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This thesis surveyed existing technologies and research on pedestrian detection systems using video as 

input. The purpose of the study was to investigate what such a software would need to produce to be 

relevant for the fire safety engineer in outdoor circulation- or egress applications. The thesis tested a 

newly developed detection software called Flowity. The software, developed by ÅF Digital Solutions 

AB (a subsidiary to AFRY AB) utilizes machine learning and artificial intelligence algorithms to 

identify and detect objects and pedestrians. The objective was to establish a list of factors that the 

Flowity software should be able to extract and how, if to be useful for the fire safety engineer. The 

objective was also to conduct a case-study test of the software on a video of pedestrian movement and 

to evaluate/compare the capabilities to accurately identify and quantify pedestrian movement with the 

Flowity software and do a comparison to manually collected data. Results from the study show that 

the Flowity software could identify people and automatically presented them as detected pedestrians 

with a detection accuracy of 70 %. This applies for this case study, which was an outdoor high-

resolution video recording containing 576 pedestrians, with the camera placed 4 meters above the 

walking area. The software managed to provide data on movement patterns, route choices of detected 

pedestrians as well as measuring movement speeds, flows and densities at different sections. The 

maximum global people density measured with the software was 0,13 persons/m2 and the maximum 

local density was 3 persons/m2. When comparing the manually and software measured flows and 

densities, there was no statistically significant difference between the measurement methods. 

However, a comparison between manually and software measured movement speeds showed a 

statistically significant difference between the measurement methods. A 14,2 % higher average flow 

was measured with the manual counting and a 15,1 % higher average global denisity. The software 

measured a 32 % higher average speed than what was manually measured. Uncertainties connected to 

the manual measurements and unknown influence of factors on detection performance might have 

impacted the results. 
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Summary 
One way of better understanding crowd dynamics and how people behave in an evacuation 

situation is to accurately identify and quantify the pedestrian movement. In a time of 

increased building complexity, the need to deviate from the prescriptive design increases. The 

BBRAD, (The Swedish National Board of Housing, Building and Planning’s general 

recommendations on the analytical design of a building’s fire protection) offers a performance 

based design approach, with the possibility to numerically evaluate that, for instance, the 

ability of the population to escape safely in case of fire is upheld. To do so, the fire safety 

engineer would need accurate data on pedestrian movement as an input for this approach and 

to further improve the design of the evacuation modelling. 

 

The purpose of this thesis was to survey existing technologies and research on pedestrian 

detection systems using video as input. The purpose was also to investigate what such a 

software would need to produce to be relevant for the fire safety engineer in outdoor 

circulation- or egress applications. The thesis tested a newly developed detection software 

called Flowity. The software, developed by ÅF Digital Solutions AB (a subsidiary to AFRY 

AB) utilizes machine learning and artificial intelligence algorithms to identify and detect 

objects and pedestrians. The objective was to establish a list of factors that the newly 

developed Flowity software should be able to extract and how, if to be useful for the fire 

safety engineer. The objective was also to conduct a case-study test of the software on a video 

of pedestrian movement and to evaluate/compare the capabilities to accurately identify and 

quantify pedestrian movement with the Flowity software and do a comparison to manually 

collected data. 

 

The case-study was an outdoor video containing pedestrians entering a large Lund University 

building. The video was 760 seconds long and contained 576 unique individuals where the 

software should identify and quantify each pedestrian and their movement. The video did not 

include a high people density scenario, indoor spaces, evacuating pedestrians, presence of 

smoke, fire or limited visibility. However, the concept of automatically detecting pedestrians 

and extracting movement data are still relevant for circulation and egress applications, which 

are related to evacuation and fire safety engineering.  

 

Results from the study show that the factors the Flowity software managed to extract were 

data on movement patterns and route choices of detected pedestrians as well as measuring 

movement speeds, flows and densities at different sections. Factors that were not possible to 

extract, given the current state of the software, were the age, gender, body size, and any 

movement impairments of the pedestrians. The Flowity software could identify individual 

people and automatically presented them as detected pedestrians with a detection accuracy of 

70 %, meaning, that 30 % of the visible pedestrians were not detected by the software. This 

applies for this case study, filmed at a 1080p resolution, with a camera placed 4 meters above 

the walking area and at an angle of 21 degrees. The maximum global people density measured 

with the software was 0,13 persons/m2 and the maximum local density was 3 persons/m2. 

When comparing the manually and software measured flows and densities, there was no 

statistically significant difference between the measurement method. However, a comparison 

between manually and software measured movement speeds showed a statistically significant 

difference between the measurement methods. A 14,2 % higher average flow was measured 

with the manual counting and a 15,1 % higher average global denisity. The software 

measured a 32 % higher average speed than what was manually measured. This could be due 

to the high outliers that the software produced or the uncertainties in the manual 

measurements. Further investigation in required. 



 

Flowity is a new software, never tested before for circulation/egress applications and there is 

need for further testing and research. The development of a general protocol to be used when 

systematically testing pedestrian detection softwares needs to be researched in the future 

along with research into factors and how they influence detection performance. If pedestrian 

detection softwares are proven to work successfully in getting accurate and relevant 

pedestrian movement data, the applications could be useful to the fire safety engineer but also 

broad in nature. 
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1 Introduction 
As modern buildings get increasingly more complex the importance of knowing where people 

are and how people move in an emergency situation cannot be overstated. Accurate 

information about movement speeds, route-choices, flows and people densities are crucial in 

the understanding of crowd dynamics, pedestrian egress movement and the kind of emergency 

system that need to be in place. Knowledge and skill in these areas are required by the fire 

safety engineer in order to facilitate safe buildings in the future.  

 

The use of sensors or cameras (either mono or in stereo), combined with algorithms to detect 

and track pedestrians have been actively utilized and researched the last decade. Computer 

vision involves having computers conduct high-level distinctions, detections or other tasks 

similar to what the human visual system can achieve (Huang, 1992). The use of computer 

vision has in recent years become much more popular. However, a survey of the top 16 

pedestrian detectors utilizing algorithms on mono camera footage (Dollár, Wojek, Schiele, & 

Perona, 2011) concludes that the detection performance at that time was not adequate enough 

for partially occluded pedestrians or for low resolution footage, i.e. the persons within the 

image was not represented with enough pixels to be detected. In (Boltes & Seyfried, 2013), an 

extensive review of research on pedestrian detection using different camera techniques was 

completed. They state that most of the detection using mono camera setups have a detection 

accuracy of about 90% and the stereo setups will often fall short in distinguishing between 

people in larger crowds due to the difficulty in segmenting fore- and background objects. 

 

The most recent pedestrian detectors use a hybrid between feature algorithms, AI- (artificial 

intelligence) technology and deep learning, showing an excellent performance in detection 

(Baabou, Ben, Ben Farah, Abubakr, & Kachouri, 2019). Deep learning models apply features 

from deep neural networks (DNN) or convolutional neural networks (CNN), which is 

considered a subset of artificial intelligence. Simplified, they are a mathematical way to 

calculate a probability that an input (visual imagery) is equal to a selected output (e.g. 

pedestrians) by enabling features to be extracted on multiple layers (Schmidhuber, 2015). 

 

The Flowity software developed by ÅF Digital Solutions AB (a subsidiary to AFRY AB) uses 

the latest machine learning and AI (deep neural networks) technologies in order to detect and 

analyse any object or situation from a video dataset. If this software is proven to work 

successfully in getting accurate and relevant pedestrian movement data, the applications could 

be substantial and broad in nature. 

 

1.1. Purpose and objectives 
The purpose of this project was to survey existing technologies and research on pedestrian 

detection systems using video as input. The purpose was also to investigate what such a 

software would need to produce to be relevant for the fire safety engineer in outdoor 

circulation- or egress applications.  

 

The objective was to establish a list of factors that the Flowity software should be able to 

extract and how, if to be useful for the fire safety engineer. 

 

The objective was also to conduct a case-study test of the software on a video of pedestrian 

movement and to evaluate/compare the capabilities to accurately identify and quantify 

pedestrian movement with the Flowity software and do a comparison to manually collected 

data. 
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1.2. Limitations and delimitations 
The review of existing detection technologies was limited to systems using video as input and 

applications utilizing sensors, cameras, algorithms or neural networks, as the Flowity software 

is able to utilize these technologies. No investigation into detection through laser, wifi-, 

Bluetooth- or GPS technologies were made. 

 

The testing of the Flowity software was limited to testing only one outdoor case and the 

analysis of one video. This was done to focus on trying out a new software and to check if the 

detection of pedestrians was possible for a simple scenario. This was performed to assess if 

relevant pedestrian movement data could be extracted. Therefore, no testing of different video 

resolutions or camera angles were done. The testing did also not include indoor videos with 

limited visibility (e.g. where darkness or smoke were limiting the visibility) or footage taken 

from thermal imaging cameras. 

 

The case-study was an outdoor video and it did not include some aspects relevant for the fire 

safety engineering applications such as a high people density scenario, indoor spaces, 

evacuating pedestrians, presence of smoke, fire or limited visibility. However, the concept of 

automatically detecting pedestrians and extracting movement data are still relevant for 

circulation and egress applications, which are related to evacuation and fire safety 

engineering. 

 

Measurements of the area where the video was recorded were taken on-site and will be 

generating some margin of error and uncertainties. Manual collection of pedestrian data was 

made, and the entire video was watched two times, to count all the pedestrians at different 

sections. This was only made by the author. The time for pedestrians to pass certain sections 

(transit time) was collected, counting only seconds with no decimals. The distance the 

pedestrians covered between two sections was manually measured but was considered to be a 

simplification of the exact travel path and will generate uncertainties. Taking the manual 

collection of measurements and pedestrian data into account, the final results could have been 

affected. 

 

In reality, the accuracy of the Flowity software will be dependent on a range of different 

factors. An investigation into factors and how they impact performance was not done in this 

thesis given the time constraints. The video was applied in two separate instances of the 

software, one to achieve a video render showing the detection of pedestrians and one where 

raw pedestrian data were output. This approach was required given a current limitation of the 

software. The video was used to analyse detection accuracy and the manually measured 

pedestrian data could be used as a benchmark to which the Flowity system results was then 

compared. In addition, certain details about the Flowity software are not addressed, at the 

request of the developers, given commercial sensitivities.  

 

The list of factors that the Flowity software should be able to extract and how, did not include 

factors such as detection of flames, smoke, debris or lowered visibility. Those were not the 

focus in this thesis. 

