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Steady ideal flows with vorticity in toroidal

domains and periodic cylinders

Gustav Jillbratt

Abstract

In a paper from 1970, Lortz constructs rotational solutions to the steady Euler
equation in toroidal domains using a fixed point method. We shall review this
method and rewrite it using Banach’s fixed point theorem. Using the ideas
presented we shall also consider rotational flows in unbounded cylinder type
domains, with a given periodicity condition. This is motivated in part by the
study of three dimensional, doubly periodic water waves.

Populärvetenskaplig sammanfattning

För att matematiskt modellera beteendet av fluider används de välkända Navier-
Stokes ekvationer. Dessa har visat sig vara relativt sv̊ara att studera, och är ett
aktivt forskningsomr̊ade i dagsläget. I denna uppsats studerar vi en förenklad
version av Navier-Stokes ekvationer i tre rumsdimensioner, nämligen Eulers ek-
vationer. Vi tittar p̊a det fallet där man antar att fluidens hastighet och tryck
är tidsoberoende, tillsammans med antagandet att fluiden saknar viskositet och
är inkompressibel. Fluidens vorticitet är ett m̊att p̊a dess lokala rotation. I det
fall där fluiden saknar vorticitet, och omr̊adet där fluiden rör sig är tillräckligt
enkelt ur en topologisk synvinkel s̊a förenklas Eulers ekvationer till Laplace ek-
vation. Om man istället kräver att vorticiteten inte är identiskt lika med noll,
eller att topologin av omr̊adet är mer komplicerad, blir saker och ting sv̊arare,
och det finns relativt f̊a resultat ang̊aende existensen av lösningar till Eulers
ekvationer i detta fall. I denna uppsats visar vi, under vissa antaganden, att
lösningar med vorticitet existerar i omr̊aden som är topologiska torusar. Eulers
ekvationer sammanfaller med ekvationerna som beskriver magnetohydrostatiska
jämviktstillst̊and. Det senare har tillämpningar inom plasmafysik och fusion-
senergi, och s̊aledes kan studiet av Eulers ekvationer vara intressant ocks̊a ur en
icke-matematisk synvinkel.
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1 Introduction

We shall consider the three-dimensional steady Euler equation, governing the
motion of an inviscid incompressible ideal fluid, given by

(u · ∇)u = −∇P,
div u = 0.

(1.1)

Here u : Ω→ R3 is interpreted as the fluid’s velocity vector field, defined in an
open set Ω in R3 in which the fluid is moving. The scalar function P : Ω→ R is
interpreted as the pressure. We note that a solution to equation (1.1) is a pair
(u, P ), as also the pressure function is unknown.

It is natural to impose boundary conditions on the solution u to the Euler
equation. We shall mainly consider flows in bounded domains, where we impose
the constraint

n · u = 0 (1.2)

on the boundary ∂Ω of Ω. Here n denotes the exterior unit normal to the
boundary, and we always assume enough regularity on the boundary for this to
make sense. The constraint (1.2) says the field u is tangential to the boundary,
which effectively means that there is no flow through the boundary of the domain
Ω.

Using the identity

(u · ∇)u = ∇
(1

2
|u|2
)
− u× curl u,

one may rewrite the Euler equation (1.1) in the form

u× ω = ∇H,
curl u = ω,

div u = 0.

(1.3)

The function H = P + 1
2 |u|

2 is known as the Bernoulli function. The curl of
the velocity field, ω = curl u, is called the vorticity field. This is a measure of
the local rotation of the fluid and it is of our interest to study the existence
of solutions to the Euler equations where the vorticity field does not vanish
identically. We shall call such a solution a rotational solution.

The starting point of this thesis is the paper [9] in which Lortz studies the
equations governing magnetohydrostatic equilibrium. These equations take the
form

j ×B = ∇p,
curl B = j,

div B = 0.

(1.4)
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Here B denotes the magnetic field, j the current density and p the hydrostatic
pressure. Equation (1.4) precisely corresponds to the steady Euler equation
(1.3). Indeed, we have the correspondence

B ↔ u,

j ↔ ω,

p↔ −H.

Magnetohydrodynamics, of which magnetohydrostatics is a part, studies the
motion and behaviour of electrically conducting fluids, for example plasmas.
This theory has many real world applications in physics and engineering, one
example being the designing of fusion reactors in nuclear power plants. An
example is the Tokamak construction, which is a toroidal shaped chamber con-
fining a plasma which fills the torus. An electric current is run through the
toroidal shaped chamber, inducing a sufficiently strong magnetic field keeping
the plasma from escaping out of the chamber. The Tokamak reactors have
been used in real world experiments involving fusion confinement, and have
succesfully produced controlled release of deuterium-tritium thermonuclear fu-
sion power. For more on this theory, and on its history and applications, one
can consult the book [10].

Starting with an irrotational flow, that is curl u=0, Lortz constructs rota-
tional solutions to equation (1.4) (and thus also to the Euler equation), with
boundary condition (1.2), in toroidal domains which have a certain type of mir-
ror symmetry with respect to a plane.

Our intention is to try to clarify some steps in the paper by Lortz, in partic-
ular to show rigorously that the solutions obtained are indeed rotational, under
suitable assumptions. We shall also rewrite the proof using Banach’s fixed point
theorem. In particular, this approach allows us to show uniqueness of the ob-
tained solution. This we do in section 2.

In section 3 we use similar ideas as in [9] to study the existence of rotational
flow in periodic cylinder type domains. The domains we consider are described
in cylindrical coordinates as

Ωε = {(r, θ, z) | 0 < r < d+ εη(θ, z) 0 ≤ θ < 2π, z ∈ R },

where d > 0 is a fixed positive number, and η a smooth function which is periodic
in θ and z. ε > 0 is a sufficiently small parameter so that d+ εη(θ, z) > 0 for all
θ and z. Thus our domains can be seen as small perturbations of an ordinary
circular cylinder of radius d.

One motivation for studying flow in domains of this type comes from the
desire to understand three dimensional doubly periodic water waves. In usual
Cartesian coordinates (x, y, z) one is interested in domains of type

Ωη = {(x, y, z) ∈ R3 | 0 < z < d+ η(x, y)},

where d > 0 is a fixed constant, and η : R2 → R is some function which is
periodic in x and y. The fluid occupying the domain Ωη has the velocity field
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u which obeys Euler’s equation (1.1) with boundary condition (1.2) on the top
and bottom boundaries of Ωη, also called the kinematic boundary condition.
One also impose the dynamic boundary condition on the top surface ∂Ωηtop =
{z = d+ η(x, y)}, given by

P = Patm − 2σKM on ∂Ωηtop. (1.5)

Here Patm is the constant atmospheric pressure, σ > 0 the coefficient of surface
tension and KM the mean curvature of the surface ∂Ωηtop, given by

KM =
1

2
div

( ∇η√
1 + |∇η|2

)
.

In the most general case the function η is unknown. To solve the water wave
problem one thus have to find the triple (u, P, η) solving problems (1.1), (1.2)
and (1.5). Since the domain is specified by the function η, finding the domain
Ωη is part of solving the problem. Thus this problem is what is known as a free
boundary problem, and is in general difficult to study.

We shall only consider periodic cylinder domains of the form Ωε for a fixed
function η. Hence we do not work with a free boundary problem. In such a
domain we consider the Euler equation (1.3) with boundary condition (1.2).
There we show the existence of a unique smooth irrotational, divergence free
vector field u0 = u0(ε), tangent to the boundary of Ωε, for each ε ≥ 0 sufficiently
small. We can then use the ideas put forth by Lortz in [9] to show existence of
solutions to problem (1.3) and (1.2) in Ωε, for ε sufficiently small, by perturbing
the irrotational flow u0 by a sufficiently small perturbation factor v to get the
sought velocity field u via u = u0 + v. In the special case where the function
η takes the form η = cos(z) and η = cos(θ)cos(z), we can show the existence
of rotational solutions for small ε > 0. This could be a step in the direction of
understanding the full doubly periodic water wave problem given by problems
(1.1), (1.2) and (1.5) in Ωη, and to construct rotational solutions to this problem.

The existence of rotational flow for the doubly periodic water wave prob-
lem has recently been considered in the paper [8]. There the authors consider
the case of Beltrami flows, where the vorticity is proportional to the velocity.
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2 Rotational flows in mirror symmetric, toroidal
domains

2.1 Previous work

In this subsection we shall briefly describe the results obtained in the paper [9]
by Lortz. Before we do this we shall need some preliminary discussion about
the mathematical setting and notation.

We shall assume that Ω is a given bounded, open set in R3, with smooth
boundary ∂Ω. We shall further assume that the boundary ∂Ω is a surface of
genus one, which we denote by T , described implicitly by a smooth function f
as

T = f−1(0),

so that

∇f 6= 0 on T.

Finally we shall assume the following type of mirror symmetry. Let N denote
a fixed unit vector in R3, and let Π be the plane described by

Π = {x ·N = 0},

with x = (x1, x2, x3) standard Cartesian coordinates. We let z be defined by
z := x ·N . The function f then has the form f = f(z,N × x), and we require
it to have the following symmetries (leaving out the argument N × x)

f(−z) = f(z),

N · ∇f(−z) = −N · ∇f(z),

N ×∇f(−z) = N ×∇f(z).

(2.1)

As an example of such a domain we may take the interior of an ordinary
circular torus, described implicitly in ordinary Cartesian coordinates as the zero
set of the function

f(x1, x2, x3) := x2
3 +

(√
x2

1 + x2
2 − (A+R)

)2

−R2, (2.2)

with 0 < A,R fixed numbers. As plane of symmetry one may take any rotation
of the (x2, x3)-plane around the x3-axis.

