
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

CODEN:LUTEDX/(TEIE-5432)/1-79(2020)

Electronic Control Unit for Automatic
Control of Torque Vectoring

John Huzell
Johan Göransson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

DIVISION OF INDUSTRIAL ELECTRICAL ENGINEERING AND AUTOMATION
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY
2020

MASTER THESIS

John Huzell and Johan Göransson

Electronic Control Unit for Automatic
Control of Torque Vectoring

This thesis was conducted at BorgWarner Sweden AB for the Division of Industrial

Electrical Engineering and Automation, Faculty of Engineering, Lund University.

The division of labor was evenly distributed between the two authors.

Supervised by Daniel Blom and Pontus Månsson from BorgWarner Sweden AB.

Supervised by Assoc. Prof. Gunnar Lindstedt from the Faculty of Engineering.

Examined by Researcher Johan Björnstedt from the Faculty of Engineering.

For the Master of Science in Engineering Degree

c© 2020 John Huzell and Johan Göransson

Division of Industrial Electrical Engineering and Automation

Box 118, 221 00 Lund

Sweden

www.iea.lth.se

Abstract

Torque vectoring for automobiles is used to increase cornering speeds and improve
road safety by manipulating the car’s wheel-speeds. One method of torque vectoring
for a rear-wheel-drive Formula Student racecar is using a dual-clutch to slip the inner
wheel thus create a yaw moment during cornering.

The goal of this thesis was to develop and design an electronic control unit to auto-
matically control the two clutches to achieve the target yaw moment. By building
on the previous development of a dual-clutch and a theoretical control model, this
thesis was delimited to the implementation of a control algorithm on the hardware
used to control the dual-clutch.

Ulrich and Eppinger’s product development method was used to develop an initial
alpha-prototype for proof-of-concept development. A beta-prototype was then de-
veloped to control the dual-clutch via a Controller Area Network (CAN), before
being packaged into a final product, the Torque Vectoring Electronic Control Unit
(TVECU).

The final product resulted in an electronic control unit capable of being mounted
to a mechanical dual-clutch and regulating two Gen6 clutch actuators, thereby con-
trolling the yaw moment. It can then be used to test, validate and further develop a
dual-clutch torque vectoring system, and lays the foundations for a next-generation
commercial model.

Keywords: torque vectoring, electronic control unit, automatic control, yaw moment,
CAN, PCB, Formula Student

iii

iv

Sammanfattning

Momentvektorering uppn̊as genom att manipulera bilens hjulhastigheter, i syfte
att öka kurvhastigheterna och förbättra trafiksäkerheten. En dubbelkoppling p̊a
bakaxeln är en möjlig vektoreringsmetod för en bakhjulsdriven Formula Student-bil.
Dubbelkopplingen gör att det inre hjulet kan glida och därmed skapa ett vridmoment
kring bilens kropp i kurvans färdriktning.

Målet med examensarbetet var att undersöka och utveckla en elektronisk styrenhet
för att automatiskt styra de tv̊a kopplingarna i syfte att uppn̊a önskat vridmoment.
Genom att bygga vidare p̊a tidigare utveckling av en dubbelkoppling och en teoretisk
styrmodell avgränsades examensarbetet till implementeringen av en kontrollalgoritm
p̊a en elektronisk styrenhet.

Ulrich och Eppingers produktutvecklingsmetod användes för att utveckla en initial
alfa-prototyp för konceptutveckling. En beta-prototyp utvecklades sedan för att
styra dubbelkopplingen via ”Controller Area Network” (CAN), innan den förpack-
ades i en slutprodukt, kallad ”Torque Vectoring Electronic Control Unit” (TVECU).

Slutprodukten resulterade i en elektronisk styrenhet designad för att monteras p̊a en
mekanisk dubbelkoppling och styra tv̊a Gen6-aktuatorer. Den kan sedan användas
för att testa, verifiera och vidareutveckla ett momentvektoreringssystem och lägger
grunden för nästa generations kommersiella modell.

Nyckelord: vridmomentvektorering, elektronisk styrenhet, automatisk styrning, kurv-
tagning, CAN, kretskort, Formula Student

v

vi

Acknowledgements

We have received input and support from various people at BorgWarner and LTH
throughout the thesis. We are especially grateful to Daniel Blom, Team Leader
for Vehicle Dynamics and Simulations at BorgWarner, for his continuous support.
Blom has been very helpful with his technical expertise and administration and has
been invaluable in finding the right employees for several administrative issues along
the way.

We would like to thank Mia Grahovic for all the help and input regarding the control
model and Pierre Peterson for his help regarding the electronic control unit selection.
Without their input, the master thesis would not have progressed as smoothly as it
did.

We are also grateful to our supervisor at BorgWarner, Pontus Månsson and our
supervisor at LTH, Gunnar Lindstedt for their help regarding administration and
planning.

Finally, we are appreciative of David Bäcklund and Jakob Wilson who have made
our time at BorgWarner fun and competitive.

vii

viii

Contents

List of Figures xii

List of Tables xiii

List of Acronyms xv

List of Nomenclature xviii

1 Introduction 1
1.1 Background . 1

1.1.1 Lund Formula Student . 1
1.1.2 Thesis One: Torque Vectoring Dual Clutch (TVDC) 2
1.1.3 Thesis Two: Torque Vectoring Control Algorithm 4

1.2 Mission Statement . 4
1.2.1 Tiered Ambition Level . 4

1.3 Assumptions, Limitations and Delimitations 5
1.4 Method . 5

1.4.1 Risk Analysis . 6
1.4.2 Organization of Report . 6

2 Theory 9
2.1 Vehicle Dynamics . 9

2.1.1 Differentials and Torque Vectoring 9
2.1.2 Vehicle Axis System . 11
2.1.3 Yaw Stability Control Systems 12

2.2 Automatic Control . 13
2.2.1 Continuous Control in PID Controller 13
2.2.2 Discrete Implementation of PID Controller 15
2.2.3 Integrator Windup . 17

2.3 Electronic Control Unit - ECU . 17
2.3.1 Embedded Components - Micro-Controllers 18

2.4 Controller Area Network - CAN . 18
2.4.1 CAN Function . 18
2.4.2 The CAN Message . 20
2.4.3 The Physical Layer . 23

3 Concept Development 25
3.1 Risk Analysis and Strategy . 25

3.1.1 Automotive Safety and Integrity Level (ISO 26262) 26

ix

3.2 Identifying Customer Needs . 27
3.2.1 Categorized Product Needs and Requirements 27

3.3 Target Specifications . 28
3.3.1 Competitive Benchmarking and Patent Research 29

3.4 Concept Generation . 29
3.4.1 Hardware . 29
3.4.2 Software . 32

4 System-Level Design 33
4.1 Hardware Selection and System Design 34
4.2 Prototyping and Development . 35

4.2.1 Software Deployment Methods 35
4.2.2 CAN Send/Receive . 36
4.2.3 Interrupt Flags or Serial Flags 38
4.2.4 Accelerometer and Gyroscope 38
4.2.5 Level Shifting microSD . 39

4.3 Software System Design . 39

5 Detail Design 41
5.1 Hardware . 41

5.1.1 Electro-Magnetic Interference and Gen6 Actuators 43
5.2 Packaging and External Connections 43
5.3 Main Algorithm Loop . 44

5.3.1 Supporting Software . 44
5.4 Control Algorithm . 46

5.4.1 Controller . 47
5.4.2 Torque Allocation . 48
5.4.3 Vehicle Reference . 49
5.4.4 Manual Settings . 51

5.5 The TVECU Final Product . 51
5.5.1 Ingress Protection . 51
5.5.2 Actuator Control . 52

6 Testing and Refinement 53
6.1 Simulink Model Code Test . 53

6.1.1 Verification of Control Algorithm Behavior 54
6.1.2 Verification Test Evaluation 55
6.1.3 Active Torque Distribution Evaluation 56

6.2 TVECU System Tests . 56
6.2.1 Communication Loop-Back Test 56
6.2.2 Control Algorithm Tests . 57
6.2.3 Sensors Test with Volvo XC90 57

7 Evaluation and Conclusion 59
7.1 Evaluation of TVECU . 59

7.1.1 Trivial and Potential Issues in Further Development 61
7.1.2 Future Development . 62

7.2 Conclusion . 63

x

List of Figures

1.1 The most recent FS-car, the LFS19. 2
1.2 Front view of the TVDC. 2
1.3 Rear view of the TVDC. 2
1.4 Cross-section of the TVDC. 3
1.5 Cross-section of the TVDC. 3
1.6 Overview of signals in theoretical control model. 4

2.1 Illustration of different wheel speeds. 9
2.2 Differential when driving straight. 10
2.3 Differential with locked drive shaft. 10
2.4 Differential during cornering. 10
2.5 Different wheel torque creates a turning moment on the car. 11
2.6 Vehicle axis system, where gravity is defined as positive. 11
2.7 Visualization of understeering, oversteering and target yaw. 12
2.8 One ECU network. 18
2.9 Three ECU network. 18
2.10 Three ECU CAN-bus. 19
2.11 Example of CAN message transmission and reception. 19
2.12 Standard and Extended CAN messages. 21
2.13 Example of arbitration based on CAN identification number. 22
2.14 A CAN-bus with two termination resistors. 23

3.1 Overview of signals for practical control reworked from the theoretical
model. 32

4.1 Chapter summary; Overview of signals on FS-car. In orange; the
TVECU+TVDC system. In green; the FS system. In blue; sensor
data. In dashed blue; optional but recommended sensor data. 33

4.2 Overview of TVECU system. 34
4.3 AST-CAN485. 34
4.4 Example of Arduino blocks in the Simulink model. 35
4.5 Two CAN development systems communicating via CAN-bus. 37
4.6 Alpha-prototype with CAN Shield tested with a BorgWarner propri-

etary engine ECU. 37
4.7 MPU-9250 IMU Breakout. 38
4.8 Level Shifting microSD Breakout. 39

5.1 TVECU connections. 41
5.2 The 5V to 3.3V voltage divider. 42

xi

5.3 Pinouts of SensorPCB and ControlPCB. 42
5.4 CAD of the TVECU box. Figure labels in italics are not shown. . . . 43
5.5 CAD of the TVECU box with top removed and PCBs in place. . . . 43
5.6 Male and female Gen6 connectors. 44
5.7 The CAN message format required by the Gen6 actuators. 45
5.8 The theoretical Simulink control model. 47
5.9 The theoretical Simulink torque allocation model. 48
5.10 The theoretical Simulink vehicle reference model. 49
5.11 The final assembled TVECU, with connections to FS CAN, TVDC

CAN and simulated TVDC sensors. 51
5.12 The final assembled TVECU connected to two Gen6 actuators, and

two systems simulating the FS-car and the TVDC sensors. 52

6.1 The theoretical model (top) and control algorithm (bottom) in parallel. 53
6.2 Angular velocity [rad/s] vs time [s] after an 18◦ steering wheel angle,

20 m/s initial velocity and a total torque of 60 Nm. In red, the desired
yaw rate. In blue, the body yaw rate. 54

6.3 Angular velocity [rad/s] vs time [s] after three 18◦ steering wheel
angles, 20 m/s initial velocity and a total torque of 60 Nm. In red,
the desired yaw rate. In blue, the body yaw rate. 54

6.4 Angular velocity [rad/s] vs time [s] after three 18◦ steering wheel
angles, 5 m/s initial velocity and a total torque of 60 Nm. In red, the
desired yaw rate. In blue, the body yaw rate. 55

6.5 Angular velocity [rad/s] vs time [s] after six 9◦ steering wheel angles,
20 m/s initial velocity and a total torque of 60 Nm. In red, the desired
yaw rate. In blue, the body yaw rate. 55

6.6 Angular velocity [rad/s] vs time [s] after a 90◦ steering wheel angle, 20
m/s initial velocity and a total torque of 60 Nm. In red, the desired
yaw rate. In blue, the body yaw rate. 56

6.7 Development system (left) connected to TVECU beta-prototype (right)
during a loop-back test. 56

6.8 TVECU beta-prototype connected to 2 Gen6 actuators for a pump
test. 57

7.1 An example solution of the lid and TVDC fastening method. 61
7.2 The design of the demo TVECU PCB. 62
7.3 Racing into the future. 63

xii

List of Tables

3.1 ASIL table for the TVECU system. 26
3.2 Product needs and requirements categorized into packaging, hardware

and software. 27
3.3 List of target metrics as developed from the product needs. 28
3.4 Engine ECU specifications from Bosch. 29
3.5 Hardware specifications of hardware under evaluation. 31

5.1 Example IDs of the Gen6 actuators used to develop the TVECU. . . 45
5.2 FS CAN message IDs and formats. Odd bytes used as high bytes and

even bytes as low bytes during bit manipulation. 46

7.1 List of target metrics as developed from the product needs and the
result. Partial results are denoted with a *. 60

xiii

xiv

List of Acronyms

ABS Anti-lock Braking System

TVDC Torque Vectoring Dual Clutch

TVECU Torque Vectoring Electronic Control Unit

ECU Electronic Control Unit

FS Formula Student

CAN Controller Area Network

PCB Printed Circuit Board

RPM Revolutions Per Minute

FS CAN CAN to/from car

TVDC CAN CAN for TVDC

COG Center of Gravity

xv

xvi

List of Nomenclature

Automatic Control

Ψ Yaw Rate

Ψdes Desired Yaw Rate

ζ Anti Windup

Dt Derivative Term

e Yaw Rate Error

eold Previous Yaw Rate Error

It Integral Term

Kd Derivative Gain in PID Controller

KI Integral Gain in PID Controller

Kp Proportional Gain in PID Controller

Pt Proportional Term

u Control Signal

Vehicle Dynamics

δst Steering Wheel Angle

δw Wheel Angle

φ Roll

ψ Yaw

τl Torque Provided, Left Wheel

τr Torque Provided, Right Wheel

τslip,l Slip Torque, Left Wheel

τslip,r Slip Torque, Right Wheel

τtot Total Torque

θ Pitch

A Driver Preference

xvii

a Vehicle Body Acceleration

ax Vehicle Body Acceleration x-Axis

ay Vehicle Body Acceleration y-Axis

Cα,f Lateral Tire Stiffness for the Front Wheels

Cα,r Lateral Tire Stiffness for the Rear Wheels

ft Tire Friction

g Gravity Acceleration

I Vehicle Moment of Inertia

lf Distance from COG to Front Axle

lr Distance from COG to Rear Axle

Ltw Track Width

Lwb Wheel Base

m Vehicle Mass

mdistr Mass Distributed

rt Tire Radius

v Average Vehicle Velocity

vfl Front Left Wheel Speed

vfr Front Right Wheel Speed

xviii

Chapter 1

Introduction

This chapter deals with the background, objectives, and limitations of the develop-
ment of an electronic control unit for torque vectoring. It proceeds to present the
method of development, risks and the organization of the report.