 

The high technical level, with regards to the section on existing methods for pedestrian 

detection (especially algorithms and neural networks) led to descriptions being simplified to 

fit an audience not familiar with the computer vision research field. 
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2 Methodology 
The workflow for the project can be seen in Figure 1. The initial phase of the project 

comprised a literature review of previous research on existing methods for pedestrian 

detection and performance evaluation. In the next phase, a list of factors (deemed relevant to 

the field of circulation and egress) was established and was introduced to the Flowity 

development team in an effort to develop a suitable version of the software, to later be tested 

on a video of pedestrian egress movement. The next phase included, sourcing a video suitable 

to fit the purpose and objective of the thesis and the implementation of the Flowity software, 

which was completed at the AFRY-offices in Gothenburg by the development team at 

Flowity. Lastly an analysis of the software capabilities and a discussion about the project, 

limitations and future research was elaborated on. 

 
Figure 1 Thesis workflow. 

Sourcing information and research on the subject was done mainly on the following 

platforms: Elsevier/ScienceDirect, ResearchGate, LUP (Lund University Publications) and 

Google Scholar. Keywords included pedestrian detection, egress, computer vision, video 

analysis, deep learning, neural network, convolutional networks, fire safety, evacuation 

modelling to mention some. An estimated 50-60 research articles were read, and the available 

literature was comprehensive, e.g. the number of research articles on “pedestrian detection” 

on ScienceDirect was 1128 as of this year. The interest and amount of research done has gone 

up immensely the last two decades, see Figure 2 below. 

 
Figure 2 Number of published research articles on ScienceDirect with keywords "pedestrian 

detection". 
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2.1.  Flowity software 
Flowity is an artificial intelligence software developed in the beginning of 2019 by the future 

technologies’ division at ÅF Digital Solutions AB (a subsidiary to AFRY AB) in Gothenburg. 

The development team specialises in AI, machine learning, computer vision, programming, 

statistical methods, algorithms and communication. The software utilizes AI, DNN, machine 

learning and a range of algorithms to detect objects within a video. The information regarding 

details about the software will be relatively limited and some crucial parts will be left out as 

they are not to be made public by company request. 

 

The system is machine learned by different image datasets containing pedestrians, cars, 

trucks, trains, traffic lights or other objects that suit the specific need for a developed system. 

The detection is done by the feature-layers in the neural network and the data can 

subsequently be integrated to an automatic report generation with the desired statistics. This is 

achieved through the use of an open API (application programming interface) and the current 

output data format is either a video render of the detections or a JSON (JavaScript Object 

Notation) file containing raw data, for instance all the detected pedestrians GPS-coordinates 

and timestamps. The application of Flowity as of today is mostly used within traffic analysis 

(Tedblad, 2019).  

 

The software developers claim that the software features are GDPR (General Data Protection 

Regulation) compatible as well as having the ability to be run on any present video setup 

(CCTV or otherwise). Analysis can be made either in real time or by postprocessing, 

depending on the applications. These facts were neither attested nor ruled out in this thesis. 

 

The initiation of a constructive dialog with the team behind the Flowity software was done 

during the early phases of the thesis. This gave both parties an understanding of the purpose 

and objective of the project as well as enabling an in depth understanding of the Flowity 

software and its limitations. 
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3  Factors relevant to consider in a pedestrian detection system  
The following section describes which factors and what kind of outputs would be relevant for 

a pedestrian detection system to extract and how, when doing video analysis of pedestrian 

movement. The factors all have a relevance to the field of circulation and egress. The factors 

were introduced to the Flowity software developing team in an effort to establish a desired 

approach for analysing a video of pedestrian movement. The result of this approach is later 

described in the results. 

 

As stated by (Bukowski & Tubbs, 2016) in the SFPE Handbook of Fire Protection 

Engineering, “Among the most important concepts in fire safety in buildings is to manage 

those potentially exposed to the fire and its effects, either by protecting them in place or by 

moving them to a place of safety”. The concept of egress is explained and is generally defined 

as a safe path of travel that leads all the way to the exit. When doing analysis of pedestrian 

movement, knowing which exits and route choices people make as their means of safe egress 

as well as the flow through these openings will be important factors to consider. A pedestrian 

detection system could facilitate the protection of those potentially exposed to harm by 

quickly detecting people and knowing where they are located.  

 

The Swedish building code regulations (‘Boverket´s building regulations – mandatory 

provisions and general recommendations, BBR’) states in the latest edition (BFS 2011:6 with 

amendments up to BFS 2019:2) that: “Buildings shall be designed to ensure that there is an 

adequate time for evacuation during a fire” and follows up with general recommendations 

about maximum walking distance to the nearest escape route as well as recommendation for 

number of exits and their respective widths and heights. Knowing the distance people cover 

during an egress situation and the time it takes are important factors to monitor when doing 

analysis or assessing evacuation safety. 

 

With increased building complexity, the need to deviate from the prescriptive design 

increases. The BBRAD (‘The Swedish National Board of Housing, Building and Planning’s 

general recommendations on the analytical design of a building’s fire protection’) offers a 

performance based design approach, with the possibility to numerically verify that, for 

instance, the ability of the population to escape safely in case of fire is upheld. Verification of 

deviations from the prescriptive design can be made either through qualitative assessment, 

scenario analysis or quantitative risk analysis.  

 

One option in order to evaluate the ability of safe escape in case of fire is to use an evacuation 

modelling tool. Work by (Kuligowski, Peacock, & Hoskins, 2010) reviews over 25 different 

computer evacuation models. The continuous egress model, Pathfinder is one of the reviewed 

models and is currently frequently used by Swedish fire protection engineers. A recent paper 

by (Lovreglio, Ronchi, & Kinsey, 2019) identified 72 different models currently used, 

Pathfinder being the most well-known and well-used. Surveying the technical reference from 

Pathfinder, (Thunderhead Engineering, 2019) the user defined parameters with regards to 

pedestrian movement can be examined. Factors such as comfort distance, body sizes, 

movement speeds, impairments etc. can be defined by the user either by a constant value, a 

uniform distribution between two values, a normal- or a log-normal distribution. Acquiring 

data about these factors from analysis of pedestrian movement will be important to the present 

work within evacuation modelling.  

 

In an egress situation, the relationship between people density and flow is of interest. This 

relationship has been widely researched and the most frequently used example, (Fruin, 1987) 
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describes a model called LoS (Level of Service). Basically, with increased people density 

(people per square meter), the flow will fall. Fruin divides the model into six different design 

levels (A-F) as described by Fruin´s LoS, which all represent different densities and resulting 

flows, LoS “A” represents the threshold of unimpeded free flow. Fruin’s concepts can be 

related to the so-called “fundamental diagrams”, depicting relationships between speed, 

density and flow. These have long been researched and (Vanumu, Ramachandra Rao, & 

Tiwari, 2017) reviewed different pedestrian flow characteristics that were developed for a 

variety of situations. Measuring the people density, speeds and flows during analysis of 

pedestrian movement will be essential in the understanding of the relationships and to aid the 

continuous improvement of the evacuation modelling. The Flowity software should be able to 

extract data on these factors in order to be useful for fire safety engineering applications. 

 

3.1.  Factors 
Based on information from the previous section and knowledge acquired from the fire 

engineering program a list of factors relating to pedestrian (1) detection and (2) 

counting/tracking. This was done to differentiate between factors and because the software 

addresses these approaches differently.  

 

Within detection, the most obvious capability of a pedestrian detection software will be to 

distinguish people from other objects and to exclude non-desirable detections, for instance 

mannequins, reflections or certain staff members (to ensure high detection accuracy). It will 

also be important to detect certain pedestrian attributes, e.g. age, body size, gender, 

impairments etc. An adaptation to the specific purpose and scene will always have to be done. 

Once the detection has been achieved the software should be able to track and count 

pedestrians as well as track them in relation to user defined object, i.e. a corridor wall, a door 

opening, a line etc. This requires the software to enable user inputs and memorize 

characteristics of the pedestrians. Tracking the pedestrian should be able to produce 

representative walking speeds, distance walked, the distance kept to other pedestrians or 

objects, the time to safety and route choices made by each pedestrian. Monitoring user 

defined areas, factors such as flow, people densities and space occupation can be extracted. 

Table 1 below presents some detection factors that the Flowity pedestrian detection software 

ought to extract from the case video. 
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Table 1 Detection factors. 

                    Factor Description 
D

et
ec

ti
o
n
 

Pedestrian 

Detect humans and classify them as pedestrians., not including 

mannequins, reflections, certain staff, people on bikes, inside 

cars or carrying heavy objects etc. 

Age 
Make a distinction between different age groups, children, 

elderly or adults. 

Gender Make a distinction between male and female pedestrians. 

Body size 
Make a distinction between different body sizes, measuring 

shoulder width and height in meters. 

Movement impairment 
Detect wheelchair users or people with movement impairing 

disabilities. 

Incapacitation 
Detect pedestrians who are immobile (e.g. passed out due to 

smoke) 

 

Table 2 below present some counting/tracking factors that the Flowity pedestrian detection 

software ought to extract from the case video. 

 
Table 2 Counting/tracking factors. 

 

  

                Factor Description 

C
o
u
n
ti

n
g
/T

ra
ck

in
g
 

Pedestrian speed 
Track individual walking/running speed at any given time 

and position in meters per second. 

Pedestrian density 

Count pedestrian density at any given time and area in 

persons per square meter. 

 

Flow rate 
Count the number of pedestrians passing by a section per 

second (door, stairs, corridor or other user defined sections). 

Distance walked 
Track individual distance covered in meters. 

 

Distance between 

pedestrians 

Track the distance (in meters) maintained between 

pedestrians, indicating level of comfort distance. 

Distance to objects 

 

Track the distance (in meters) that pedestrians maintain 

with obstructions. Could be walls/corridors etc. (user 

defined). 

Dwell time 
Count time (in seconds) that an individual has been 

standing still, indicating congestion or indecisiveness 

Time to safety 
Count the time (in seconds) it takes for the pedestrians to 

get to a safe place (user defined) 

Route/exit usage 
Track the route/exit (user defined) usage that pedestrians 

take 

Space occupation 

 

Count the number of pedestrians passing through an area 

(user defined) 
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3.2.  Outputs 
This section will describe the key desired data output from a pedestrian detection software. 

Graphical aspects or aesthetics will be characterised by the authors subjective opinion and are 

obviously subject to change. This section is only meant to serve as an example. 

 

The highest possible accuracy in detecting pedestrians is obviously desired. Performance and 

evaluation are described in Section 4.2. The software should, for visual and presentational 

purposes, output a video-render with detected pedestrians and also make distinctions between 

age groups and gender, e.g. by having colour coded bounding boxes and symbols above the 

boxes (there are probably other means of achieving the same effect, this is just one example). 

Pedestrians having movement impairments or who are incapacitated should be visually 

distinct e.g. by having a separate geometry of the bounding boxes or separately marked. 

Figure 3 below illustrates how some of these implementations might look like. This is only 

the authors subjective opinion. 