The corresponding symmetries imposed on the solution are given by

N · u(−z) = N · u(z), N × u(−z) = −N × u(z), (2.3a)

N · ω(−z) = −N · ω(z), N × ω(−z) = N × ω(z), (2.3b)

H(−z) = H(z). (2.3c)
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These symmetries are compatible with the Euler equation (1.3), and so with
the equation (1.1). Indeed, that H has symmetry (2.3c) shows that the gra-
dient ∇H has symmetry (2.3b). If u has symmetry (2.3a) one can check that
ω = curl u has symmetry (2.3b). If u has symmetry (2.3a) and ω has symmetry
(2.3b) we see that the cross product u × ω has symmetry (2.3b). Hence the
symmetries are compatible with the Euler equation.

The symmetry plane Π cuts the domain Ω into two disjoint, simply con-
nected regions, connected by the surface M := Π∩Ω, which in turn decomposes
as the disjoint union of two surfaces M := M1 ∪M2. We can denote the two
simply connected regions of Ω by ΩL and ΩR, with the L and R denoting that
they lie on the left and right side of the symmetry plane Π, respectively. The
boundary of ΩR is the union M1 ∪M2 ∪ TR, with TR being the part of T lying
to the right of the symmetry plane Π.

To proceed further we will first need to find an irrotational field u0, which
is divergence free, that is div u0 = 0, satisfying the boundary condition (1.2).
We also want u0 to be non-vanishing in Ω. This can be achieved as follows.
We seek to write u0 = ∇φ for a harmonic function φ, whose normal derivative
n · ∇φ vanishes on T . If φ is a harmonic function in the whole of Ω so that
∇φ is tangential to T , we obtain that u0 = 0. Hence one needs to introduce a
discontinuity in φ so that u0 = ∇φ is continuous. We then consider the following
mixed boundary value problem.

∆φ = 0, in ΩR,

n · ∇φ = 0, on TR,

φ = 0, on M1,

φ = c, on M2.

Here c is a given non-zero constant. This has a unique solution φ, see [6]. Thus
we obtain u0 := ∇φ in ΩR. If we reflect this solution in the symmetry plane
Π, we get an irrotational field u0 in the whole of Ω, which is divergence free,
tangential to T and satisfies the symmetries (2.3a). Indeed, we reflect φ in the
symmetry plane by setting

φ(−z) := −φ(z).

The derivatives of φ are then continuous in the whole of Ω. Further, the har-
monicity of φ implies that they satisfy Laplace’s equation in the weak sense.
Classical elliptic regularity [6] then gives that these derivatives of φ are equal
almost everywhere to strong solutions of Laplace’s equation in Ω, and by conti-
nuity they are thus themselves strong solutions and hence smooth in Ω. Hence
the corresponding gradient vector field u0 is smooth in Ω, and further satisfies
the symmetries (2.3a). Since T has genus one, it follows that, up to multiplica-
tive constants, u0 is the unique irrotational, divergence free vector field which
is tangent to T ; see for example [4]. We shall assume that u0 is non-vanishing
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in Ω, as this is also an assumption made in [9]. We may however note that
if we consider a flow in a circular torus described in cylindrical coordinates
(r, θ, z), we can see directly that such a non-vanishing flow u0 exists. Indeed,
say that we consider the toroidal region Ω bounded by the torus (2.2), described
in cylindrical coordinates, so that

Ω = {(r, θ, z) | A < r < A+ 2R, 0 ≤ θ < 2π, z2 < R2 − (r− (A+R))2} (2.4)

Then we can consider the vector field

u0(r, θ, z) :=
1

r
eθ,

with er, eθ, ez the standard basis for R3 expressed in cylindrical coordinates.
This is obtained as the gradient of the (multi-valued) harmonic function

φ(r, θ, z) = θ.

We now intend to briefly describe the method employed in the paper by
Lortz. Having obtained u0 as an irrotational, divergence free field in Ω which
is tangential to the boundary and unique modulo constants, one can specify
this constant by for example specifying the flux across the surface M1, that is,
specifying the number F defined by

F :=

∫
M1

u0 · dS. (2.5)

For this see for example the paper [4].

An integral curve, or streamline, of the velocity field u is a curve γ : I ⊂ R→
Ω, from an open interval I of the real line, defined by the differential equation

d

dt
γ(t) = u(γ(t)).

We shall have to assume that the streamlines of the vector field u0 are closed,
go from M1 back to M1, and are uniformly bounded in length by some positive
number L0 > 0. As N · u 6= 0 on M1 by symmetry (2.3a), we can assume
N · u > 0 on M1 so that the streamlines have to go from M1 into ΩR. The
assumption is then that they continue all the way to M2, and then by reflection
symmetry into ΩL and back to M1 in such a way that their lengths are uni-
formly bounded. See also lemma 2.1 and the paper [3] by Alber.

For a solution (u,H) to equation (1.3), we see that H is constant on stream-
lines of u and ω. As ω should be divergence free, one can make the ansatz

ω = ∇H ×∇τ,
for some function τ . Then we see that

u× ω = u× (∇H ×∇τ) = (u · ∇τ)∇H − (u · ∇H)∇τ. (2.6)
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Then (1.3) leads to the equations

u · ∇H = 0,

u · ∇τ = 1.

If we require τ to be zero on M1, integrating the differential equation for τ
along streamlines of u allows us to think of τ(x) as the time it takes to travel
along the streamline starting on M1 and passing through x. Lortz defines the
function q(x) as the time it takes to travel along streamlines starting at M1 for
one period. That is, q(x) is obtained by integrating the equation u · ∇τ = 1
over a closed streamline passing through the point x, for one period.

Now, thinking of τ as the time it takes to travel along streamlines means that
if we follow a streamline for several revolutions around the toroidal domain Ω
the values of τ increases with each revolution. Thus τ is a multi-valued function
in this way. However, ω = ∇H ×∇τ of course needs to be well-defined single-
valued in Ω. This forces us to put further restrictions on the function H. In
particular, the part of ∇τ which is orthogonal to ∇H must be single-valued.
We claim that we must have that

∇H ×∇q = 0.

Indeed, we first show that this holds on M1. Recall that N is normal to M1 and
u ·N is the only non-zero component of u on M1 by symmetry (2.3a). We write
∇H = ∇TH+∇NH, with ∇TH tangential to M1, and ∇NH orthogonal to M1.
Since ∇H needs to be orthogonal to u by (1.3) we see that ∇H is tangential
to M1 on M1, that is ∇H = ∇TH on M1. We can similarly decompose ∇τ =
∇T τ +∇Nτ . Let Φt(x

0) denote the flow of u in Ω, starting at x0 ∈M1 at time
t = 0. Let f |M−1 (x0) = lim

t↘0
f(Φt(x

0)) for a function or vector field f , and let

f |M+
1

(x0) be the value of f at x0 ∈M1 after following Φt(x
0) around Ω for one

time period. Thus we need to have that

ω|M+
1
− ω|M−1 ≡ 0.

Now, the fact that τ |M−1 = 0 implies that ∇T τ |M−1 = 0. Then the fact that

∇H|M1 = ∇TH|M1 and the requirement that the part of ∇τ orthogonal to ∇H
is single-valued implies that ∇Nτ |M+

1
−∇Nτ |M−1 = 0. It follows that

∇H ×∇τ |M+
1
−∇H ×∇τ |M−1 = ∇TH ×∇T τ |M+

1
.

On the other hand, τ |M+
1

= q|M+
1

since τ |M−1 = 0. Since q is constant on

streamlines of u, symmetry (2.3a) implies that ∇q|M1
= ∇T q|M1

. From this we
see that

∇T τ |M+
1

= ∇T q|M+
1

= ∇q|M+
1
.

Finally, all this implies that we must have that

∇H ×∇q|M1
= 0.

10



To see that we have ∇H × ∇q = 0 in the whole of Ω we can argue as follows.
First, for fixed t we let DΦt(x) denote the derivative of Φt(x) as a function of x.
Recall that H and q are constant on streamlines of u. Thus H(x) = H(Φt(x))
and q(x) = q(Φt(x)) for all x ∈ Ω and times t. Differentiating these relations
with respect to x, and using the facts that ∇H × ∇q|M1

= 0 and DΦt(x) is
invertible for all t shows that ∇H ×∇q = 0 holds identically in Ω.

Now, to obtain rotational solutions, Lortz starts with an irrotational flow
and uses an iterative method. The fact that ∇H × ∇q = 0 must hold in Ω
suggests that H may be a function of q. One specifies a scalar function h in
the Hölder space C2,α (see the appendix) for a given 0 < α < 1. Further, one
should assume that the derivative of h is non-vanishing, h′ 6≡ 0, and that its
supremum norm is not too large, which can be achieved by multiplication by a
small parameter β > 0.

The idea is then to let H be given by

H(x) := βh(q(x)).

With q and τ determined generated by a non-vanishing vector field u with
symmetries (2.3a). If ∇q is not identically zero, then the vorticity field given by
ω = ∇H ×∇τ is not identically zero. Thus one would hope that ω actually is
the vorticity field of the vector field u which generated τ and q. In other words,
with ω as above, one needs that u satisfies

curl u = ω, in Ω

div u = 0, in Ω

u · n = 0, on ∂Ω

(2.7)

as this would then produce a rotational solution (u,H) to the Euler equation
(1.3). See also theorems 2.2 and 2.3.

