
we have a ”mild solution” u(t) = T (t)u0 satisfying

u(t) = A

∫ t

0
u(s)ds+ u0.

Usually mild solutions are easier to work with and can be generalized to the non-
linear case without assuming too much regularity. Conversely one can ask, if
given an initial value problem of the form (1) which has a unique strong solution
u ∈ C1([0,∞), X) for each u0 ∈ D(A), does A generate a semigroup on X? The
short answer is no, but if one instead considers the space X1 = (D(A), ‖ · ‖A) where
‖x‖A = ‖Ax‖+ ‖x‖ then the restriction of A to this space will generate a strongly
continuous semigroup on X1. In fact, the initial value problem is uniquely solvable
for each u0 ∈ D(A) if and only if A generates a strongly continuous semigroup on
this space.

Given an initial value problem, we can ask whether A generates a strongly contin-
uous semigroup on X. By the discussion above this will immediately give existence
and uniqueness for each u0 ∈ D(A). This is answered by the Hille-Yosida theorem
below. A proof can be found in [3] Chapter II Theorem 3.5.
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Theorem 3.2. Let A : D(A) ⊂ X → X be a linear operator, M ≥ 1 and ω ∈ R.
Then A is the generator of a strongly continuous semigroup satisfying

‖T (t)‖ ≤Metω (5)

if and only if

1. D(A) is dense in X and A is closed,

2. For each λ ∈ C with <λ > ω we have λ ∈ ρ(A) and

‖R(λ,A)n‖ ≤ M

(<λ− ω)n
, ∀n ∈ N.

Definition 3.2. If we can choose M = 1 and ω ≤ 0 in (5) we say that T (t) is
a contraction semigroup. If we only have M = 1 we say that the semigroup is a
quasicontraction.

Remark 3.2. In the case of a contraction semigroup condition 2 can be replaced
with ‖(λ−A)x‖ ≥ |λ|‖x‖ and the condition that λ−A is surjective for λ > 0. This
is a useful reformulation since it does not require any knowledge of the resolvent.
An operator that satisfies ‖(λ−A)x‖ ≥ |λ|‖x‖ for all x ∈ D(A) is called dissipative.
If X is a real Hilbert space then it is equivalent to (Ax, x) ≤ 0.

Since any semigroup satisfies an estimate of the form (5) this classifies all gener-
ators of strongly continuous semigroups on X. However, it should be noted that a
linear operator may generate a strongly continuous semigroup on one Banach space,
but not on another. Therefore one has to be careful when choosing X. The general
form Theorem 3.2 of the Hille-Yosida theorems is interesting for the reason that it
tells exactly when an operator generates a strongly continuous semigroup, but it is
impractical since each power of the resolvent has to be estimated. The following
theorem for contraction semigroups is of more practical use:

Theorem 3.3. Let A : D(A) ⊂ X → X be a linear operator. Then A is the
generator of a strongly continuous semigroup satisfying

‖T (t)‖ ≤ 1 (6)

i.e. a contraction semigroup, if and only if

1. D(A) is dense in X and A is closed.

2. For each λ > 0 we have λ ∈ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
.

Although this can be seen as a special case of Theorem 3.2 the proof of The-
orem 3.2 requires Theorem 3.3 so a proof this way would not be very interesting.
The proof can instead be found in [3].
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3.2 Analytic Semigroups

In this section we consider semigroups which are analytic in the time variable. This
is one of the strongest requirements of semigroups that can not be written as a
power series, that is, which is not uniformly continuous. The sector is defined as

Σδ,a := {λ ∈ C : | arg(λ− a)| < δ, λ 6= a}

Σδ := Σδ,0

Definition 3.3. Let X be a Banach space, 0 < δ ≤ π/2 and T (z), z ∈ Σδ,a be a
family of bounded linear operators satisfying:

T (0) = I

T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σδ

T (z)
s−→ T (0) as z → 0

z 7→ T (z) is analytic in Σδ.

Then we say that T (t) is an analytic semigroup of operators of angle δ.

There are many equivalent definitions, for example, we may define an analytic
semigroup as a strongly continuous semigroup such that t 7→ T (t) is real analytic.
An analytic semigroup is of course also a strongly continuous strongly semigroup
if it is restricted to R+ and the generator is defined in the same way. However for
analytic semigroups one can show that the generator will satisfy

T (z) =
1

2πi

∫
γ
eµzR(µ,A)dµ

for any curve γ that goes from ∞e−i(π/2+δ′) to ∞ei(π/2+δ′) where δ′ ∈ (| arg z|, δ).
We now attempt to characterize these semigroups as we did for strongly continuous
semigroups.

Definition 3.4. Let X be a Banach space and A : D(A) ⊂ X → X a closed densely
defined linear operator. Suppose there exists δ > 0, a ∈ R such that ρ(A) contains
the sector Σπ/2+δ,a and for each 0 < ε < δ there exists Mε

‖R(λ,A)‖ ≤ Mε

|λ− a|
, 0 6= λ ∈ Σπ/2+δ−ε,a.

Then we say that A is sectorial of angle δ.

It is clear that any sectorial operator generates a strongly continuous semigroup.
However, it also holds that the semigroup is analytic, see [3] Chapter II Theorem
4.6 for a proof.
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Figure 1: The difference between the spectrum of the generator of a strongly con-
tinuous semigroup and an analytic semigroup.

Theorem 3.4. Let A : D(A) ⊂ X → X be a sectorial operator of angle δ generating
a strongly continuous semigroup T (t). Then T (t) is real analytic in t and can be
extended to an analytic semigroup T (z) of angle δ.

Figure 1 illustrates the difference between the spectrum of a generator of a
strongly continuous semigroup and an analytic semigroup. Analytic semigroups are
much nicer than strongly continuous semigroup, for example they always satisfy
the spectral mapping theorem, see Theorem 3.9. It is however a strong condition
and many important differential operators do not generate analytic semigroups. An
example of such an equation is the Lugiato-Lefever equation, which is studied below.

For a sectorial operator we can define fractional operators. It turns out that
the semigroup will behave well on the domain of the these fractional spaces with

14



the graph norm, and one can formulate many theorems, for example on existence,
uniqueness and stability, using these spaces. This is partly due to the fact that
for nonlinearities to not affect the overall behaviour of a differential equation, they
must behave well with respect to the linear part. More specifically they need to
satisfy some bound in this norm, see for example the conditions on F and G in
Theorem 4.8.

Definition 3.5. Let A : D(A) ⊂ X → X be a sectorial operator of angle δ with
<σ(A) < 0. For any α > 0 define the fractional operator

(−A)−α =
1

Γ(α)

∫ ∞
0

tα−1T (t)dt

and (−A)α = ((−A)−α)−1. If A is a sectorial operator, not necessarily with <σ(A) <
0, we can find a such that A1 = A + a satisfies <σ(A1) < 0. For α ≥ 0 we define
the fractional space Xα = D(Aα1 ) with norm ‖x‖α = ‖(−A1)αx‖ where a is chosen
so that the fractional operator is defined. The norms are equivalent for any such a.

For a more in depth theory of analytic semigroups and their applications, see
[6].

3.3 Perturbation of Semigroups

It is often difficult to determine directly if an operator generates a semigroup, since
the spectrum is generally hard to determine. For these cases, it is sometimes easier
to divide the the operator in two parts: A main part whose spectrum can be de-
termined and a perturbation whose spectrum can’t be determined, but is expected
to not contribute too much to the entire operator. This idea is illustrated with the
Kuramoto-Sivashinsky equation in section 5.2 where the main part has constant
coefficients and the perturbation has lower order derivatives and coefficients that
behave well at infinity.

Definition 3.6. Let X be a Banach space and A : D(A) ⊂ X → X, B : D(B) ⊂
X → X linear operators. We say that B is A-bounded if D(A) ⊂ D(B) and there
exist non negative constants a, b such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, x ∈ D(A). (7)

The A-bound a0 of B is defined as the infimum of all a for which there exists a b
such that (7) holds.

The following theorem applies when the main operator generates a contraction
semigroup and the perturbation is both dissipative and A-bounded with a small
enough A-bound.
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Theorem 3.5. Let X be a Banach space. Suppose that A : D(A) ⊂ X → X
generates a contraction semigroup on X and B : D(B) ⊂ X → X is dissipative
and A-bounded with A-bound a0 < 1. Then (A + B,D(A)) generates a strongly
continuous semigroup on X. Furthermore we have the relation

et(A+B)x = etAx−
∫ t

0
e(t−s)ABes(A+B)xds.

Even though the theorem is stated with fairly strong conditions on A and B it
can be used in more general situations as demonstrated in Lemma 5.3. The Theo-
rem is proved in [3] Chapter III Theorem 2.7.

We mention another perturbation result for analytic semigroups which will be
used in section 5.3. Proofs of Theorem 3.5 and Theorem 3.6 can be found in [3].

Theorem 3.6. Let X be a Banach space. Suppose that A : D(A) ⊂ X → X
generates an analytic semigroup on X. Then there exists α > 0 such that if B :
D(B) ⊂ X → X is A-bounded with A-bound a0 < α then (A+B,D(A)) generates an
analytic semigroup on X. In particular, if B has A-bound a0 = 0 then (A+B,D(A))
generates an analytic semigroup on X.