 

 
Figure 3 Hypothetical implementations of detection factor outputs 

The software should apart from a video-render also generate data statistics, perhaps in the 

form of spreadsheets containing each pedestrian present within the footage and all the 

measured factors. Through the use of parametric equations, each pedestrian would have the 

coordinates and time recorded which in turn could led to the extraction of other data, e.g. 

speed, acceleration, density, distance to other pedestrians, distance covered, etc. Figure 4 

illustrates an example of how the situation and parametric data might look like.  
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Figure 4 Hypothetical implementation of parametric outputs. 

Some of the detection factors combined with the counting and tracking ones could be 

extracted and logged for each pedestrian separately. Table 3 below illustrates how this might 

look. In addition, the software could display the routes pedestrians take for egress, preferably  

on a 2D or 3D drawing of the area either as static trajectory map or a dynamic video. 

 
Table 3 Hypothetical detection-, counting- and tracking factors logged for each pedestrian 

 Pedestrians 

 Ped0001 Ped0002 Ped0003 Ped0004 Ped0005 

Gender (male / female) m m f f f 

Age group (child / adult / elderly) a a a a a 

Shoulder width (m) 0,43 0,4 0,36 0,41 0,38 

Height (m) 1,78 1,83 1,69 1,74 1,77 

Wheelchair or other impairment      

Distance covered (m) 23 24 26 20 19 

Dwell time (s) 1 1 8   

Time to safety (s) 29 23 26 27 28 

Incapacitated      
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Some of the user dependent factors, such as, which sections to measure flow at and which 

obstructions to measure distance to are preferably presented as individual data sheets. Table 4 

and Table 5 below illustrates how this may look, in different tables. The hypothetical 

obstruction in this case, is the hedge section, marked by a red box and the investigated flow 

sections corresponds to Line01 present within Figure 4. 

 
Table 4 Example outputs of user some user defined factors. 

 Area usage Flow rate (p/section*s) 

Time (1 sec interval) 
No. Of 

Pedestrians 
Line01 

00:00:01 2 2,1 

00:00:02 3 1,9 

00:00:03 4 1,8 

00:00:04 5 2,4 

00:00:05 5 2,3 

00:00:06 5 1,9 

 
Table 5 Example outputs of user some user defined factors. 

 Distance kept to obstruction (m) 

Time (1 sec interval) Ped0001 Ped0002 Ped0003 

00:00:01 0,15 0,13 etc… 

00:00:02 0,15 0,13  

00:00:03 0,2 0,1  

00:00:04 0,35 0,15  

00:00:05 0,4 0,22  

00:00:06 0,4 0,21  

 

Further analysis of the statistics is not crucial as a standalone output, e.g. presentation of the 

lowest, highest, average and standard deviation value of the different factors measured can 

easily be extracted from the data sheets. 
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4 Existing methods for pedestrian detection 
This section will introduce the reader to the subject of pedestrian detection and give examples 

of some of the ways of measuring detection performance. It will also review some existing 

technologies that claim success in pedestrian detection, tracking, or counting. The survey will 

give a short introduction on the technology and exemplify research efforts performed with 

them. A large portion is predominantly allocated to deep neural networks and machine 

learning as they are used in the Flowity software. 

 

4.1.  Pedestrian detection 
Pedestrian detection is the computational process of localising people within a scene, an 

image or a video frame and then represent the detected human with points, boxes, lines or 

otherwise. The choice of ways to represent a detected human will have implications on further 

aspects and should be chosen with that in mind. For example, representing a detected human 

with a rectangular box might not be suitable when investigating pedestrian leg movement but 

might be suitable for some other objective.  Figure 5, from Object Tracking: A Survey by 

(Yilmaz, Javed, & Shah, 2006) presents different ways to represent detected pedestrians. 

 
Figure 5 Different pedestrian representations. Figure adapted from (Yilmaz et al., 2006) 

 

4.2.  Performance and evaluation 
There will always be different detection errors, either due to software- or hardware limitations 

or due to the scene’s characteristics. How well a software will detect, track and count 

pedestrians will be dependent on a range of different factors. The software’s implemented 

features and algorithms will predominantly affect performance, however environmental, video 

and pedestrian factors will also have a large influence (Yilmaz et al., 2006). Figure 6 seen 

below shows some of these factors and at the same time highlights the flow of performance 

dependence i.e. the software’s counting performance will be dependent on the tracking 

performance which in turn is dependent on the detection performance and so on. Notably, this 

is probably not all of the factors that might influence this process and the influence they have 

on the final performance is not known by the author (i.e. the number and connectivity of the 

branches shown in Figure 6 might be more complex than that shown). This is only meant as a 

quick overview and to give the reader some insight. 
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Figure 6 Factors thought to influence the performance in counting, tracking and detecting 

pedestrians. 

Detection errors can be categorized into false positives or false negatives. False positive being 

the error of displaying a detected pedestrian, where there really is none. False negative is the 

absence of detection where there really is a pedestrian. Table 6 adapted from (Ujwal & 

Brémond, 2016) illustrates the concept of false and true detection. If the actual scene contains 

a pedestrian or not is referred to as “Ground Truth”. 

 
Table 6 True/False Positives/Negatives. Table adapted from (Ujwal & Brémond, 2016) 

  

Pedestrian Detector 

 
 Pedestrian Other 

Ground truth 
Pedestrian True Positive (TP) False Negative (FN) 

Other False Positive (FP) True Negative (TN) 

 

Furthermore, in their report the concept of MR (Miss Rate) is explained, which is considered 

one method of rating a detection systems performance. Dividing the number of false negatives 

by the sum of false negatives and true positives will yield the MR, as seen in equation (1) 

 

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (1) 
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One other criterion for evaluating a system is the FPPI (False Positive Per Image). Dividing 

the total number of false positives by the total number of images analysed will yield the FPPI, 

as seen in equation (2). 

 

𝐹𝑃𝑃𝐼 =  
∑ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
    (2) 

 

Accuracy is defined as 100 minus the MR and the FPPI, as seen in equation (3). In the 

literature review, a 100% detection accuracy for any pedestrian detection system has not been 

found. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 100 − 𝑀𝑅(%) − 𝐹𝑃𝑃𝐼 (%)  (3) 

 

4.3.  Sensors 
The use of sensors as a means of pedestrian detection is widely used, relatively inexpensive as 

well as offering a more anonymous alternative than for instance standard monocular video 

capture (Kurkcu & Ozbay, 2017). Sensors range from those utilizing infrared beams 

(electromagnetic radiation, non-visible to the human eye) to ToF (time of flight) systems with 

LiDAR (light detection and ranging). The sensor detection heavily relies on the use of 

algorithms to interpret the output data and to classify it as pedestrians. Algorithms are 

described in section 4.6 Algorithms. 

 

A student thesis from Lund University, (Lundh & Pettersson, 2017) used Microsoft Kinect 

(infrared beams and depth sensor used for controlling an XBOX)  in order to detect people 

throughout a building. Their objective was to be able to obtain information about people’s 

movements and whereabouts during an egress situation using the Kinect cameras in a frontal 

view orientation. The information could then be used by rescue services as a way to locate 

people or fed into simulation programs enabling egress alternatives to be assessed, potentially 

with the results informing a dynamic way-finding system, all in real-time. The results showed 

a lack of range in the detection as well as a limited capacity to track more than six people at a 

time, which would pose a problem when trying to have full coverage of the building or 

tracking pedestrians in high density situations. However, work by (Seer, Brändle, & Ratti, 

2014) displayed a significantly high detection accuracy using Kinect sensors. They managed 

to achieve a 94% accuracy and a 4 cm tracking precision on their dataset containing 2674 

pedestrians by using overhead mounted sensors. Furthermore, (Corbetta, Meeusen, Lee, & 

Toschi, 2016) displayed good results when using Kinect sensors facing down in the 

Eindhoven train station. Using the 3D-depth sensor they were able to detect and track several 

millions of pedestrian trajectories. The range limitation is still a relevant issue for the infrared 

sensors, whereby a lot of sensors would be needed to cover an entire building. Figure 7 below 

shows the output signatures captured by the depth sensor as well as the setup used in the train 

station. 



14 (57) 

 

 
Figure 7 (Left) Output from depth sensor with projected trajectories. Right displays the setup used at 

Eindhoven train station. All images are adapted from (Corbetta et al., 2016) 

ToF (time of flight) uses the time it takes to reflect back light from an object to the emitter. 

Combining LiDAR sensors and a ToF-system, (Ogawa, Sakai, Suzuki, Takagi, & Morikawa, 

2011) examined the pedestrian detection possibilities from an in-vehicle LiDAR sensor. Their 

work showed great potential in using the sensor in combination with classification algorithms. 

The accuracy was around 80% even at long distances up to 70 meters. Furthermore, rain or 

heavy particles in the air impacted the emitted light resulting in false detections. 

 

4.4.  Deep neural networks 
The concept of neural networks first emerged with (Hopfield, 1982) and has in the last decade 

ended up being used in the state-of-the-art computer vision and image recognition systems, 

albeit in other various forms of the original structure. It is considered to be a branch of 

artificial intelligence. The word “neural” stems from the structure being similar to the brain’s 

neurons and its interconnected structure. To say that a network is deep is simply stating it has 

more layers and, in a sense, more connected “neurons”. To explain the use of deep neural 

networks in computer vision, the concept of having a computer detect a handwritten number 

and classify it a number is used. Figure 8 below shows a picture of a handwritten “9” (left). 

The picture in this case is 28 by 28 pixels (in total 784 pixels) and each pixel has a value 

indicating the brightness. To the right each pixel is assigned to a specific neuron that hold this 

brightness value. The next layer (column of neurons) is meant to detect certain features or 

patterns that occur within the image, e.g. the “9” is composed of different sub-parts illustrated 

by the coloured lines. The next layer combines certain elements that make up the “9”, such as 

a circle on top of a straight line. In the end the pictures distinct features will lead the programs 

algorithms to identify (probabilistically) that this picture displays the number 9. 
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Figure 8 (Left) Picture of a handwritten "9" displayed as 784 individual pixels. (Right): The layout of 

the neural network used to classify the image as the number 9. Images taken from (But what is a 

Neural Network?) 

One key point to be made is that the system needs to know that these features correspond to a 

number or object etc. That is where “training” of the systems come in place. This will be 

covered in the section 4.5 Machine learning.  

 

The distinct features of other more complex items, such as humans, cars, animals etc. would 

in turn need far more layers and filters in order to be fully classified. The term convolutional 

neural networks (CNNs) described in (Schmidhuber, 2015), simply is a deep neural network 

but with many more layers. In the report “Visualizing and Understanding Convolutional 

Networks” by (Zeiler & Fergus, 2014), their system has detected distinct features from 

different pictures. Figure 9 illustrates how some of these convolutional layers and filters 

detect and display important features. 