Ever since the dawn of man, we have yearned to compete and go fast. From sailing
and horseback riding during the antiquities to jets and cars in the modern era. The
endeavor to be the quickest and the quest to break boundaries has always driven
mankind in the pursuit of technology. Today, car racing has progressed to a point
where the cars are pushing man’s limits, and rules are in effect for both the safety
of drivers and the fairness of competitions. Their efforts to break records have
technologies spilling into the civilian market.

One such game-changing technology is the invention of torque vectoring, used to
increase the performance of vehicles such as cars and fighter jets during cornering.
In their own attempt to break records, BorgWarner is developing a torque vector-
ing system for Formula Student racing cars in cooperation with the Lund Formula
Student racing team.

A previous master thesis has completed the mechanical side of the torque vectoring
system, and another has investigated a method of automatic control. However,
work remains to be done on the electronics and the implementation of the control
algorithms.

1.1 Background

1.1.1 Lund Formula Student

Formula Student is one of the largest and most renowned engineering design com-
petitions for university students worldwide. Students spend nine months pushing
their skills in the design and manufacture of top-class single-seat open-wheel for-
mula racing cars. The teams compete in both static and dynamic events, where
they score points in different categories such as design, cost, and business as well
as acceleration, cornering, and endurance. Over 600 universities compete in com-
bustion, electric and driverless classes increasing their engineering skills and making
them better prepared for the future [1].

1

1.1. BACKGROUND

Lund Formula Student, previously LURacing, is Lund University’s contribution to
the Formula Student (FS) competitions. Founded in 2006, the team is now (2019-
2020) producing their 12th and 13th cars simultaneously. The former being the next
iteration of a series of successful combustion engine cars, and the latter being the
team’s first iteration of a fully electric car.

Figure 1.1: The most recent FS-car, the LFS19 [1].

1.1.2 Thesis One: Torque Vectoring Dual Clutch (TVDC)

Sven Kalkan investigated the possibility of torque vectoring for the FS-cars by re-
placing the limited-slip differential (LSD) with an electro-hydraulically actuated
dual-clutch [2]. His thesis culminated in a “Torque Vectoring Dual Clutch” (TVDC)
comprised of two independently controlled lamellar clutches (Figures 1.2-1.5 below).

Figure 1.2: Front view of the TVDC [2]. Figure 1.3: Rear view of the TVDC [2].

In order to provide some level of function upon failure, the TVDC is designed to
work normally-closed, i.e. the clutch is normally a fixed axle and torque vectoring is
achieved through slip from actuated clutches. Normally-closed is a relatively unusual
design choice and most clutches operate as normally-open. However, since Formula
Student competitions press the cars to their limits, they are prone to breakdowns.
As such, normally-closed is a safer albeit more complex alternative to normally-open
clutches.

2

CHAPTER 1. INTRODUCTION

Figure 1.4: Cross-section of the TVDC [2].

Two Generation 6 clutch actuators from BorgWarner, controlled by control signals
via a Controller Area Network (CAN), provide the torque vectoring moment yaw
on the car. Neither the controller, i.e. the electronic control unit (ECU), nor the
control algorithm were implemented in Kalkan’s thesis as it was delimited to the
mechanical function of the TVDC. For more information on differentials and torque
vectoring, see 2.1.1 Differentials and Torque Vectoring.

Figure 1.5: Cross-section of the TVDC [2].

3

1.2. MISSION STATEMENT

1.1.3 Thesis Two: Torque Vectoring Control Algorithm

Continuing the development of Kalkan’s work, Mia Grahovic and Madeleine Rosicki
investigated and developed the theoretical control algorithm required to achieve
torque vectoring with the TVDC [3]. The algorithm, developed in Simulink, uses the
FS-car’s yaw rate as a control signal and a vehicle model supplied by BorgWarner to
simulate the physical car. During assessment it was determined that the nonlinear
model using a simulated TVDC performed better than a limited-slip differential
(LSD), which is currently used by Lund Formula Student. The model is summarized
in the signal overview in Figure 1.6 below.

Figure 1.6: Overview of signals in theoretical control model.

1.2 Mission Statement

The objective of this thesis was to design and develop an electronic control unit,
running a control algorithm, to control the first generation Torque Vectoring Dual
Clutch (TVDC) on a Formula Student car.

1.2.1 Tiered Ambition Level

The objective was divided into three-tier goals; acceptable, desired and optimal. An
acceptable tier goal was a completed electronic control unit (ECU) prototype, both
hardware and software, capable of receiving vehicle data and generating a control
signal for the TVDC. The desired tier goal was a fully developed ECU implemented
onto the TVDC and tested on a test bench/test rig. The optimal tier goal was the
design and development of hardware, with a complete implementation as well as
practical tests in a Formula Student car.

4

CHAPTER 1. INTRODUCTION

1.3 Assumptions, Limitations and Delimitations

At the start of the thesis, it was assumed that the TVDC is manufactured and avail-
able in a reasonable time-frame within the scope of the thesis. It was also assumed
that the theoretical automatic control functions without major fault. Nevertheless,
the untimely manufacture of the TVDC may become a limitation, and inhibiting
the desired and optimal tier goals.

The thesis was delimited to the implementation and development of an ECU. While
the algorithm was rewritten and modified to be usable in practice, no consideration
was taken whether the control theory and method is the most suitable or efficient.
The thesis was also delimited to not include neither complete failure and error
handling nor an exhaustive debug logging. In other words, if a sensor fails or the
TVDC breaks the system will not attempt to compensate or automatically execute
failure handling. The lack of exhaustive debug logging will also make error analysis
harder.

Furthermore, the packaging of the ECU was primarily designed to withstand testing
and development only and works as the first prototype for a weather-proof system.
Neither Ingress Protection certification nor a final packaging solution was in the
scope of the thesis, although an equivalent Ingress Protection test was conducted.

Finally, as the ECU outputs a control signal it may function with other torque-
vectoring methods. However, the primary design was to be used with the TVDC
and therefore it is not guaranteed to function with other systems.

1.4 Method

The development of the ECU, henceforth known as the ”Torque Vectoring Electronic
Control Unit” (TVECU), followed the product development methodology laid out
by Karl T. Ulrich and Steven D. Eppinger. The Ulrich and Eppinger method is
a wide-reaching product development method which at times reaches further and
more in-depth than necessary. Therefore, the method was adapted to this project’s
needs and requirements with variations in the method as a result.

The method was comprised of 5 of Ulrich and Eppinger’s 6 phases [4]:

Phase 0 Planning - The planning phase in which the project was evaluated and
prioritized, time and resources were allocated as well as a concretization of the
project in terms of mission statements, assumptions and constraints as well as
vision.

Phase 1 Concept Development - The concept development phase where cus-
tomer needs were identified, target specifications were established and con-
cepts were generated. Literature studies and analyses of related works were
conducted, and required hardware was ordered after concept selection.

Phase 2 System-Level Design - The preliminary design phase where various de-
signs, based on the selected concept, were laid out and evaluated. Alpha-
prototyping started in this phase and continued on through phase 3.

5

1.4. METHOD

Phase 3 Detail Design - The main development phase, conducted in parallel with
phase 4. The alpha-prototype was tested and the development of the beta-
prototype, and final product, started.

Phase 4 Testing and Refinement - Evaluation, improvements and further de-
velopments to the beta-prototype.

Phase 5 Production Ramp-Up - This phase was stricken from the project and
replaced with a conversion from beta-prototype to the final product. It also
included a final evaluation of the final product, the control method and the
thesis as a whole.

1.4.1 Risk Analysis

Anything that could affect the development or function of the TVECU in a non-
insignificant way was evaluated using risk matrices. The risk matrices were divided
into two categories; “Risk Matrix - Technical” and “Risk Matrix - Administration”.
The former evaluated factors related to the feasibility of the thesis out of a technical
and “project administrative” perspective. The latter evaluated factors related to
the feasibility of the thesis out of a university-administrative and examinatorial
perspective, for example, licenses and ownership. It is considered both sensitive
information and outside the scope of this thesis and is therefore not included.

The risk matrices were sorted by probability versus consequence. If the risk was high,
ie. both the probability and the consequences were high - the risk was eliminated.
If the risk was low, ie. both the probability and the consequences were low, the
risk was observed for potential changes. Finally, if the risk was medium changes
were made to minimize the risk and observed for potential changes. Although risk
analysis was conducted continuously throughout the thesis, the bulk of “Risk Matrix
- Administration” was evaluated during the Planning phase while the majority of
“Risk Matrix - Technical” was determined during the Concept phase, shown in 3.1
Risk Analysis and Strategy.

1.4.2 Organization of Report

Chapter I: Introduction This chapter deals with the background, objectives, and
limitations of the development of an electronic control unit for torque vector-
ing. It proceeds to present the method of development, risks and the organi-
zation of the report.

Chapter II: Theory This chapter explains the theory needed to understand the
report, divided into four sections; Vehicle Dynamics, Automatic Control, Elec-
tronic Control Unit, and the Controller Area Network. Vehicle Dynamics aims
gives an understanding of dynamics, yaw rate and the basic physics of a moving
car. Automatic Control examines the continuous PID control and conversion
to discrete control. Electronic Control Unit briefly describes what ECUs and
PCBs are while Controller Area Network explains what it is and how it func-
tions.

6

CHAPTER 1. INTRODUCTION

Chapter III: Concept Development This chapter analyzes possible hazards in
the development of the product through risk and Automotive Safety and In-
tegrity Level (ASIL) analysis. It proceeds to determine the needs and require-
ments of the TVECU in order to define the target specifications. Finally,
hardware and software concepts are screened and selected according to the
target specifications.

Chapter IV: System-Level Design This chapter explains the high-level hard-
ware design of the TVECU and its additional components. It describes sup-
porting development systems used for CAN communication, and tests the
alpha-prototype against a commercial engine ECU. Finally, it evaluates soft-
ware deployment methods and describes the general process of the TVECU
software.

Chapter V: Detail Design This chapter develops the hardware configuration and
wiring of the TVECU beta-prototype. It proceeds to address packaging and
the Gen6 connectors, and examines the TVECU software and control algo-
rithm in detail. Ultimately, it presents the final assembled product.

Chapter VI: Testing and Refinement This chapter describes the various tests
done in parallel with the development of the prototypes and final product. It
outlines the verification of the practical control algorithm and then depicts the
TVECU system tests conducted to verify communication, control and sensors.

Chapter VII: Evaluation and Conclusion This chapter evaluates the TVECU
against the target specifications and identifies design elements not yet imple-
mented. It reviews potential issues moving forward and presents items for
future development such as CAD and PCB design, before concluding the the-
sis.

7

8

Chapter 2

Theory

This chapter explains the theory needed to understand the report, divided into four
sections; Vehicle Dynamics, Automatic Control, Electronic Control Unit, and the
Controller Area Network. Vehicle Dynamics aims gives an understanding of dynam-
ics, yaw rate and the basic physics of a moving car. Automatic Control examines the
continuous PID control and conversion to discrete control. Electronic Control Unit
briefly describes what ECUs and PCBs are while Controller Area Network explains
what it is and how it functions.

2.1 Vehicle Dynamics

2.1.1 Differentials and Torque Vectoring

When a car corners, the outer wheel will travel further than the inner wheel as seen
in Figure 2.1. Consequently, the outer wheel has to travel faster than the inner
wheel in order to turn. If the wheels are being driven by the drive shaft on a fixed
axle and thus not able to rotate at different speeds then the wheel with the least
ground traction will lose grip and skid along the ground. Therefore a mechanism is
required to allow the wheels to rotate at different speeds while still being connected
to the same driveshaft.

Figure 2.1: Illustration of different wheel speeds [5].

9

2.1. VEHICLE DYNAMICS

This is conventionally achieved by using a differential. Several different types of
differentials exist, but they all serve the same primary function. In the open differ-
ential in Figure 2.2, torque is delivered from the engine to the crown wheel via the
driveshaft and pinion. The rotating cage, attached to the crown wheel, holds and
rotates small gears that in turn rotate both wheel axles driving the car forward in a
straight line. In this sense, it functions similarly to a fixed axle. However, spinning
the right wheel forward when the driveshaft is locked as in Figure 2.3 will cause the
small rears to rotate the left wheel backward in the opposite direction.

Figure 2.2: Differential when driving
straight [6].

Figure 2.3: Differential with locked drive
shaft [6].

During normal use the differential will function like Figure 2.2 when driving straight.
During cornering it will combine the two use cases into Figure 2.4, where the outer
wheel is allowed to rotate faster than the inner wheel. Several types of differentials
exist such as the open differential, locked differential, spool differential, the limited-
slip differential (LSD) currently used on the Lund Formula Student’s car, and many
others. While their purpose is the same, they utilize different methods with different
benefits and drawbacks.

Figure 2.4: Differential during cornering [6].

10

CHAPTER 2. THEORY

Torque Vectoring

With a regular differential, the difference in wheel speeds occurs due to the different
ground speeds of the wheels as a result of the car turning. Torque vectoring can be
summarized as the opposite; changing the torque on each wheel, and consequently
the wheel speeds, in order to create a turning moment and turn the car, as shown
in Figure 2.5. Consequently, the car can corner at a steeper angle and at higher
speeds than a car without torque vectoring.

Figure 2.5: Different wheel torque creates a turning moment on the car [7].