3.4 The Growth Bound

In the previous sections, we gathered enough evidence to write T (t) = etA for a
semigroup with generator A. One should be careful with this notation however: We
are not claiming the existence of an exponential function on the set of unbounded
operators. In other words the exponential function depends on the generator and
should only be used together in the form etA for t ∈ R+. This notation is useful
as it highlights the exponential behaviour of the semigroup. In this section we
examine the growth bound of a strongly continuous semigroup, which is an example
of this exponential behaviour. The growth bound of a semigroup describes how
the semigroup grows when t → ∞. It is connected to the spectral bound of the
generator and the spectral radius of the semigroup, as proved in Theorem 3.7.

Definition 3.7. For a strongly continuous semigroup etA with generator A we define
the growth bound

w0 = w0(etA) = w0(A) = inf{w ∈ R : ∃Mw ≥ 1 such that ‖etA‖ ≤Mwe
tw}

= inf{w ∈ R : e−tw‖etA‖ → 0 as t→∞},

the spectral bound
s(A) = sup{<λ : λ ∈ σ(A)},

with s(A) = −∞ if σ(A) = ∅, and the spectral radius

r(etA) = sup{|λ| : λ ∈ σ(etA)}.
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The following important theorem relates the three values values defined above.

Theorem 3.7. For a strongly continuous semigroup etA with generator A we have

−∞ ≤ s(A) ≤ w0 = inf
t>0

1

t
log ‖etA‖ = lim

t→∞

1

t
log ‖etA‖ =

1

t0
log r(et0A) <∞

for all t0 > 0. In particular
et0w0 = r(et0A)

for all t0 > 0.

To prove Theorem 3.7 we need this simple lemma regarding subadditive func-
tions. For a proof of the lemma see [3], Chapter IV, Lemma 2.3.

Lemma 3.1. Let f : R+ → R be a subadditive function that is bounded on compact
intervals. Then

inf
t>0

f(t)

t
= lim

t→∞

f(t)

t
.

Proof of theorem. If <λ > w > w0 then λ ∈ ρ(A) so s(A) ≤ w0. Apply Lemma 3.1
to the function f(t) = log ‖etA‖ and let

v = inf
t>0

1

t
log ‖etA‖ = lim

t→∞

1

t
log ‖etA‖.

Then
evt ≤ ‖etA‖

so v ≤ w0. If w > v then there exists t0 such that if t ≥ t0 then

w >
1

t
log ‖etA‖

and
ewt > ‖etA‖.

Since ‖etA‖ is bounded on the compact interval [0, t0] there exists an M such that

‖etA‖ ≤Mewt.

Hence w0 ≤ w and since w > v was arbitrary v ≥ w0. The final identity follows
from the computation

r(et0A) = lim
m→∞

‖emt0A‖1/m = lim
m→∞

e
1
m

log ‖emt0A‖ = et limm→∞
1
tm

log ‖emt0A‖ = et0w0
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3.5 Spectral Theorem for Semigroups

In order to relate the spectrum of A to the growth of the semigroup, it is very helpful
if the spectral mapping theorem holds:

σ(etA) \ {0} = etσ(A), ∀t ≥ 0. (8)

If this equality holds then by Theorem 3.7 s(A) = w0(A). However, in general this
is not true for strongly continuous semigroups. We always have one inclusion, but
the other may fail. While this inclusion is not so useful to prove nonlinear stability
it is often enough for instability.

Theorem 3.8 (Spectral Inclusion Theorem). Let etA be a strongly continuous semi-
group with generator A. Then we have the inclusion

σ(etA) ⊃ etσ(A), ∀t ≥ 0. (9)

Moreover (9) holds for σp(A), σr(A) and σa(A).

Proof. If we apply Theorem 3.1 (ii) to the semigroup S(t) = e−λtetA with generator
A− λ we get the relation

e−λtetAx− x = (A− λ)

∫ t

0
e−λsesAxds =

∫ t

0
e−λsesA(A− λ)xds

for x ∈ D(A). Multiplying both sides by eλt shows that if A−λ is not bijective then
neither is etA − etλ. Indeed, if A − λ is not injective, then (A − λ)x = 0 for some
x ∈ D(A) and hence (etA− eλt)x = 0 by the second equality. If instead A−λ is not
surjective then the range of the operator

(A− λ)

∫ t

0
eλ(t−s)esAxds

is not X and therefore the range of etA − etλ can’t be X. This also shows that
σp(e

tA) ⊃ etσp(A). To see that this also holds for the approximate spectrum, let xn
be a sequence of approximate eigenvectors of A. Then

‖etAxn − eλtxn‖ =
∥∥∥∫ t

0
eλ(t−s)esA(A− λ)xnds

∥∥∥ ≤ C‖(A− λ)xn‖ → 0.

If λ ∈ σr(A) then the range of λ−A is not dense in X and we have rg(etA − eλt) ⊂
rg(λ−A), therefore the range of etA − eλt can’t be dense in X.

An alternative proof of the spectral inclusion proof using Gelfand’s theory of
commutative Banach algebras can be found in [8]. The spectral mapping theorem
holds for both the point spectrum and the residual spectrum and hence only fails on
the approximate point spectrum. This is the spectral mapping theorem for strongly
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continuous semigroups. The idea of the proof is to restrict the semigroup to the space
of eigenvectors. Then (10) follows from the theory of periodic semigroup. After this
(11) follows from considering the dual semigroup restricted to the set where it is
strongly continuous. The proofs of these details are lengthy and complicated in
some parts, but for the interested reader a proof can be found in [3]. It should be
noted that for an analytic semigroup it follows from the spectral mapping theorem
in functional analysis.

Theorem 3.9 (Spectral Mapping Theorem). Let etA be a strongly continuous semi-
group with generator A. Then we have that the spectral mapping theorem holds for
the point spectrum and residual spectrum:

σp(e
tA) \ {0} = etσp(A), ∀t ≥ 0 (10)

σr(e
tA) \ {0} = etσr(A), ∀t ≥ 0. (11)
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4 Stability and Instability

4.1 Statement of the Problem

Consider the following initial value problem{
ut = A(u) = Lu+ F (u)

u(0) = u0

(12)

where we have divided the operator into two parts: The linear part L and the
nonlinear part F such that F (0) = 0. It makes sense to assume that F ′(0) = 0
since we put all the linear parts in L, but we do not assume that F is differentiable
so this will instead be expressed in the form ‖F (u)‖ ≤ ‖u‖α for α > 1. The other
problem is to decide linear spaces on which we define L and F respectively. There
are different approaches to this, but one of the main issues is that there may be
some derivatives in F , so that F : X → Z where X ⊂ Z. It is useful to think of the
case X = H1, Z = L2 and F (u) = uux. For now, we remain in the abstract case
and define the terms that will be used in the following sections. First we define what
is meant by a solution to (12) and what is meant by stability of a solution. While
one can define classical solutions as well, we focus on mild solutions since they fit
the theory of semigroups well.

Definition 4.1. Consider the nonlinear initial value problem (12) with two Banach
spaces X ⊂ Z where L generates a strongly continuous semigroup etL on Z, an
initial value u0 ∈ Z and F : X → Z is continuous with F (0) = 0. We say that
u : [0, T )→ X is a solution of (12) if u ∈ C([0, T ), X) and

u(t) = etLu0 +

∫ t

0
e(t−s)LF (u(s))ds, 0 ≤ t ≤ T.

We say that u is a maximal solution of (12) if u : [0, T )→ X is a solution and

T = sup
t≥0
{t : there exists a solution in C([0, t), X)}.

We define stability only for the zero solution. Stability for stationary solutions,
that is solutions that do not depend on t, and travelling solutions, that is solutions
of the form u(x, t) = φ(x − ct), can be defined as the stability of the zero solution
after a change of variable. We leave this for the examples since it makes the abstract
theory messier.

Definition 4.2. We say that the zero solution of (12) is nonlinearly stable in X if
for all ε > 0 there exists δ > 0 such that if ‖u0‖X < δ there exists a unique solution
u ∈ C([0,∞), X) of (12) such that supt ‖u(t)‖X < ε.
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Stability in this sense mean that if the solution is sufficiently close to the sta-
tionary solution then it will remain close to it at all times. With this definition if
no solutions exist or a solution exists only for finite time then this is also a case of
instability, therefore it is useful to combine an instability theorem with an existence
theorem, at least for finite time. Such a theorem exists for semilinear equations, see
Theorem 4.1. If a solution exists only for finite time then it still makes sense to say
that the zero solution is unstable, due to the last statement in Theorem 4.1. Note
that there are three choices of space above: The space for which the initial condition
is small, the space for which the solution is small and the space in which u, u0 exists.

The linearization of (12) is the problem{
ut = Lu

u(0) = u0

(13)

and the linear stability of (12) is defined by the stability of (13):

Definition 4.3. We say that the zero solution of (12) is linearly stable in X if for
all ε > 0 there exists δ > 0 such that if ‖u0‖X < δ there exists a unique solution
u ∈ C([0,∞), X) of (13) such that supt ‖u(t)‖X < ε.

Stability of a linear problem is closely related to the spectrum of the generator.
This is well known for ordinary differential equations and one can show a similar
theorem in the infinite dimensional case using semigroup theory. There are however
some complications due to the spectral mapping theorem not necessarily being true
and the fact that unbounded linear operators can have spectrum arbitrarily close to
the imaginary line without intersecting it, this is explained further in the following
sections. The purpose of this chapter is to examine when instability of the linear
problem implies instability of the nonlinear problem, or equivalently when a large
spectral bound of L implies nonlinear instability.