That q actually is non-constant, so that ∇q is non-vanishing, is not ob-
vious and is something we shall discuss more later on. However, in the case
of a circular torus as (2.4) with the explicit irrotational flow in cylindrical co-
ordinates, u0(r, θ, z) = 1

r eθ, this is true. By continuity it holds also for small
perturbations of such domains. We show another result of this type in section
3, working instead with a type of periodic cylinder as our domain. In the case
of an ordinary circular, periodic cylinder in cylindrical coordinates (r, θ, z), of
the form

Ω0 = {(r, θ, z) | 0 < r < d, 0 ≤ θ < 2π, z ∈ R},

for a fixed d > 0 where we identify integer multiples of 2π in z, we have the
explicit irrotational flow u0 = ez, modulo multiplicative constants. In this case
the corresponding q is the time it takes to travel along a streamline starting on
the surface {z = 0} until reaching the surface {z = 2π}, and for u0 = ez this is
obviously constant. In this case it is not obvious what q looks like in small per-
turbations of the domain Ω0. In section 3 we are able to show that q is indeed
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non-constant in small perturbations of the periodic cylinder, if we restrict the
perturbation considerably. This is shown by doing explicit calculations.

The iteration method used by Lortz is described as follows. One starts
with an irrotational field u0, determined by its flux (2.5) across M1. The func-
tions τ0 and q0 are computed as described above. The function H0 is defined by
H0 := βh(q0), and the vorticity ω1 := ∇H0×∇τ0. One then obtains a new field
u1 by solving the corresponding div-curl problem (2.7), and specifies it uniquely
by imposing the condition that its flux (2.5) agrees with the flux F0 of u0. The
algorithm then starts over with this new field u1. We write it down as

um → qm → Hm := βh(qm),

um · ∇τm = 1 in Ω, τm = 0 on M1 → τm,

τm, Hm → ωm+1 := ∇Hm ×∇τm,

and

curl um+1 = ωm+1, in Ω

div um+1 = 0, in Ω

um+1 · n = 0, on ∂Ω∫
M1

um+1 · dS = F0 → um+1.

The algorithm is taken for m = 0, 1, 2, ..., and is initiated with the irrota-
tional field u0, specified by the flux F0 6= 0.

Lortz shows that the fields um form a Cauchy sequence in the space C1,α,
if the parameter β is not too large, and thus converge to some field u, with a
vorticity determined by the uniform limit of the vorticities ωm.

One problem here is that if q0 is a constant function we only get back the
irrotational field u0 each time, as we then have that the vorticity ω1 is zero. So
to actually get a rotational solution one would have to verify that ∇q0 is not
identically zero.

2.2 A fixed point method

We shall now want to reformulate the proof by Lortz using Banach’s fixed point
theorem. In doing so we are very much inspired by Alber’s paper [3]. We shall
start by introducing appropriate Banach spaces. For integers k = 1, 2, ..., and
real numbers 0 < α < 1, we define the spaces

Xk := {v ∈ Ck,α | v has symmetry (2.2a)}.

12



Further, we introduce the subspace V of vector fields v in X2, satisfying the
additional properties

div v = 0 in Ω,

v · n = 0 on ∂Ω.

For a positive number µ > 0 we consider the closed ball Vµ in V , defined as

Vµ := {v ∈ V | ‖v‖2,α ≤ µ}.

We shall consider Vµ as a subset of X1 and consider perturbations u = u0+v,
of the irrotational field u0, by fields v in Vµ. We then construct an operator
B taking Vµ into Vµ, and use Banach’s fixed point theorem to show that the
operator B has a fixed point in Vµ. We shall assume, as in the paper by Lortz,
that the irrotational field u0 is non-vanishing in Ω. We further assume that all
streamlines of u0 are closed, going from M1 back to M1, and uniformly bounded
in length by some number L0 > 0. We set

u0 := inf
x∈Ω
|u0(x)|.

Now if µ is chosen so that µ < u0, we find for a vector field u = u0 + v, with
v ∈ Vµ, that

u := inf
x∈Ω
|u(x)| ≥ u0 − sup

x∈Ω
|v(x)| ≥ u0 − ‖v‖2,α > 0.

Thus any such perturbation is also non-vanishing in Ω. Arguments as in [3] (see
section 3) shows that the streamlines of any such perturbation are closed and
go from M1 to M1, and are uniformly bounded in length by some number Lµ.

Lemma 2.1
Let µ > 0 be chosen so that µ < u0. Under the assumption that all streamlines
of u0 are closed, are uniformly bounded in length and go from M1 back to M1

it follows that the streamlines of any perturbation u = u0 + v with v ∈ Vµ also
has closed streamlines that go from M1 to M1. Furthermore, there is a constant
Lµ > 0, depending on µ, so that the length of any streamline of any such per-
turbation u is bounded by Lµ.

From now on we thus only consider 0 < µ < u0. Ultimately we want to prove
the following theorem.

Theorem 2.2 Let u0 be a non-vanishing, irrotational, divergence free vector
field tangent to the boundary of Ω, satisfying symmetry (2.3a). Let 0 < µ < u0,
and 0 < α < 1. Fix a scalar function h ∈ C2,α(Ω) whose derivative does not
vanish identically. For each µ, there is a β(µ) > 0 so that for each 0 < β < β(µ),
there is a vector field v ∈ Vµ for which the vector field u = u0 + v has symme-
try (2.3a), and is a solution to Euler’s equation (1.3) with boundary condition
(1.2). The vorticity ω of u is given by ω = ∇H × ∇τ , with τ solving problem
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(2.8), and the Bernoulli function H given by H = βh(q). Here q is determined
by u and defined as in section 2.1. The solution u is the only C2,α solution
with symmetry (2.3a) obeying the estimate ‖u− u0‖2,α ≤ µ. In particular, if
q0 generated by u0 is not constant, we obtain for each sufficiently small µ a
rotational solution to the Euler equation (1.3) with boundary condition (1.2).

The remainder of this section is devoted to proving this theorem. We shall
begin by explaining in more detail how the operator B is defined, and why we
are interested in finding fixed points of it.

We first construct for each 0 < µ < u0, an operator B : Vµ → V . Later
we shall make sure that B actually maps into Vµ, and is a contraction. Given
v ∈ Vµ, we consider the vector field u := u0 + v. The functions τ and q are
constructed as explained above. Thus τ should solve the following transport
problem

u · ∇τ = 1 in Ω,

τ = 0 on M1,
(2.8)

and have C2,α regularity. To solve (2.8) we approximate u by a sequence of
smooth vector fields, and solve (2.8) for these smooth vector fields. We can then
obtain the solution of (2.8) for u as a limit of these. We use proposition B.1 in
the appendix, which gives a sequence of smooth vector fields, uj , converging to
u in C2,λ for each 0 < λ < α, and a constant C > 0 for which the bound

‖uj‖2,α ≤ C ‖u‖2,α (2.9)

holds for all j. We can solve the problem corresponding to (2.8) for the vector
fields uj , namely

uj · ∇τj = 1 in Ω,

τj = 0 on M1.
(2.10)

Let Φjt (x) be the flow of the vector field uj . As each vector field uj is smooth,
classical regularity results gives smoothness of the flow. The function τj solving
problem (2.10) can be characterized via the equation

x = Φjτj(x)(x
0), (2.11)

with x ∈ Ω and x0 ∈ M1, which is seen by integrating problem (2.10) along
streamlines of uj . Thus τj is the inverse of the time component of the flow of
uj . More refined regularity results show that also τj is a smooth function. For
more on regularity of the flow of vector fields see e.g. appendix A in [5] and
chapter 6 in [14].

Lortz shows in the appendix of his paper that one can find a constant C̄ so
that the bound

‖τj‖2,α ≤ C̄, (2.12)
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holds for all j. Thus (τj) is a bounded sequence in C2,α. For any 0 < λ < α
it holds that the space C2,α(Ω,R) is compactly embedded in C2,λ(Ω,R); this
is essentially a direct consequence of the Arzela-Ascoli theorem. Hence we may
assume that τj → τ in C2,λ. We claim further that τ ∈ C2,α. Indeed, given
a multi-index γ such that |γ| = 2, we have that Dγτj → Dγτ uniformly. As
(2.12) gives the bound

|Dγτj(x)−Dγτj(y)| ≤ C̄|x− y|α,

for all x, y ∈ Ω and j ≥ 1, it follows by taking limits that also the estimate

|Dγτ(x)−Dγτ(y)| ≤ C̄|x− y|α, (2.13)

holds for all x, y ∈ Ω. This shows τ ∈ C2,α. Also τ solves problem (2.8) by
taking limits in (2.10).

The streamlines of u starting on M1 cover Ω, and go from M1 to M1. The
function q is defined on M1 by letting q(x) be the value obtained by integrating
the equation u · ∇τ = 1 along the streamline of u starting at x on M1 for one
period. q is then defined for points in Ω by letting it be constant on streamlines
for u. The C2,α reqularity of u and τ shows that also q is C2,α. That q is
constant on streamlines means that it satisfies the reflection formula

q(−z) = q(z).

Additionally ∇q satisfies the symmetry relation (2.3b).

We now fix a scalar function h ∈ C2,α with non-vanishing derivative, h′(x) 6≡
0. Let β > 0 be a positive number and define the function

H(x) := βh(q(x)).

We further define the vector field

ω := ∇H ×∇τ = βh′(q)∇q ×∇τ.

As we saw before, ω is continuous in Ω. ω should have C1,α regularity in Ω.
Using that ∇τ,∇q are C1,α in ΩL and ΩR, and using the symmetry (2.3b) of ω
shows that ω is even C1 in Ω. Applying estimate (2.16) below gives the C1,α

regularity of ω in Ω.
ω shall serve as the curl of the vector field u = u0 + v, with v a fixed point

of the operator B. Such a vector field u has symmetry (2.3a). Hence ω should
be divergence free and satisfy the symmetry (2.3b). To see that ω is divergence
free we can compute, since both H and τ are twice continuously differentiable,
that

div ω = div (∇H ×∇τ) = (curl ∇H) · ∇τ − (curl ∇τ) · ∇H = 0.