Torque vectoring can be achieved by several means. Each motor in an electric pow-
ertrain, for example, can be controlled individually and generate a turning moment.
Many modern production cars create torque vectoring by braking the inner wheels
during cornering. Other possible torque vectoring devices are active differentials,
torque-vectoring differentials, and dual clutches, among others.

2.1.2 Vehicle Axis System

The vehicle axis system is a three-dimensional system with its origin at the center
of gravity (COG) of the vehicle. The longitudinal axis is described as the x-axis
and is the axis in which the vehicle travels along when the wheel angle is at zero.
The lateral axis is set as the y-axis and the vertical axis is described as z. All linear
motions or accelerations from the COG is along one or more of the three axes.

Figure 2.6: Vehicle axis system, where gravity is defined as positive [8].

A rotational moment creates a rotational acceleration around the COG. If the mo-
ment is centered around the x-axis it is known as a roll and if it is centered around
the y-axis it is instead known as a pitch. If the rotation is around the z-axis it is
known as yaw [9]. It is the centripetal acceleration from the yaw moment that the
driver experiences when cornering.

11

2.1. VEHICLE DYNAMICS

2.1.3 Yaw Stability Control Systems

There are three different yaw control systems, also known as electronic stability
control systems. The purpose of an electronic stability control system is, as the
name implies, to stabilize the yaw rate and adjust it to a nominal value that is as
close to what the driver expects as possible [10]. The three different control systems
are:

• Steer-by-Wire

• Differential Braking

• Active Torque Distribution

Steer-by-Wire systems remove the steering wheel’s physical connection to the wheels
of the vehicle and instead control the wheels of the vehicle electronically [11]. The
systems stabilize by modifying the steering wheel angle to compensate for unwanted
disturbances [10]. Differential braking systems use the braking system to apply yaw
stability. The brakes are normally distributed equally on the left and right wheels
[10].

The differential brake system stabilizes by distributing the brake torque to each
wheel independently, keeping the car on the target path as in Figure 2.7 [10, 12].
Active torque distribution systems control the torque applied on the wheels using,
for example, an active differential to maintain the desired yaw rate [10].

Figure 2.7: Visualization of understeering, oversteering and target yaw [13].

12

CHAPTER 2. THEORY

Torque Vectoring, Active Torque Distribution

Torque vectoring is similar to the stabilization systems, but its purpose is to increase
the yaw moment instead of stabilizing it. For the active torque distribution system
to work there must be an electronic control unit controlling the specific torque
distributed to the wheels at all times. The torque distributed depends on the control
signal from the ECU, which is in turn affected by a changing desired yaw rate. The
desired yaw rate can, according to [10], be described as:

ψdes =
Vx
R

(2.1)

Where Vx is the speed of the vehicle along the x-axis and R is the cornering radius
[3]. It follows that the cornering radius can be described by:

R =
L+Kv · V 2

δst
(2.2)

Where V is the global velocity, Kv is the under-steer gradient, δss is the steering
wheel angle and L is the wheel base [3]. Rewritten, the yaw rate can be described
as:

ψdes =
Vx · δst

L+
m·Vx(lr·Cα,r−lf ·Cα,f)

2·Cα,r·Cα,f ·L

(2.3)

Where ψdes is the desired yaw rate, vx is the velocity along the x-axis, δst is the
steering wheel angle and m is the vehicle mass. lf and lr are the front and rear axle
distances to the COG, while Cα,f and Cα,r are the front and rear lateral tire stiffness
[3, 10]. The desired yaw rate can be compared to the actual yaw rate at a specific
point in time and the error can be calculated. This error is what the electronic
control unit is controlling and trying to set to zero.

2.2 Automatic Control

The following theory concerning automatic control is all derived from Real-Time
Control Systems by Karl-Erik Årzén. It is provided to give an understanding of
the control algorithm in the final design. Årzén provides theory concerning both the
control theory and the link between the theory and the implementation [14].

2.2.1 Continuous Control in PID Controller

The PID-type controllers are the most widely used controllers in industries. The
controller consists of three parts; the proportional (P) term, the integral (I) term
and the derivative (D) term. The proportional term attempts to remove the error.
The integral term is based on the error history and attempts to close the stationary
error that the proportional term cannot account for. The derivative term predict
the coming error to prevent oscillations, overshoot, and instability.

13

2.2. AUTOMATIC CONTROL

The proportional controller can be described in the continuous state-space form
with:

P (s) = Kc · E(s) (2.4)

Transforming the proportional term to the time-domain yields:

P (t) = Kc(ysp − y) + ub = Kc · e+ ub (2.5)

Where Kc is the proportional gain, ysp is the reference value, y is the current value
and ub is the reset term. The purpose of the reset term is to maintain a control signal
that is different from zero even when the control signal is zero. Solely implementing
a proportional term can be problematic as it gives rise to a steady-state error. To
avoid a steady-state error an integral term can be implemented. The state-space
form of the integral term is described by:

I(s) =
Kc

s · Ti
· E(s) (2.6)

Where Ti is the integral constant, s is the Laplace variable and E(s) is the current
error, described in 2.5 as ysp − y. The time-domain controller is described by:

U(t) = P (t) + I(t) = Kc

(
e(t) +

1

Ti

∫ t

0

e(s) ds
)

(2.7)

Where Ti is the integral constant. The controller in Equation 2.7 is called a PI
controller. A derivative term is used to anticipate the coming behavior and avoid
overshoots. The derivative term predicts the future by extrapolating the error curve
along its tangent, yielding the state-space design shown in Equation 2.8:

D(s) = Kc · Td · s · E(s) (2.8)

Where Td is the derivative constant. This yields a controller in the time-domain
with the following characteristics:

U(t) = P (t) + I(t) +D(t) = Kc

(
e(t) +

1

Ti
·
∫ t

0

e(s) ds+ Td
de

dt

)
(2.9)

It is important to note that the implementation of a pure derivative is not wanted
in a controller. Typically the derivative amplifies the measurement noise at specific
frequencies, which can be avoided by replacing the transfer function s · Td with:

s · Td
1 + s·Td

N

(2.10)

Where N is generally around 10-20. This will yield the derivative term:

D(s) =
s · Td

1 + s·Td
N

· E(s) (2.11)

14

CHAPTER 2. THEORY

2.2.2 Discrete Implementation of PID Controller

Using a controller designed for continuous-time is not applicable when implement-
ing a controller in an embedded system. The continuous-time domain expects the
controller’s sample-time to be continuous, i.e. infinitely small.

This is not the case in embedded systems, as there will always be a discrete sample-
time. This phenomenon requires a controller design in the derivative time-domain.
Discretizing a continuous control system has several challenges, the most significant
being sampling and quantization.

Discretizing a continuous system demands approximating the Laplace operator, s,
as a discrete shift operator, z, which is a specific time-step. There are three main
methods used for this transformation; forward-difference, backward-difference, and
Tustin’s approximation.

A proportional controller simply observes and corrects the error at a specific time,
as shown in Equation 2.12.

P (tk) = K
(
b · ysp(tk)− y(tk)

)
(2.12)

Where tk is a specific time-step, y is the actual value at a specific time, ysp is the
reference value and b is a variable gain.

Forward-Difference

The approximation of s using the forward-difference method is:

s =
z − 1

h
(2.13)

Where h is the sample-time and z the shift operator. As the name suggests, this
approximation is the equivalent of replacing all the derivatives with a forward-
difference.

dx(t)

dt
=
x(t+ h)− x(t)

h
(2.14)

Approximating the integral term in Equation 2.6 with the forward-difference method
yields:

I(tk + 1)− I(tk)

h
=
K

Ti
· e(tk) (2.15)

Where I(tk + 1) is the integral term at the actual time-step plus one.

I(tk + 1) = I(tk) +K · h · e(tk + 1)

Ti
(2.16)

Approximating the derivative term in Equation 2.8 with the forward-difference
method yields:

Td
N
· D(tk + 1)−D(tk)

h
+D(tk) = −K · Td ·

y(tk + 1)− y(tk)

h
(2.17)

D(tk + 1) =
(
1− N · h

Td

)
·D(tk)−K ·N

(
y(tk + 1)− y(tk)

)
(2.18)

Where tk is a specific time-step and tk + 1 is one time-step forward. In other words,
the forward-difference is an approximation on the next derivative or integral term.

15

2.2. AUTOMATIC CONTROL

Backward-Difference

The approximation of s using the backward-difference method is:

s =
z − 1

zh
(2.19)

Once again as the name suggests, this approximation is the equivalent of replacing
all the derivatives with a backward-difference.

dx(t)

dt
=
x(t)− x(t− h)

h
(2.20)

Approximating the integral term with backward-difference yields:

I(tk)− I(tk − 1))

h
=
K

Ti
· e(tk) (2.21)

I(tk) = I(tk − 1) +
K · h
T i
· e(tk) (2.22)

Approximating the derivative term with backward-difference yields:

Td
N
· D(tk)−D(tk − 1)

h
+D(tk) = −K · Td ·

y(tk)− y(tk − 1)

h
(2.23)

D(tk) =
Td

Td +N · h
·D(tk − 1)− K · Td ·N

Td +N · h
(
y(tk)− y(tk − 1)

)
(2.24)

This is the method used in Grahovic and Rosicki’s Simulink model.

Tustin’s Approximation

The discretization of the frequency using Tustin’s Approximation yields:

s =
2

h
· z − 1

z + 1
(2.25)

Approximating the integral term with Tustin’s approximation yields:

I(tk + 1) = I(tk) +K · h · e(tk + 1) + e(tk)

2 · Ti
(2.26)

Approximating the derivative term with Tustin’s approximation yields:

D(tk) =
2 · Td −N · h
2 · Td +N · h

·D(tk − 1)− 2 ·K · Td ·N
2 · Td +N · h

·
(
y(tk)− y(tk − 1)

)
(2.27)

16

CHAPTER 2. THEORY

2.2.3 Integrator Windup

Phenomena

A controller will always strive to find the output that will yield the correct results, i.e.
zero error. Although the controller can output any value, there are always physical
limitations to the output such as the maximum torque from a motor. Consequently,
the output must be saturated against that physical limitation. A system with both
an actuator that saturates the system and an integral term will give rise to integrator
windup.

Integrator windup is the phenomenon when the error is so large that the actuator
saturates the output and the integrator saturates the feedback loop and builds up a
large accumulated error over time. The error could become large enough to inhibit
the system from adjusting to a change fast enough. In other words, the system’s
”reflex” is sluggish and the system is slow to react to a rapid change in the opposite
direction.

To impede integrator windup, the system could either be tuned to avoid saturation
or by disabling its integral term when the system is far away from steady-state.
The method used in Grahovic and Rosicki’s Simulink model is the back-calculation
method, also known as the tracking method.

Tracking Method

The tracking method recalculates the integral term if the controller is saturated.
If the controller saturates, the integral term will adjust itself to the difference be-
tween the input value and the saturation limit. This method counters the integrator
windup and ensures that the integrator does not integrate up to very large numbers.

2.3 Electronic Control Unit - ECU

An electronic control unit, more commonly known as an ECU, is a device responsible
for regulating an electronic system in, for example, a vehicle [15]. The general
function of an ECU is to collect input signals from various sensors to process and
control one or more outputs.

The outputs can be signals to actuators, pumps, motors to control windows, anti-
skid systems, and engines, to name a few examples. The engine control unit is often
colloquially referred to as ECU as well. As the name implies, it is an electronic
control unit that controls the engine such as fuel injection and the ignition timing
[16].

ECUs are comprised of printed circuit boards, or PCBs. A PCB is the mechanical
support which houses and connects an electronic system [17]. The mechanical base
structure of a printed circuit board consists of layers of conductive material, such
as copper, and sheet layers of a non-conductive substrate [18].

17

2.4. CONTROLLER AREA NETWORK - CAN

2.3.1 Embedded Components - Micro-Controllers

A micro-controller is a compact integrated circuit designed to govern a specific
operation in an embedded system [19]. The microcontroller consists of three main
elements:

Central Processing Unit (CPU) The central processing unit is the brain of the
controller, where all logic actions take place and where all the functions are
executed.

Memory The memory is split into the program memory and the data memory.

• The program memory is the long term memory, the memory concerning
the different instructions that the CPU performs.

• The data memory is a temporary memory used as a hold while different
instructions are being executed.

I/O peripherals The input/output peripherals is the interface for the processor
with the outside world.

2.4 Controller Area Network - CAN

The Controller Area Network, more commonly known as CAN, is a network used for
safe and efficient communication between nodes such as ECUs, sensors and actuators
[20, 21]. The CAN-bus allows communication without having a host computer or a
wire-to-wire network. All communication is sent via the CAN-bus, using a specific
message format and identification number, to all nodes regardless of the message’s
intended recipient.

Each node listens and based on the sender’s ID determines whether or not the mes-
sage is interesting or not. The CAN-bus is kept functioning and collision-free by
using a “carrier-sense, multiple-access protocol with collision detection and arbitra-
tion on message priority (CSMA/CD+AMP)” [22].

2.4.1 CAN Function

Figure 2.8: One ECU network [23]. Figure 2.9: Three ECU network [23].

A single ECU system with several sensors requires a wire from each sensor, as shown
in Figure 2.8. The number of wires are tripled if three ECUs require the same sensors
since each node/ECU requires an individual connection to each sensor (Figure 2.9).
Instead, a CAN-bus system can be used where each sensor only connects to the

18

CHAPTER 2. THEORY

nearest ECU, but all ECUs are connected to each other via a CAN-bus and share
information. By using the CAN-bus “highway” system the number of wires can be
kept to a minimum while ensuring robust and prioritized communication between
all systems as shown in Figure 2.10 [20, 21, 22].

Figure 2.10: Three ECU CAN-bus [23].

Sending Messages

The send/receive process using CAN, shown in Figure 2.11, is consequently more
complicated than in a wire-to-wire network. Each node must follow a strict commu-
nication protocol in order to, for example, display the car’s RPM on the dashboard.
The step-by-step process would begin with the engine ECU continuously checking
the engine RPM from the engine speed sensor. The engine ECU subsequently pack-
ages the information as a CAN message with (a simplified) ID “engine 1” and places
the message in a transmit mailbox.