4.2 Well-Posedness of Semilinear Evolution Equations

In this section we prove well-posedness for semilinear equations when the semigroup
compensates for the derivatives in the nonlinear part. We only discuss existence
and uniqueness as this is the most interesting for the applications.

Theorem 4.1. Let X,Z be Banach spaces such that X ⊂ Z and there exists C1 > 0
such that ‖x‖Z ≤ C1‖x‖X for all x ∈ X. Suppose that L generates a strongly
continuous semigroup etL on X and Z, that etL maps Z into X for t > 0,∫ 1

0
‖etL‖Z→Xdt = C4 <∞.

Moreover suppose that F : X → Z with F (0) = 0 is continuous and that for all
ρ > 0 there exists C3 > 0 such that ‖F (u)−F (v)‖Z ≤ C3(ρ)‖u− v‖X for ‖u‖X < ρ
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and ‖v‖X < ρ. Then for u0 ∈ X there exists T > 0 and a unique maximal solution
of (12) in C([0, T ), X). If T <∞ then

lim
t→T
‖u(t)‖X =∞.

Remark 4.1. If we have two operators (A,D(A)) and (B,D(B)) which agree on
D(B) ⊂ D(A) and generate two strongly continuous semigroups etA and etB on Z
and X respectively, then the semigroups must agree on X. This can be proven by
examining the proof of the Hille-Yosida theorem. There the semigroups are con-
structed by limits of R(n,A). Since the resolvents of A and B agree on X and the
limits in Z and X are the same when they exist, the semigroups also agree on X.

Proof. For any ρ > 0 let ‖u0‖X < ρ and set

M = sup
t∈[0,1]

‖etL‖X→X

and r = 1 +Mρ > 1. Choose b0(ρ) ≤ 1 such that

C(b0) :=

∫ b0

0
‖esL‖Z→Xds ≤

1

C3(r)r

and let b ≤ b0. Define the closed subset E(b, r) = {u ∈ C([0, b], X) : ‖u‖C([0,b],X) ≤
r} and the map Φ : C([0, b], X)→ C([0, b], X)

Φ(u)(t) = etLu0 +

∫ t

0
e(t−s)LF (u(s))ds.

Now we wish to show that Φ maps E(b, r) into itself and is a contraction on E(b, r).
Let u ∈ E(b, r), it is clear that Φ(u) ∈ C([0, b], X). That Φ(u) ∈ E(b, r) follows
from

‖Φ(u)(t)‖X ≤ ‖etLu0‖X +

∫ t

0
‖e(t−s)L‖Z→X‖F (u(s))‖Zds

≤Mρ+ C3(r)‖u‖C([0,b],X)

∫ t

0
‖e(t−s)L‖Z→Xds

≤Mρ+ C3(r)C(b0)r ≤ r

and Φ is a contraction since

‖Φ(u)(t)− Φ(v)(t)‖X ≤
∫ t

0
‖e(t−s)L‖Z→X‖F (u(s))− F (v(s))‖Zds

≤ C3(r)‖u− v‖C([0,b],X)

∫ t

0
‖e(t−s)L‖Z→Xds

≤ C(b)C3(r)‖u− v‖C([0,b],X) < ‖u− v‖C([0,b],X).
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Thus the Banach fixed point theorem implies that for each u0 ∈ there exists a unique
solution u ∈ C([0, b], X) such that ‖u‖C([0,b],X) ≤ 1 +Mρ.

For any initial value u0 and a solution u on a closed interval [0, b] there exists an
extension of u to a maximal solution. This is because there exists a solution to the
initial value problem u0 = u(b) and these solutions can be glued together. If we have
two solutions u, v on intervals Ju, Jv respectively then u, v must agree on Ju ∩ Jv.
To see this, note that from the argument above the solutions must agree on some
small interval so if they do not agree for all time then there exists a time τ such
that u(t) = v(t) on [0, τ ] and a sequence tn ≥ τ , tn → τ such that u(tn) 6= v(tn).
However by the argument above, both u and v can be extended, and for a short
time the extensions must agree, which contradicts the existence of tn. Thus we have
shown uniqueness.

Existence of a maximal solution is now obvious as we can define it to be

u(t) = lim
n→∞

un(t)

where un is the solution on [0, bn] and bn → T .

If there exists a sequence bn → T such that supn ‖u(bn)‖X = C < ∞ then we
can choose n such that bn + b0(C) > T and by extending the solution on [0, bn] to
[0, bn + b0(C)] we get a contradiction.

4.3 Linear Stability and Instability

The following theorem explains the relation between the spectrum of L and lin-
ear stability. An important detail is that instability does not rely on the spec-
tral mapping theorem being true. The other detail is that it is not sufficient that
σ(L) ⊂ {<λ < 0} since the spectrum of L is not necessarily bounded so it can get
arbitrarily close to the line {<λ = 0} without intersecting it.

Theorem 4.2. Consider the initial value problem (1) and suppose that A generates
a strongly continuous semigroup etA. If w0(A) < 0 then the zero solution is linearly
stable and if w0(A) > 0 then the zero solution is linearly unstable. In particular,
if s(A) > 0 then the zero solution is unstable and if s(A) < 0 and etA satisfies the
spectral mapping theorem (8) then the zero solution is stable.

Proof. If w0 < 0 then there exists w < 0 and Mw ≥ 1 such that ‖T (t)‖ ≤ etwMw.
This immediately implies that ‖T (t)x‖ ≤ etwMw‖x‖ for all x ∈ X. So if δ < ε/Mw

then ‖u0‖ < δ =⇒ supt ‖u(t)‖ = supt ‖T (t)u0‖ ≤ ε.
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On the other hand, if w0 > 0, then there exists w > 0 such that supt ‖e−twT (t)‖ =
∞. Then by the uniform boundedness principle, there exists an x ∈ X with ‖x‖ = 1
such that supt ‖e−twT (t)x‖ =∞. For any δ > 0 we let u0 = xδ/2 so that ‖u0‖ < δ,
but supt ‖u(t)‖ =∞ > ε.

The last statements follows from the fact that s(A) ≤ w0 and s(A) = w0 if (8)
holds.

In fact, one can define exponential stability as the existence of a negative ex-
ponential bound. In this context the previous theorem tells us that exponential
stability implies stability. Since the stability theorem only depends on the spectral
bound and not on the spectrum itself, the condition can be weakened to a weak
spectral mapping theorem:

σ(T (t)) \ {0} = etσ(A) \ {0}, ∀t ≥ 0.

4.4 Instability in Finite Dimensions

Now we attempt to answer the question of whether linear stability implies nonlinear
stability. We first examine the finite dimensional case because it provides some
insight into the techniques used in the infinite dimensional case. It is easier in the
finite dimensions because the spectrum is discrete, consisting of a finite number of
eigenvalues. The proof of stability is left out as the focus is on instability.

Theorem 4.3. Let X = Rn. Suppose that all eigenvalues λk of L satisfy <λk < 0.
Suppose furthermore that there exists ρ > 0, D > 0 such that ‖F (u)‖ ≤ D‖u‖2 for
‖u‖ < ρ. Then L is nonlinearly stable at 0.

Theorem 4.4. Let X = Rn. Suppose there exists an eigenvalue λ of L with <λ > 0.
Suppose furthermore that there exists ρ > 0, D > 0 such that ‖F (u)‖ ≤ D‖u‖2 for
‖u‖ < ρ. Then L is nonlinearly unstable at 0.

Proof. We will use the fact that for any a > 0 there exists Ca > 0 such that

et<λ ≤ ‖etLX ‖X→X ≤ Caet(<λ+a).

This is trivial in the finite dimensional case, but will be proven to hold more generally
in Lemma 4.2. Assume that the zero solution is stable, so for all ε > 0 there exists
δ0 > 0 such that if ‖v‖ = δ < δ0 then supt ‖u(t)‖ < ε. Let ε < ρ and v be an
eigenvector corresponding to the eigenvalue λ with largest real part, <λ > 0 with
‖v‖ = δ. Let

T = sup
t
{t : ‖u(s)− esLv‖ < δ

2
es<λ ∀s ≤ t}.

Since u(0) = v we have T > 0. Moreover if T =∞ then

‖u(t)‖ ≥ ‖etLv‖ − ‖etLv − u(t)‖ ≥ δet<λ − δ

2
et<λ =

δ

2
et<λ
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for all t ≥ 0 contradicting stability. Hence 0 < T <∞ and

‖u(T )− eTLv‖ ≤
∫ T

0
‖e(T−t)L‖‖F (u(t))‖dt ≤ DCa

∫ T

0
e(T−t)(<λ+a)‖u(t)‖2dt

≤ DCa
∫ T

0
e(T−t)(<λ+a)(‖etLv‖+ ‖u(t)− etLv‖)2dt

≤ DCa
∫ T

0
e(T−t)(<λ+a)(

3δ

2
et<λ)2dt ≤ 9DCaδ

2

4
eT (<λ+a)

∫ T

0
et(<λ−a)dt

≤ 9DCaδ
2

4(<λ− a)
eT (<λ+a)(eT (<λ−a) − 1) ≤ δ2Ce2T<λ.

Hence
δ

2
eT<λ = ‖u(T )− eTLv‖ ≤ δ2Ce2T<λ

δeT<λ >
1

2C
.