To check that ω satisfy symmetry (2.3b) we note that since q is constant on
streamlines, ∇q has symmetry (2.3b) and ∇τ has symmetry (2.3a), the cross
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product ∇q ×∇τ has the symmetry (2.3b), and so also ω has this symmetry.

We now want to solve the following div-curl problem

curl w = ω, in Ω,

div w = 0, in Ω,

w · n = 0, on ∂Ω,∫
M1

w · dS = 0.

(2.14)

The solution should be unique and have C2,α regularity. That a solution must
be unique follows by the theory in [4]. To actually solve this problem we can
look at another problem, namely

−∆ξ = ω, in Ω,

div ξ = 0, on ∂Ω,

ξ × n = 0, on ∂Ω,

(2.15)

for the unknown vector field ξ. Here ∆ stands for the vector Laplacian, that is
the Laplacian acting on each component of the vector field ξ. If ξ is a solution
to problem (2.15) of sufficient regularity, we get a solution to the first three
equations in problem (2.14) by setting w = curl ξ. Indeed, we can first check
that ξ is actually divergence free in the whole of Ω. This follows by the fact
that div ξ = 0 on the boundary ∂Ω, and the calculation

∆div ξ = div ∆ξ = −div ω = 0,

since ω was assumed divergence free. Then the first equation in problem (2.14)
follows by the calculation

curl w = curl curl ξ = ∇div ξ −∆ξ = ω.

The second equation in (2.14) follows by the fact that div curl = 0. Finally,
the third equation follows by using Stokes’ theorem. Indeed, let γ be a simply
connected smooth loop in ∂Ω, forming the boundary of the surface int(γ). Then
as ξ is orthogonal to ∂Ω we find that∫

int(γ)

(w · n)dS =

∫
int(γ)

(curl ξ · n)dS =

∫
γ

ξ · dl = 0.

To solve problem (2.14) completely we then have to consider the integral con-
straint. This follows immediately by using Stokes’ theorem again.

We thus turn to problem (2.15). We shall argue for the existence of a unique
solution with correct regularity, but not provide all the details. Using propo-
sition B.1 we may find a sequence of smooth vector fields ωj in Ω, uniformly
bounded in the C1,α norm, converging to the vector field ω in C1,λ for each
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0 < λ < α. We can solve problem (2.15) with ω replaced by ωj to find a
unique solution ξj . Indeed, that such a solution exist and is unique follows by
considerations in section 5.9 of [12]; it is even shown that the vector field ξj is
smooth in Ω. Schauder type estimates [2], the convergence of the ωj in C1,λ for
all 0 < λ < α, and the fact that the ωj are uniformly bounded in C1,α gives a
uniform bound in C3,α on the vector fields ξj , and shows that they are actually
Cauchy in C3,λ for all 0 < λ < α. These considerations imply the existence of a
vector field ξ ∈ C3,α, so that ξj → ξ in C3,λ for all 0 < λ < α. The vector field
ξ is then seen to satisfy problem (2.15). In this way we can obtain a particular
solution to (2.15). However, [12] actually shows uniqueness of the solution in
our case, taking into account the fact that we assumed that the boundary of Ω
is smooth, and that it has genus 1. Hence we can uniquely solve (2.15) with a
vector field ξ in C3,α. Thus the vector field w := curl ξ has C2,α regularity, and
as we argued above, uniquely solves problem (2.14).

Now we can define our operator B. Given v ∈ Vµ we set u = u0 +v, compute
the functions q and τ , and obtain the function H = βh(q). Then the vector field
w is obtained as the unique solution to the problem (2.14), with ω = ∇H×∇τ .
That w solves problem (2.14), has C2,α regularity and satisfies the symmetry
(2.3a) shows that w lies in the space V . We define our operator B as

B : Vµ → V,

v → B(v) := w.

As the solution to problem (2.14) is unique, this is well-defined.

Now, we shall consider this operator as defined on subsets of the Banach
space X1, i.e. its continuity will be measured via the ‖·‖1,α norm. We shall
proceed to show that if the parameter β is chosen sufficiently small, then B
takes Vµ into Vµ, and is a contraction on this subset in the C1,α topology. If we
show that Vµ is a closed subset of X1 in the C1,α topology we can use Banach’s
fixed point theorem to show that the operator B has a uniquely determined
fixed point v in Vµ. The corresponding vector field u = u0 +v will then turn out
to solve the Euler equation (1.1) with boundary condition (1.2) for a suitably
defined pressure P . This is the content of the following theorem.

Theorem 2.3
Assume β > 0 is chosen so small that B : Vµ → Vµ. Let v ∈ Vµ be a fixed point
of the operator B, and let u := u0 + v. Then u is the velocity field of a solution
to the Euler equation (1.1), with boundary condition (1.2).

Proof. If v is a fixed point of B, we have that curl u = ω = ∇H ×∇τ . Since q
is constant on streamlines of u we find that

u · ∇q = 0,
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and so we find that
u · ∇H = (βh′(q))u · ∇q = 0.

Now we can compute

u× curl u = u× ω = u× (∇H ×∇τ) = (u · ∇τ)∇H − (u · ∇H)∇τ = ∇H.

Since u is also divergence free and tangential to the boundary of Ω, we see
that u is a solution to the Euler equation (1.3), with boundary condition (1.2).
Defining the pressure via the formula

P := H − 1

2
|u|2

then gives a solution (u, P ) to (1.1). �

Hence it remains to show that Vµ is closed in X1, and that the parame-
ter β can be chosen so small that B : Vµ → Vµ is a contraction. We first show
that Vµ is closed in X1. Thus we let (vj)

∞
j=1 in Vµ converge to some vector field

v ∈ C1,α. That the vj have symmetry (2.3a) shows that v ∈ X1. Now the fact
that ‖vj‖2,α ≤ µ for all j gives a subsequence (vjl)

∞
l=1 converging to a vector

field u ∈ C2 in the C2 topology. We then see that actually v = u ∈ C2, and
vj → v in C2. Then the arguments giving (2.13) also gives that v ∈ C2,α, and
we even have that v ∈ V . Pointwise for x 6= y we have that(∑3

i=1

∑
|γ|=2 |Dγvi(x)−Dγvi(y)|2

)1/2

|x− y|α

= lim
j→∞

(∑3
i=1

∑
|γ|=2 |Dγvij(x)−Dγvij(y)|2

)1/2

|x− y|α
.

With the notation of appendix A, we have for each j and x 6= y, the inequality(∑3
i=1

∑
|γ|=2 |Dγvij(x)−Dγvij(y)|2

)1/2

|x− y|α
≤ µ−

2∑
l=0

‖vj‖l .

Letting j →∞ gives for each x 6= y the inequality(∑3
i=1

∑
|γ|=2 |Dγvi(x)−Dγvi(y)|2

)1/2

|x− y|α
≤ µ−

2∑
l=0

‖v‖l

and so [v]2,α ≤ µ−
∑2
l=0 ‖v‖l, that is ‖v‖2,α ≤ µ. Thus v ∈ Vµ and Vµ is closed

in X1.

We now turn to the problem of B mapping into Vµ. Given v ∈ Vµ we have
the bound

‖B(v)‖2,α = ‖w‖2,α ≤ C
(1) ‖ω‖1,α ,
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with C(1) a positive constant only depending on Ω and α. Hence we shall turn
to the norm ‖ω‖1,α. We can find a constant C(2) > 0 for whihch we have the
estimate

‖ω‖1,α = ‖(βh′(q))∇q ×∇τ‖1,α ≤ βC
(2) ‖h‖2,α ‖∇q‖1,α ‖∇τ‖1,α . (2.16)

for all q, τ generated by vector fields u = u0 + v, v ∈ Vµ. Since h is a fixed
function it suffices to estimate the norms of ∇q and ∇τ . These are considered in
[9], and we obtain that there exists positive constants C(3) and C(4), depending
on Ω, α, u0 and µ, for which we have the bounds

‖∇q‖1,α ≤ C
(3),

‖∇τ‖1,α ≤ C
(4),

compare also (2.12). Hence combining these estimates with (2.16) shows that

‖B(v)‖2,α ≤ βC
(5), (2.17)

with C(5) being a positive constant depending on Ω, α, u0, µ and h. To get that
B maps Vµ into Vµ we thus have to choose β ≤ µ

C(5) .

We now need to show that B is a contraction for a sufficiently small β.
Recall that B should be a contraction when it is viewed as an operator defined
on the closed subset Vµ of the Banach space X1 equipped with its C1,α topology.
Hence, given v1, v2 ∈ Vµ we should estimate the difference

‖B(v1)−B(v2)‖1,α .

Analogously to our constant C(1) we can find a constant C(6) > 0 so that

‖B(v1)−B(v2)‖1,α ≤ C
(6) ‖ω1 − ω2‖0,α , (2.18)

with ωj = βh′(qj)∇qj × ∇τj being the corresponding vorticity derived from
uj = u0 + vj , j = 1, 2. We have that

ω1 − ω2 = β
(
h′(q1)∇q1 ×∇τ1 − h′(q2)∇q2 ×∇τ2

)
.

Lortz ([9]) estimates the C0,α norm of this difference ω1 − ω2 to eventually
obtain a constant C(7) for which we have

‖ω1 − ω2‖0,α ≤ βC
(7) ‖v1 − v2‖1,α .