Figure 2.11: Example of CAN message transmission and reception [23].

The message containing the RPM is put on hold in the transmit mailbox until no
ongoing transmissions are present on the CAN-bus before sending. Should a collision
occur and two messages are sent simultaneously they will arbitrate and the message
with the lowest priority will cease its send attempt [20, 21, 23].

19

2.4. CONTROLLER AREA NETWORK - CAN

Receiving Messages

Meanwhile, all other ECUs listen to the CAN-bus for incoming transmissions. Al-
though it has no use for the engine RPM, the ABS ECU still receives the CAN
message. Upon receiving the CAN message the ABS ECU initially checks the mes-
sage for errors before checking the message ID.

Since the ID “engine 1” is not relevant for the ABS ECU it ignores the message.
Meanwhile, the dashboard ECU also checked for errors and determined that the
message was relevant and placed the message in a receive mailbox. There, it decodes
the message and finally displays the RPM on the dashboard for the driver to see
[20, 21, 23].

2.4.2 The CAN Message

There are three conventional types of CAN messages, each with a unique function:

• Data frame ”Hey everyone, here is this information.”

• Remote frame ”Hey all, I’d like to have this information please.”

• Error frame ”Oops something went wrong, I didn’t understand. Can you
say again?”

Both the data frame and the remote frame follow the framing rules of a CAN
message as described below. Although rarely used, a remote frame allows for a
request-response type of system where the nodes must request the data in order to
receive it. Unlike the other two, the error frame is a special message that does not
follow the message format and is transmitted once a node detects an error [24, 25]. It
interrupts bus traffic and causes all other nodes to discard the message upon which
the transmitting node will resend the CAN message.

An overflow frame also exists but has largely been discontinued. It was similar to
an error frame but used as a “busy” signal when a node was overrun with messages.
Modern CAN handles the messages more efficiently and the overflow frame has, for
the most part, become obsolete [24].

A CAN message, shown in Figure 2.12, is comprised of four main fields; the ar-
bitration field, the data field, the Cyclic Redundancy Check (CRC) field and the
acknowledge field [26]. The arbitration field is mainly comprised of the message
identification number and is used to both identify and prioritize the message. After
the arbitration field comes four Data Length Code (DLC) bits which determine the
data length between 0 to 8 bytes, followed by the actual data.

20

CHAPTER 2. THEORY

Figure 2.12: Standard and Extended CAN messages [25].

A checksum is calculated from the message data and sent with the message in the
Cyclic Redundancy Check (CRC) field. The receiving node uses the same method
to calculate a checksum from the received message and compares the two checksum
values. If they are the same then the data is intact, if they differ then an error
occurred. The subsequent acknowledge field is then used to acknowledge to the
transmitting node that the message was received without errors. Each message
begins with a dominant (0) Start of Frame (SOF) bit and an End of Frame (EOF)
bit. At least three recessive (1) bits, known as the Inter Frame Space (IFS), are
appended after the EOF-bit to separate each CAN message [25, 26].

Arbitration and Message Priority

The arbitration field varies in length between Standard and Extended CAN formats.
The Standard CAN contains an 11-bit identifier used to identify the message, al-
lowing for 2048 unique identification numbers. It ends with a bit called Remote
Transmission Request (RTR) used to broadcast that a message is a data frame or a
remote frame. Immediately following the RTR bit is the Identifier Extension (IDE)
bit which determines if the CAN message is in the Standard format or the Extended
format [24, 25].

An Extended CAN message is similar to the Standard CAN, but appends an 18-bit
identifier after the Standard CAN-like arbitration field, as shown in Figure 2.12.
A Standard CAN message will during arbitration always have priority over an Ex-
tended CAN message, which is determined by the recessive (1) Substitute Remote
Request (SRR) bit. Consequently, the RTR-bit is moved to the end of the Extended
arbitration field [27].

Between one and two reserved and unused bits separate the arbitration field from
the data field. If two messages collide the CAN will automatically arbitrate and send
the most prioritized message as determined by the message ID’s dominant bits. In
other words, the lowest CAN ID is the most prioritized.

21

2.4. CONTROLLER AREA NETWORK - CAN

Figure 2.13: Example of arbitration based on CAN identification number [23].

The identification numbers are compared bit by bit, as shown in Figure 2.13, and as
soon as a node outputs a bit that is recessive while it detects a bit that is dominant
it loses allocation and stops transmission. Since each ID is unique, only one can
“finish” broadcasting its identifier and therefore only one can transmit its message
at a time [21, 22].

Error Frame and Error Detection

Each CAN node will check the message for errors. If a node detects an error it will
send an error frame causing the transmitted message to be discarded by all nodes
and the message resent by the transmitting node. Without some secondary error
handling, however, a faulty node that continuously destroys each message due to
error would inhibit all traffic on the CAN-bus. Therefore, each node contains two
error counters in case a faulty node keeps failing; the Transmit Error Counter and
the Receive Error Counter [27, 28].

In short, each error that occurs during transmission or reception will increase the
corresponding counter by 8 points and 1 point respectively. The transmit error
counter increments at a faster rate as it is most likely that the transmitter is at
fault. Once the counter reaches 127 the node will switch from “Error Active” mode
- where it throws message-destroying dominant Error frames - to “Error Passive”.
In “Error Passive” the node will start sending error frames but with recessive bits.
Consequently, the error counter keeps incrementing if something fails but the faulty
node does not destroy communication on the CAN-bus. After reaching 255 the node
will switch off and no longer attempt to transmit anything. Each successful message
will decrease its respective counter by one [28]. The CAN protocol uses at least five
ways of detecting errors [27, 28]:

Bit monitoring - Each node will return the currently transmitted bit. If the re-
ceived and transmitted bits differ, the node throws a Bit Error frame. No Bit
Error is thrown during arbitration.

Bit stuffing - If five consecutive bits have the same level (high or low) the trans-
mitting node will append one bit of the opposite level (low or high). The

22

CHAPTER 2. THEORY

appended bit is ignored by the receiving nodes. It is used to detect DC faults
and provides another error check. Errors throw a Stuff Error.

Frame check - Each node checks that the CAN message follows the correct format
as described in Figure 2.12. An incorrect message format throws a Form Error.

Acknowledgment check - Every receiving node will transmit a dominant bit in
the ACK-slot of the message, regardless of whether or not the node was “inter-
ested” in the message. The transmitting node will transmit a recessive ACK
and will throw an ACK Error if it does not detect a returned dominant bit.

Cyclic Redundancy Check (CRC) - Each node will individually calculate a check-
sum from the CAN message. If the message checksum is not equal to the
calculated checksum, then a CRC Error is thrown.

2.4.3 The Physical Layer

There are several physical standards for CAN. The most common is the “High Speed
CAN,” ISO 11898-2. It utilizes a two-wire CAN-bus with a standard maximum
speed of 1 Mbit/s. The maximum cable length is limited by the speed of light, as
the forward part of the signal wave must be able to travel up and down the entire
CAN-bus before the next bit is sent. A CAN system at a bit rate of 500 kbit/s
equates to a maximum cable length of around 100 m [26, 29].

Termination

Figure 2.14: A CAN-bus with two termination resistors [30].

Due to the two-way communication on a CAN-bus, it can be interfered with or dis-
rupted when CAN signals reflect from the cable ends. Consequently, a termination
resistor is placed at both cable ends to absorb the energy, as shown in Figure 2.14.
Longer cables and higher bit rates have a larger issue with reflections. A termination
resistor of 120Ω is the most common, as the ”termination [resistor] should match
the nominal impedance of the cables” [30] as defined by ISO 11898-2 for High Speed
CAN.

23

24

Chapter 3

Concept Development

This chapter analyzes possible hazards in the development of the product through risk
and Automotive Safety and Integrity Level (ASIL) analysis. It proceeds to determine
the needs and requirements of the TVECU in order to define the target specifications.
Finally, hardware and software concepts are screened and selected according to the
target specifications.

3.1 Risk Analysis and Strategy

The technical risk analysis was a continuous and iterative process that looked at
both areas related to our own design and work as well as areas in which we had no
control over. It also took the tiered ambition level (see 1.2.1 Tiered Ambition Level)
into consideration where the scope would be adjusted based on the availability of
time and resources.

For example, the optimal situation was to have an FS-car available to test the
TVECU+TVDC system on but it was not feasible if the TVDC was not produced
or no FS-car was available. Therefore the system needed to be designed and tested
with the assumption of a worst-case scenario. Furthermore, it was decided that
anything that could be incorporated into the TVECU should be implemented to
avoid relying too much on the FS-team. The iterated “Risk Matrix - Technical” is
shown in Appendix A.

A notable decision was to use two separate CAN-buses in the system. Both the FS-
car and the Gen6 actuators use CAN to communicate. Using the same CAN-bus as
the rest of the FS-car is advantageous as it simplifies data logging and reduces the
complexity of the TVECU.

Nevertheless, it opened up for compatibility issues and function failures as a result
of the TVDC operating on the same CAN-bus as the ever-changing FS CAN. By
using two different CAN-buses this problem can be avoided altogether. It is also
possible to go from two CAN-buses to one with fairly small modifications.

25

3.1. RISK ANALYSIS AND STRATEGY

3.1.1 Automotive Safety and Integrity Level (ISO 26262)

The Automotive Safety and Integrity Level (ISO 26262) is a risk-based safety stan-
dard used in the automotive industry. It applies to all electronic systems in the
production vehicle and is used to ensure sufficient safety margins relative to the
risk (probability and consequence) of a potential failure [31]. Although the ASIL is
not formally required for the TVECU, an ASIL rating gives a sense of safety level
ambition.

There are three factors that determine the ASIL of a component; severity, exposure,
and controllability. Severity is the possible personal and property damage that can
occur during system failure and is ranked S0-S3, i.e. no injuries to life-threatening.
Exposure is the likelihood that an injury would occur given that the system has failed
and ranges from E0-E4, i.e. incredibly unlikely to high probability. Controllability
is the likelihood that an accident can be avoided when a hazardous system-failure
has occurred. The controllability is ranked from C0-C3, i.e. controllable in general
to difficult to control or uncontrollable.

It was determined that there are potential light to moderate injuries during a haz-
ardous system failure (S1). It was also determined that the likelihood of injury
during a hazardous system failure can only occur in rare circumstances (E1). The
ability to avoid harm during a failure is at worst considered normally controllable
(C2) as most drivers could take measures to avoid harm.

Table 3.1: ASIL table for the TVECU system.

Factor Class/Grade Class Description

Severity S1 Light to moderate injuries
Exposure E1 Very low probability
Controllability C2 Normally controllable

ASIL QM Quality Management, no requirements

ASIL has four possible values ranging from A, the minimum risk with fewest com-
pliance measures, to D with the greatest risk and strictest compliance. The combi-
nation S1 E1 C2 does not generate an ASIL value, and the ASIL is instead noted
as Quality Management signifying there is no safety requirement.

26

CHAPTER 3. CONCEPT DEVELOPMENT

3.2 Identifying Customer Needs

As the TVDC is designed for Formula Student, their demands and needs for the
technical specifications were the foundation for the project. Interviews were held
with representatives from BorgWarner as well as applicable students from Lund
Formula Student. A list of customer needs was developed in cooperation with Borg-
Warner, as well as latent needs identified during internal discussions. The needs
were expanded into system requirements and detailed needs required to fulfill the
system requirement. The needs were then grouped into their relevant subsystem
and the importance evaluated.

3.2.1 Categorized Product Needs and Requirements

The identified list of needs for the TVECU is shown below in Table 3.2. The
importance denotes how the need relates to the basic function of the TVECU and
its use, ranked 1-3, with 3 denoting critically important needs.

Table 3.2: Product needs and requirements categorized into packaging, hardware
and software.

No Subsystem Need Importance

1 H/W S/W Easy to connect to FS CAN-bus 3
2 H/W S/W Robust connection to TVDC CAN-bus 3
3 H/W S/W Accurate PI controller 3
4 H/W S/W Runs at high speed 3
5 S/W Protected from wind-up 3
6 S/W Protected from saturation errors 3
7 S/W Handles locked wheels 3
8 PACK H/W S/W Inhibited from damaging TVDC 3
9 PACK H/W User is protected from electrical shocks 3
10 PACK H/W S/W Unit operates in all temperatures 3
11 H/W S/W Fast start up time 3
12 PACK H/W S/W Unit is easy to reprogram/configure 2
13 S/W Unit handles over-steering 2
14 H/W S/W Runs or easy transfer from Simulink 2
15 PACK H/W Local sensors prioritized 2
16 S/W Contains fail-safe for TVDC failure 2
17 S/W Contains fail-safe for electrical failure 2
18 PACK H/W Light 1
19 PACK H/W Efficient size 1
20 H/W S/W Automatic reboot watchdog 1
21 PACK Weather resistant 1
22 PACK H/W Adequate life expectancy 1
23 H/W S/W Logs data locally 1
24 PACK H/W S/W Data log easily accessible 1

27

3.3. TARGET SPECIFICATIONS

3.3 Target Specifications

The customer needs in Table 3.2 were converted into measurable metrics in order to
establish a target specification for the TVECU, shown in Table 3.3. Some needs fit
into a single metric, while some needs reflect more than one or a certain range the
TVECU has to function within. The metrics were also divided into acceptable and
ideal goals, in accordance with the tiered goals method described in 1.2.1 Tiered
Ambition Level.

Table 3.3: List of target metrics as developed from the product needs.