Since C only depends on the constants D, <λ and a which was arbitrary we may
set ε < 1

4C and then

‖u(T )‖ ≥ ‖eTLv‖ − ‖eTLv − u(T )‖ ≥ δeT<λ − δ

2
eT<λ =

δ

2
eT<λ >

1

4C
> ε.

Remark 4.2. The proof uses two main properties of λ: The existence of an eigen-
vector satisfying etLv = et<λv and that λ is the maximal eigenvalue, so that ‖etL‖ ≤
Cae

t(<λ+a) for any a > 0.

4.5 Nonlinear Instability in Infinite Dimensions

We now attempt to generalize the previous section to the infinite dimensional case.
The first difference from the linear case is the important choice of linear space and
norm. In the following theorem, we consider two linear spaces, one large space Z
and a smaller subspace X. The nonlinear part is only defined on the subset, while
the linear part is smoothing, so that the semigroup maps Z into X for t > 0. The
linear and nonlinear part compensate for each other to get instability. The theorem
also works for X = Z in which case it reduces to the theorem in [12]. This section
closely follows the method in [14], although the assumptions are slightly different
due to an omission in the original article about the spaces on which L generates a
strongly continuous semigroup: In this theorem we assume that we have a strongly
continuous semigroup on both X and Z. Note that by Remark 4.1 we can consider
this as one semigroup. Throughout this section, we denote by etLX : X → X the
restriction of etL to X.
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Theorem 4.5. Let X,Z be Banach spaces such that X ⊂ Z and there exists C1 > 0
such that ‖x‖Z ≤ C1‖x‖X for all x ∈ X. Suppose that L generates a strongly
continuous semigroup etL on X and Z, that etL maps Z into X for t > 0, that∫ 1

0
‖etL‖Z→Xdt = C4 <∞

and r(eL) > 1 on X. Moreover suppose that F : X → Z is continuous and that
there exists ρ0 > 0, C3 > 0, α > 1 such that ‖F (u)‖Z ≤ C3‖u‖αX for ‖u‖X < ρ0.
Then the zero solution of (12) is nonlinearly unstable in X.

Remark 4.3. By the spectral inclusion theorem Theorem 3.8 we may strengthen the
assumption on the spectrum to s(L) > 0, which is in most cases an easier condition
to prove.

In infinite dimensions our λ is no longer necessarily an eigenvalue, so there might
not be an eigenvector. However λ lies on the boundary of the spectrum, so there
exists an approximate eigenvector. The purpose of the following lemma is to give,
for each integer m, an approximate eigenvector of emL. This allows the idea to fix an
integer time, T ∗, at which we expect the linear solution to be large, yet close enough
to the nonlinear solution that we can say that the nonlinear solution is large. Hence
in the nonlinear case we have a different approximate eigenvector at every integer
time. This is a crucial difference from the linear case where the same eigenvector
was used for all times.

Lemma 4.1. Let µ ∈ ∂σ(eLX) with |µ| = r(eLX) and write µ = eλ. For all γ > 0 and
all positive integers m there exists v ∈ X with ‖v‖X = 1 such that

‖(emL − emλ)v‖X ≤ γ
‖etLv‖X ≤ 2Ket<λ

for all 0 < t ≤ m. Here K = sup{‖esL‖X→X : s ∈ [0, 1]}.

Proof. By Lemma 2.3 and Lemma 2.4 there exists a sequence vn ∈ X with ‖vn‖X = 1
and (eλ − eL)vn → 0 in X. It follows that

(emL − emλ)vn =
m−1∑
j=0

ejLe(m−1−j)λ(eL − eλ)vn → 0 as n→∞,

so we can choose n large enough that v := vn satisfies ‖(emL − emλ)v‖X ≤ γ and
‖(ejL − ejλ)v‖X < 1 for 0 ≤ j ≤ m. For t ≤ m, let j be the integer part of t, then

‖etLv‖X ≤ ‖ejLv‖X‖e(t−j)L‖X→X ≤ K(1 + ‖ejλv‖X) ≤ 2Ket<λ

since et<λ ≥ 1.
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Lemma 4.2. Let µ ∈ ∂σ(eLX) with |µ| = r(eLX) and write µ = eλ. ∀a > 0 there
exists Ca such that

et<λ ≤ ‖etLX ‖X→X ≤ Caet(<λ+a)

for all t ≥ 0.

Proof. Since r(eL) = e<λ we have the spectral bound w0 = <λ by Theorem 3.7.
This implies that for every a there exists Ca such that

‖etLX ‖X→X ≤ Caet(<λ+a).

Since
‖emL‖1/mX → e<λ

we can find Sa such that
e<λ−a ≤ ‖emL‖1/mX

for integers m ≥ Sa. For t > Sa let m be the integer part of t and write

K‖etL‖X ≥ ‖e(m+1)L‖X ≥ e(m+1)(<λ−a) ≥ et(<λ−a).

Now for any t > 0 let m be an integer such that mt > Sa. Then

‖etL‖X ≥ ‖emtL‖1/mX ≥ K−1/met(<λ−a) → et(<λ−a), as m→∞.

Now we can simply let a→ 0.

Proof of theorem. Suppose that the the zero solution is stable. If we pick ε <
min(ρ02 ,

1
4k ) where k will be chosen later then there exists δ0 > 0 such that if

‖v‖X = δ < δ0 then there exists a unique solution u such that supt ‖u(t)‖X < ε,
u(0) = v. Let µ ∈ ∂σ(eLX) with |µ| = r(eLX). We first choose T∗ such that

1

k
< δeT

∗<λ ≤ |µ|
k
.

By Lemma 4.1 we can then choose v with ‖v‖X = δ such that

‖(eT ∗L − eT ∗λ)v‖X ≤
‖v‖X

4k
,

‖etLv‖X < 2Ket<λ‖v‖X
for t ≤ T ∗. Let

T = sup
t
{t : ‖u(s)− esLv‖X <

δ

2|µ|
es<λ ∀s ≤ t}.

Clearly, T > 0. The idea of the following computation is this: At the point T
the difference between the linear and nonlinear solution depends linearly on δ, but
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we now show that this implies that it will depend linearly on δα. Thus δeT<λ is
bounded below by some constant, as in the finite dimensional case. However, in the
infinite dimensional case there is no eigenvector for the time T , instead we have to
choose T ∗ so that δeT

∗<λ is smaller than this constant. Then T > T ∗ and hence T ∗

is a time for which there exists an approximate eigenvector and the linear solution
is close to the nonlinear solution. For t ≤ min(T, T ∗) and t ≥ 1 we have

‖u(t)− etLv‖X ≤
∫ t

0
‖e(t−s)L‖Z→X‖F (u(s))‖Zds ≤ C3

∫ t

0
‖e(t−s)L‖Z→X‖u(s)‖αXds

≤ C3

∫ t

0
‖e(t−s)L‖Z→X(‖esLv‖X + ‖u(s)− esLv‖X)αds

≤ C3

∫ t

0
‖e(t−s)L‖Z→X(2Kes<λδ +

δ

2|µ|
es<λ)αds

≤ C3δ
α(2K +

1

2|µ|
)α
∫ t

0
‖e(t−s)L‖Z→Xes<λαds

≤ C3δ
α(2K +

1

2|µ|
)α

(∫ t−1

0
‖e(t−s)L‖Z→Xes<λαds+

∫ t

t−1
‖e(t−s)L‖Z→Xes<λαds

)

≤ C3δ
α(2K +

1

2|µ|
)α

(∫ t−1

0
‖e(t−s−1)L‖X→X‖eL‖Z→Xes<λαds+ C4e

t<λα

)

≤ C3Caδ
α(2K +

1

2|µ|
)α

(∫ t−1

0
e(t−s−1)(<λ+a)C5e

s<λαds+ C4e
t<λα

)

≤ C3Caδ
α(2K +

1

2|µ|
)α

(
C5e

(t−1)<λα

<λα−<λ− a
+ C4e

t<λα

)

≤ C3Caδ
α(2K +

1

2|µ|
)α

(
C5

<λα−<λ− a
+ C4

)
et<λα

≤ C3Caδ
α(2K +

1

2|µ|
)α

(
2C5

<λα−<λ
+ C4

)
et<λα

by setting a = (α − 1)<λ/2. Note that we get a smaller bound if 0 ≤ t < 1 so the
above bound holds for all t ≤ min(T, T ∗). We now choose k by setting

kα−1 = 2|µ|αC3Ca(2K +
1

2|µ|
)α

(
2C5

<λα−<λ
+ C4

)
.

If T ≤ T ∗ then

δ

2|µ|
eT<λ = ‖u(T )− eTLv‖X < δα

kα−1

2|µ|α
eTα<λ.
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Hence

(δeT<λ)α−1 >
( |µ|
k

)α−1
≥ (δeT

∗<λ)α−1 =⇒ T > T ∗

which is a contradiction. It follows that T ∗ ≤ T and also

‖u(T ∗)− eT ∗Lv‖X <
kα−1

2|µ|α
(δeT

∗<λ)α ≤ kα−1

2|µ|α
(
|µ|
k

)α =
1

2k
.

Finally, this shows that the solution is bounded below independently of δ, contra-
dicting stability:

‖u(T ∗)‖X ≥ ‖eT
∗Lv‖X − ‖u(T ∗)− eT ∗Lv‖X > ‖eT ∗λv‖X −

δ

4k
− 1

2k
>

2− δ
4k

≥ 1

4k
.