 
Figure 9 Features detected in different layers in a CNN. Image taken from (Zeiler & Fergus, 2014) 
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In recent years, several research efforts have been conducted on deep learning utilized for 

object- and pedestrian detection. This includes the use of thermal, multispectral imagery 

combined with regular imagery by (Guan, Cao, Yang, Cao, & Yang, 2018) managed to boost 

the overall performance in their pedestrian detection model (based on CNN). Figure 10 below 

illustrates detection on both the image inputs. 

 
Figure 10 Regular monocular imagery and multispectral images shows detected pedestrians. Image 

from (Guan et al., 2018) 

Research done by (Tomè et al., 2016) proposed CNN-solutions for pedestrian detection. Their 

system was later tested on a computer thought to be the forerunner of self-driving cars in the 

future. The figure below is displaying the segmentation of an input image and the different 

features extracted at the layers. The feature detection ranges from edge detection to more 

abstract and complex patterns. 

 
Figure 11 Pedestrian detection. Feature extraction from the layers in the CNN. Image from  (Tomè et 

al., 2016). 

More research on the subject of deep neural networks and pedestrian detection include 

(Bojarski et al., 2017; Brunetti, Buongiorno, Trotta, & Bevilacqua, 2018; Gouda & Nayak, 

2015; Lavi, Serj, & Ullah, 2018) to mention some.  

 

4.5.  Machine learning 
The introduction of the term can be tracked back to the late 1950s (Samuel, 1959) , and later 

on established by (Koza, Bennett, Andre, & Keane, 1996) with the working question “How 

can computers learn to solve problems without being explicitly programmed?”. 

 

The question is nowadays answered by means of algorithms, by constructing models using 

mathematics. The learning part comes from inputting data into the model and having the 
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algorithms distinguish what is important in the data given the information that has been 

previously provided. Almost as a synonym, the phrase “pattern recognition” can be used when 

describing what machine learning is, (Bishop, 2006).  

 

Learning can broadly be separated into a supervised- and an unsupervised form. Supervised 

meaning that an input image has the desired output already labelled. Unsupervised would be 

inputting the same image but with no annotation of the desired output, the algorithm itself will 

look for patterns or features. A good visualisation adapted from (Seebo, 2019) shown in 

Figure 12 below categorizes the learning process and specifies what sort of algorithm is used 

to achieve the desired learning (there are more than those listed however). Classification, 

regression and other algorithms are described more in detail in Section 4.6 Algorithms. 

 
Figure 12 Supervised- and unsupervised machine learning. Image adapted from (Seebo, 2019) 

To demonstrate further, Figure 13 below illustrates an example input (in this case a 

pedestrian). The picture on the left is the input without anything indicating what the image is 

supposed to represent. If this is fed into an algorithm, perhaps one that specifically tries to 

find patterns or structures (unsupervised) by utilizing histogram oriented gradient analysis 

(explained more in Section 4.6 Algorithms), it may output an image similar to the picture in 

the middle. The picture on the right has already been classified by a human (supervised) to 

contain these specific structures representing a pedestrian and indicating the location by using 

a bounding  

box. 

 
Figure 13 (Left): Input image showing a pedestrian. (Middle): Pattern recognition. (Right): Pattern 

and pedestrian labelled as desirable output from input image. 
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If a system is given enough input data (supervised or unsupervised), it will with time be 

trained and will theoretically detect a previously unseen image as an image of a pedestrian, 

given the learned patterns or structures are present within this new image. There are several 

image datasets made public that have a large subset of images displaying pedestrians. They 

are manually labelled and annotated and can be used for training a detection system or for 

benchmarking one. Some of the more prevalent pedestrian datasets are: 

• INRIA (‘INRIA Person dataset’) 

• Caltech (‘Caltech Pedestrian Detection Benchmark’) 

• Pascal (‘The PASCAL Visual Object Classes’) 

• Daimler (‘Daimler Pedestrian Benchmark Data Set’) 

 

4.6. Algorithms 
The ways to detect and track pedestrians using algorithms are numerous. The spectrum ranges 

wide and in (Pulford, 2005) a taxonomy of up to 35 algorithms used for single- and multiple 

target-tracking is outlined. Recent research (Pathak & Sivraj, 2018) concludes that the most 

commonly used within pedestrian detection are those utilising feature extractors, classifiers or 

cluster algorithms. 

 

Two of the most commonly used feature extractors, HOG (Histogram of Oriented Gradients) 

and LBP (Local Binary Pattern) are explained first, as their output lay the foundation for the 

computation in the classifiers or cluster algorithms. HOG, first introduced to the field of 

computer vision by (Dalal & Triggs, 2005) is a method to represent an image as gradients of 

vectors indicating light intensity difference in cells (sections of pixels). Figure 14 below 

illustrates an input image and albeit the image is very blurry, a machine can make out the 

features of the human silhouette from the oriented gradients on the images to the right. 

 
Figure 14 Histogram of oriented gradients. Image taken from (Dalal & Triggs, 2005). 

Texture based detection, also known as LBP, introduced by (Ojala, Pietikäinen, & Harwood, 

1994), utilizes pixel brightness (values 0-255) to convert a 3 by 3 matrix into a binary subset 

through a series of thresholding operations. Figure 15 below shows the procedure and a final 

result of the histogram generated by the LBP extractor. 

 
Figure 15 LBP procedure on an input image. Image taken from (Prado, 2018). 
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Taking the output histograms from either feature extractor and applying classifiers or cluster 

algorithms, will allow the detection system to recognise certain features corresponding to a 

pedestrian. This is the essence of machine learning.  

 

Classification algorithms, e.g. the SVM (Support Vector Machine) are a method to separate 

data into two distinct subsets divided by a hyperplane. (Pathak et al., 2018) state that the 

success and wide spread use of SVMs has to do with its good performance and quick 

computational speed. The concept of image classification within pedestrian detection is in a 

sense a way of saying either: “Yes, the image (extracted features) corresponds to a pedestrian” 

or “No, the image does not correspond to a pedestrian”. Furthermore (Pathak et al., 2018) 

highlights AdaBoost (Adaptive boosting) as an algorithm highly used for large scale 

pedestrian detectors. It combines several weak classifiers into a strong one making estimates 

and weighing in the confidence of each classifier. It is more suitable for training with large 

amounts of data. The classification schematics seen in Figure 16 below can be used to, in a 

simple manner describe the distinguishing process of supervised machine learning. If the data 

is above the red line, the machine classifies the data as a triangle, if below, it is a circle. 

 
Figure 16 Classification concept. Image adapted from (Seebo, 2019). 

PCA (Principal Component Analysis), an algorithm used for unsupervised machine learning 

stems from the concept of clustering seen in Figure 17. PCA was used by (Mehralian & 

Palhang, 2013) as a way to take advantage of a clustered output, in their case HOG 

histograms from different cells throughout an image and then only apply classifiers on a 

section of the cells containing gradients of interest.  

 
Figure 17 Clustering concept. Image adapted from (Seebo, 2019). 
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5 Case Study 
The testing of the Flowity software was completed on a video of pedestrians entering a large 

Lund University building (entrance of V-huset). The video was chosen as it included suitable 

pedestrian movement that fitted the thesis objective and was available to the author. The video 

contained several hundred people, different levels of occlusion and people on bicycles passing 

through the frame. Manual analysis was conducted to have data a benchmark comparison with 

the software output. The analysis focused on the number of unique pedestrians present, 

walking speeds, flows at certain sections, people density and route choices.  Figure 18 below 

illustrates a top-down view (left) of the entrance area and a screenshot of the video capture 

(right). 

 

 
Figure 18 (Left) Google Maps top-down view of the main entrance and screenshot from video capture 

(right). 

The video was 12 minutes and 44 seconds long and filmed with a resolution of 1920 x 1080 

pixels at 24 frames per second. The time of the recording (8 am) was an overcast day with 

only natural light present. The camera, in this case a GoPro Hero 3 was situated 4 meters 

above the walking area and angled roughly 21º degrees down onto the walking area. Further 

dataset details can be seen in Table 7 below. 
Table 7 Video dataset details. 

 

Filename Description Length 
File 

size 

Video 

resolution 

Bitrate 

and 

frame 

rate 

AOV/FOV 

(angle of 

view/field 

of view) 

Lighting 

conditions 

GOPR1949.mp4 

Pedestrians 

walking in 

and out of 

the main 

entrance in 

the morning 

starting at 

08:00. The 

camera was 

located 4m 

above the 

walking 

area 

12 min, 

44 

seconds 

2,88 

GB 
1080p 

30mbit/s 

24fps 

H.FOV 

64,4 º 

V.FOV 

37,2 º 

Diag.FOV 

73,6 º 

Natural 

light 

during an 

overcast 

day 
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5.1. Manually collected pedestrian information 
The video was manually analysed to obtain data that later could be compared to data that the 

software managed to produce. The video in its entirety was watched and analysed two times 

and the number of unique persons present within the video was counted. In total 576 unique 

persons were identified over the course of the 12 minutes and 44 seconds. A smaller area was 

more closely studied and can be seen in the Figure 19 below. This area contained no people 

on bicycles (except one person on an electric scooter) and there was a total of 316 unique 

pedestrians counted. Additional information on the measurements taken and the collection of 

pedestrian information in this section can be found in Appendix A. 

 
Figure 19 The red box represents a smaller area studied. 

Manually counting the number of pedestrians using the two different entrances, A or B (seen 

in Figure 20) was conducted: total of 224 pedestrians used entrance A and 92 used entrance B 

during the course of the video. 

 
Figure 20 V-huset, Entrance A and B 
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To obtain the walking speed of all the pedestrians within the area, all the pedestrians were 

visually tracked (individually) and their transit time (time between crossing line 1 and 2 in 

Figure 19) was noted. Measuring the distance walked by each pedestrian was not possible due 

to the immense task of manually extracting them. Therefore, watching 20 different 

pedestrians walk across the small area and then manually drawing their movement pattern 

onto a map over the area was instead completed. This was accomplished by using reference 

points in the video and transferring the travel path for each pedestrian onto the separate top-

down view. Moreover, the paths were segmented and measured. For instance, the screenshot 

frame below (Figure 21), containing six pedestrians was represented by the drawing in Figure 

22.  

 

 
Figure 21 Screenshot of six pedestrians walking across the small area. 

 
Figure 22 Six pedestrians travel paths manually drawn onto a map of the small area. 