No Metric Imp. N.No Optimal Acceptable

1 Simple FS CAN 3 1 Y Y
2 Robust TVDC CAN

Robust CAN-bus 3 2 Y N
Shock protection 3 9 Y Y
Local sensors prioritized 2 15 Y Y

3 High Speed 3 4 >50 Hz >10 Hz
4 Safety Handles

No TVDC damage 3 8 Y N
Shock protection 3 9 Y Y

5 Operating Temperature 3 10 -20 – 80◦C -5 – 60◦C
6 Fast Startup

Fast Startup Time 3 11 <1 s <3 s
Reboot Watchdog 1 20 Y N

7 Simple Configuration
Easy to reprogram 2 12 Y N
Simulink compatible 2 14 Y N

8 Small Control Error 3 3 ± 5% ± 15%
9 Failure Handles

TVDC failure 2 16 Y N
Electrical failure 2 17 Y N

10 Special Case Handles
Wind-up 3 5 Y Y
Saturation errors 3 6 Y Y
Locked wheels 3 7 Y N
Over-steering errors 2 13 Y N

11 Low weight 1 18 <25 g <100 g
12 Efficient Packaging

Efficient size 1 19 Y N
Weather resistant 1 21 Y N

13 Data Logging
Local data log 2 16 Y N
Accessible data log 2 17 Y N

14 Lifespan 1 22 >10 yrs >2 yrs

28

CHAPTER 3. CONCEPT DEVELOPMENT

3.3.1 Competitive Benchmarking and Patent Research

In order to evaluate the target specifications, they were compared with other similar
commercial systems available on the market. Although no systems were identical in
use and needs as the TVECU, Bosch sells an engine ECU for automotive use that
controls the engine and communicates via CAN. Their ECU was used to get a feel
for the metrics in an automotive application and is shown in Table 3.4.

Table 3.4: Engine ECU specifications from Bosch [32].

CPU Speed 80 – 300 MHz
Flash Memory 1.5 - 8 MB
RAM 72 - 628 KB

Patent research and analysis was also conducted via the European Patent Office
(EPO) and the US Patent and Trademark Office (USPTO). The goal was to see
what innovations exist and are patented, as well as to get inspiration for non-patent-
infringing ideas. Nevertheless, given the specific nature of the TVECU, no such
systems were found that were adequately similar to the needs and specs of the
TVECU.

3.4 Concept Generation

Concept Generation aimed to develop and screen hardware and software design
ideas. The software’s main signals were to be properly designed and the hardware
determined and ordered as soon as possible to avoid consequences from supplier
delays. It was conducted iteratively and in parallel with 4 System-Level Design to
ensure that the design was in line with the 3.3 Target Specifications.

3.4.1 Hardware

The TVECU system was initially to be developed using existing hardware before
creating a proprietary printed circuit board (PCB) for the TVECU, in accordance
with 1.2.1 Tiered Ambition Level. The hardware selection process involved creating
a wide list of possible commercial hardware that can be used to develop the TVECU
hardware.

Hardware Screening

The concept screening pertained to evaluating the hardware and eliminating unfa-
vorable candidates in an effort to determine which is most relevant to our needs,
and which has the greatest potential to meet our requirements. The hardware short-
list was initially screened on two criteria. First, whether or not there are duplicate
or similar hardware, e.g. hardware based off of the open-source Arduino. Second,
whether or not we had experience with the hardware or similar.

29

3.4. CONCEPT GENERATION

The PocketBeagle, STM32 Discovery, Teensy++, and the two Raspberry Pis are rela-
tively similar and were considered “duplicates”. Since we had experience with Rasp-
berry Pi, the other three micro-controllers/micro-processors were stricken from the
list. The remaining hardware were screened based on development (alpha-prototype)
and final product (assembled and completed beta-prototype) needs.

For example, stackable headers and pins mean faster development during early pro-
totyping, while the size is of little importance. Conversely, size is important for the
beta-prototype/final product and the availability of stackable headers and pins are
not as the wires are soldered onto the PCB. Special consideration was also taken in
regards to four risks:

• CAN communication inhibits serial communication (metric 1 and 2)

• CAN availability/compatibility (metric 1 and 2)

• One processor not enough to handle control software (metric 3, 6 and 8)

• Memory not enough for control software (general function)

An attempt was made during pre-development to deploy the theoretical Simulink
model created by Grahovic and Rosicki to an Arduino Uno. The model failed to
deploy as the Simulink generated code requires more memory than what is available
on an Arduino Uno. While deployment methods and software generation were fur-
ther evaluated in 4.2.1 Software Deployment Methods, the large size of the Simulink
model showed a potential limitation of the hardware. Consequently, the list was
further narrowed down by removing the Arduino Uno and Pro Mini as well as the
SparkFun RedBoard and Pro Micro. The hardware boards that passed screening
are:

• Arduino Mega

• Raspberry Pi 3 B+

• Raspberry Pi Zero W

• SparkFun RedBoard Artemis

• SparkFun AST-CAN485

Hardware Selection

The selection process involved reasoning around the hardware specs and needs of
the system, as well as the needs during development and final assembly. The most
important specs are outlined in Table 3.5.

While all hardware that passed screening were adequate, different micro-controllers
and micro-processors have different advantages. Despite being the largest of the
bunch, the Arduino Mega provides the most headers and four serial connections for
dedicated communication. However, the Arduino Mega does not have a dedicated
CAN PCB (called Shield, Hat or Breakout) and would have to be modified manually.

30

CHAPTER 3. CONCEPT DEVELOPMENT

Table 3.5: Hardware specifications of hardware under evaluation.

Ard. Mega Pi 3 B+ Pi Zero Artemis AST-CAN485

Memory 256 KB Ext µSD Ext µSD 1 MB 128 KB
RAM 8 KB 1 GB SDRAM 512 MB 384 KB 4 KB
Clock Speed 16 MHz 1.4 GHz 1 GHz 96 MHz 16 MHz
Size [mm] 102x54 85x56 65x30 69x53 33x18
CAN Separate Shield Shield Shield Built-In
Serial 4 2 1 2 2

The Raspberry Pi 3 B+ is a multi-core micro-processor that is by a large margin the
most powerful of the screened hardware. It would allow multi-threaded programming
at a very high speed and smaller size-factor than the Mega. The Raspberry Pi Zero
offers an even smaller size-factor while retaining most of the Pi 3 B+’s impressive
clock speed and memory. Both of the Raspberry Pis have CAN Shields available,
but they both run Raspian OS. Consequently, their use in embedded systems is
unusual and their Simulink compatibility limited.

The RedBoard Artemis is somewhat of a compromise. as it can be programmed
using an Arduino programmer and is thus compatible with Simulink. On the other
hand, it is less powerful and also relies on a CAN Shield. The last alternative is the
AST-CAN485 which is the least powerful of the shortlist, but is by far the smallest
and has built-in CAN hardware.

Conclusion

None of the micro-controllers have the same specifications as Bosch’s engine ECU
in Table 3.4, but their ECU has to handle more data and is not an adequate ”one-
to-one” comparison. The hardware in the final shortlist were all deemed acceptable
with different pros and cons.

Two AST-CAN485 were chosen for the beta-prototype, and final product, as the size
and CAN advantages were overwhelmingly positive. Two RedBoard Artemis were
also ordered to allow for rapid prototyping during the development phase. Although
there are several different CAN Shields on the market it was decided to order the
CAN Shield from the same supplier as the AST-CAN485 and the RedBoard Artemis.
The Raspberry Pis were kept in reserve, but not ordered, should problems arise,
however unlikely, with regards to the risks described in 3.4.1 Hardware Screening.

31

3.4. CONCEPT GENERATION

3.4.2 Software

The concept generation started with a thorough analysis of the theoretical model
provided by Grahovic and Rosicki, and a rework of the signal overview shown in
Figure 3.1 for practical purposes. The specifics around the model, in-signal types and
sources were modified but, the essence of the control method was kept unchanged.

Figure 3.1: Overview of signals for practical control reworked from the theoretical
model.

32

Chapter 4

System-Level Design

This chapter explains the high-level hardware design of the TVECU and its additional
components. It describes supporting development systems used for CAN communi-
cation, and tests the alpha-prototype against a commercial engine ECU. Finally,
it evaluates software deployment methods and describes the general process of the
TVECU software.

The resulting torque vectoring system, shown in Figure 4.1, is comprised of an ECU
(i.e. the TVECU) to control the TVDC, which receives all external signals from
the FS CAN-bus. After processing the TVECU sends a control signal to the TVDC
actuators/clutches via the TVDC CAN-bus. The TVECU would also contain an
accelerometer and gyroscope to ensure function, as decided in 3.1 Risk Analysis and
Strategy.

Figure 4.1: Chapter summary; Overview of signals on FS-car. In orange; the
TVECU+TVDC system. In green; the FS system. In blue; sensor data. In dashed
blue; optional but recommended sensor data.

33

4.1. HARDWARE SELECTION AND SYSTEM DESIGN

4.1 Hardware Selection and System Design

Figure 4.2: Overview of TVECU system.

The SensorPCB, whose function is to connect to the FS CAN-bus, relays its col-
lected information to the ControlPCB, as shown in Figure 4.2. The ControlPCB,
in turn, uses its sensors and the parameters from the SensorPCB to determine
and output a control signal on the TVDC CAN-bus. The AST-CAN485 requires a
programming tool (FTDI Breakout) which is removable to minimize the size of the
final TVECU.

Figure 4.3: AST-CAN485 [33].

34

CHAPTER 4. SYSTEM-LEVEL DESIGN

4.2 Prototyping and Development

An alpha-prototype system was first developed to simplify the development of the
TVECU system in Figure 4.2. Two ECUs were created using a CAN Shield and
a micro-controller. The micro-controller was initially comprised of the RedBoard
Artemis, but due to the lack of compatibility with Simulink, they were initially
abandoned in favor of compatible Arduino Unos, as detailed below.

Out of simplicity, the Arduino Unos were kept during the remainder of the alpha-
prototype development. Their lacking technical specifications were not an issue
as they were only used to test and develop small sub-problems. It was addition-
ally decided, also outlined below, to write our own C/Arduino-code based on the
Simulink model. As the AST-CAN485 is Arduino compatible we were also able to
use Arduino’s many libraries during development.

4.2.1 Software Deployment Methods

Three methods for deploying the control model were identified:

• Deploying the Simulink model directly

• Generating C-code with Simulink

• Writing C-code based on the Simulink model

Deploying Simulink Model Directly

Deploying the model directly from Simulink onto the hardware was the first method
examined. The model was Simulink based with a sample time of 0.01 seconds.
Deploying a model directly onto a micro-controller requires a compiler to convert
the code into binary.

The ”Simulink Support Package for Arduino Hardware” was the only hardware
support package available from Simulink that worked with our hardware. Deploying
simple Simulink models onto an Arduino board worked well, could be programmed
with different tasks such as flashing an LED. The support package had two main
functions; creating model blocks, shown in Figure 4.4, that could toggle different
Arduino pins and the compilation and deployment onto an Arduino board.

Figure 4.4: Example of Arduino blocks in the Simulink model.

A limitation of the support package was the lacking function of the CAN communi-
cation blocks. The communication did not work or failed to deploy entirely. Another
limitation of the support package is that it only supports specific Arduino boards.

35

4.2. PROTOTYPING AND DEVELOPMENT

It was initially assumed the support package would deploy a Simulink model onto
any Atmel processor. This was not the case, and the method of deploying the model
directly onto the hardware was abandoned.

Generating C Code with Simulink

The second method investigated was generating C-code from Simulink instead of a
Simulink block model and consisted of two parts. First, generating C or C++ code
directly from a Simulink with the Embedded Coder [34]. Second, deploying the code
using a programmer and Atmel Studio. Atmel Studio is an integrated development
platform (IDP) for developing and debugging AVR and SAM micro-controller ap-
plications [35]. C code can be developed, compiled and uploaded onto any Atmel
processor.

Without access to an external programmer required the development to proceed
with using Atmel Studios’ External Tool function. The external tool is written with
a command and an argument. The same command used in an Arduino boot-loader
was used since it functioned properly when deploying from the Arduino IDE.

Unfortunately, the generation of C-code from Simulink also generated an abundance
of Simulink support files and functions. Each code file generated was complex and
not intuitive which resulted in difficulties during adjustment and optimization. They
also took up a disproportionate and mind-boggling amount of memory. Additionally,
the CAN model blocks were not usable with this method either.

Finally, Atmel Studio was not able to build the different files together as a solution
and could not compile and upload the code to one micro-controller. Given the
complexity of the solution, the memory overshoot and overall non-functionality this
method was deemed both to time-consuming and disproportionally difficult.

Writing C++ Code Based on Simulink Model

The final method examined was writing the C++ code from scratch. This method
consists of two parts; writing C++ code based on the Simulink model and then
using the Arduino boot-loader to upload the code to the micro-controller. Writing
the C++ code from scratch gives the opportunity for both memory and execution
efficiency, as well as creating a solid framework for reworking the model. As such,
this method was deemed the most efficient, feasible and least time-consuming.

4.2.2 CAN Send/Receive

The CAN system was developed by using two development systems comprised of
a CAN Shield and an Arduino Uno. The initial development started with modifi-
cations of the CAN Shields from the OBD-II pin format to raw CAN pin format,
as well as the construction of a High Speed CAN cable with two 120Ω termina-
tion resistors. The two units, shown in Figure 4.5, were then connected and basic
CAN send/receive test scrips were written in order to test and develop the CAN
communication.

36

CHAPTER 4. SYSTEM-LEVEL DESIGN

Figure 4.5: Two CAN development systems communicating via CAN-bus.

Since the scripts only tested the CAN functionality and sent the same message over
and over again, the CAN send/receive was also tested using a BorgWarner propri-
etary engine ECU, shown in Figure 4.6. The ECU, once connected, automatically
sends vehicle parameter data over CAN. This allowed us to test the receive func-
tionality in a data-intensive environment with varying messages and message IDs.
The CAN messages were also sent to the CAN software CANalyzer. The integrity
of the CAN system could then be ascertained by comparing the messages received
by both interfaces.

Figure 4.6: Alpha-prototype with CAN Shield tested with a BorgWarner proprietary
engine ECU.

The CAN send/receive system was subsequently developed on the AST-CAN485,
which varied slightly in programming commands as a result of different CAN hard-
ware components. The tests were repeated on the AST-CAN485.

37

4.2. PROTOTYPING AND DEVELOPMENT

4.2.3 Interrupt Flags or Serial Flags

The ControlPCB (AST-CAN485) requires its vehicle parameters immediately when
needed in order to maintain a minimal sample time. A potential solution was using
interrupts to trigger data transmission from the SensorPCB. The SensorPCB loops
and collects the vehicle data from the FS CAN-bus. When the ControlPCB needs
the data it triggers an interrupt in the SensorPCB, which proceeds to send the
vehicle data over serial.