4.6 More Instability Results

In this section we collect some other results on nonlinear instability. One of the
issues with applying the theorem is that either F can not contain any derivatives
or the semigroup has to be regularizing. Another theorem exists, which demands
less of F , but which requires that there exists a spectral gap. The theorem is also
stated in terms of a strongly continuous group and not a semigroup, which means
that etL is defined for all t ∈ R.

Theorem 4.6. Let X,Z be Banach spaces such that X ⊂ Z, X is dense in Z
and there exists C1 > 0 such that ‖x‖Z ≤ C1‖x‖X for all x ∈ X. Suppose that
L generates a strongly continuous group etL on Z and that etL maps X into X for
t ∈ R. Also assume that for every t ∈ R we can write σ(etL) = σ+ ∪ σ− where
σ+ 6= ∅ and

σ+ ⊂ {z ∈ C : etM < |z| < etΛ}
σ− ⊂ {z ∈ C : etλ < |z| < etµ}

for some −∞ < λ < µ < M < Λ < ∞ and M > 0. Moreover suppose that
F : X → Z is continuous and that there exists ρ0 > 0, C3 > 0 such that ‖F (u)‖Z ≤
C3‖u‖X‖u‖Z for ‖u‖X < ρ0. Then the zero solution is nonlinearly unstable in X.

The proof is very different from the proof of Theorem 4.5, the idea is that due to
the spectral decomposition one can define spectral projections corresponding to σ+

and σ−. Then the operator can be divided into a growing part and decaying part.
The proof can be found in [5]. Another closely related theorem from [5] requires the
existence of an eigenvalue close to the spectral radius.
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Theorem 4.7. Let X,Z be Banach spaces such that X ⊂ Z, X is dense in Z
and there exists C1 > 0 such that ‖x‖Z ≤ C1‖x‖X for all x ∈ X. Suppose that
L generates a strongly continuous group etL on Z and that etL maps X into X for
t ∈ R. Moreover suppose that F : X → Z is continuous and that there exists ρ0 > 0,
C3 > 0 and 0 < α ≤ 1 such that ‖F (u)‖Z ≤ C3‖u‖1−αX ‖u‖1+α

Z for ‖u‖X < ρ0. Also
assume that there exists C4 > 0, C5 > 0, v ∈ X and

λ >
w0

1 + α

such that
C4e

tλ‖v‖Z ≤ ‖etLv‖Z ≤ C5e
tλ‖v‖Z .

Then the zero solution is nonlinearly unstable in X.

For analytic semigroups we have the following theorem on instability in the frac-
tional spaces Xα. These abstract spaces can be related to the regular Sobolev spaces
using an embedding theorem or, as in the example below, they can be determined
explicitly. A proof can be found in [6], corollary 5.1.6.

Theorem 4.8. Let X be Banach space and L : D(L) ⊂ X → X be a sectorial
operator. Let 0 < α < 1, p > 1, u0 be a stationary solution of (12) and suppose
that F (u0 +u) = F (u0) +Bu+G(u) for some bounded linear map B : Xα → X and
‖G(u)‖ = O(‖u‖pα). Moreover suppose that F : Xα → X is continuous and that there
exists ρ0 > 0, C3 > 0 such that ‖F (x) − F (y)‖ ≤ C3‖x − y‖α for ‖x‖α, ‖y‖α < ρ0.
Finally assume σ(L+B) ∩ {<λ > 0} is nonempty. Then the zero solution of

ut = (L+B)u+G(u)

is nonlinearly unstable in Xα.
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5 The Kuramoto-Sivashinsky Equation

5.1 Instability of Constant Solutions

The Kuramoto-Sivashinsky equation

ut = −uxxxx − uxx − uux. (14)

was derived independently by Kuramoto [7] and Sivashinsky [13] in the context of
reaction-diffusion equations and laminar flame fronts respectively. The equation has
gained much interest due to its many applications and its chaotic behaviour. The
instabilities we study are examples of such behaviour. It is clear that any constant
function φ = b is a solution to (14). In this section we show that they are all unstable.
If we linearize (14) around the constant solution by writing w(x, t) = u(x, t)− b we
get the equation

wt = −wxxxx − wxx − bwx − wwx (15)

As expected we get a differential equation with constant coefficients so that we can
apply Fourier transform methods.

Theorem 5.1. If φ = b ∈ R is a constant solution of (14) then the zero solution of
(15) is nonlinearly unstable.

Write

wt = L0w + F (w),

L0 = −∂4
x − ∂2

x − b∂x,
F (w) = −wxw.

We will apply Theorem 4.5 with Z = L2 and X = H1. We deal with the nonlinear
term first and show that it behaves well close to 0. Note that we only need the
second estimate to use Theorem 4.5, but we need the first estimate to show well
posedness with Theorem 4.1.

Lemma 5.1. The nonlinear part of (17), F (w) = −wwx, is continuous from X to
Z and satisfies

‖F (w1)− F (w2)‖L2 ≤ C(ρ)‖w1 − w2‖2H1 ,

‖F (w1)‖L2 ≤ C(ρ)‖w1‖2H1 .

for all w1, w2 ∈ X with ‖w1‖H1 ≤ ρ, ‖w2‖H1 ≤ ρ.

Proof. The first estimate follows from Theorem 2.2 with the computation

‖F (w1)− F (w2)‖L2 = ‖w1w
′
1 − w2w

′
2‖L2 ≤ ‖w1w

′
1 − w1w

′
2‖L2 + ‖w1w

′
2 − w2w

′
2‖L2

≤ ‖w1‖H1‖w′1 − w′2‖L2 + ‖w2‖H1‖w1 − w2‖L2 ≤ C(ρ)‖w1 − w2‖2H1 .

This also shows continuity. The second estimate follows from the first by letting
w2 = 0.
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The next lemma shows that L0 generates a strongly continuous semigroup on
L2 and H1 and gives the proper estimate so that we can apply Theorem 4.5. The
constant coefficients are easily handled using the Fourier transform.

Lemma 5.2. The linear operator (L0, D(L0) = Hs+4) generates a strongly contin-
uous semigroup etL0 on Hs, s ≥ 0. The semigroup etL0 maps L2 into H1 for t > 0
and satisfies

‖etL0‖Hs→Hs ≤ e
t
4 , s ∈ R, t ≥ 0,

‖etL0‖L2→H1 ≤ 4t−
1
4 , 0 < t ≤ 1.

Figure 2: The curve defined by the symbol of L0 for b 6= 0. If b = 0 the curve is just
the real line with h(ξ) ≤ 1/4.

Proof. Let h(ξ) = −ξ4 + ξ2 − ibξ, shown in Figure 2, and define

etL0u0 := F−1(eth(·)û0).
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which maps Hs into Hs since, by the Fourier characterisation of Hs,

‖etL0u0‖2Hs =

∫ ∞
−∞

(1 + ξ2)s|êtL0u0|2dξ =

∫ ∞
−∞

(1 + ξ2)s|e−t(ξ4−ξ2+ibξ)û0|2dξ

≤ sup
ξ∈R

e−2t(ξ4−ξ2)

∫ ∞
−∞

(1 + ξ2)s|û0|2dξ ≤ e
t
2 ‖u0‖2Hs

which also proves the first inequality. To show that it defines a strongly continuous
semigroup, note that (2) and (3) are obvious and (4) follows from

‖etL0u0 − u0‖Hs = ‖(1 + (·)2)
s
2 (eth(·)û0 − û0)‖L2 → 0

by the dominated convergence theorem together with the estimate eth ≤ et/4 which
is bounded for small t. Now let u0 ∈ Hs+4, then (1 + (·)2)

s
2hû0 ∈ L2 and we have

the estimate ∣∣∣ethû0 − û0

t

∣∣∣ ≤ |hethu0|

which is uniformly bounded by |hu0| close to t = 0. The next limit now follows from
another application of the dominated convergence theorem:∥∥∥etL0u0 − u0

t
− L0u0

∥∥∥
Hs

=
∥∥∥(1 + (·)2)

s
2 (
eth(·)û0 − û0

t
− hû0)

∥∥∥
L2
→ 0.

This shows that L0 is the generator of etL0 . To prove the second inequality we again
use the Fourier characterization, but estimate differently: We move one power of
the 1 + ξ2 out and instead get the supremum over

f(ξ) = (1 + ξ2)e−2t(ξ4−ξ2)

which can be shown to satisfy

f(ξ) ≤
(3

2
+
t−

1
2

2

)
e
t
2 .

Thus

‖etL0u0‖H1 ≤
(3

2
+
t−

1
2

2

) 1
2
e
t
4 ‖u0‖L2 ≤ 4t−

1
4

for 0 < t ≤ 1.

It is also clear that σ(L0) on H1 contains {−ξ4 + ξ2 − ibξ} and thus meets
the right half plane. Since all conditions in Theorem 4.5 are satisfied we have
proved Theorem 5.1. It should be noted that the lemmas also show that the initial
value problem has a unique solution in C([0, T ), H1) for any initial value in H1 by
Theorem 4.1.
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5.2 Instability of Heteroclinic Solutions

If we look for travelling solutions, u(x, t) = φ(x− ct) we find that it is equivalent to
φ satisfying the ordinary differential equation

φ′′′ + φ′ +
1

2
(φ− c)2 = k (16)

for some constant k ∈ R. In the case that k = 1 this equation has two fixed points at
b± = c∓

√
2. The existence of both periodic solutions and heteroclinic solutions of

(16) with k = 1 has been proven in [15]. We will focus on the heteroclinic solutions,
satisfying limx→±∞ φ(x) = b±. If we linearize (14) around a travelling solution, by
writing w(x, t) = u(x, t) − φ(x − ct) and also changing variables y = x − ct we get
the equation

wt = −wyyyy − wyy + cwy − φwy − φ′w − wwy (17)

for which w = 0 is a solution corresponding to the travelling solution of (14).
We divide the linear part into two parts, one with constant coefficients and one
perturbation. Write

wt = Lw + F (w) = L0w − (φ− b+)∂yw − φ′w + F (w)

L0 = −∂4
y − ∂2

y + (c− b+)∂y

F (w) = −wyw.