The cameras AOV (angle of view) and placement distorts the image which will have an 

impact on the accuracy of the manual measurements. This was addressed by using known 

reference points on the ground and using the on-site measurements of the area. The 20 

pedestrians were individually analysed and, combined with the reference points, on-site 

measurements and the manually drawn travel paths led to an average distance walked between 

line 1 and 2 to be calculated. This distance was 10,25 meters. The uncertainty of the manual 

measurements was reduced by measuring everything twice. The two different measurements 

resulted in the uncertainty estimated to be in the range of 40-60 centimeters.  
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The average of 10,25 meter was then used for the all the 316 individually counted pedestrians. 

Table 8 summarizes these 20 pedestrians and the walking distance. 

 
Table 8 Min, max, median, average and standard deviation for 20 manually measured travel 

distances. 

 Min Max Median Average Standard deviation 

Manual 7,44 14,13 10,15 10,25 1,61 

 

The transit time for each pedestrian was divided by the average distance walked (10,25m) and 

in Figure 23, all the 316 individually counted pedestrians walking speeds can be seen. The 

average walking speed was 1,67 meters per second. 

 

  
Figure 23 Manually counted pedestrian walking speeds (m/s) within the small area. 

In Figure 24 below the speeds of all the pedestrians passing through the area at a 10 second 

interval is presented. The choice of a ten seconds interval had to do with the fact that most 

pedestrians passed through the area during the 10 seconds and that the total number of time 

intervals would be limited to 76, which was considered manageable for the counting of flows 

and densities. An average of all the pedestrians during the 10 second interval is presented.  
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Figure 24 Manually counted pedestrian walking speeds within the small area (m/s) considering a 10 

second interval. 

The number of pedestrians crossing line 2 during a 10 second interval was counted and noted. 

That number was divided by the length of line 2 (12,13 meters) and the time it took (in 

minutes). Figure 25 below presents the flow at line 2. The average flow was 2,09 persons per 

minute and meter. 

 
Figure 25 Manually counted flow at line 2 (persons/min*m) within the small area considering a 10 

second interval. 

The global people density, i.e. number of persons per square meter for an area was calculated 

by counting the number of pedestrians present within the small area at 10 second intervals. 

The number was divided by the area examined (100,3 m2). Figure 26 below presents the 

global people density within the area. The average density was 0,038 persons per square 

meter. 
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Figure 26 Manually counted global people density (persons/m2) within the small area considering a 

10 second interval. 

Local people density, which relates to having a direct impact on people’s movement, was not 

part of this particular analysis, due to the difficulty of manually measuring local density on a 

larger scale and to include all the pedestrians at all times. However, an estimate of the local 

density at on particular point in the video was made. This was considered the visually most 

dense area and doing a manual measurement of the area shown in Figure 27 below on site 

resulted in a local density of 2 persons per square meter (4 persons in an area of 2x1 square 

meters). The video had played for 124 seconds when this occurred. 

 

 
Figure 27 Estimate of maximum local density. 
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6 Results 
This section will describe the outputs that the software provided as well as the results 

generated from the output files, detection accuracy and measured pedestrian factors. 

 

The dialog and creative process with the Flowity development team resulted in the following 

factors, not being possible to incorporate in the system, given the current state of the software: 

age, gender, body size, movement impairment or people being incapacitated. 

 

6.1. Video render 
The software automatically generated a rendered video with annotated detections using 

different coloured bounding boxes. The Flowity software automatically identified pedestrians 

and the detected pedestrians were assigned a unique ID and colour. Figure 28 below is a 

screenshot from the render. The lines (dark blue, light blue, orange and purple) seen in the 

lower end of the image are manually placed by the developer at Flowity during the setup of 

the software. They are programmed into the system using a local coordinate grid. The purpose 

was to demonstrate a feature which created a digital footprint when a detected pedestrian 

(their bounding box) passes them from either direction. This is referred to as a “footfall” and 

has two ways of presenting data, either “A”, a pedestrian is passing the line from above/left 

(in the video) or “B” from below/right. The text in the upper left corner of the image updates 

the “footfall” and displays the total number of pedestrians who have passed in either direction. 

In this particular render, the lines were only placed at random by the developer with no 

specific intent behind it. Therefore, no further analysis of the feature was completed. People 

have been anonymised using grey circles (added manually by the author of the report). 

 

 
Figure 28 Screenshot from the Flowity video render with detected pedestrians. 
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6.2.  Data statistics 
The other kind of output that the Flowity software was capable of generating was a .json file 

containing a “timestamp” generated every 42ms, followed by the number of milliseconds and 

seconds that has passed since the start of the video. The interval of 42ms corresponds to the 

frame rate of the video, i.e. 24 frames per second. A short section can be seen in Figure 29 

below.  “Gps_detections” depicts the ID of the detected pedestrian and its latitude and 

longitude in the format [“ID”, “latitude”, “longitude”] and then continues to write lines if 

more pedestrians are present during that timestamp. “Detections” indicate if a pedestrian has 

been identified in the given frame and outputs int the format [“x-position in video”, “y-

position in video”, “pixel-width of bounding box”, “pixel-height of bounding box”, “ID” ] 

and then continues to write lines if there are more pedestrians present during that timestamp.  

 

 
Figure 29 Example section from Flowity output data in .json file format 

 

A conversion to Microsoft Excels .xlsx-format was completed which required substantial 

amounts of manual clean-up of the rows and columns, e.g. converting text to data and 

removing unwanted symbols. The end result was a dataset of 284986 rows with seven 

columns: [indication that a timestamp was done], [milliseconds since start of video], [same 

time but in seconds], [indication that there was a GPS detection], [detected pedestrians unique 

ID], [latitude of detected pedestrian], [longitude of detected pedestrian]. A short section can 

be seen in Table 9. 

 
Table 9 Example section of the data set containing all the detected pedestrians. 

Timestamp Time (ms) Time (sec) gps_detections ID Latitude Longitude 

timestamp 125 0,125 gps_detections 2 55,7126066 13,2106426 

timestamp 125 0,125 gps_detections 3 55,7126026 13,2106378 

timestamp 125 0,125 gps_detections 1 55,7126091 13,2105629 

timestamp 167 0,167 gps_detections 2 55,712607 13,2106456 

timestamp 167 0,167 gps_detections 5 55,7125986 13,2106361 

timestamp 167 0,167 gps_detections 3 55,7126032 13,2106358 

timestamp 167 0,167 gps_detections 1 55,7126088 13,2105631 
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6.3.  Detection performance  
The video analysed was in total 760 seconds long which amounts to a total of 18240 

individual frames (24 frames per second) where the software should detect pedestrians. To 

manually verify detection performance, a limit of 500 randomly selected frames was set in 

order to keep the workload to a reasonable. Those 500 frames contained 3010 possible 

pedestrian detections, which were all manually noted. The number of true positives, i.e. where 

the software correctly identified an actual pedestrian was 2236. The number where the 

software failed to detect present pedestrians (the false negatives) was 774. The software also 

detected 21 miscellaneous items as pedestrians, so called false positives. Figure 30 below 

illustrates the process for a single frame. The top image displays 10 different pedestrians 

(various degrees of occlusion) and the bottom one shows the software output for the same 

frame. In the output image, 7 true positives (indicated by the coloured bounding boxes), 3 

false negatives (red annotated arrows) and one false positive (yellow arrow) can be seen. 

 

 
Figure 30 Detection evaluation. (Top image): Original video frame. (Bottom): Flowity-frame 

with arrow-annotations. 

 

Table 10 below presents a summary of the 500 frames along with miss rates, false positives 

per image and detection accuracy for the system. 

 
Table 10 Flowity detection performance 

Flowity performance 

Total number of TP 2236 

Total number of FN 774 

Total number of FP 21 

FPPI in % 4,2 

MR in % 25,71 

Accuracy in % 70,09 
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6.4.  Software collected pedestrian information 
The pedestrian GPS-data collected was analysed and could reveal that, during the course of 

the 760 second video a total of 513 unique pedestrians were detected. When only looking at a 

sub section of the video, in this case the same area as described in the manual counting, 

Figure 19, the number of detected pedestrians were 285. 

 

The GPS-coordinates were plotted on a longitude, latitude axis, see Figure 31 below. The plot 

contains all the detected pedestrians at all the timestamps. The image to the right presents a 

heat-map of the most frequently occupied square meters. Red indicates the most occupied 

areas, i.e. more pedestrians passed through this area than those with a yellow or green colour. 

The heat-map was accomplished by dividing the coordinate-grid into smaller sections using 

functions in Microsoft Excel, further explained in Appendix C. Having each cell be 1x1 meter 

in size (with corresponding longitude and latitude) and then counting the number of 

pedestrians passing through each cell. 

 

 
Figure 31 All pedestrian detections plotted on a latitude and longitude axis (Left). Heat-map 

displaying the most occupied square meters (Right). 
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Overlaying the plot from Figure 31 onto a map over the area, the result can be seen in Figure 

32. The image and plot were not in the same scale and the figure is only meant to highlight 

the movement patterns features and how they might correlate to the background. 

 

Figure 32 Movement patterns displayed on a background map. 

Dividing the entire area into the same as presented in 6.2 manually collected pedestrian 

information (Figure 19) was done by setting longitude and latitude limits corresponding to 

line 1 and 2. That resulted in Figure 33 below. 

 

 
Figure 33 Small Area: All pedestrian detections plotted on a latitude and longitude axis (Left). Heat-

map displaying the most occupied square meters (Right). 

 

To obtain the pedestrian walking speeds within the small area, a similar approach to the 

manual counting was done, distance walked was divided by the transit time. Isolating unique 

pedestrians and determining the distance covered between line 1 and 2 was done by utilizing 

functions from Microsoft Excel and a coordinate distance formula called the Haversine 

formula. Further details on isolating unique pedestrians and the Haversine formula can be 

found in Appendix B. Dividing the distance covered by each pedestrian by their transit time 
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gave the walking speed in m/s and the 285 detected pedestrians can be seen in Figure 34. The 

average walking speed was 2,22 meters per second.  

 
Figure 34 Software counted pedestrian walking speeds (m/s) within the small area. 

An average of all the pedestrians during a 10 second interval is presented in the Figure 35 

below.  

  

 
Figure 35 Software counted pedestrian walking speeds (m/s) within the small area considering a 10 

second interval. 

Similarly, to the manual count, the number of unique pedestrians crossing line 2 during a 10 

second interval was sought after. Utilizing Microsoft Excel to isolate the number of 

pedestrians passing through a timestamp interval as well as a specific coordinate section 

(corresponding to that of line 2). The number of pedestrians was divided by the length of line 
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(12,13 meters) and the time it took (in minutes). Figure 36 below presents the flow at line 2. 

The average flow was 1,83 persons per minute and meter. 

 

 
Figure 36 Software counted flow at line 2 (persons/min*m) within the small area considering a 10 

second interval. 