Combining this with (2.18) then implies that if we then choose

β < min(
µ

C(5)
,

1

C(6)C(7)
),

we get an operator B : Vµ → Vµ which is a contraction, and hence has a
unique fixed point in v in Vµ by Banach’s fixed point theorem. According to
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theorem 2.3, this produces a solution u = u0 + v to the Euler equation (1.1)
with boundary condition (1.2). Its vorticity is given by ω = ∇H ×∇τ . τ solves
the PDE (2.8) and ∇τ is thus non-vanishing in Ω. H = βh(q), and assuming
h′ is non-vanishing, u will be a rotational solution as long as q is not constant,
i.e. as long as ∇q does not vanish identically. Banach’s fixed point theorem also
gives the uniqueness in that the obtained solution u is the only possible C2,α

solution with symmetry (2.3a) satisfying the estimate ‖u− u0‖2,α ≤ µ. The
above considerations gives us theorem 2.2.
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3 Flows in a periodic cylinder

We shall now consider flows in a cylindrical domain which have a certain peri-
odicity condition. Let 0 < α < 1. Let (r, θ, z) be cylindrical coordinates in R3.
To find rotational flow one can consider the problem

curl u = ∇H ×∇τ in Ωε,

div u = 0 in Ωε,

u · n = 0 on ∂Ωε,∫
{z=0}

u · dS = C.

Here we have the domain

Ωε := {(r, θ, z) | 0 < r < d+ εη},

where d > 0 is a fixed constant and η = η(θ, z) a fixed smooth function, which
we take to be 2π periodic in θ and z. We shall further assume that the following
symmetries hold

(u1, u2, u3)(r, θ,−z) = (−u1,−u2, u3)(r, θ, z),

η(θ,−z) = η(θ, z),

with u1, u2, u3 the components of the velocity field. The parameter ε0 > 0 is
chosen sufficiently small, so that

d+ ε0η(θ, z) > 0

for all θ and z, and we only consider 0 ≤ ε ≤ ε0. The vector field u should be
2π periodic in z. The functions H and τ are defined as in section 2. Here one
can use the periodicity of η, and thus of the domain Ωε to identify multiples of
2π in z and obtain a toroidal domain. M1 is then taken as the surface

M1 := {(r, θ, z) ∈ Ωε | z = 0} =: {z = 0}.

Then τ should solve the problem corresponding to (2.8), and q is defined on
the surface {z = 0} at the point (r, θ, 0) as the time it takes to travel along a
streamline of u starting at (r, θ, 0) at time 0, until reaching the surface {z = 2π}.
That is, q(r, θ, 0) is characterized by the equation

2π = Φz,q(r,θ,0)(r, θ, 0),

with Φt(r, θ, 0) = (Φr,t(r, θ, 0),Φθ,t(r, θ, 0),Φz,t(r, θ, 0)) the flow of u starting at
(r, θ, 0) at time t = 0. q is then extended to Ωε as being constant on streamlines.
Again, H = βh(q) for a sufficiently small constant β > 0, and some C2,α scalar
function h. The fixed point method of section 2 applies to this case as well due to
the periodicity of our domain, even though the domain itself is unbounded. Thus
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one looks at perturbations of an irrotational vector field and if the corresponding
q is non-constant one obtain rotational solutions to Euler’s equations. We do
not intend to go into details of this, but shall instead turn our attention to
the irrotational flow. We intend to show that the corresponding function q is
non-constant for explicit choices of the function η, namely for η = cos(z) and
η = cos(θ)cos(z). One can show continuous dependence of the flow map with
respect to the vector field itself [5]. If we show that the irrotational flow has a
non-constant q, it follows that for small enough perturbations also the perturbed
vector field has non-constant q, and thus combining this with the fixed point
method gives rotational flow. To show that q is non-constant for the irrotational
field we shall first try to find this field, and thus we turn our attention to the
problem

curl u = 0 in Ωε,

div u = 0 in Ωε,

u · n = 0 on ∂Ωε,∫
{z=0}

u · dS = πd2.

(3.1)

We shall consider flows u solving problem (3.1) which are 2π periodic in z. The
fourth equation in problem (3.1) is the flux condition which uniquely specifies
our irrotational flow. We have chosen it to be equal to πd2 to simplify expres-
sions that show up later on. One is of course free to choose any real constant in
the flux constraint, which has the effect of multiplying the solution to (3.1) with
a constant, but as long as it is non-zero the results we obtain in the following
will not change.

Similar to section 2.2, let µ > 0, and define the space of vector fields

V (η, ε) := {v ∈ C2,α(Ωε) | v is 2π periodic in z,div v = 0, v · n = 0 },

and the subset
Vµ(η, ε) := {v ∈ V (η, ε) | ‖v‖2,α ≤ µ},

with the norm taken in Ωε for 0 ≤ z ≤ 2π.

Modifying the results in section 2 as explained above, we obtain the follow-
ing theorem.

Theorem 3.1 Let 0 < α < 1. Let d > 0 be a fixed constant and η(θ, z) a
fixed smooth function, 2π periodic in θ and z. Let ε0 be so that d+ ε0η(θ, z) > 0
for all (θ, z), and define the domain Ωε, for 0 ≤ ε ≤ ε0. For each η there is an
ε0(η) ≤ ε0 for which the problem (3.1) has a unique smooth solution u0 = u0(ε),
for each 0 ≤ ε ≤ ε0(η). Fix 0 ≤ ε ≤ ε0(η), and let hε ∈ C2,α(Ωε) be a fixed
scalar function, 2π periodic in z, with derivative not identically zero. For each
µ < u0(ε) there is a β(µ) > 0 and a vector field vε ∈ Vµ(η, ε) so that the vector
field uε = u0(ε) + vε solves Euler’s equation (1.3) with boundary condition (1.2)
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in Ωε. The vorticity ωε of uε is given by ωε = ∇Hε ×∇τε, with Bernoulli func-
tion Hε = βhε(qε), and τε, qε generated by uε.
For the choices η = cos(z) and η = cos(θ)cos(z), the functions q0(ε) generated
by the u0(ε) are non-constant for sufficiently small ε > 0, and thus the uε are
rotational solutions.

As mentioned earlier we shall not go into all details of this theorem. We
shall however show that we can solve problem (3.1) for fixed η and sufficiently
small ε ≥ 0, to find solutions u0(ε). We shall also show that the functions q0(ε)
are non-constant for sufficiently small ε > 0. From now on we drop the subscript
0 and dependence on ε of u0(ε) and q0(ε) to simplify notation.

We remark that if we consider the case of an ordinary circular torus as
described in (2.4) we have the explicit irrotational field u0(r, θ, z) = 1

r eθ. Here
one can show that the corresponding q is non-constant. However, in the case of
a circular periodic cylinder Ω0 we can find the explicit irrotational field u0 = ez.
In this case, q is constant. Thus the case we shall consider is topologically the
same as that of a circular torus, but we do encounter a difference in that the q
generated by the irrotational flow in Ω0 is constant. In the case of the circular
torus, one can use the fact that q corresponding to u0 is non-constant to show
that this holds true also for small perturbations of u0, and of the domain, to
obtain rotational solutions. In the case of the periodic cylinder Ω0 we can not
use any such arguments, and in Ωε we can not solve equation (3.1) explicitly.
Thus we are forced to actually compute a Taylor expansion of q with respect to
ε to show that q is not constant for sufficiently small ε > 0. Here we have to
actually specify the function η, and it turns out that the choices η = cos(z) and
η = cos(θ)cos(z) are simple enough for us to perform the required calculations.

To solve problem (3.1) we shall first reformulate it. Ωε is a simply con-
nected region in R3 and thus we may introduce a scalar potential ϕ for the
vector field u, that is u = ∇ϕ. However, ϕ will not be 2π periodic in z, as then
the first three equations in problem (3.1) would force u to be identically zero,
and thus not satisfy the integral constraint. However, we do have the condition
that ∇ϕ should be 2π periodic in z. Problem (3.1) transforms to the problem

∆ϕ = 0 in Ωε,

∇ϕ · n = 0 on ∂Ωε,∫
{z=0}

∂zϕ(r, θ, 0)rdrdθ = πd2.

(3.2)

The plan of the rest of this section is as follows. In section 3.2 we transform
problem (3.2) for each ε to a problem in the domain Ω0. We then use the implicit
function theorem to find a unique solution for each ε sufficiently small. This
gives solutions to problem (3.1). Sections 3.2-3.5 are devoted to showing that the
functions q corresponding to the solutions of problem (3.1) are non-constant for
sufficiently small ε > 0 in the special cases of η = cos(z) and η = cos(θ)cos(z).
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3.1 A flattening transform

Here we use the variables (r̄, θ̄, z̄) in the flat cylinder

Ω0 = {(x, y, z) | r̄ < d}.

Problem (3.2) is a boundary value problem where the boundary depends on the
variable ε. To transform it to a problem in Ω0 we shall introduce a flattening
transformation. For this purpose we choose a function χ ∈ C∞(R) so that
χ ≥ 0, χ′ ≥ 0, and

χ(s) =

{
1 s > 3d

4

0 s < d
4

.

We fix ε0 < (2 ‖χ′‖∞ ‖η‖∞)−1 and consider 0 < ε < ε0. We can now introduce
the flattening transformation Fε : Ω0 → Ωε via

Fε(r̄, θ̄, z̄) := (r̄ + εχ(r̄)η(θ̄, z̄), θ̄, z̄) = (r, θ, z).