Initially, the interrupt-routines functioned well, but as a result of limited-resource
prototyping, the system was put together with a breadboard and a loose contact
with the AST-CAN485 PCBs. Consequently, the movement of the loose contacts
triggered unwanted interrupts. Although this would not be an issue in the final
soldered product, it became a problem during development.

As a stand-in development solution, the data request from the ControlPCB to the
SensorPCB was sent via serial instead of triggered via an interrupt. This method
ended up working better than expected, and the need to return to the interrupt
system diminished. The interrupt system works better in the sense that the Con-
trolPCB gets its data as soon as possible, yet the control algorithm did not seem to
be affected by the slightly slower serial method. As a result, Control-Sensor commu-
nication occurs exclusively via serial but is designed to also function with interrupts
should the need arise in the future.

4.2.4 Accelerometer and Gyroscope

Figure 4.7: MPU-9250 IMU Breakout [33].

The MPU-9250 is used as an accelerometer, gyroscope and temperature sensor.
The communication between the sensor and the micro-controller is through the I2C
interface. The sensor runs on 3.3V, requiring a voltage divider to function with the
5V TVECU.

38

CHAPTER 4. SYSTEM-LEVEL DESIGN

4.2.5 Level Shifting microSD

Figure 4.8: Level Shifting microSD Breakout [33].

The Level Shifting microSD adds internal data logging functionality through serial
Peripheral Interface to the TVECU and is compatible with both 3.3V and 5V sys-
tems. The TVECU can also be modified to transmit its data over the FS CAN-bus,
and as such allows for external data logging. Although the complete implementation
of a data logging system is not within the scope of the thesis, it is vital to facilitate
the future development of data logging. Tracking temperature, pressure and general
functionality of the TVECU/TVDC is important during both testing and racing.

4.3 Software System Design

The SensorPCB collects the vehicle parameters via the FS CAN-bus. Upon request,
it sends the vehicle parameters via serial to the ControlPCB. The ControlPCB, in
turn, processes the vehicle parameters and accelerometer/gyroscope data and runs
the control algorithm. It outputs a control signal via the TVDC CAN-bus to the
two Gen6 actuators controlling the clutch. In order to alleviate the pressure of the
serial communication line, the ControlPCB contains the accelerometer, gyroscope
and data logger. Additionally, the TVECU allows ”switching” the SensorPCB and
ControlPCB should the speed of the ControlPCB software become an issue.

The TVECU system also contains an error handling and tracking system. Upon
discovery of certain issues, such as high TVECU temperature, it will throw a warning
that can be sent via the FS CAN-bus to the driver. Upon another threshold, it will
throw an error and, for example, disable the TVDC until the temperature is low
enough again. Finally, the TVECU allows internal data logging; after small tweaks,
it is also compatible with external data loggers via the FS CAN-bus.

39

40

Chapter 5

Detail Design

This chapter develops the hardware configuration and wiring of the TVECU beta-
prototype. It proceeds to address packaging and the Gen6 connectors, and examines
the TVECU software and control algorithm in detail. Ultimately, it presents the
final assembled product.

5.1 Hardware

The hardware system has three waterproof Gen6 connectors. The bottom right
connection in Figure 5.1 leads to the TVDC torque and temperature sensors used
to detect possible faults. The bottom left connection leads to a fork in the TVDC
CAN-bus and supplies power to both Gen6 actuators. The CAN-bus is terminated
at each actuator end, and each actuator uses an IGN cable as specified by Gen6.
The IGN cable is held high and signals the Gen6 to start-up and function.

Figure 5.1: TVECU connections.

41

5.1. HARDWARE

Both of the bottom connections lead to the ControlPCB, which running the control
algorithm. It is also connected to the microSD for internal data logging and to
the MPU-9250 sensor for acceleration and gyroscope data. A 5V pin from the
ControlPCB powers both the 5V microSD and the 3.3V MPU-9250. The latter
uses a voltage divider, shown in Figure 5.2 to step down the voltage. The 5V
TVDC sensors are likely comprised of two 3-wire pressure sensors and one 2-wire
temperature sensor but are yet to be decided by the TVDC team. As such, the pin
layout is yet to be determined.

Figure 5.2: The 5V to 3.3V voltage divider.

The ControlPCB is in turn connected to the SensorPCB via USART Tx/Rx, as
well as two interrupt enable pin connections, as shown in Figure 5.3. The interrupt
pins are currently unused, but as discussed in 4.2.3 Interrupt Flags or Serial Flags,
they may be in the future. Both the ControlPCB and SensorPCB are connected
to 12V supplied by the FS connection and use their internal voltage regulator to
step down the voltage. The FS connection also contains the FS CAN-bus and a No
Connection (NC) IGN cable. Although unused, the NC IGN cable is there to allow
the reversal of the TVECU system by having the ControlPCB run Sensor software,
and SensorPCB run Control software. In other words, it allows switching the FS
and TVDC connections and consequently making the modules be attached to the
SensorPCB instead of ControlPCB.

Figure 5.3: Pinouts of SensorPCB and ControlPCB.

42

CHAPTER 5. DETAIL DESIGN

5.1.1 Electro-Magnetic Interference and Gen6 Actuators

The ground cable from the TVDC CAN cabling is not directly connected to the
ControlPCB to avoid a ground loop inside the TVECU. There is also the potential
risk of electro-magnetic interference as a result of the relatively high power drawn
by the Gen6 actuators. Each actuator can potentially draw 12.5A current, result-
ing in the possible, albeit unusual, circumstance of 25A passing near the TVECU.
Although the TVECU is deemed resilient enough, it is something worth keeping in
mind should problems arise.

5.2 Packaging and External Connections

Figure 5.4: CAD of the TVECU box. Figure labels in italics are not shown.

The TVECU box is a nylon waterproof casing with slots for the PCBs, shown in
Figures 5.4 and 5.5. The TVECU box is closed by a cap, sealed by an O-ring and
locked in place. Three holes allow access to, and are sealed by, the waterproof Gen6
connectors in Figure 5.6. Two fasteners attach the TVECU box to the TVDC top
side using vibration dampening spacers, which also distance the TVECU from the
hot TVDC.

Figure 5.5: CAD of the TVECU box with top removed and PCBs in place.

43

5.3. MAIN ALGORITHM LOOP

Discussions with BorgWarner regarding placement of the TVECU resulted in a
cleared area on the TVDC the size of the TVECU box. Nevertheless, some details
regarding the exact location of the spacers and fasteners are yet to be determined
after further development on the TVDC. As such, the current TVECU box lacks
both lid fasteners and fasteners to the TVDC.

Figure 5.6: Male and female Gen6 connectors.

The potential difference of 12V, a maximum (albeit unusual) current of 25A and a
cable length of 2 m necessitate a power cable thickness of at least 4 mm2, given a
5% loss. A 3% loss requires a cable thickness of 6 mm2.

The TVECU should never be powered by more than one source. When powered
by the car, the TVECU system should only be programmed by non-powered FTDI
programmers. If not powered by the car and both PCBs are attached to program-
mers, only one programmer should be powered. Irreversible damage to the system
can occur if there are several power sources.

5.3 Main Algorithm Loop

The main continuous loop program that runs the TVECU is located on the Con-
trolPCB. The loop begins with requesting a variable refresh from the SensorPCB to
update the parameters from the FS-car. It then polls the accelerometer, gyroscope
and the TVDC sensors. Using the data available, the algorithm analyzes the param-
eters and handles potential warnings and errors. Given no errors, the program uses
the control algorithm to derive the required torque on each wheel and commands
the Gen6 actuators to the correct torque via CAN.

5.3.1 Supporting Software

Sensor-Control PCB Communication

In order to request a data refresh, the ControlPCB sends an error byte (described
below) to the SensorPCB via serial. Once the SensorPCB detects an incoming mes-
sage it syncs the error byte and returns all the FS vehicle parameters. Each variable
is packaged with start and stop markers to ensure complete data transmission.

A potential issue with the serial wake up method is the delay between variable
request and delivery. Although the speed of the ControlPCB algorithm can be
increased with interrupts, there are no indications of any time-related issues. Even in

44

CHAPTER 5. DETAIL DESIGN

the worst conditions, the algorithm runs fast enough. However, there is no certainty
until the speed has verified via practical tests on an FS-car.

Error Handling

The main program loop keeps track of warnings and errors through an error byte.
The algorithm throws a warning to the driver and data logger upon a certain sensor
threshold. If conditions worsen and a new threshold is passed, the algorithm will
throw an error and lock the TVDC until the error conditions are no longer valid.
The error byte is synced across the SensorPCB and ControlPCB and also used as
the wake-up signal between the two during data exchange.

CAN Messages

Table 5.1: Example IDs of the Gen6 actuators used to develop the TVECU.

Destination Identification

Gen6 Right 0x1AFB5F10
Gen6 Left 0x1AFB5F20

The CAN message format is separate in the two categories, the TVDC CAN and
the FS CAN. The TVDC CAN conforms to the commercial Gen6 actuators message
format shown in Figure 5.7. The 0th byte sends the ”method of function” command
to the actuators whilst the 1st and 2nd bytes demand the torque required. Each
actuator is individually controlled by a unique CAN ID, as shown in Table 5.1. The
3rd and 4th bytes are unused.

Figure 5.7: The CAN message format required by the Gen6 actuators.

45

5.4. CONTROL ALGORITHM

While the TVDC CAN format is given, the FS CAN is able to conform to any for-
mat. Two methods of definition are available in relation to Lund Formula Student,
bilateral and unilateral definitions. A unilateral definition is when the message
formats are defined with regards to the TVECU only. It simplifies development,
standardizes the system and allows the product to be used by other teams.

On the other hand, it requires Lund Formula Student to conform to the TVECUs
(FS CAN) message format, which might result in CAN ID collisions or the need
to completely revamp their CAN system. A bilateral method involves cooperating
with Lund Formula Student when defining the message formats. Although more
work for the TVECU development, it likely minimizes the total workload required
to develop, implement and test the TVECU in the car. As such, the exact formats of
the FS CAN messages are not conclusively defined. Table 5.2 shows the development
definitions of the CAN messages.

Table 5.2: FS CAN message IDs and formats. Odd bytes used as high bytes and
even bytes as low bytes during bit manipulation.

Message Name ID 7H 6L 5H 4L 3H 2L 1H 0L

WheelSpeed 0x100 FL FL FR FR RL RL RR RR
TorqueSteer (1) 0x101 TQ TQ ST ST - - - -
TorqueSteer (2) 0x101 TQR TQR ST ST TQL TQL PARA ERR

The WheelSpeed message is comprised of the four-wheel speeds in 16-bits split into 8-
bit chunks via bit manipulation. The initial development of the TorqueSteer message
contained total torque and steering wheel angle. The continued development of the
TorqueSteer message splits the total torque into left and right and adds both the
driver parameter byte and the error byte. The driver parameter value ranges from
0.5 to 1.5 and affects the performance of the TVDC, for more information see 5.4.3
Vehicle Reference.

5.4 Control Algorithm

The control code is written as C++ libraries to modularize the control algorithm
and simplify the implementation. The different libraries were created using a .cpp
source file together with a .h header file.

The algorithm initially used the same sample time implemented in the theoretical
Simulink model. The sample time of the system was updated to 12 ms after testing
in 6.2 TVECU System Tests based on the loop time of the system.

46

CHAPTER 5. DETAIL DESIGN

5.4.1 Controller

Theoretical Simulink Control Model

The theoretical control model designed by Grahovic and Rosicki was a PI controller
with a time-tracking anti-windup system, shown in Figure 5.8 [3]. The integral and
proportional gains were dynamic and based on the speed of the vehicle. The yaw
rate error was the basis of the controller.

Figure 5.8: The theoretical Simulink control model.

Practical Control Algorithm

The controller implemented in C++ uses the same gain for the proportional term
and the integral term. The software is based on a three attribute input; the yaw
rate error, the velocity, and the anti-windup. The output from the controller is the
control signal.

The proportional gain was based on the velocity of the vehicle. As such, the pro-
portional term was implemented as the proportional gain multiplied by the error at
the specified time. Equation 5.1 shows the proportional term implemented in the
software.

P = Kp · e (5.1)

Where Kp is the proportional gain and the error e is calculated once per sample.
In order to implement the integral term, the design must consider the sample time.
The speed of the controller is directly connected to the sample time and the integral
term of the controller is therefore directly affected by the sample time of the system.
Equation 5.2 shows the integral term implemented in the software.

I = Iold + h(KI · e+ ζ) (5.2)

Where ζ is the anti-windup and h is the sample time. Although the integral gain
in 2.2.2 Discrete Implementation of PID Controller is Kp · Ti, the design uses a
single integral gain KI . The need for a derivative term arose after the system tests
described in 6.1 Simulink Model Code Test to account for high-speed changes and
oscillations at high velocities. Equation 5.3 shows the derivative term implemented
in the software, where Kd is the derivative gain.

D =
Kd

h
(e− eold) (5.3)

47

5.4. CONTROL ALGORITHM

5.4.2 Torque Allocation

Theoretical Simulink Control Model

The control signal generated in the control model shown in Figure 5.9 was used
to calculate the wanted torque on both the left and the right clutches. The total
torque provided by the engine was subsequently split up according to the control
algorithm. To avoid wheel slip the torque provided was saturated against the slip
limit of the wheels.

Figure 5.9: The theoretical Simulink torque allocation model.

Practical Control Algorithm

As the slip limit coefficients are only based on static vehicle parameters and the
acceleration in the x and y-directions, the coefficients are dynamic only in regards
to the acceleration. The static coefficients are determined through implementation
and fine-tuning, and as such generally not altered. The slip torque is updated once
per sample time and the coefficients are implemented in the source file according to
Equations 5.4-5.6.

Tq =
v · g ·mdistr · Lwb

2 · Lwb
(5.4)

τslip,l,max =
(
Tq +

ax ·m · CoGz

2 · Lwb
− ay ·m · CoGz

2 · Ltw

)
· rt · ft (5.5)

τslip,r,max =
(
Tq +

ax ·m · CoGz

2Lwb
+
ay ·m · CoGz

2 · Ltw

)
· rt · ft (5.6)

Where v is the vehicle velocity, mdistr is the mass distributed to the front axle and
Lwb is the wheel base. Ltw is the track width, rt and ft are tire radius and friction
respectively and ax and ay the longitudinal and lateral accelerations.