Similarly, to the manual count, the global people density was calculated by counting the 

number of pedestrians present within the area at 10 second intervals. By counting the number 

of unique pedestrians present within the area at different time intervals and divided by the red 

box area (100,3 m2) the people density could be counted. Figure 37 below presents the global 

people density within the area. The average density was 0,038 persons per square meter. 

 
Figure 37 Software counted global people density (persons/m2) within the small area considering a 10 

second interval. 
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Since the manual analysis only looked at the largest local people density that could be found 

(2 persons per square meter), the software would have to look for the largest local density 

present, to be able to compare to. Looking at the heat-map in Figure 33 and then count the 

number of unique pedestrians present within the 1 square meter cells at the same time, the 

maximum occurring local density could be produced. Figure 38 show the cell where the 

highest local density, 3 persons per square meter was achieved. The timestamp showed that 

this was at 125 seconds since the beginning of the video. 

 
Figure 38 Cell containing the maximum local density measured with the software. 

When determining the pedestrian usage of the entrances using software output an approach 

similar to the trajectory extraction (Figure 31) was used. Counting the number of unique 

pedestrians passing the area closest to either entrance resulted in a total of 173 pedestrians 

using entrance A and 112 using entrance B. 
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6.5. Comparing the manual and software collected data 
The example made in Section 5.1 Manually collected pedestrian information, containing the 

manually collected walking distance for 20 pedestrians was compared to the 20 that the 

software collected. Analysing the difference in walking distance reveals that the average 

walkings distance collected by the Flowity software is 24,09 % higher than what was 

manually counted. A comparison between the walking distance of the 20 pedestrians can be 

seen in Table 11. It is worth noting that the uncertainty of the manual measurements was 

estimated to be in the range of 40-60 centimeters, as described in Section 5.1. 

 
Table 11 Comparison between walking distance of the 20 pedestrians measured manually and with 

Flowity. 
 

Min Max Average Median Standard deviation 

Manual 7,44 14,13 10,25 10,15 1,61 

Flowity 9,32 18,03 12,72 12,82 2,13 

 

Comparing the movement speed of the 20 pedestrians manually counted to the ones counted 

by Flowity, see Figure 39, reaveals a difference in walking speeds. Using a Kolmogorov-

Smirnov test (KS-test) was done to see if the distribution of movement speeds is the same 

regardless of measurement method. The results show that the two data samples have 

statistically significant different distributions. The KS-test and all the detailed results can be 

found in Appendix D. 

 

 
Figure 39 Comparing movement speeds of the 20 pedestrians measured manually and with Flowity. 
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Comparing the all the pedestrian walking speeds from the manual counting with the Flowity 

count, Table 12 and Figure 40, reveals a difference in the measured walking speeds. It is 

important to remember that the manually counted movement speeds are based on an average 

walking distance, with measurment uncertainties. The comparison show that software counted 

walking speeds are generally higher. The software counted average speed is 32,3 % higher 

than the manual count. A KS-test was done and it shows that the two data samples have 

statistically significant different distributions. Some high outliers can be seen in the Flowity 

counted movement speeds. The highest outliers were individually analysed further. They 

revealed that during some short sections the detected pedestrians had moved a long distance. 

Several sections where the pedestrians had moved over 40 cm in 0,042 seconds (9,5 m/s) were 

found, thus resulting in a high average walking speed. The pedestrian average distance 

covered during 0,042 seconds was 9,24 cm (using the average movement speed of 2,22 m/s). 

 
Table 12 Comparison between pedestrian walking speed measured manually and with Flowity. 

 Min Max Average Median 
Standard 

deviation 

Manual count Speed (m/s) 1,08 2,69 1,67 1,54 0,31 

Flowity count Speed (m/s) 0,69 5,48 2,22 2,14 0,51 

 

 
Figure 40 Comparison between pedestrian walking speed measured manually and with Flowity. 
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Comparing the flow across line 2 from the manual count with the Flowity software counting, 

Table 13 and Figure 41 seen below, reveals that the manually counted flow is slightly higher. 

For instance the manually measured average flow is 14,2 % higher than what the software 

produced. Results from the KS-test shows that the two data samples do not have statistically 

significant different distributions. 

 
Table 13 Comparison between flow measured manually and with Flowity. 

 Min Max Average Median 
Standard 
deviation 

Manual count Flow (persons/min*m) 0 5 2,09 1,99 1,27 

Flowity count Flow (persons/min*m) 0 6,49 1,83 1,51 1,25 

 

 
Figure 41 Comparison between flow measured manually and with Flowity. 
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Comparing the global density from the manual count with the Flowity software counting, 

Figure 42 and Table 14 seen below, reveals that the manually counted density is slightly 

higher than what the software produced. The manually counted average density is 15,1 % 

higher than what the software produced. Results from the KS-test shows that the two data 

samples do not have statistically significant different distributions. 

 
Table 14 Comparison between global density measured manually and with Flowity. 

 Min Max Average Median 
Standard 
deviation 

Manual count 
Global density 

(persons/m2) 
0 0,11 0,038 0,039 0,025 

Flowity count 
Global density 

(persons/m2) 
0,01 0,13 0,033 0,029 0,026 

 

  
Figure 42 Comparison between global density measured manually and with Flowity. 

Comparing the maximum local density measured manually with the software, a difference of 

0,5 persons per square meters can be seen. The maximum local density that the software 

detected (3 persons per square meter) was found at 125 seconds into the video. This compares 

to the manually seen, 124 seconds and was at the same area as well. 

 

In addition to the detection performance seen in Table 10, the number of unique pedestrians 

counted manually and the ones detected by the software is compared in Table 15.  

 
Table 15 Comparison between manual- and software pedestrian count. 

 Manual Software Difference (%) 

Number of unique pedestrians detected 576 513 63 (11) 

Number of unique pedestrians detected (small 

area,Figure 19) 
316 285 

31 (11) 

Number of pedestrians using Exit A 224 173 51 (29) 

Number of pedestrians using Exit B 92 112 20 (22) 
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7 Discussion 
The results from testing the Flowity software in this case study showed that the software, 

utilizing deep neural networks, algorithms and machine learning managed to identify and 

detect pedestrians within the case video. Flowity also provided data on movement patterns, 

movement speeds, flows, densities and route choices of the detected pedestrians. 

 

From the detected pedestrians plotted on a longitude and latitude, seen in Figure 31 and 

Figure 32, some clear movement patterns can be seen, e.g. the very prevalent tree that was 

located in the middle of the frame had been avoided by the pedestrians. Most of the 

pedestrians seem to have been walking at the left-hand side, which is consistent with what can 

be seen in the heat-map as well as observations made manually. The process of assigning 

which part of a detected pedestrians bounding box to represent the GPS-location is a company 

secret and thus no conclusive statements can be made. What can be seen however, is the fact 

that some detections seem to be located inside the bush on the left side, indicating that it was 

not the feet or the bottom of the bounding box that was the part representing the GPS-

location. The rounded edges seen at bottom of Figure 31, is the edge of the video recording, 

stopping any further detection beyond that point. 

 

There are uncertainties in the manual measurements taken at the location of the video along 

with the manual counting of the pedestrians, which would have an impact on all the collected 

factors, movement speeds, flows etc. As previously stated, the counting and measuring was 

only done by the author, however done twice and then averaged. All the manual counting and 

software accuracy determination was time consuming and having a second researcher, 

independently count or measure would have been more ideal and would likely have 

contributed to less uncertainties. 

 

The manual measurement of distance covered by all pedestrians crossing the small area seen 

in Section 5.1 Manually collected pedestrian information was simplified to only be 

represented by the average travel distance of 20 different pedestrians. The manual analysis of 

these 20 pedestrians and their travel paths was difficult and time consuming and therefore 

only 20 were made. Using this average when calculating the remaining pedestrians movement 

speeds have likely contributed to the manually counted walking speeds being uncertain, for 

instance, by not taking all the pedestrians, direction changes and slight diagonal movements 

into account. The Flowity software produces walking distances that are 24,09 % higher than 

the manual count as seen in Section 6.5. taking into account that the uncertainties of the 

manual measurements were estimated to be in the range of 40-60 centimeters. Comparing 

those 24,09 % to the fact that Flowity also produces movement speeds that are 32,3 % higher 

the manual count can give an indication of an offset. It can also just be a problem with either 

the softwares distance measuring method or the manual measuring. The results from the KS-

test also indicates that either the software or the manual counting is not representative of the 

other by showing that the two data samples have statistically significant different 

distributions. Some of the high outliers that can be seen in the Flowity counted movement 

speeds, Figure 40, could likely have contributed to the distributions being different. The high 

outliers occurred when the detected pedestrians had moved a long distance during short 

sections. Some of the pedestrians had several sections where the pedestrians had moved over 

40 centimeters in 0,042 seconds (9,5 m/s) thus resulting in a high average walking speed. The 

problem seemed to arise as the detection of the pedestrian suddely seized and the uniquely 

assigned ID re-appeared on another pedestrian for a brief moment, then later coming back to 

the originally detected pedestrian. Further investigation and testing would have to be done in 

order to more precicely pin point the problem. Improvements to the manual counting method 
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in order to limit uncertainties, could be to use precision timing devices, pressure sensitive 

floor tiles, motion trackers on pedestrians, independent control-counts or the use of LiDar. 

 

Looking at the comparison between manually and software measured flows and global 

densities seen in Section 6.5 Comparing the manual and software collected data, the 

difference is not that big. A 14,2 % higher average flow when doing manual counting and a 

15,1 % higher average global denisity when measured manually. Results from both of the 

respective KS-test indicates that the software- or the manual counting is representative of the 

other by showing that the two data samples do not have statistically significant different 

distributions. The uncertainties connected to the process of manually counting pedestrians 

along with the lack of knowledge of how diffrerent factors influence detection perfomance 

may have caused this difference in flows and densities. The maximum local density produced 

by the software did not compare to well with the manual approximation, 3 versus 2 persons 

per square meter. The fact that the software detected one more pedestrian, could just be a 

faulty detection or that pedestrians bounding box was inside of the cell, even though the 

person was outside of the cell, thus contributing to the count. More investigation would be 

needed and it would be interesting to do further testing and include more measurments of 

local densities, but it would require a better way of manually obtaining local densites. 

 

The pedestrian detection accuracy was shown to be around 70 % for this case study, as seen in 

Table 10. This percentage is below the average detection accuracy of about 90%, stated by, 

(Boltes & Seyfried, 2013) in their study of mono camera based pedestrian detection systems. 

This is probably due to a lot of reasons. All of the information about the software and how it 

operates was not fully disclosed (due to secrecy) and, as stated by (Yilmaz et al., 2006), the 

software’s implemented features and algorithms will predominantly affect the performance. 