We note that Fε is the identity transformation for r̄ < d
4 , and for ε = 0 we

see that F0 is the identity transformation in Ω0. Further, 1 + εχ′(r̄)η(θ̄, z̄) >
1− ε0 ‖χ′‖∞ ‖η‖∞ > 1

2 . Thus Fε is a diffeomorphism. In particular we find that

d+ εη(θ̄, z̄) > d
4 . Given ϕ ∈ C∞(Ωε), we define the function ϕ̄ ∈ C∞(Ω0) via

ϕ̄ := ϕ ◦ Fε. (3.3)

The function ϕ solves problem (3.2) if and only if ϕ̄ solves the problem

div(Aε∇̄ϕ̄) = 0 in Ω0,

Aε∇̄ϕ̄ · n = 0 on ∂Ω0,

I(ϕ̄, ε) = πd2,

(3.4)

where Aε = DF−1
ε DF−Tε |detDFε|, with everything in Cartesian coordinates,

and

I(ϕ̄, ε) =

∫ 2π

0

∫ d

0

∂z̄ϕ̄(r̄, θ̄, 0)(r̄ + εχ(r̄)η(θ̄, 0))(1 + εχ′(r̄)η(θ, 0))dr̄dθ̄,

where we use that ∂zη(θ, 0) = 0. We shall use the implicit function theorem
to find a unique solution, ϕ̄ε, to problem (3.4) for each ε, having sufficient
regularity. Indeed, define the sets

Ω0
0 := {(r̄, θ̄, z̄) ∈ Ω0 | 0 < z̄ < 2π},
S0 := {r̄ = d, 0 < θ̄, z̄ < 2π}.
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We let k ≥ 2 be an integer then define the spaces

X := {ϕ̄ ∈ Ck,α(Ω0), ∇̄ϕ̄ 2π periodic in z̄}/R,
Y1 := {f ∈ Ck−2,α(Ω0), f 2π periodic in z̄},
Y2 := {g ∈ Ck−1,α(∂Ω0), g 2π periodic in z̄},

Y := {(f, g) ∈ Y1 × Y2 |
∫

Ω0
0

fdV̄ =

∫
S0

gdS̄},

E := [0, ε0],

and equip these with the usual Hölder norms taken over the cell Ω0
0. These are

all Banach spaces. Indeed, it suffices to check that X is a Banach space, the
rest is clear. So let (ϕ̄j)

∞
j=1 be a Cauchy sequence in X. Then there are func-

tions ψ̄j in Ck,α which are 2π periodic in z̄, and constants Cj , so that we have
the representation ϕ̄j = Cj z̄ + ψ̄j . We have the explicit representation of the

constants via Cj = 1
2π

∫ 2π

0
∂z̄ϕ̄j(r̄, θ̄, ξ)dξ. Since k ≥ 2 we see that the constants

also form a Cauchy sequence, and hence there is a constant C so that Cj → C.
From this we find by the triangle inequality that also ψ̄j is a Cauchy sequence in
Ck,α(Ω0

0). Hence there is a function ψ̄ in Ck,α(Ω0
0) so that ψ̄j → ψ̄ in the Ck,α

norm. The periodicity of the ψ̄j shows that the function ϕ̄ := Cz̄ + ψ̄ exists in
X, and is the limit of the ϕ̄j . It follows that X is a Banach space.

We define the map Ψ : X × E → Y × R by

Ψ(ϕ̄, ε) =
(

(div(Aε∇̄ϕ̄), Aε∇̄ϕ̄ · n|r̄=d, I(ϕ̄, ε)− πd2
)
.

We note that a solution to (3.4) for ε = 0 is the function

ϕ̄0 = z̄,

so that Ψ(ϕ̄0, 0) = (0, 0, 0). Let D1Ψ(ϕ̄, ε) be the Fréchet derivative of Ψ with
respect to the first variable evaluated at the point (ϕ̄, ε) ∈ X × E. Then for
ϕ̄ ∈ X

D1Ψ(ϕ̄0, 0)ϕ̄ =

((
∆̄ϕ̄(r̄, θ̄, z̄), ∂r̄ϕ̄(d, θ̄, z̄)

)
∫ 2π

0

∫ d
0
∂z̄ϕ̄(r̄, θ̄, 0)r̄dr̄dθ̄

)
with ∆̄ the Laplacian in the (r̄, θ̄, z̄) coordinates. To use the implicit function
theorem we need to show that D1Ψ(ϕ̄, 0) : X → Y × R is bijective. Thus, pick
ϕ̄ ∈ X so that D1Ψ(ϕ̄0, 0)ϕ̄ = 0, i.e. ϕ̄ solves

∆̄ϕ̄ = 0 in Ω0,

∂r̄ϕ̄ = 0 on ∂Ω0,∫ 2π

0

∫ d

0

∂z̄ϕ̄(r̄, θ̄, 0)r̄dr̄dθ̄ = 0.

(3.5)

As before, ∇̄ϕ̄ is 2π periodic in z̄, so ϕ̄ can be written ϕ̄ = Cz̄ + ψ̄ with ψ̄ 2π
periodic in z̄. Then ψ̄ solves the first two equations in (3.5) so ψ̄ = D =constant.
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Thus ϕ̄ = Cz̄ + D and the integral in (3.5) shows that ϕ̄ = D. So modulo
constant we have injectivity. We move to surjectivity. If ((f, g), c) ∈ Y × R we
thus seek ϕ̄ ∈ X so that ϕ̄ solves

∆̄ϕ̄ = f in Ω0,

∂r̄ϕ̄ = g on ∂Ω0,∫ 2π

0

∫ d

0

∂z̄ϕ̄(r̄, θ̄, 0)r̄dr̄dθ̄ = c,

(3.6)

Again, ϕ̄ = Cz̄+ψ̄ with ψ̄ ∈ Ck,α 2π periodic in z̄ solving the first two problems
in (3.6). That such a solution ψ̄ exists and is unique modulo constants can be
shown via classical theory; see e.g. [6]. Here the integral condition in the
definition of the space Y is a necessary and sufficient condition for the existence
of a solution, after identifying multiples of 2π in z̄ in our domain. After this
the constant C is determined uniquely by the integral condition in (3.6). So
modulo constant we solve problem (3.6) uniquely in Ck,α, and hence uniquely in
X. Then D1Ψ(ϕ̄0, 0) is invertible and we can use the implicit function theorem
(see appendix C) to find a unique solution curve ε 7→ ϕ̄(r̄, θ̄, z̄, ε) ∈ X to the
equation

Ψ(ϕ̄, ε) = 0,

for 0 ≤ ε ≤ ε0 sufficiently small. Clearly Ψ is smooth in ε and D1Ψ is linear in ϕ̄.
It follows that the solution ϕ̄(r̄, θ̄, z̄, ε) =: ϕ̄ε depends smoothly on ε, as a map
from E into X. As the above arguments work for each integer k ≥ 2 the solution
can be taken to be as regular as we want. In particular, we choose k so large
that the calculations we perform in the remaining part of the thesis are justified.

In any Ck,α norm we have the Taylor expansion

ϕ̄ε = ϕ̄0 + εϕ̄1 + ε2ϕ̄2 +O(ε3).

Let Gε = F−1
ε . Then we can also expand ϕε = ϕ̄ε ◦Gε. We can extend Fε to a

global diffeomorphism, and using the extension theorem 4 of chapter 6 in [11],
any Ck,α function in Ω̄0 to a Ck,α function in R3, for any k. We then obtain a
Taylor expansion of the form

ϕε = ϕ0 + εϕ1 + ε2ϕ2 +O(ε3), (3.7)

in the Ck,α(R3) norm. Since ∆ϕε = 0 in Ωε for all ε, it follows that ∆ϕj = 0 in
Ω0 for all j. By continuity it holds up the boundary.

We shall now find boundary and integral conditions for each ϕj in Ω0 by
expanding the corresponding conditions of problem (3.2) in ε. We use variables
(r, θ, z) from now on. Since n = (1,−ε 1

rηθ,−εηz), the boundary condition in
(3.2) has the explicit form

∂rϕε = ε
( 1

r2
ηθ∂θϕε + ηz∂zϕε

)
, (3.8)
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at r = d + εη(θ, z). We have the following expansion, holding uniformly in θ
and z

∂rϕε(d+ εη(θ, z), θ, z) = ∂rϕ0(d+ εη(θ, z), θ, z) + ε∂rϕ1(d+ εη(θ, z), θ, z)

+ ε2∂rϕ2(d+ εη(θ, z), θ, z) +O(ε3)

= ∂rϕ0(d, θ, z)

+ ε
(
η(θ, z)∂2

rϕ0(d, θ, z) + ∂rϕ1(d, θ, z)
)

+ ε2
(1

2
η(θ, z)2∂3

rϕ0(d, θ, z) + η(θ, z)∂2
rϕ1(d, θ, z) + ∂rϕ2(d, θ, z)

)
+O(ε3).

A similar expansion on the right hand side of (3.8) leads to the equations

∂rϕ0 = 0,

∂rϕ1 =
1

d2
ηθ∂θϕ0 + ηz∂zϕ0 − η∂2

rϕ0,

∂rϕ2 = − 2

d3
ηηθ∂θϕ0 +

1

d2
ηηθ∂θ∂rϕ0 + ηηz∂z∂rϕ0

− 1

2
η2∂3

rϕ0 +
1

d2
ηθ∂θϕ1 + ηz∂zϕ1 − η∂2

rϕ1,

(3.9)

for r = d. Expanding the integral condition in (3.2) leads to the equations∫ 2π

0

∫ d

0

∂zϕ0(r, θ, 0)rdrdθ = πd2,∫ 2π

0

∫ d

0

∂zϕ1(r, θ, 0)rdrdθ = −d
∫ 2π

0

η(θ, 0)∂zϕ0(d, θ, 0)dθ,∫ 2π

0

∫ d

0

∂zϕ2(r, θ, 0)rdrdθ = −d
∫ 2π

0

η(θ, 0)∂zϕ1(d, θ, 0)dθ

− d
∫ 2π

0

η2(θ, 0)∂z∂rϕ0(d, θ, 0)dθ

−
∫ 2π

0

η2(θ, 0)∂zϕ0(d, θ, 0)dθ.