The desired torques on the left and right clutch have two dynamic coefficients, the
total torque provided by the engine and the control signal. If the control signal is at
zero the torque will be evenly divided to the two clutches. If the control signal differs
from zero it is added to and subtracted from the left and right torques respectively.
The value is shown in Equation 5.7.

∆ = I · rt
Ltw
· u (5.7)

The difference ∆ is saturated against half of the total torque to ensure that the
distributed torque is always positive and does not exceed the total torque.

48

CHAPTER 5. DETAIL DESIGN

Thus, the distributed torque on the two axes can be described as:

τl =
τtot
2
−∆ (5.8)

τr =
τl
2

+ ∆ (5.9)

Where τl and τr are the distributed torques on the left and right wheels, and τtot is
the total torque provided by the engine. The distributed torque is finally saturated
against the slip torque calculated in Equation 5.5 and 5.6.

5.4.3 Vehicle Reference

Theoretical Simulink Control Model

The vehicle reference block in the Simulink model, shown in Figure 5.10, collects
the inputs from the vehicle model and distributes them to the controller and torque
allocation-blocks.

Figure 5.10: The theoretical Simulink vehicle reference model.

Practical Control Software

The vehicle reference part of the control algorithm acts as a reference to the different
inputs from the vehicle. The reference inputs generated are body acceleration, body
yaw rate, vehicle velocity, desired yaw rate, and the total torque. All of these
references are quantified as doubles. The body yaw rate and the body acceleration
is expected to come from direct sensors connected to the electronic control unit.

49

5.4. CONTROL ALGORITHM

Vehicle velocity is calculated based on the input from the wheel velocities from the
FS CAN-bus. The body velocity is set as the average of the two front wheels, but
the averaging method (two-wheel front, two-wheel rear or four-wheel) is changeable
in the settings file.

The yaw rate desired is based on two inputs; the vehicle velocity and the steering
wheel angle. The steering wheel angle δst is initially converted to wheel angle δw
by dividing with the vehicle’s conversion rate CR, i.e. the relationship between the
steering wheel angle and the tire angles. The yaw rate desired is then calculated
with Equation 5.10:

δw =
δst
CR

(5.10)

ψdes =
v · δw · 2 · Cα,r · Cα,f · (lr + lf) + (lr + lf)√

v ·m · (lr · Cα,r − lf · Cα,f)
(5.11)

Where Cα,f and Cα,r are the lateral tire stiffness for the front and rear wheels, and
lf and lr are the distances from the COG to the front and rear axles respectively.
A driver parameter A is added in order to allow customization of the TVDC in
regards to over- and understeering. One driver may prefer the vehicle to oversteer
at all times and another driver may prefer the vehicle to understeer. As such, the yaw
rate desired is set to vary depending on the driver input and is adjusted according
to Equation 5.12.

ψdes = ψdes · A (5.12)

Depending on the speed and the tire friction, the tires may slip before the desired
yaw rate is achieved. Consequently, the tire slip upper and lower limits in Equations
5.13 and 5.14 are used to saturate the desired yaw rate.

lim =
g · ft · 0.85

v
(5.13)

lim =
−g · ft · 0.85

v
(5.14)

Total Torque or Torque Left and Torque Right

The total torque was first implemented as a combination of the combustion engine
torque and the gear ratio depending on the gear position. This choice was made to
make the total torque source flexible and can be determined by the FS-team as they
see fit. However, if the total torque calculation is poor then the control algorithm
is poor.

Consequently, it is advisable to use torque sensors on the axles as it provides an
immediate and accurate torque result. The NCTE - FS Driveshaft Torque Sensor,
for example, is an affordable and easy-to-mount sensor for FS-cars that uses the
driveshaft’s magnetic field to determine the torque. It allows for a higher degree of
torque vs. slip control, as well as a better control algorithm in general.

50

CHAPTER 5. DETAIL DESIGN

5.4.4 Manual Settings

As the control algorithm depends on several different vehicle parameters and driver
preferences, it is important to have a simple tuning interface. As such a settings-file
was constructed which allows the tuning parameters to be changed without going
into the critical and sensitive control algorithm. The settings-file initializes the
different parameters as public. The three different control modules then reference
the file and collect the parameters as constant values.

5.5 The TVECU Final Product

The final assembled product, shown in Figure 5.11, weighs 68 g, of which only
10 g are electronics. Both the TVECU and the TVDC CAN cables are waterproof
reinforced, and contain invisible termination bits at each actuator end. The product
enables the continued development and use of the TVDC+TVECU system.

Figure 5.11: The final assembled TVECU, with connections to FS CAN, TVDC
CAN and simulated TVDC sensors.

5.5.1 Ingress Protection

A complete ingress test was conducted, where the TVECU laid underwater at 1
m for 30 minutes. Although a formal Ingress Protection certification test was not
conducted, the test showed an equivalent certification level of IPx7. Although no
dust tests were conducted, it is likely the TVECU provides a dust-tight environment
that gives an equivalent certification level of IP67.

51

5.5. THE TVECU FINAL PRODUCT

5.5.2 Actuator Control

The setup, shown in 5.12, represents the implementation in the TVDC and is similar
to the setup in 6.2.2 Control Algorithm Tests. The FS-car, simulated using the
development system on the left, sends parameters to the TVECU. In response, the
TVECU sends commands to the two Gen6 actuators (bottom). The development
system on the right simulates the TVDC sensors.

Figure 5.12: The final assembled TVECU connected to two Gen6 actuators, and
two systems simulating the FS-car and the TVDC sensors.

52

Chapter 6

Testing and Refinement

This chapter describes the various tests done in parallel with the development of the
prototypes and final product. It outlines the verification of the practical control algo-
rithm and then depicts the TVECU system tests conducted to verify communication,
control and sensors.

6.1 Simulink Model Code Test

The first tests conducted were to ensure that the control code written in C was
functioning the same as the control model created in Simulink. A Simulink block
was created from the practical control algorithm. The block consisted of the same
parameters as the controller block and was connected to the vehicle model. The
block system was run in parallel with the original theoretical Simulink model, as
shown in Figure 6.1.

Figure 6.1: The theoretical model (top) and control algorithm (bottom) in parallel.

53

6.1. SIMULINK MODEL CODE TEST

The Simulink function ”coder.ceval” was used to insert and execute the external
C/C++ function. A Simulink scope block, a block that displays time-domain signals,
was used to visualize the results. The results were first analyzed to find any difference
between the two systems and further examined to find any flaws in the control
sequence, and what possible measures could be taken to adjust those flaws.

6.1.1 Verification of Control Algorithm Behavior

As shown in Figures 6.2-6.4, the yaw rate response behaves the same in the control
algorithm as in the Simulink model, given the same input parameters. This leads to
the conclusion that the control algorithm correctly represents the Simulink model
and can be used to implement the control model onto the ECU.

(a) Simulink Model (b) Control Algorithm

Figure 6.2: Angular velocity [rad/s] vs time [s] after an 18◦ steering wheel angle, 20
m/s initial velocity and a total torque of 60 Nm. In red, the desired yaw rate. In
blue, the body yaw rate.

(a) Simulink Model (b) Control Algorithm

Figure 6.3: Angular velocity [rad/s] vs time [s] after three 18◦ steering wheel angles,
20 m/s initial velocity and a total torque of 60 Nm. In red, the desired yaw rate. In
blue, the body yaw rate.

54

CHAPTER 6. TESTING AND REFINEMENT

(a) Simulink Model (b) Control Algorithm

Figure 6.4: Angular velocity [rad/s] vs time [s] after three 18◦ steering wheel angles,
5 m/s initial velocity and a total torque of 60 Nm. In red, the desired yaw rate. In
blue, the body yaw rate.

6.1.2 Verification Test Evaluation

Although the control algorithm adequately represents the theoretical model, the test
discovered oscillations that occurred at speeds higher than 15 m/s regardless of how
small the turn was.

In the model, a steering wheel angle at 0◦ will be applied as exactly 0◦, whereas the
driver’s steering wheel angle won’t. There will always be a small oscillating steering
wheel angle as a result of the human factor, uneven track or stones, among others.
The TVDC can be disabled at very high speeds, but the elimination of this problem
was crucial for the product to function as intended during mid-range velocities.

This prompted the development of the derivative term. The derivative term damp-
ens the aggressive behavior of the proportional and integral terms, i.e. dampens the
oscillations. Since the oscillations occur at high speeds the derivative gain is set to
0 at velocities below 15 m/s. The difference is shown in Figure 6.5.

(a) Simulink Model (b) Control Algorithm

Figure 6.5: Angular velocity [rad/s] vs time [s] after six 9◦ steering wheel angles, 20
m/s initial velocity and a total torque of 60 Nm. In red, the desired yaw rate. In
blue, the body yaw rate.

55

6.2. TVECU SYSTEM TESTS

6.1.3 Active Torque Distribution Evaluation

As shown in Figure 6.6, the active torque distribution implemented has a clear
positive effect on the yaw rate. The yaw rate response in the relatively extreme
scenario is not optimal in either model, however, the response in the system with
the active torque distribution performs more closely to the optimal value.

(a) Simulink Model (b) Control Algorithm

Figure 6.6: Angular velocity [rad/s] vs time [s] after a 90◦ steering wheel angle, 20
m/s initial velocity and a total torque of 60 Nm. In red, the desired yaw rate. In
blue, the body yaw rate.

6.2 TVECU System Tests

6.2.1 Communication Loop-Back Test

Figure 6.7: Development system (left) connected to TVECU beta-prototype (right)
during a loop-back test.

The first test of the TVECU system was conducted by generating CAN messages,
modified by a joystick, via a development system. The data was received by the
SensorPCB, sent via serial to ControlPCB and then sent via CAN to a second
development system. The sample time of the TVECU loop including the control
algorithm was also measured. During 1000 iterations the sample time varied evenly
between 11-13 ms, about 80 times per second. For perspective, a regular Anti-lock
Braking System (ABS) runs at around 15 times per second [36].

56

CHAPTER 6. TESTING AND REFINEMENT

The system worked without fault during the loop-back test. An important milestone
in the development of both the communication and the processing of the TVECU
system. It proved the serial variable refresh request method works sufficiently fast
and that interrupts may just introduce more potential issues at a low reward.

6.2.2 Control Algorithm Tests

Manual Error Control Manipulation

The manual error control manipulation test involved recreating the previous setup
from the loop-back test and adding a serial communication line between a computer
and the sending development system. The error value in the control algorithm was
then externally modified and the response measured through the receiving devel-
opment system. Upon the creation of an error, the response would quickly grow
towards infinity. This is expected, as the control algorithm cannot close an error it
cannot affect.

Gen6 Actuator Pump Control Test

Figure 6.8: TVECU beta-prototype connected to 2 Gen6 actuators for a pump test.

To visualize the error response as well as test the control of the Gen6 actuators,
the test was repeated with two oil-filled Gen6 actuators instead of the receiving
development system. Upon the introduction of an error, the ”inner wheel pump”
engaged and attempted to close the error, as expected from the previous tests. The
communication with the Gen6 actuators functioned properly, and the test provided
a more concrete visual and audible feedback of the control algorithm.

6.2.3 Sensors Test with Volvo XC90

To test the sensors in the TVECU, it was connected to the CAN-bus of a Volvo XC90.
The purpose was to ensure proper CAN function and that the Volvo messages could
be interpreted and handled as parameters in the TVECU. The CAN IDs of the
XC90 were known.

57

6.2. TVECU SYSTEM TESTS

CAN Message Receiver

A splice into the XC90 CAN-bus allowed access to the CAN messages and the raw
CAN data could be read. Using the same CAN interpreting algorithm written for
the TVECU made the values that were transmitted on CAN bus readable. The loop
time for the messages ranged between 11-13 ms which is the same as the previous
sample time. This further supports that the TVECU will be able to receive and
process CAN messages, as well as run its control algorithm at an adequate speed
while transmitting its own CAN messages.

Accelerometer and Gyroscope

The gyroscope and accelerometer in the XC90 were also captured via CAN in order
to compare with the results yielded from the TVECU sensors. A source of error
is the fact that the TVECU sensor was not completely locked into place during
the test, but held as firmly as possible. Nevertheless, it can be concluded that the
values of the acceleration and yaw rate correlate with the XC90 sensors and that
the differences between the TVECU sensor values and the XC90 sensor values are
negligible.

58

Chapter 7

Evaluation and Conclusion

This chapter evaluates the TVECU against the target specifications and identifies
design elements not yet implemented. It reviews potential issues moving forward
and presents items for future development such as CAD and PCB design, before
concluding the thesis.

7.1 Evaluation of TVECU

The final specifications are presented and compared to the target specifications in
Table 7.1. All in all, the TVECU scores optimal in 15/23 needs, acceptable in 8/23
needs and failed zero needs. Certain results marked with a * are partial results.

Partial Result Metrics

Despite being unlikely to ever damage the TVDC, the possibility cannot and has
not been precluded. As such, no TVDC damage in metric 4 cannot be ascertained.
There could exist certain cases where the TVECU control runs haywire due to
TVDC issues since investigations into possible hazards were outside the scope of the
thesis.

Similar reasoning is applicable to failure handles in metric 9. Although the TVDC
defaults to closed when an issue arises, neither investigations were conducted nor
fail-safes implemented for when, for example, the TVDC breaks. However, the Gen6
actuators need continuous contact with the TVECU to run or they will close the
TVDC, in case of TVDC CAN failure.

The Simulink compatibility was stricken from the target specifications after the
deployment alternatives in 4.2.1 Software Deployment Methods. Finally, method and
compatibility work has been completed for the locked wheels special case in metric
10 and local data log in metric 13, both described in 7.1.1 Trivial and Potential
Issues in Further Development.

59

7.1. EVALUATION OF TVECU

Table 7.1: List of target metrics as developed from the product needs and the result.
Partial results are denoted with a *.