We now claim that under some conditions on φ the zero solution of (17) is nonlinearly
unstable on H1. To prove this we will again apply Theorem 4.5 with X = H1 and
Z = L2. First we specify exactly which conditions on φ are necessary. These
conditions are satisfied by the heteroclinic solutions found in [15], but since they
conjectured the existence of infinitely many such solutions we show the nonlinear
instability of all of them, should they exist.

Theorem 5.2. If φ ∈ C∞ is a solution of (16) such that b± = limx→±∞ φ(x) exists,
φ′ ∈ L2, φ′′ ∈ L2, φ− b+ ∈ L2 then the zero solution of (17) is nonlinearly unstable.

The above assumptions on φ imply that φ(k) ∈ L2 and φ(k)(x)→ 0 as x→ ±∞.
This can be seen by differentiating (16) and seeing that φ(4) ∈ L2. Then φ(3) ∈ L2

since both φ(2) ∈ L2 and φ(4) ∈ L2 by a Fourier transform argument. Although
the other derivatives are not important they can be shown to also be in L2 by an
induction argument. The nonlinear term is the same as the one for the constant
solution so Lemma 5.1 applies in this case as well. Since L0 is of the same form as
for the constant solutions, Lemma 5.2 holds for the part with constant coefficients.
This is the part which we expect will determine the spectrum since the coefficients
of the other part has been chosen so that they are small. We have now shown that
the main part generates a strongly continuous semigroup on both L2 and H1, to
show that it holds for L we use the perturbation result Theorem 3.5.
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Lemma 5.3. Let B0 = −(φ−b+)∂y−φ′, the perturbation of L0. Then L = L0 +B0

generates a strongly continuous semigroup on both L2 and H1.

Proof. For some γ > sup (−φ′)/2, let B = B0 − γ on the set D(B) = D(A) = H4.
The following computation shows that B is dissipative on L2:

(Bu, u) =

∫
−(φ− b+)∂y

u2

2
− φ′u2 − γu2dy =

∫
φ′
u2

2
− φ′u2 − γu2dy ≤ 0.

From the previous lemma we have that L1 := L0 −w generates a contraction semi-
group on L2 if w ≥ 1

4 . We now show that B is L1-bounded with L1-bound equal to
0.

‖Bu‖L2 ≤ ‖φ− b+‖L∞‖∂yu‖L2 + (‖φ′‖L∞ + γ)‖u‖L2

The second term is already of the correct form and the first term can be estimated
using Young’s inequality with ε:

‖∂yu‖2L2 =

∫
ξ2|û|2dy ≤ 3

4ε1/3

∫
|û|2dx+

ε

4

∫
ξ8|û|2dy

≤ 3

4ε1/3

∫
|û|2dy + εC

∫
(1 + |h(ξ)− w|2)|û|2dy

= (
3

4ε1/3
+ Cε)‖u‖2L2 + εC‖(L0 − w)u‖2L2 .

The fact that L−w− γ generates a contraction semigroup on L2 now follows from
Theorem 3.5 and then L also generates a strongly continuous semigroup on L2.
To show that it also holds on H1 we first show that B is dissipative on H1:

(Bu, u)H1 = (∂yBu, ∂yu) + (Bu, u)

= −
∫ (

φ′(∂yu)2 + (φ− b+)∂2
yu∂yu+ φ′′u∂yu+ φ′(∂yu)2 + γ(∂yu)2dy

)
−
∫ (φ′

2
+ γ
)
u2dy

= −
∫

(γ + 2φ′)(∂yu)2 + (φ− b+)∂y
(∂yu)2

2
+ φ′′∂y

u2

2
dx−

∫
(
φ′

2
+ γ)u2dy

= −
∫

(γ +
3

2
φ′)(∂yu)2dy −

∫
(
φ′ + φ′′

2
+ γ)u2dy.

From this it is clear that we can choose γ large enough so that B is dissipative on
H1. L1 = L0 −w is still a contraction so we must show that B is L1-bounded with
L1-bound equal to 0 in H1. The estimate on L2 is the same as above, although with
a different γ, so it remains to estimate the derivative:

‖∂yBu‖L2 ≤ ‖φ′′‖L∞‖u‖L2 + (‖2φ′‖L∞ + γ)‖∂yu‖L2 + ‖φ− b+‖L∞‖∂2
yu‖L2 .
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The first term is again of the correct form, the second has already been estimated
above, so only the last term remains:

‖∂2
yu‖2L2 =

∫
ξ4|û|2dx ≤ 1

4ε

∫
|û|2dx+ ε

∫
ξ8|û|2dx

≤ 1

4ε

∫
|û|2dx+ εC

∫
(1 + |h(ξ)− w|2)|û|2dx

= (
1

4ε
+ Cε)‖u‖2L2 + εC‖(L0 − w)u‖2L2 .

Another application of Theorem 3.5 gives that L generates a strongly continuous
semigroup on H1.

The following lemma is a quick generalisation of Grönwall’s inequality which is
very useful for parabolic equations.

Lemma 5.4. Let 0 ≤ α < 1, 0 ≤ β < 1
2 , a > 0, b > 0 and 0 < T <∞. Then there

exists an M > 0 such that for any integrable f : [0, T ]→ R satisfying

0 ≤ f(t) ≤ at−α + b

∫ t

0
(t− s)−βf(s)ds, 0 < t ≤ T

we have
f(t) ≤ aMt−α, 0 < t ≤ T.

Proof. Iterate the inequality and change the order of integration to get

f(t) ≤ at−α + b

∫ t

0
(t− s)−βf(s)ds

≤ at−α + ab

∫ t

0
(t− s)−βs−αds+ b2

∫ t

0
(t− s)−β

∫ s

0
(s− r)−βf(r)drds

= at−α + t1−β−αab

∫ 1

0
(1− x)−βx−αdx+ b2

∫ t

0
f(r)

∫ t

r
(t− s)−β(s− r)−βdsdr

= at−α + t1−β−αab

∫ 1

0
(1− x)−βx−αdx

+ b2
∫ t

0
f(r)(t− r)1−2β

∫ 1

0
(1− x)−βx−βdxdr

≤ aCt−α +D

∫ t

0
f(r)dr.

The lemma now follows from Grönwall’s inequality

Now we apply the previous lemma to show that the norm of the semigroup from
L2 to H1 does not grow to fast close to t = 0.
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Lemma 5.5. The strongly continuous semigroup etL maps L2 into H1 for t > 0
and satisfies

‖etL‖L2→H1 ≤ Dt−
1
4 , 0 < t ≤ 1.

Proof. By Theorem 3.5

u = etLu0 = etL0u0 −
∫ t

0
e(t−s)L0((φ− b+)∂yu+ φ′u)ds

so that we can estimate the semigroup

‖etLu0‖H1 ≤ ‖etL0u0‖H1 +

∫ t

0
‖e(t−s)L0((φ− b+)∂yu+ φ′u)‖H1ds

≤ ‖etL0‖L2→H1‖u0‖L2

+

∫ t

0
‖e(t−s)L0‖L2→H1(‖φ− b+‖L∞‖∂yu‖L2 + ‖φ′‖L2‖u‖L∞)ds

≤ ‖etL0‖L2→H1‖u0‖L2

+ (‖φ− b+‖L∞ + ‖φ′‖L2)

∫ t

0
‖e(t−s)L0‖L2→H1‖u‖H1ds

≤ 4t−
1
4 ‖u0‖L2 + 4(‖φ− b+‖L∞ + ‖φ′‖L2)

∫ t

0
(t− s)−

1
4 ‖u‖H1ds.

Applying Lemma 5.4 with T = 1, α = 1/4 and a = 4‖u0‖L2 finishes the proof of the
inequality and then clearly etL maps L2 into H1.

Finally, we show that the spectrum is not changed by too much when going from
L0 to L so that it still contains the spectrum of L0.

Lemma 5.6. The spectrum of L on H1 contains {−ξ4 + ξ2 + i(c− b+)ξ, ξ ∈ C}.