An in-depth investigation into which factors, for instance those listed in Figure 6, and how 

they impacted the detection performance was not done but will be an important topic to 

research in the future. The basis for the detection accuracy in this study was made by counting 

the number of correct and incorrect pedestrian detections in 500 of the 18240 individual 

frames. A limit of 500 frames had to be set to keep a reasonable workload. Any indication of 

how representative these 500 frames were of the total population cannot be made. The frames 

were not specifically chosen and did not represent any particular composition of pedestrians, 

either high or low densities. Future detection accuracy measurements need to specify at which 

densities, levels of occlusion and conditions they are representative for. 

 

Moreover, another aspect of detection and accuracy, which very well may impact the overall 

performance is high densities and the occlusion that may occur. If pedestrians walk in close 

proximity of each other and only the head or some limbs are visible, the detection system 

needs to still detect these pedestrians as separate and individual persons. Another aspect 

important for the detection accuracy is a phenomenon that will be referred to as a re-

identification problem. The automatic pedestrian detection by the Flowity software assigns a 

unique ID to each pedestrian. If a pedestrian becomes occluded or re-appears after being out 

of frame, the system is meant to recognise the unique features of that particular pedestrian and 

re-assign the correct ID. This re-identification can be seen to work at times but there are some 

instances where issues appear, and the complete magnitude of this issue is not known. This 

was done as a case study and no investigation into factors, influencing detection accuracy was 

made, will add uncertainties. There is a need for research on what factors impacts detection 

performance. Furthermore, what would be considered an acceptable detection accuracy in 

order to use a pedestrian detection software for any real application? 
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The “footfall” feature explained in Section 6.1 Video render was not investigated further, due 

to the placements of the feature being without any real intent and the output data generated 

from it, inconsistent. This feature is however an interesting addition to the pedestrian detector 

and should be tested more.  The output data was generated at a 42 ms interval. This interval 

corresponds to the input video being recorded at 24 frames per second and was at the time not 

possible to change due to software limitations. 

 

The time it took to run the detection software is unknown and not explicitly stated by the 

company. If a pedestrian detection software is able to produce real-time pedestrian egress 

analysis a shift from the now vary static approach to evacuation systems into something that is 

dynamic might be the future. The concept of an intelligent evacuation guidance system is 

elaborated on by (Wu, Lv, & Yu, 2016). Maybe the future will have emergency signs that 

update instantly and always show the most optimal route to limit congestion or hinder people 

from evacuating in an undesired direction.  

 

Factors that were initially thought to be extracted from the case video, e.g. pedestrian age, 

gender, body size, movement impairment or incapacitation was not done due to limitations in 

the software. The testing did not include other important aspects for fire safety engineering 

application such as indoor spaces and actual evacuating pedestrians. The project did not 

include any presence of smoke, fire, limited visibility, alarms or difference in video quality 

(such as use of low-resolution video or thermal imagery). This case study was done with a 

video, that was outdoors, high-resolution and not including any real evacuation egress. 

However, the concept of being able to detect pedestrians, track, and count them is the essence 

and core aspect of using a pedestrian detection system. If the system cannot provide any 

detection, tracking or counting it does not matter if the testing is done indoors, outdoors, in an 

evacuation situation or with the presence of smoke. The development of a general protocol to 

be used when systematically testing pedestrian detection systems for circulation/egress 

applications needs to be researched in the future. Future research also includes tests with 

different cameras, environments or events taking place. This research is essential in moving 

the technology in a direction where it would be more applicable for the fire safety engineer. 

Future research into pedestrian detection systems that might not just give accurate information 

about pedestrians would be also interesting. Maybe detection systems could detect, alert and 

highlight blocking debris within a corridor or doorway or detect and alert for lowered 

visibility, flames or other dangers. 
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8 Conclusion 
Results from the study show that: 

 

o The factors the Flowity software managed to extract were data on movement patterns 

and route choices of detected pedestrians as well as measuring movement speeds, 

flows and densities at different sections. Factors that were not possible to extract, 

given the current state of the software, were the age, gender, body size, and any 

movement impairments of the pedestrians. 

o The Flowity software could identify people and automatically presented them as 

detected pedestrians with a detection accuracy of 70 %. This applies for this case-

study, which was an outdoor video, filmed at a 1080p resolution, with a camera placed 

4 meters above the walking area and at an angle of 21 degrees. The maximum global 

people density measured was 0,13 persons/m2 and the maximum local density was 3 

persons/m2. 

o Comparing manually and software measured factors, a statistically significant 

difference in measured movement speeds was observed. This could be due to the high 

outliers that the software produced or the uncertainties in the manual measurements, 

however this needs to be further investigated. The software measured a 32 % higher 

average speed than what was manually measured.  

o Comparing manually and software measured flows and densities, there was no 

statistically significant difference between the measurement method. A 14,2 % higher 

average flow was measured with the manual counting and a 15,1 % higher average 

global denisity.  

 

Flowity is a new software, never tested before for circulation/egress applications and there is 

need for further testing and research. The development of a general protocol to be used when 

systematically testing pedestrian detection softwares needs to be researched in the future 

along with research into factors and how they influence detection performance. 

  



44 (57) 

 

 

 

 

 

 

  



45 (57) 

 

9 References  
Baabou, S., Ben, A., Ben Farah, M., Abubakr, A., & Kachouri, A. (2019, March 1). A 

Comparative Study and State-of-the-art Evaluation for Pedestrian Detection. 485–490. 

https://doi.org/10.1109/STA.2019.8717226 

 

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer. 

 

Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., & Muller, 

U. (2017). Explaining How a Deep Neural Network Trained with End-to-End Learning Steers 

a Car. ArXiv:1704.07911 [Cs]. Retrieved from http://arxiv.org/abs/1704.07911 

 

Boltes, M., & Seyfried, A. (2013). Collecting pedestrian trajectories. Neurocomputing, 100, 

127–133. https://doi.org/10.1016/j.neucom.2012.01.036 

 

Boverket´s building regulations – mandatory provisions and general recommendations, BBR. 

Retrieved 21 October 2019, from Boverket website: 

https://www.boverket.se/en/start/publications/publications/2019/boverkets-building-

regulations--mandatory-provisions-and-general-recommendations-bbr/ 

 

Brummelen, G. V. (2013). Heavenly Mathematics: The Forgotten Art of Spherical 

Trigonometry. Princeton University Press. 

 

Brunetti, A., Buongiorno, D., Trotta, G. F., & Bevilacqua, V. (2018). Computer vision and 

deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing, 

300, 17–33. https://doi.org/10.1016/j.neucom.2018.01.092 

 

Bukowski, R. W., & Tubbs, J. S. (2016). Egress Concepts and Design Approaches. In M. J. 

Hurley, D. Gottuk, J. R. Hall, K. Harada, E. Kuligowski, M. Puchovsky, … C. Wieczorek 

(Eds.), SFPE Handbook of Fire Protection Engineering (pp. 2012–2046). 

https://doi.org/10.1007/978-1-4939-2565-0_56 

 

But what is a Neural Network? | Deep learning, chapter 1. (n.d.). Retrieved from 

https://www.youtube.com/watch?v=aircAruvnKk 

 

Caltech Pedestrian Detection Benchmark. (n.d.). Retrieved 8 October 2019, from 

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/ 

 

Corbetta, A., Meeusen, J., Lee, C., & Toschi, F. (2016, October 18). Continuous 

measurements of real-life bidirectional pedestrian flows on a wide walkway. 

 

Daimler Pedestrian Benchmark Data Set. (n.d.). Retrieved 8 October 2019, from 

http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benc

hmark_d.html 

 

Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. 2005 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 

1, 886–893. https://doi.org/10.1109/CVPR.2005.177 

 

Dollár, P., Wojek, C., Schiele, B., & Perona, P. (2011). Pedestrian Detection: An Evaluation 

of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 



46 (57) 

 

743–761. https://doi.org/10.1109/TPAMI.2011.155 

 

Fruin, J. J. (n.d.). Pedestrian planning and design. Revised Edition. 1987. 

 

Gouda, R., & Nayak, J. S. (2015). Survey on Pedestrian Detection, Classification and 

Tracking. 

 

Guan, D., Cao, Y., Yang, J., Cao, Y., & Yang, M. Y. (2018). Fusion of Multispectral Data 

Through Illumination-aware Deep Neural Networks for Pedestrian Detection. Information 

Fusion, 50. https://doi.org/10.1016/j.inffus.2018.11.017 

 

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective 

computational abilities. Proceedings of the National Academy of Sciences of the United States 

of America, 79(8), 2554–2558. 

 

Huang, T. S. (n.d.). Computer Vision: Evolution and Promise. 1992, 1992. 

 

INRIA Person dataset. (n.d.). Retrieved 8 October 2019, from 

http://pascal.inrialpes.fr/data/human/ 

 

Koza, J. R., Bennett, F. H., Andre, D., & Keane, M. A. (1996). Automated Design of Both the 

Topology and Sizing of Analog Electrical Circuits Using Genetic Programming. In J. S. Gero 

& F. Sudweeks (Eds.), Artificial Intelligence in Design ’96 (pp. 151–170). 

https://doi.org/10.1007/978-94-009-0279-4_9 

 

Kuligowski, E. D., Peacock, R. D., & Hoskins, B. L. (2010). A Review of Building 

Evacuation Models, 2nd Edition | NIST. Technical Note (NIST TN) - 1680. Retrieved from 

https://www.nist.gov/publications/review-building-evacuation-models-2nd-edition 

 

Kurkcu, A., & Ozbay, K. (2017). Estimating Pedestrian Densities, Wait Times, and Flows 

with Wi-Fi and Bluetooth Sensors. Transportation Research Record, 2644(1), 72–82. 

https://doi.org/10.3141/2644-09 

 

Lavi, B., Serj, M. F., & Ullah, I. (2018). Survey on Deep Learning Techniques for Person Re-

Identification Task. ArXiv:1807.05284 [Cs]. Retrieved from http://arxiv.org/abs/1807.05284 

 

Lovreglio, R., Ronchi, E., & Kinsey, M. J. (2019). An Online Survey of Pedestrian 

Evacuation Model Usage and Users. Fire Technology. https://doi.org/10.1007/s10694-019-

00923-8 

 

Lundh, K., & Pettersson, F. (2017). Microsoft Kinect för utrymning i smarta byggnader. 

2017, 85. 