(3.10)

We note that ϕ0 satisfies the problem

∆ϕ0 = 0 in Ω0,

∂rϕ0 = 0 on ∂Ω0,∫ 2π

0

∫ d

0

∂zϕ0(r, θ, 0)rdrdθ = πd2,

with the condition that ϕ0 is 2π periodic in z. Hence ϕ0 = z modulo additive
constants.

Using the relations (3.9) and (3.10), we shall compute an explicit expression
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for ϕε up to second order in ε in the special cases when the boundary profile η
has the form

η(θ, z) = cos(z).

and
η(θ, z) = cos(θ)cos(z).

These choices are simple enough for us to perform the required calculations,
and subsequently show that function qε corresponding to the vector field uε
is non-constant for small positive ε. This occupies the remaining part of this
thesis.

3.2 u in the case of η(θ, z) = cos(z)

We start by finding ϕ1. Since ϕ0 = z, we find the problem for ϕ1 in Ω0 to be

∆ϕ1 = 0 in Ω0,

∂rϕ1 = −sin(z) on ∂Ω0,∫ 2π

0

∫ d

0

∂zϕ1(r, θ, 0)rdrdθ = −2πd.

Since ∇ϕ1 is 2π periodic in z, the solution is unique modulo additive constants.
We find that

ϕ1(r, θ, z) = − I0(r)

I1(d)
sin(z). (3.11)

Here Iν(t) denotes a modified Bessel function of the first kind. For more on
these, see e.g. [1]. We have used the following identity for derivatives,

I(k)
ν (r) =

1

2k

k∑
j=0

(
k

j

)
Iν−k+2j(r), ν ≥ 0, k ∈ N,

which is found as relation 9.6.29 in [1]. It holds that I−1(r) = I1(r), so in
particular we see that I ′0(r) = I1(r). The integral condition can be checked by
using the relation ∫ x

0

rνIν−1(r)dr = xνIν(x), ν > 0, x ∈ R,

which can be found as relation 11.3.25 in [1]. These identities will be used with-
out reference throughout the remaining parts of this thesis.

Using (3.11), we find the equation for ϕ2 to be

∆ϕ2 = 0 in Ω0,

∂rϕ2 =
1

4I1(d)

(
3I0(d) + I2(d)

)
sin(2z) on ∂Ω0,∫ 2π

0

∫ d

0

∂zϕ2(r, θ, 0)rdrdθ = A,
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for some constant A. Here the solution is again unique modulo constants, and
we find that

ϕ2(r, θ, z) = Cz +
(3I0(d) + I2(d))

8I1(d)I1(2d)
I0(2r)sin(2z), (3.12)

where C is chosen to make the integral condition hold. The exact expres-
sion for this constant is not important for our purposes. If u(r, θ, z, ε) =
(u1, u2, u3)(r, θ, z, ε) is the vector field corresponding to the potential ϕ, we
have the expansion

u(r, θ, z, ε) = u0(r, θ, z) + εu1(r, θ, z) + ε2u2(r, θ, z) +O(ε3), (3.13)

with uj = ∇ϕj = (∂rϕj ,
1
r∂θϕj , ∂zϕj). Hence we can determine u up to second

order in ε by determining its components ui, i = 1, 2, 3. By (3.11) and (3.12)
we find that

u1(r, θ, z, ε) = −ε I1(r)

I1(d)
sin(z) +

(3I0(d) + I2(d))

4I1(d)I1(2d)
I1(2r)sin(2z) +O(ε3),

u2(r, θ, z, ε) = O(ε3),

u3(r, θ, z, ε) = 1− ε I0(r)

I1(d)
cos(z)

+ ε2
(
C +

(3I0(d) + I2(d))

4I1(d)I1(2d)
I0(2r)cos(2z)

)
+O(ε3),

(3.14)

3.3 q in the case of η(θ, z) = cos(z)

We define the function q = q(r, θ, ε) as the time it takes to travel along a
streamline of the vector field u(r, θ, z, ε) for one period, starting on the surface
{z = 0}. q is then extended by being constant on streamlines of u. In this case
η = cos(z) so the period is 2π, and q is defined as follows. Let Φt(r, θ, 0, ε) be
the flow of u starting at the point (r, θ, 0). Then q(r, θ, ε) is obtained via

2π = Φz,q(r,θ,ε)(r, θ, 0, ε). (3.15)

Here Φt = (Φr,t,Φθ,t,Φz,t). Taylor expanding the right hand side of (3.15) with
respect to ε we find an expression of form

2π = 2π + εa1 +
ε2

2
a2 +O(ε3).

Thus aj = 0 for j ≥ 1. We find that

a1 = ∂ε
[
Φz,q(r,θ,ε)(r, θ, 0, ε)

]∣∣
ε=0

.

Clearly Φt(r, θ, 0, 0) = (r, θ, t) and q(r, θ, 0) = 2π, so a1 = 0 is equivalent to

∂εq(r, θ, 0) = −(∂εΦ)z,2π(r, θ, 0, 0).
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We have

Φz,t(r, θ, 0, ε) =

∫ t

0

d

ds
Φz,s(r, θ, 0, ε)ds =

∫ t

0

u3(Φs(r, θ, 0, ε), ε)ds. (3.16)

We then find by (3.11), (3.12) and (3.14) and the expansion of u in terms of ε,
that

(∂εΦ)z,2π(r, θ, 0, 0) =

∫ 2π

0

∂zϕ1(r, θ, s)ds = 0.

Thus
∂εq(r, θ, 0) = 0. (3.17)

Then one has that

0 = a2 = ∂2
ε

[
Φz,q(r,θ,ε)(r, θ, 0, ε)

]∣∣
ε=0

Using (3.17) this means

∂2
ε q(r, θ, 0) = −(∂2

εΦ)z,2π(r, θ, 0, 0).

We find that

(∂2
εΦ)z,2π(r, θ, 0, 0) = 2

∫ 2π

0

((∂εΦ)s(r, θ, 0, 0) · (∂r, ∂θ, ∂z)u3
1)(Φs(r, θ, 0, 0))ds

+ 2

∫ 2π

0

u3
2(Φs(r, θ, 0, 0))ds.

The expression for ϕ2 in (3.12) shows that the integral of u3
2 = ∂zϕ2 is equal to

4πC. Thus we should turn to the other integral. As in (3.16) we can compute
(∂εΦ)r,s and (∂εΦ)z,s. As u3

1 = ∂zϕ1 is independent of θ by (3.11), the θ term
is not important. We find that

(∂εΦ)r,s(r, θ, 0, 0) =
I1(r)

I1(d)
(cos(s)− 1),

and

(∂εΦ)z,s(r, θ, 0, 0) = − I0(r)

I1(d)
sin(s).

Straightforward computations then show that∫ 2π

0

((∂εΦ)s(r, θ, 0, 0)·(∂r, ∂θ, ∂z)u3
1)(Φs(r, θ, 0, 0))ds = − π

I1(d)2

(
I0(r)2+I1(r)2

)
.

Then

∂2
ε q(r, θ, 0) =

2π

I1(d)2

(
I0(r)2 + I1(r)2

)
− 4πC =: f(r). (3.18)

We note that f is a non-trivial function of r. Now Taylor’s formula gives

q(r, θ, ε) = 2π +
ε2

2
f(r) +

∫ ε

0

(ε− t)2

2
∂3
ε q(r, θ, t)dt. (3.19)

Thus q is non-constant for small positive ε.
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3.4 u in the case of η(θ, z) = cos(θ)cos(z)

Here the problem for ϕ1 reads

∆ϕ1 = 0 in Ω0,

∂rϕ1 = −cos(θ)sin(z) on ∂Ω0,∫ 2π

0

∫ d

0

∂zϕ1(r, θ, 0)rdrdθ = 0.

Here we find the solution

ϕ1(r, θ, z) = − I1(r)

I ′1(d)
cos(θ)sin(z). (3.20)

Using this expression for ϕ1, we find the problem for ϕ2 as

∆ϕ2 = 0 in Ω0,

∂rϕ2 = A1sin(2z) +A2cos(2θ)sin(2z) on ∂Ω0,∫ 2π

0

∫ d

0

∂zϕ2(r, θ, 0)rdrdθ = A,

with the constants A1, A2 given by

A1 =
1

4dI ′1(d)

(
dI ′′1 (d) + (d− 1

d
)I1(d)

)
,

A2 =
1

4dI ′1(d)

(
dI ′′1 (d) + (d+

1

d
)I1(d)

)
,

and A some unimportant constant. From this we can see that ϕ2 is given by

ϕ2(r, θ, z) = Cz +B1I0(2r)sin(2z) +B2I2(2r)cos(2θ)sin(2z), (3.21)

with the constants B1, B2 given by

B1 =
1

2I1(2d)
A1,

B2 =
1

2I ′2(2d)
A2.