Proof. Let λ = P (ξ) = −ξ4 + ξ2 + i(c − b+)ξ. We will construct an approximate
eigenvector corresponding to λ. Let ζ 6= 0 be any smooth function with compact
suppport in R+ and set

ζn(x) = cn
eiξxζ(x/n)√

n

where cn > 0 is chosen so that ‖ζn‖H1 = 1. The sequence cn is bounded from above
and below:

cn =

√
n

‖ζ(·/n)‖H1

≤
√
n

‖ζ(·/n)‖L2

=
1

‖ζ‖L2

,

cn ≥ C
n

3
2

n‖ζ(·/n)‖L2 + ‖ζ ′(·/n)‖L2

≥ C 1

‖ζ(·)‖H1

.
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We wish to show that ‖(L− λ)ζn‖H1 → 0. The first part L0 − λ has only constant
coefficients and can estimated by explicitly computing the derivative

(L0 − λ)ζn = cne
iξx

4∑
k=1

P k(ξ)ζ
(k)
0 (x/n)

k!n1/2+k

∂y(L0 − λ)ζn = cne
iξx

4∑
k=1

P k(ξ)ζ(k+1)(x/n)

k!n3/2+k
+ iξcne

iξx
4∑

k=1

P (k)(ξ)ζ(k)(x/n)

k!n1/2+k

‖(L0−λ)ζn‖H1 ≤ (1+|ξ|)cn
4∑

k=1

|P (k)(ξ)|‖ζ(k)(·/n)‖L2

k!n1/2+k
+cn

4∑
k=1

|P (k)(ξ)|‖ζ(k+1)(·/n)‖L2

k!n3/2+k
→ 0

since cn/n→ 0. The next part is estimated by using that φ− b+ is small in L2 for
positive x where ζn has support:

‖(φ− b+)∂yζn‖L2 ≤ ‖∂yζn‖L∞‖φ− b+‖L2 → 0

since ‖ζ(k)
n ‖L∞ → 0 for any k ≥ 0. The derivative is estimated similarly:

‖∂y((φ− b+)∂yζn)‖L2 ≤ ‖φ′∂yζn‖L2 + ‖(φ− b+)∂2
yζn‖L2

≤ ‖∂yζn‖L∞‖φ′‖L2 + ‖∂2
yζn‖L∞‖χ[0,∞)(φ− b+)‖L2 → 0

These two estimates now gives that

‖(φ− b+)∂yζn‖H1 → 0.

Finally the last part is estimated by

‖φ′ζn‖L2 ≤ ‖φ′‖L2‖ζn‖L∞ → 0

and the derivative of it by

‖∂y(φ′ζn)‖L2 ≤ ‖φ′′ζn‖L2 + ‖φ′∂yζn‖L2 ≤ ‖φ′′‖L2‖ζn‖L∞ + ‖φ′‖L2‖∂yζn‖L∞ → 0

which gives that
‖φ′ζn‖H1 → 0.

We have shown that the equation satisfies all the conditions of Theorem 4.5
and thus Theorem 5.2 is proven. Again we remark that we have also showed all
conditions of Theorem 4.1 so that the equation around the heteroclinic solution is
well-posed.
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5.3 Instability by Analyticity

In this section we provide an alternative method of proving instability using ana-
lyticity. Since the generator in the Kuramoto-Sivashinsky equation is sectorial the
semigroup is analytic and one can apply the instability result for analytic semi-
groups, Theorem 4.8. Although this will give instability in an abstract space, we
are able to identify the space explicitly if we consider only the part with constant
coefficients. We deal with the heteroclinic solution directly after changing variable
y = x− ct and write

wt = L0w + F (w),

L0 = −∂4
y − ∂2

y + c∂y,

F (w) = −wyw.

To begin we show that L0 generates an analytic semigroup.

Lemma 5.7. The linear operator (L0, D(L0) = H4) generates an analytic semigroup
etL0 on L2.

Proof. Let a > 1/4 and choose δ > 0 such that the resolvent of L0 contains the
sector Σπ/2+δ,a. This is possible since the spectrum of L0 is given by the curve
−ξ4 + ξ2 + icξ so

R(λ, L0)f = F−1
(F(f)

λ− h

)
.

defines an inverse from L2 to H4 ⊂ L2. Furthermore for 0 < ε < δ and λ ∈
Σπ/2+δ−ε,a

‖R(λ, L0)f‖L2 = ‖F(R(λ, L0)f)‖L2 ≤
∥∥∥ 1

λ− h

∥∥∥
L∞
‖F(f)‖L2 ≤

Mε

|λ− a|
‖f‖L2

which shows that L0 generates an analytic semigroup on L2.

Lemma 5.8. If we consider etL0 on L2 with D(L0) = H4 then Xα = H4α for
0 < α < 1.

Proof. Choose a < −1/4 so that L1 = L0+a has negative spectrum and set h̃ = h+a
with h(ξ) = −ξ4 + ξ2 + icξ. The computation

F((−L1)−αu0) =
1

Γ(α)

∫ ∞
0

tα−1eth̃(ξ)û0(ξ)dt =
h̃(ξ)

−α
û0(ξ)

Γ(α)

∫ ∞
0

sα−1esds

= h̃(ξ)
−α
û0(ξ)

shows that (−L1)α = F−1(h̃αû0) and the rest follows from the fact that the Fourier
transform is an isometry on L2 and the estimate

C(1 + ξ2)2α ≤ h̃(ξ)α ≤ C ′(1 + ξ2)2α.
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Indeed, the norm can be estimated from above by

‖(−L1)αu0‖L2 ≤ C‖hαû0‖L2 ≤ C‖(1 + ξ2)2αû0‖L2 = C‖u0‖H4α

and similarly from below.

We will now consider the case α = 1/4 so that Xα = H1.

Lemma 5.9. The nonlinear part F (w) is locally lipschitz from H1 to L2 and can
be written as

F (φ+ w) = F (φ) +Bw + g(w)

where B is a bounded linear map from H1 to L2 and ‖g(w)‖L2 = O(‖w‖2H1).

Proof. A simple computation shows that

F (φ+ w) = F (φ)− (φ∂y + φ′)w − ww′.

If B = −(φ∂y + φ′) then clearly B is bounded from Xα = H1 to L2. Moreover, if
g(w) = −ww′ then ‖g(w)‖L2 = O(‖w‖2H1) is just a restatement of Lemma 5.1. That
F is locally Lipschitz was also shown in Lemma 5.1.

Lemma 5.10. The spectrum of L0+B on L2 contains {−ξ4+ξ2+i(c−b+)ξ, ξ ∈ C}.

Proof. The same construction as in Lemma 5.6 yields an approximate eigenvector
on L2 corresponding to λ = −ξ4 + ξ2 + i(c− b+)ξ.

Thus we have showed that all conditions of Theorem 4.8 are satisfied and the
zero solution is nonlinearly unstable.

Remark 5.1. We could also have used the perturbation theorem Theorem 3.6 to
show that L0 + B is analytic and then apply Theorem 4.8 directly on the linearized
equation, but this would also have made it harder to identify Xα.

In the following section we consider an example where the semigroup is not
analytic and this technique fails, but we can still use Theorem 4.5 as in the previous
section.
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6 The Lugiato-Lefever Equation

6.1 Instability of Constant Solutions

The Lugiato-Lefever equation is a nonlinear wave equation that shows up in optics.
The equation is used to model light in optical cavities when applying an electric
field. It was first derived by Lugiato and Lefever [10] and can be written as

ut = −iβ∂2
xu− (1 + iα)u+ F + iu|u|2 (18)

for some real numbers α, β and F > 0. We are of course looking for a function u that
is complex-valued, but we will consider the problem as a system of equations for the
real and imaginary part. By rescaling the equation with ũ(x, t) := u(±x/

√
|β|, t),

we may assume that |β| = 1, which means that there are two cases, β = −1 and
β = 1. To begin, we attempt to find the simplest kind of stationary solutions,
constant solutions. Then we get an algebraic equation

(1 + iα)u− iu|u|2 = F.

Multiplying with u we get the equation

(1 + iα)|u|2 − i|u|4 = Fu. (19)

Write u = ur + iui and define ρ = |u|2. Then by taking real and imaginary parts,
and taking the absolute value squared, we see that (19) is equivalent to the system
of equations

ur =
ρ

F

ui =
ρ(ρ− α)

F
ρ((ρ− α)2 + 1) = F 2.

Thus all the constant solutions are determined by the solutions of the last equation.
If α ≤

√
3 then the left hand side is strictly increasing in ρ and hence for each F > 0

there exists exactly one constant solution. If α >
√

3 then there exists two values
F−(ρ−) and F+(ρ+), F−(ρ−) < F+(ρ+), the local minima and maxima, respectively,
attained at the points ρ− and ρ+. There is one solution for F > F+ or F < F−,
two solutions for F = F± and three solutions for F− < F < F+. The solutions for
different ρ as well as their stability properties are shown in Figure 3 and Figure 4.
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To linearize (18) around a constant solution u∗ write u = u∗ + v. Then we get

∂tv = −iβ∂2
xv − (1 + iα)(u∗ + v) + F + i(u∗ + v)|u∗ + v|2

= −iβ∂2
xv − (1 + iα)v + F − (1 + iα)u∗ + iu∗(|u∗|2 + |v|2 + 2<u∗v)

+ iv(|u∗|2 + |v|2 + 2<u∗v)

= −iβ∂2
xv − (1 + iα)v + iu∗(|v|2 + 2<u∗v) + iv(|u∗|2 + |v|2 + 2<u∗v)

= −iβ∂2
xv − (1 + iα)v + iu∗2<u∗v + iv|u∗|2 + iv|v|2 + 2iv<u∗v + iu∗|v|2

= −iβ∂2
xv − (1 + iα)v + iu∗2u∗rvr + iu∗2u∗i vi + iv|u∗|2 + iv|v|2 + 2iv<u∗v

+ iu∗|v|2

= −iβ∂2
xv − (1 + iα)v + iu∗2u∗rvr + iu∗2u∗i vi + iv|u∗|2 +O(|v|2)

By considering the real and imaginary parts separately the equation can be written

∂t

(
vr
vi

)
= A∗

(
vr
vi

)
+N(vr, vi)

where the linear part is

A∗ =

(
−1− 2u∗iu

∗
r β∂2

x + α− 3u∗i
2 − u∗r2

−β∂2
x − α+ 3u∗r

2 + u∗i
2 −1 + 2u∗ru

∗
i

)
and the nonlinear part

N(vr, vi) =

(
−vi(v2

r + v2
i )− 2vrviu

∗
r − 3v2

i u
∗
i − v2

ru
∗
i

vr(v
2
r + v2

i ) + 2vrviu
∗
i + 3v2

ru
∗
r + v2

i u
∗
r

)
.