 

Mehralian, S., & Palhang, M. (2013). Pedestrian detection using principal components 

analysis of gradient distribution. 2013 8th Iranian Conference on Machine Vision and Image 

Processing (MVIP), 58–63. https://doi.org/10.1109/IranianMVIP.2013.6779950 

 

Ogawa, T., Sakai, H., Suzuki, Y., Takagi, K., & Morikawa, K. (2011). Pedestrian detection 

and tracking using in-vehicle lidar for automotive application. 2011 IEEE Intelligent Vehicles 

Symposium (IV), 734–739. https://doi.org/10.1109/IVS.2011.5940555 



47 (57) 

 

 

Ojala, T., Pietikäinen, M., & Harwood, D. (1994). Performance evaluation of texture 

measures with classification based on Kullback discrimination of distributions. Proceedings 

of 12th International Conference on Pattern Recognition, 1, 582–585 vol.1. 

https://doi.org/10.1109/ICPR.1994.576366 

 

Pathak, R., Sivraj, P., Sivraj, P., & Sivraj, P. (2018). Selection of algorithms for pedestrian 

detection during day and night. Lecture Notes in Computational Vision and Biomechanics, 28, 

120–133. https://doi.org/10.1007/978-3-319-71767-8_11 

 

Pathfinder Resources | Thunderhead Engineering. (n.d.). Retrieved 22 October 2019, from 

https://www.thunderheadeng.com/pathfinder/resources/ 

 

Prado, K. S. do. (2018, February 3). Face Recognition: Understanding LBPH Algorithm. 

Retrieved 10 October 2019, from Medium website: https://towardsdatascience.com/face-

recognition-how-lbph-works-90ec258c3d6b 

 

Pulford, G. (2005). Taxonomy of multiple target tracking methods. Radar, Sonar and 

Navigation, IEE Proceedings -, 152, 291–304. https://doi.org/10.1049/ip-rsn:20045064 

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM 

Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210 

 

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 

61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003 

 

Seebo. (2019, February 8). Supervised vs. Unsupervised Machine Learning. Retrieved 8  

October 2019, from Medium website: https://medium.com/datadriveninvestor/supervised-vs-

unsupervised-machine-learning-5200ffa7301a 

 

Seer, S., Brändle, N., & Ratti, C. (2014). Kinects and human kinetics: A new approach for 

studying pedestrian behavior. Transportation Research Part C: Emerging Technologies, 48, 

212–228. https://doi.org/10.1016/j.trc.2014.08.012 

 

Tedblad, R. (2019). Flowity – Artificial Intelligence for traffic analysis.  

 

The PASCAL Visual Object Classes Homepage. (n.d.). Retrieved 8 October 2019, from 

http://host.robots.ox.ac.uk/pascal/VOC/ 

 

The Swedish National Board of Housing, Building and Planning’s general recommendations 

on the analytical design of a building’s fire protection, BBRAD. (n.d.). Retrieved 22 October 

2019, from Boverket website: 

https://www.boverket.se/en/start/publications/publications/2013/the-swedish-national-board-

of-housing-building-and-plannings-general-recommendations-on-the-analytical-design-of-a-

buildings-fire-protection-bbrad/ 

 

Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., & Tubaro, S. (2016). Deep 

Convolutional Neural Networks for pedestrian detection. Signal Processing: Image 

Communication, 47, 482–489. https://doi.org/10.1016/j.image.2016.05.007 

 

 



48 (57) 

 

Ujwal, U., & Brémond, F. (2016). New Results—Pedestrian Detection on Crossroads. 

Retrieved from INRIA website: 

https://raweb.inria.fr/rapportsactivite/RA2016/stars/uid129.html 

 

Vanumu, L. D., Ramachandra Rao, K., & Tiwari, G. (2017). Fundamental diagrams of 

pedestrian flow characteristics: A review. European Transport Research Review, 9(4), 49. 

https://doi.org/10.1007/s12544-017-0264-6 

 

Wu, Z. Y., Lv, W., & Yu, K. (2016, October). A Framework of Intelligent Evacuation 

Guidance System for Large Building. Presented at the 2016 5th International Conference on 

Civil, Architectural and Hydraulic Engineering (ICCAHE 2016). 

https://doi.org/10.2991/iccahe-16.2016.111 

 

Yilmaz, A., Javed, O., & Shah, M. (2006). Object Tracking: A Survey. ACM Comput. Surv., 

38(4). https://doi.org/10.1145/1177352.1177355 

 

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. 

In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014 

(Vol. 8689, pp. 818–833). https://doi.org/10.1007/978-3-319-10590-1_53 

 

 

 

 



49 (57) 

 

Appendix A 
 
The manual measurements taken on-site can be seen in Figure 43. These were complemented 

with further measurements when doing a manual determination of the pedestrian travel paths 

(Section 5.1). A tape measure was used to collect all the measurements. 

 

 
Figure 43 Manual measurements taken on-site. 
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Appendix B 
 

The haversine formula is a way of calculating the distance between two points (longitude and 

latitude) on a sphere (Brummelen, 2013). Below in an example of a distance calculation done 

in Microsoft Excel based on the Haversine formula. The earths radius is equal to 6371km. 

This method was used to determine the distance between GPS-points from the software output 

data. 

 
Table 16 Example, using the Haversine formula for distance calculation between two points on a 

sphere. 

 A B C D E 

1 Latitude Longitude 
  

Distance (m) 

2 55,71261089 13,21065387 
   

3 
55,71261502 13,21071197 

1.) 

8,28733E-14 

2.) 

5,75754E-07 

3.) 

3,668131439 

 

1.) =SIN(ABS(A3-A2)*PI()/180/2)^2+COS(A2*PI()/180)*COS(A3*PI()/180)*SIN(ABS(B3-

B2)*PI()/180/2)^2 

2.) =2*ARCTAN2(ROT(1-C3);ROT(C3)) 

3.) =6371*D3*1000 

 

Do retrieve the movement speed, the time between GPS-points is first produced. The distance 

is then divided by the delta t to produce the movement speed in meters per second, see Table 

17. 

 
Table 17 Example, using Microsoft Excel to produce movement speeds. 

 A B C D E F 

1 
Timestamp 

(s) 
Latitude Longitude Distance (m) 

Delta t 

(s) 

Speed 

(m/s) 

2 1,1337 55,71261089 13,21065387    

3 4,337 55,71261502 13,21071197 
3.) 

3,668131439 

4.) 

3 

5.) 

1,22266667 

 

4.) =A3-A2 

5.) =D3/E3 
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The output data is sorted by ID number and is placed in rising order, see example in Table 18 

below. Using the Haversine formula and the functions in Microsoft Excel enables the 

calculation of the speed.  
Table 18 Example of sorting IDs and calculating movement speed. 

Timestamp (s) ID Latitude Longitude Distance (m) Delta t (s) Speed (m/s) 

8,8 1 55,71261613 13,21075016 0,030044645 0,041 0,732796209 

8,842 1 55,71261604 13,21074886 0,081700484 0,042 1,945249629 

8,884 1 55,71261607 13,21074929 0,02714678 0,042 0,646351901 

8,926 1 55,7126161 13,21074973 0,027234031 0,042 0,648429307 

8,967 1 55,71261608 13,21075059 0,054310888 0,041 1,32465581 

9,009 1 55,71261611 13,21075234 0,109614643 0,042 2,609872453 

9,051 1 55,71261603 13,21075234 0,00921317 0,042 0,219361201 

9,092 1 55,71261592 13,21075322 0,056463873 0,041 1,37716763 

9,134 1 55,71261584 13,21075455 0,083793205 0,042 1,995076317 

1,084 2 55,71261052 13,2106596 0,044994915 0,041 0* 

1,126 2 55,71261022 13,21065975 0,035381802 0,042 0,84242386 

1,168 2 55,71260988 13,21065923 0,049232962 0,042 1,17221337 

1,21 2 55,71260995 13,21065852 0,04528447 0,042 1,078201662 

1,251 2 55,71261019 13,21065909 0,043850239 0,041 1,069518015 

1,293 2 55,71261023 13,21065771 0,08659952 0,042 2,061893342 

1,335 2 55,7126104 13,21065693 0,052223218 0,042 1,243409959 

1,376 2 55,71261044 13,21065552 0,088417863 0,041 2,156533249 

 

The formula down below prevents the system from calculating the distance between two 

different IDs and outputs a zero if the IDs are different. 

0*.) =IF(B11=B10;6371*G79*1000;0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 (57) 

 

Using Microsoft Excels Pivot Table function enables the presentation of all the unique Ids and 

the respective average, see Figure 44 for an example of the average movement speed. 

 

 
Figure 44 Using the Microsoft Excels Pivot table function. 
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Appendix C 
 

In order to create a heat-map showing the frequency that a square meter was walked through, 

a function in Microsoft Excel and a conditional formatting table was used. The grid and 

function seen in Figure 45 below, describes the process of counting the number of times GPS-

coordinates (longitude and latitude) passed through a cell of the grid. Rows A2-A141896 an 

B2-B141896 contained all the GPS-positions but cannot be seen here. 

 

 
Figure 45 Creating a heat-map using Microsoft Excel functions. 
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Appendix D 
 

The Kolmogorov-Smirnov (KS) test, with two samples, compares the cumulative distributions 

of the samples in a nonparametric test (Kirkman, T.W, 1996). This means that there is no 

notion of the kind of distribution the data is sampled from. The two independent samples were 

factors either measured manually or by the Flowity software. The KS-test was done using the 

IBM SPSS software (version 26), available as a student version and provided by Lund 

University. 

 

Testing to either retain or reject a null hypothesis was done for all of the factors, movement 

speed, flow and density. 

 

The null hypothesis for the manually- and software measured movement speeds of all 

pedestrians was formulated. “The distribution of movement speeds is the same regardless of 

measurement method”. Results from the SPSS software, seen in Figure 46 shows that the two 

data samples have statistically significant different distributions. This rejects the null 

hypothesis and indicates that either the software- or the manual counting is not representative 

of the other. 

 
Figure 46 KS-test of all the measured pedestrian movement speeds. m = manual, s = software. 
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Following the same procedure but looking at the distributions of the 20 individually measured 

pedestrian movement speeds, results seen in Figure 47, also shows that the two data samples 

have statistically significant different distributions. 

 

 
Figure 47 KS-test of the 20 individually measured pedestrian movement speeds. m = manual, s = 

software. 
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The null hypothesis for the manually- and software measured flows was formulated. “The 

distribution of flows is the same regardless of measurement method”. Results from the SPSS 

software, seen in Figure 48 shows that the two data samples do not have statistically 

significant different distributions. This retains the null hypothesis and indicates that the 

software- or the manual counting is representative of the other. 

 

 
Figure 48 KS-test of the measured flows. m = manual, s = software. 
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The null hypothesis for the manually- and software measured densities was formulated. “The 

distribution of densities is the same regardless of measurement method”. Results from the 

SPSS software, seen in Figure 49 shows that the two data samples do not have statistically 

significant different distributions. This retains the null hypothesis and indicates that the 

software- or the manual counting is representative of the other. 

 

 
Figure 49 KS-test of the measured densities. m = manual, s = software. 
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