No Metric Imp. N.No Optimal Acceptable Result

1 Simple FS CAN 3 1 Y Y Y
2 Robust TVDC CAN

Robust CAN-bus 3 2 Y N Y
Shock protection 3 9 Y Y Y
Local sensors priority 2 15 Y Y Y

3 High Speed 3 4 >50 Hz >10 Hz 80 Hz
4 Safety Handles

No TVDC damage 3 8 Y N N*

Shock protection 3 9 Y Y Y
5 Operating Temp. 3 10 -20 – 80◦C -5 – 60◦C -40 – 80◦C
6 Fast Startup

Fast Startup Time 3 11 <1 s <3 s <1 s
Reboot Watchdog 1 20 Y N N

7 Simple Configuration
Easy to reprogram 2 12 Y N Y
Simulink compatible 2 14 Y N N*

8 Small Control Error 3 3 ± 5% ± 15% ??
9 Failure Handles

TVDC failure 2 16 Y N N*

Electrical failure 2 17 Y N N*

10 Special Case Handles
Wind-up 3 5 Y Y Y
Saturation errors 3 6 Y Y Y
Locked wheels 3 7 Y N N*

Over-steering errors 2 13 Y N N
11 Low weight 1 18 <25 g <100 g 68 g
12 Efficient Packaging

Efficient size 1 19 Y N Y
Weather resistant 1 21 Y N Y

13 Data Logging
Local data log 2 16 Y N Y*

Accessible data log 2 17 Y N Y
14 Lifespan 1 22 >10 yrs >2 yrs >2 yrs

Evaluation Results

A notable decision was the removal of the ”Small Control Error” (metric 8) from
the evaluation table. Since there was no TVDC or FS-car to test on, it was diffi-
cult to quantify the control error. Nevertheless, it can be established that there is
considerable room for optimization of the control algorithm parameters.

Although no reboot watchdog was implemented, the TVECU auto-initializes upon
reboot and can recover from a power failure or engine restart. It is simple to configure
via a settings-file and has a modular software to simplify changes in the code. The

60

CHAPTER 7. EVALUATION AND CONCLUSION

TVECU electronics weigh 10 g and are comprised of components with a long lifespan,
despite safeguarding the durability to more than 2 years.

Most importantly, the TVECU runs at a significantly higher speed than in the target
specifications. It has a fast start-up time, can operate in most temperature and
weather conditions, and is robust despite its modular software. In conclusion, the
TVECU fulfills the required specifications set out in the early stages of development.

7.1.1 Trivial and Potential Issues in Further Development

Trivial Issues and Development

Vibration dampeners, screws and the lid and TVDC fasteners on the TVECU box
also remain to be developed in cooperation with the TVDC engineers. Although
a design suggestion is presented in Figure 7.1, it cannot be decided until a design
freeze on the TVDC ensures proper placement and ample measurements.

Figure 7.1: An example solution of the lid and TVDC fastening method.

The ControlPCB code should be converted to a concurrent program to ensure a
stable sample time, and the locked wheels special case is easily solved by disabling
the TVDC when braking hard. Furthermore, the CAN message ID and format
remain to be specified bilaterally with Lund Formula Student. As such, the driver
parameter reception, as well as the transmission of the error byte to the driver via
FS CAN, are not implemented. Finally, what parameters Lund Formula Student
want to be logged is not determined and remains to be implemented.

Potential Issues and Problems

A potential problem with the TVECU box is the durability of the fastening method
between the Gen6 connectors and the TVECU box. The Gen6 connector attachment
point may need to be redesigned and reinforced for both further waterproofing and
durability.

Another potential problem is the gyroscope’s placement on the TVDC and not on
the car’s COG. Although the tests in 6.2.3 Sensors Test with Volvo XC90 did not
indicate an issue, it needs to be documented and kept in mind during FS-car tests.

61

7.1. EVALUATION OF TVECU

Finally, the electromagnetic interference (EMI) from the Gen6 power cable cannot
be ruled out. Further testing should be conducted ”on the bench” and in an FS-car
to check for noise and function issues.

7.1.2 Future Development

The TVECU has certain special-case handling in the control algorithm, but further
investigation into a potential over-steer error is required. The hypothetical error
can arise when the car over-steers despite a fully open inner clutch. This can be
solved by slipping the outer-wheel when over-steering with maximally clutched inner
wheel.

Furthermore, the testing, fine-tuning and implementation of the TVECU+TVDC
system must be completed on an FS-car. Since the proper function of the complete
system cannot be ascertained without an FS-car, the implementation and testing
might reveal minor or major flaws in the system. Even if the system works as
expected, the parameters must be fine-tuned on each FS-car as well as a great deal
of track testing to ensure optimum performance.

Next Generation TVECU - PCB Design

Given the proof-of-concept of the TVECU, it is also possible to design one PCB
with all components required. Creating a TVECU PCB would increase robustness
and safety whilst minimizing size and weight. It also allows for complete freedom
when deciding specifications of components and functions of modules.

A demo TVECU PCB schematic for the TVECU is shown in Appendix B and a de-
sign is shown in Figure 7.2. The design contains two AT90CAN128 micro-controllers,
the same as in the AST-CAN485, two CAN transceivers, an accelerometer, a gy-
roscope, and a voltage regulator. Although the demo TVECU PCB contains ev-
erything required for the development and replacement of the current TVECU, it
should serve as an example and proof of concept only.

(a) Front (b) Back

Figure 7.2: The design of the demo TVECU PCB.

62

CHAPTER 7. EVALUATION AND CONCLUSION

7.2 Conclusion

The final TVECU is designed to be used on the first iteration of the Torque Vectoring
Dual Clutch and has reached the ”desired ambition” level according to 1.2.1 Tiered
Ambition Level. Despite the fact that the TVDC was not produced on time, the
development of the TVECU went beyond its initial objective by including TVDC
sensors, system modularity as well as data logging and error management.

Although the implementation work remains to be done once the TVDC is produced,
the primary development of the TVECU is considered completed. The groundwork
for the next generation TVECU has also been laid, enabling production development
when the system is ready. All in all, the torque vectoring ECU is ready to be the
stepping stone into Lund Formula Students torque vectoring era, allowing the team
to push limits in both electric and combustion vehicle classes.

Figure 7.3: Racing into the future [37].

63

64

Appendix A

The ”Risk Matrix - Technical” used to identify risks which resulted in the system
decision of keeping the two CAN separate and including an accelerometer and gyro-
scope.

Item Probability Consequence Resulting Risk Measure

FS signals interfere with
TVDC signals on CAN-Bus

High High High - Eliminate Use a second private
CAN-bus for TVDC control.

Accel./gyro. missing or not
functioning on FS-car

High High High - Eliminate Incorporate accel./gyro. in system.

TVDC late/not produced High Low Medium - Minimize System designed/thesis delimited to
not require TVDC mechanical impl.

FS-car not available for final tests High Low Medium - Minimize System designed/thesis delimited to
not require FS-car tests.

Time in bench High Low Medium - Minimize System designed/thesis delimited to
not require bench tests.

One processor not enough High Low Medium - Minimize Order extra hardware/alternative
hardware ready to order.

Memory not enough Low High Medium - Minimize Order extra hardware/alternative
hardware ready to order.

Processor/system not fast
enough

Low High Medium - Minimize Order extra hardware/alternative
hardware ready to order.

Simulink model only functions
in theory

Low Low Low - Observe Observe. Control theory concept
outside scope of thesis.

Ordered hardware delayed Low Low Low - Observe
Order hardware early.

Time in BorgWarner car Low Low Low - Observe System designed/thesis delimited to
not require BorgWarner car tests.

65

66

Appendix B

The demo TVECU PCB schematic used in the design and manufacture of the demo
TVECU PCB.

67

68

Bibliography

[1] Lund Formula Student. Last day of testing before we head to fs netherlands!,
2019. URL http://lundformulastudent.se/. Available 2019-12-13.

[2] Sven Kalkan. A final drive device for torque vectoring in small race cars. Master
thesis, Lund University, Unpublished.

[3] Mia Grahovic and Madeleine Rosicki. Development and Evaluation of a Torque-
Vectoring Algorithm on RWD Racing Cars using a Dual Clutch. Master thesis,
Department of Automatic Control, TFRT-6081, Lund University, 2019.

[4] Steven D. Eppinger Karl T. Ulrich. Product Design And Development. McGraw-
Hill, New York, NY, 5 edition, 2012.

[5] What When How. Differential (automobile), Publication Date Un-
known. URL http://what-when-how.com/automobile/differenti
al-automobile/. Available 2019-12-13.

[6] BMW. The Active M Differential, 2014. URL https://www.bmw-m.com
/en/topics/magazine-article-pool/the-active-m-different
ial.html. Available 2019-12-13.

[7] Belisso. Porsche torque vectoring, 2009. URL http://torque-vectoring
.belisso.com/. Available 2019-12-13.

[8] Reasearch Gate. Sae vehicle axis system, 2015. URL https:
//www.researchgate.net/figure/1-SAE-Vehicle-Axis-Syst
em-2_fig94_313475487. Available 2019-12-13.

[9] Michael Sayers. Standard terminology for vehicle dynamics simulations, 1996.
URL http://hosting.umons.ac.be/html/mecara/grasmech/sta
ndardterminologyforvehicledynamicssimulation.pdf. Available
2019-12-13.

[10] R. Rajamani. Vehicle Dynamics and Control. Springer Science & Business
Media, New York, USA, 2011.

[11] Adam Kader. Steer-by-wire control system, 2006. URL https:
//www.swarthmore.edu/sites/default/files/assets/docu
ments/engineering/AK_Final.pdf. Available 2020-01-23.

[12] D.Y. Batyshchev V.A. Ryzhikov. Differential braking device, 2017.
URL https://www.sciencedirect.com/science/article/pi
i/S187770581735364X. Available 2020-01-23.

69

[13] Mazda. Mazda cx-5 service & repair manual: Dsc control, 2016. URL http:
//www.mcx5.org/dsc_control-875.html. Available 2019-12-16.

[14] Karl-Erik Årzén. Real-Time Control Systems. Lund University, Lund, 2014.

[15] Lewis Kingston. What is an electronic control unit?, 2018. URL
https://www.pistonheads.com/features/ph-features/what
-is-an-electronic-control-unit-ph-explains/37771. Avail-
able 2019-12-16.

[16] ECU Testing. Ecu explained, 2020. URL https://www.ecutesting.com
/categories/ecu-explained/. Available 2020-01-13.

[17] Altium. What is a printed circuit board?, 2019. URL https://www.alti
um.com/solution/what-is-a-pcb/. Available 2019-12-16.

[18] Embedded Artistry. Printed circuit board (pcb), 2019. URL
https://embeddedartistry.com/fieldmanual-terms/print
ed-circuit-board/. Available 2019-12-16.

[19] Margaret Rouse. Definition of microcontroller, 2012. URL https:
//internetofthingsagenda.techtarget.com/definition/mic
rocontroller. Available 2019-12-16.

[20] CSS Electronics. Can bus explained - a simple intro, 2019. URL
https://www.csselectronics.com/screen/page/simple-int
ro-to-can-bus/language/en. Available 2019-12-10.

[21] Bosch. Can specification, 1991. URL http://esd.cs.ucr.edu/webres/
can20.pdf. Available 2019-12-05.

[22] Steve Corrigan. Introduction to the controller area network (can), 2016.
URL http://www.ti.com/lit/an/sloa101b/sloa101b.pdf. Avail-
able 2019-12-10.

[23] Wolfsburg VOLKSWAGEN AG. Data exchange on the can bus i, Publication
Date Unknown. URL http://www.volkspage.net/technik/ssp/ss
p/SSP_238.pdf. Available 2019-12-05.

[24] Kvaser. Can messages, 2019. URL https://www.kvaser.com/about-c
an/the-can-protocol/can-messages-23/. Available 2019-12-06.

[25] DEWEsoft. Automotive buses - can measurement, 2019. URL
https://training.dewesoft.com/online/course/automoti
ve-buses-can-measurement. Available 2019-12-10.

[26] National Instruments. Controller area network (can) overview, 2019. URL
https://www.ni.com/sv-se/innovations/white-papers/06/
controller-area-network--can--overview.html. Available
2019-12-05.

[27] Staffan Nilsson. Controller area network - can information, 1997. URL http:
//hem.bredband.net/stafni/developer/CAN.htm. Available 2019-
12-05.

70

[28] Kvaser. Can bus error handling, 2019. URL https://www.kvaser.com
/about-can/the-can-protocol/can-error-handling/. Available
2019-12-05.

[29] Kvaser. Can physical layers, 2019. URL https://www.kvaser.com
/about-can/the-can-protocol/can-physical-layers/. Available
2019-12-05.

[30] CSS Electronics. Terminal resistor (120 ohm, db9, can bus), 2019.
URL https://www.csselectronics.com/screen/product/termin
al-resistor-can-bus/language/en. Available 2019-12-17.

[31] Perforce. What is iso 26262?, 2019. URL https://www.perforce.com/b
log/qac/what-iso-26262-overview. Available 2019-12-13.

[32] Bosch. Electronic engine control unit for commerical vehicles, 2019. URL
https://www.bosch-mobility-solutions.com/en/products
-and-services/commercial-vehicles/powertrain-systems
/natural-gas/electronic-engine-control-unit/. Available
2019-12-13.

[33] Sparkfun. Sparkfun, 2019. URL https://www.sparkfun.com/. Available
2019-12-19.

[34] Mathworks. Embedded coder, 2019. URL https://www.mathworks.com/
products/embedded-coder.html. Available 2019-12-18.

[35] Microchip Technology. Atmel studio 7, 2019. URL https://www.microchi
p.com/mplab/avr-support/atmel-studio-7. Available 2019-12-18.

[36] KARIM NICE. How anti-lock brakes work, 2019. URL https:
//auto.howstuffworks.com/auto-parts/brakes/brake-typ
es/anti-lock-brake1.htm. Available 2020-01-13.

[37] Formula Student Germany. Photos hockenheim, 2019. URL https://medi
a.formulastudent.de/2019/Hockenheim. Available 2020-01-23.

71

72