(3.22)
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The constant C is chosen so that the integral condition holds. We can now find
the components uj , j = 1, 2, 3 of u as

u1(r, θ, z, ε) = −ε I
′
1(r)

I ′1(d)
cos(θ)sin(z)

+ ε2
(

2B1I1(2r) + 2B2I
′
2(2r)cos(2θ)

)
sin(2z)

+O(ε3)

u2(r, θ, z, ε) = ε
1

r

I1(r)

I ′1(d)
sin(θ)sin(z)

− 2ε2
1

r
B2I2(2r)sin(2θ)sin(2z) +O(ε3),

u3(r, θ, z, ε) = 1− ε I1(r)

I ′1(d)
cos(θ)cos(z)

+ ε2
(
C + 2

(
B1I0(2r) +B2I2(2r)cos(2θ)

)
cos(2z)

)
+O(ε3),

(3.23)

3.5 q in the case of η(θ, z) = cos(θ)cos(z)

We let Φt(r, θ, 0, ε) and q(r, θ, ε) be defined in the same way as in section 3.3.
Again one has that

Φt(r, θ, 0, 0) = (r, θ, t),

q(r, θ, 0) = (r, θ, 2π).

As in section 3.3 we find that

∂εq(r, θ, 0) = 0,

so we have to move to the second order derivative. As in section 3.3 we have
that

∂2
ε q(r, θ, 0) = −(∂2

εΦ)z,2π(r, θ, 0, 0),

and

(∂2
εΦ)z,2π(r, θ, 0, 0) = 2

∫ 2π

0

((∂εΦ)s(r, θ, 0, 0) · (∂r, ∂θ, ∂z)u3
1)(Φs(r, θ, 0, 0))ds

+ 2

∫ 2π

0

u3
2(Φs(r, θ, 0, 0))ds.

Using u3
2 = ∂zϕ2 and (3.21) we find that

2

∫ 2π

0

u3
2(Φs(r, θ, 0, 0))ds = 4πC. (3.24)
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We find that

(∂εΦ)r,s(r, θ, 0, 0) =
I ′1(r)

I ′1(d)
cos(θ)(cos(s)− 1),

(∂εΦ)θ,s(r, θ, 0, 0) = − I1(r)

rI ′1(d)
sin(θ)(cos(s)− 1),

(∂εΦ)z,s(r, θ, 0, 0) = − I1(r)

I ′1(d)
cos(θ)sin(s).

Using u3
1 = ∂zϕ1 and (3.20) we obtain after straightforward calculations that

2

∫ 2π

0

((∂εΦ)s(r, θ, 0, 0) · (∂r, ∂θ, ∂z)u3
1)(Φs(r, θ, 0, 0))ds

= − 2π

(I ′1(d))2

(
(I2

1 (r) + (I ′1(r))2)cos2(θ) +
1

r
I2
1 (r)sin2(θ)

)
:= −g(r, θ)

(3.25)

It follows from (3.25) and (3.24) that

∂2
ε q(r, θ, 0) = g(r, θ)− 4πC, (3.26)

so that again q(r, θ, ε) is non-constant in r and θ for small ε.
.
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A Hölder spaces

Let 0 < α ≤ 1. Let d, k, n be a non-negative integers. Let Ω be an open subset
of Rd. For a vector field u = (u1, ..., un) : Ω→ Rn with bounded and continuous
derivatives up to order k, we define for integers 0 ≤ j ≤ k, the semi-norms

‖u‖j := sup
x∈Ω

( n∑
i=1

∑
|γ|=j

|Dγui(x)|2
)1/2

.

Here γ = (γ1, ..., γd) is a multi-index of non-negative integers, and |γ| :=
γ1 + ...+ γd its size. Dγ := ∂γ1 · · · ∂γd , with ∂i := ∂xi = ∂

∂xi
, is interpreted as a

differential operator.

We define additional semi-norms, depending on α and k, via

[u]k,α := sup
x,y∈Ω,x 6=y

(∑n
i=1

∑
|γ|=k |Dγui(x)−Dγui(y)|2

)1/2

|x− y|α
.

Here |x| denotes the Euclidean norm for points x ∈ Rd.

We denote by

Ck,α(Ω,Rn)

the collection of vector fields with bounded and continuous derivatives up to
order k, for which the norm

‖u‖k,α :=

k∑
j=0

‖u‖j + [u]k,α

is finite. To simplify notation we also write Ck,α instead of Ck,α(Ω,Rn) when
there is no risk of confusion to what we mean. Each Ck,α(Ω,Rn) equipped with
the norm ‖·‖k,α is a Banach space.

B Approximation

Let Ω ⊂ R3 be a bounded open set with smooth boundary. Let 0 < α < 1 be
a real number and k ≥ 2 an integer. We shall consider the following proposition.

Proposition B.1. Let u : Ω → R3 be a vector field of type Ck,α. Then
there is a sequence of smooth vector fields uj converging to u in Ck,λ for all
0 < λ < α. Further, the uj may be chosen so that

‖uj‖k,α ≤ C ‖u‖k,α ,
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for all j. Here C > 0 is a constant, independent of j.

Proof. We prove it without loss of generality under the assumption that u :
Ω→ R is a function of type Ck,α, as this simplifies the exposition considerably.
We shall first extend u to be defined on the whole of R3, with compact support.
This can be achieved by using the extension theorem 4 of chapter 6 in [11],
giving a continuous linear extension operator

E : Ck,α(Ω,R)→ Ck,α(R3,R),

and multiplication with a cut-off function. Hence we can assume that u ∈
Ck,α(R3,R) with compact support. Now we choose a smooth function 0 ≤ χ ≤ 1
with compact support, so that χ is identically equal to 1 in a neighborhood of
0 with ∫

R3

χ(x)dx = 1.

Choosing a sequence εj > 0, j = 1, 2, 3, ..., so that lim
j→∞

εj = 0, we set

χj(x) :=
1

ε3j
χ(
x

εj
),

and then define
uj(x) := u ∗ χj(x),

where ∗ denotes convolution. The functions uj are smooth with compact sup-
port, and it is easy to see that Dγuj converge to Dγu uniformly for each multi-
index γ such that |γ| ≤ k. It thus suffices to check that

[uj − u]k,λ → 0,

for each 0 < λ < α. So choose a multi-index γ with |γ| = k. Let x 6= y. We
shall show that

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

,

goes to zero uniformly in x, y as j →∞. This will suffice. We first let 0 < δ < 1
be some fixed real number. Suppose now that |x− y| ≤ δ. We find that

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

≤
∫
|χj(z)|
|x− y|λ

|Dγu(x)−Dγu(x− z)− (Dγu(y)−Dγu(y − z))|dz

=

∫
|χj(z)|
|x− y|λ−α

|Dγu(x)−Dγu(x− z)− (Dγu(y)−Dγu(y − z))|
|x− y|α

dz

≤
∫

|χj(z)|
|x− y|λ−α

|Dγu(x)−Dγu(y)|
|x− y|α

dz

+

∫
|χj(z)|
|x− y|λ−α

|Dγu(x− z)−Dγu(y − z)|
|x− y|α

dz.
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Using that x− y = (x− z)− (y − z) we get the estimate

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

≤ 2 ‖u‖k,α |x− y|
α−λ

∫
χj(z)dz

≤ 2 ‖u‖k,α δ
α−λ.

(1)

We then turn to the case that |x− y| ≥ δ. Then one has that 1
|x−y|λ ≤

1
δλ

. Let

µ > 0 be given. By the compact support of χ and uniform continuity of Dγu
we can choose a j0 = j0(µ) so that for all j ≥ j0 we get that

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

≤
∫
|χj(z)|
|x− y|λ

|Dγu(x)−Dγu(x− z)− (Dγu(y)−Dγu(y − z))|dz

≤ 2µδ−λ
∫
χj(z)dz

= 2µδ−λ

(2)

From this we obtain that

[u− uj ]k,λ

= sup
x6=y

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

≤ sup
x 6=y
|x−y|≤δ

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

+ sup
x 6=y
|x−y|≥δ

|Dγu(x)−Dγuj(x)− (Dγu(y)−Dγuj(y))|
|x− y|λ

≤ 2 ‖u‖k,α δ
α−λ + 2µδ−λ.

(3)

From this we get convergence. Indeed, given ε > 0 we choose δ > 0 so small
that 2 ‖u‖k,α δα−λ ≤

ε
2 . Note that we used that α − λ > 0 here. Since µ > 0

was arbitrary we choose µ so small that 2µδ−λ ≤ ε
2 . With these choices of δ

and µ we find for all j ≥ j0(µ) that [u− uj ]k,λ ≤ ε. These considerations gives
the convergence of the uj to u in Ck,λ. Since 0 < λ < α was arbitrary, this
proves one part of the proposition.

It is straightforward to check that the estimate

‖uj‖k,α ≤ ‖u‖k,α ,

hold for each j. Since the extension operator E is continuous, the rest of the
proposition follows. �
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C The implicit function theorem

In this section we simply state the implicit function theorem. We refer to chap-
ter 16 of [13] for a more detailed discussion of this theorem.

Let V,W,X, Y, Z be Banach spaces. Let k ≥ 1 be an integer, and let
Ck(V,W ) denote the k times Fréchet differentiable maps Ψ : V → W . If
Ψ ∈ Ck(X × Y,Z) and (x0, y0) ∈ X × Y , we let D1Ψ(x0, y0) be the Fréchet
derivative of Ψ with respect to the variable x ∈ X evaluated at the point (x0, y0).

Implicit function theorem Let Ψ ∈ Ck(X × Y,Z). Let (x0, y0) ∈ X × Y
be points so that Ψ(x0, y0) = 0, and D1Ψ(x0, y0) is invertible. Then there exist
open sets x0 ∈ Ux0

⊂ X and y0 ∈ Uy0 ⊂ Y , and a unique map g ∈ Ck(Uy0 , Ux0
)

so that Ψ(g(y), y) = 0 for all y ∈ Uy0 . Furthermore, Ψ(x, y) = 0 for (x, y) ∈
Ux0 × Uy0 if and only if x = g(y).
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