Lemma 6.1. The nonlinear part N satisfies

‖N(vr, vi)‖H1×H1 ≤ C‖(vr, vi)‖2H1×H1 .

for ‖(vr, vi)‖H1×H1 < 1.

Proof. Throughout the proof, denote by C any constant possibly depending on u∗.
All the estimates follow from Theorem 2.2. Indeed, we can estimate each part
independently:

‖2vrviu∗r‖H1 ≤ C‖vr‖H1‖vi‖H1 ≤ C(‖vr‖2H1 + ‖vi‖2H1) ≤ C‖(vr, vi)‖2H1×H1

‖3v2
i u
∗
i ‖H1 ≤ C‖vi‖H1‖vi‖H1 ≤ C‖(vr, vi)‖2H1×H1

‖vi(v2
r + v2

i )‖H1 ≤ C‖vi‖H1‖(vr, vi)‖2H1×H1 ≤ C‖(vr, vi)‖2H1×H1 .

‖v2
ru
∗
i ‖H1 ≤ C‖v2

r‖H1 ≤ C‖vr‖2H1 ≤ C‖(vr, vi)‖2H1×H1 .

The other four inequalities follow by symmetry.
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For the linear part, we proceed as in [2]. In order to apply Theorem 4.5 we need
to check that A∗ generates a strongly continuous semigroup. With these definitions
it follows from a Fourier transform argument.

Lemma 6.2. (A∗, D(A∗) = Hs+2 × Hs+2) generates a strongly continuous semi-
group on Hs ×Hs, s ≥ 0.

Proof. Let

A∗(ξ) =

(
−1− 2u∗iu

∗
r −βξ2 + α− 3u∗i

2 − u∗r2

βξ2 − α+ 3u∗r
2 + u∗i

2 −1 + 2u∗ru
∗
i

)
.

For t ∈ R+ we define
etA∗u0 := F−1(etA∗(·)û0) (20)

which maps Hs ×Hs into Hs ×Hs since etA∗(ξ) is uniformly bounded in ξ for each
t ≥ 0. Indeed if λ is the largest eigenvalue of (A∗(ξ)+A∗(ξ)

T )/2, which clearly does
not depend on ξ, we have the estimate

d

dt
‖etA∗(ξ)x‖2 = (A∗(ξ)e

tA∗(ξ)x, etA∗(ξ)x) + (etA∗(ξ)x,A∗(ξ)e
tA∗(ξ)x)

= ((A∗(ξ) +A∗(ξ)
T )etA∗(ξ)x, etA∗(ξ)x) ≤ 2λ‖etA∗(ξ)x‖2.

By Grönwall’s inequality we then have

‖etA∗(ξ)‖ ≤ etλ

which proves the claim. We will show that (20) defines a strongly continuous semi-
group with generator A∗. Properties (2) and (3) are obvious. Strong continuity
follows from the uniform boundedness of the exponential close to t = 0 and the
dominated convergence theorem:

‖etA∗u0 − u0‖Hs×Hs = ‖(1 + (·)2)s/2(etA∗(·)û0 − û0)‖L2×L2 → 0, t→ 0.

To show that the generator is A∗ let u0 ∈ Hs+2. Then for every ξ ∈ R

etA∗(ξ)û0(ξ)− û0(ξ)

t
→ A∗(ξ)û0(ξ)

and F−1(A∗(·)û0) ∈ Hs ×Hs since A∗(ξ) = O(|ξ|2). We also have the bound∥∥∥etA∗(ξ) − I
t

∥∥∥ ≤ C|ξ|2
which together with the dominated convergence theorem gives that∥∥∥etA∗u0 − u0

t
−A∗u0

∥∥∥
Hs×Hs

=
∥∥∥(1 + (·)2)s/2(

etA∗(·)û0 − û0

t
−A∗(·)û0)

∥∥∥
L2×L2

→ 0

as t→ 0.
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We proceed to characterize spectral stability. The spectrum of A∗ is given by

σ(A∗) =
⋃
ξ∈R

σ(A∗(ξ)) (21)

and a simple computation shows that the spectrum of A∗(ξ) is given by the roots
of the polynomial λ2 + 2λ+ a(ξ) with

a(ξ) = ξ4 + ξ22β(2ρ− α) + α2 − 4αρ+ 3ρ2 + 1.

The roots of this polynomial are

λ = −1±
√

1− a(ξ).

From this it follows that A∗(ξ) has a positive eigenvalue if and only if a(ξ) < 0.
Combined with (21) this implies that there exists λ ∈ σ(A∗) with <λ > 0 if and
only if a(ξ) < 0 for some ξ ∈ R. The derivative of a is

a′(ξ) = 4ξ(ξ2 + β(2ρ− α)) (22)

and the derivative of F 2 is

d

dρ
F 2(ρ) = (2ρ− α)2 + 1− ρ2

which implies that the stationary points of F 2 satisfy

ρ± =
2α

3
∓
√
α2 − 3

3

if α >
√

3. Furthermore we have the identities

F 2
± = F 2(ρ±) =

2α3

27
+

2α

3
±
√
α2 − 3

27
(2α2 − 6)

and
F 2

1 = F 2(1) = α2 − 2α+ 2.

Consider first the equation with β = −1. From (22) it follows that if 2ρ − α > 0
then the minimum of a is 1−ρ2 and if 2ρ−α ≤ 0 the minimum is (2ρ−α)2 +1−ρ2.
Note that for α ≤ 2 this means that the solution is spectrally stable if and only if
ρ ≤ 1. In the case α ≤

√
3 there exists exactly one constant solution for each F .

For this solution we have spectral stability if and only if ρ ≤ 1. In the second case√
3 < α < 7/4 we have one, two or three solutions, depending on F , all of which are

spectrally stable if and only if ρ ≤ 1. Since F 2
1 < F 2

− we have spectral instability for
each F such that there exists more than one solution. For α = 7/4 we have F 2

− = F 2
1

and so when F = F− there is one stable solution and one unstable. Otherwise the
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situation is the same as the one above. For 7/4 < α < 2 we have F 2
− < F 2

1 < F 2
+ so

for F with F 2
− ≤ F 2 ≤ F 2

1 we have spectral stability for the smallest solution, but
not the other. For α ≥ 2 we have stability if and only if ρ ≤ ρ+. This can be seen by
noting that ρ+ < α/2 < ρ−. Then for ρ > α/2 instability is trivial and for ρ ≤ α/2
we have the minimum (2ρ−α)2 +1−ρ2 = F 2′(ρ) which implies stability if and only
if ρ ≤ ρ+ since this is the interval for which F 2 is increasing. This means that we
always have stability for the smallest solution, but not the other if F 2 ≤ F 2

+. The
situation is summarized in Figure 3.

The case β = 1 is opposite. If 2ρ−α > 0 then the minimum of a is (2ρ−α)2+1−ρ2

and if 2ρ−α ≤ 0 the minimum is 1−ρ2. For α ≤
√

3 the only solution is stable. For√
3 < α ≤ 2 we have instability if and only if ρ+ < ρ < ρ−. To see this, note that

2ρ+ > α so if ρ > ρ+ then the minimum is (2ρ− α)2 + 1− ρ2 which is equal to F 2′

and is therefore negative if and only if ρ+ < ρ < ρ−. If on the other hand ρ ≤ ρ+

then the minimum is positive. Finally, if α > 2 then we have instability if and only
if 1 < ρ < ρ−. Indeed if ρ ≤ 1 the minimum is 1 − ρ2 ≥ 0 and if 1 < ρ < α/2
the minimum is 1 − ρ2 < 0. The case 2ρ ≥ α is the same as for α < 2. The two
important cases are shown in Figure 4.

Whenever the constant solution is spectrally unstable, then Theorem 4.5 implies
that the solution also is nonlinearly unstable in H1 × H1, due to Lemma 6.1 and
Lemma 6.2.

6.2 Homoclinic and Periodic Solutions

For α < 2 and ρ ≤ 1, the Lugiato-Lefever equations also has homoclinic solutions,
see [11]. Such a homoclinic solution converges to a stable constant solution, which
does not necessarily mean that the homoclinic solution is stable, but the same
method as for the Kuramoto-Sivashinsky equation does not apply since it relies on
splitting the operator in two parts, one corresponding to the constant solution and
one corresponding to the perturbation. Periodic solutions of the Lugiato-Lefever
are discussed in both [1] and [2].
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Figure 3: The existence and stability properties of constant solutions for β = −1.
The dotted parts represent unstable solutions. The edge cases are left out, but can
be derived from continuity. Note that this is a only a part of the entire polynomial
and the graphs do not start at the origin.
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Figure 4: The existence and stability properties of constant solutions for β = 1.
The dotted parts represent unstable solutions. The edge cases are left out, but can
be derived from continuity. Note that this is a only a part of the entire polynomial
and the graphs do not start at the origin.
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