
High-risk Consumer Credit Scoring using
Machine Learning Classification

Ludvig Levay
ludvig.levay@gmail.com

Max Mjörnell
max.mjornell@gmail.com

Supervisor: Magnus Wiktorsson

Examiner: Johan Lindström

Department of Mathematical Statistics
Lund University, Faculty of Engineering

May 14, 2019

c© 2019
Printed in Sweden
Matematikhuset, Lund

Abstract

The use of statistical models in credit rating and application scorecard modelling is a thoroughly
explored field within the financial sector and a central component in a credit institution’s underly-
ing business model. The aim of this report was to apply and compare six different machine learning
models in predicting credit defaults for high-risk consumer credits, using a data set provided by a
Swedish consumer credit institute. The selected models include the ones most frequently used for
scorecard modelling across the banking industry as well as some more rarely used that could poten-
tially add valuable insights. The models are briefly introduced and the most important concepts for
each model are explained, as well as how to deal with the lack of transparency in complex models
by the use of white-boxing methods. Appropriate metrics for evaluating prediction performance on
imbalanced and insufficient data sets are discussed, as well as how to increase model performance
by using different oversampling techniques. All available information about the loan applicants was
then exhaustively examined, and a carefully refined set of input features was constructed to ensure
optimal predictive power and generalizability. After tuning and testing the models, the results
showed that logistic regression, support vector machine, neural network and a soft voting ensemble
showed similar performance results using the same input feature configurations. Attempts to create
synthesized samples to handle the imbalance problem showed no effect and was therefore not used.
The white-boxing model SHAP showed a promising ability to instructively explain the underlying
decision basis for complex models such as neural networks. However, considering the limited data
set at hand, the recommended model to use is the logistic regression model given its simplicity
and on a par performance with the other models. Having larger amounts of data available on the
other hand, the more complex models such as neural networks and support vector machines could
have a potential advantage.

Keywords:
Machine learning, Scorecard modelling, Logistic regression, Support Vector Machine,
Decision Tree, Random Forest, k-Nearest Neighbors, Artificial Neural Network,
Voting ensemble, SHAP, LIME, Average Precision score, Feature engineering

i

Popular Science Summary

Machine learning has recently become the word on everyone’s lips, and its application areas are
currently booming. Financial institutions are frequently using new discoveries to automate and
optimize their businesses, including the issue of rating loan applicants’ creditworthiness. The
most widely used approach today is either using a simple statistical model or judgmental decision-
making, where credit analysts use prior knowledge to predict whether a loan will default or not.
In this report, some of the most popular machine learning algorithms are successfully applied on
the area of application scorecard modelling. The aim is to investigate if cutting-edge models could
outperform more outdated approaches such as logistic regression on a relatively small data set to
gain knowledge from. In addition, techniques to increase human interaction was implemented in
order for a human to understand complex machine learning classifications. The results showed that
complex models such as an artificial neural network did not top the simpler models, and the reason
is believed to be the limited amount of available data. Given more data on the other hand, the
more sophisticated machine learning classifiers are believed to have a prosperous future in credit
scoring. They were also successfully deciphered, so a human easily could interpret even the most
complicated operation. The resulting models have the potential to significantly decrease default
rates if implemented, and in the long run lead to increased profitability as well as fewer people
ending up in mountains of debt they can’t repay.

ii

Table of Contents

List of Figures v

List of Tables vi

1 Background 1
1.1 Introduction to the problem . 1
1.2 Problem description . 1
1.3 Limitations . 2

2 Classifiers 3
2.1 Logistic regression . 3
2.2 Tree-based classifiers . 4

2.2.1 Decision tree 4
2.2.2 Random forest 5

2.3 k-Nearest Neighbors . 6
2.4 Support vector machine . 7
2.5 Artificial neural network . 11

2.5.1 Neural network structures 11
2.5.2 Forward propagation 11
2.5.3 Activation functions 12
2.5.4 Backpropagation 13
2.5.5 Error functions 13
2.5.6 Optimization algorithms 14
2.5.7 Regularization 15

2.6 Voting classifiers . 17
2.6.1 Hard voting 17
2.6.2 Soft voting 17

2.7 White-boxing techniques . 18
2.7.1 Local Interpretable Model-Agnostic Explanations (LIME) 18
2.7.2 Shapley Additive Explanation (SHAP) 19

2.8 Generalization and stability . 19
2.8.1 Cross-validation and selection bias 19

3 Dealing with small and imbalanced data sets 20
3.1 Relevant evaluation metrics . 20

3.1.1 Confusion matrix and common metrics 20
3.1.2 Average precision score 21

3.2 Combating imbalance through oversampling of minority class 22
3.2.1 SMOTE 22
3.2.2 ADASYN 23

iii

3.2.3 Weighting 23
3.2.4 Undersampling 23

4 Implementation 24
4.1 Data set . 24

4.1.1 Removing recurring customers 24
4.1.2 Pre-Processing 24
4.1.3 Training and test splits 24

4.2 Feature Engineering . 24
4.2.1 Finding significant input features 25
4.2.2 Construction of optimal feature configurations 27
4.2.3 Separating test sets by loan amount 28

4.3 Classifier configuration and tuning . 29
4.3.1 Logistic regression 29
4.3.2 Decision tree 29
4.3.3 Random forest 29
4.3.4 k-Nearest Neighbors 29
4.3.5 Support vector machine 30
4.3.6 Artificial neural network 30
4.3.7 Voting ensemble 30

5 Results 31
5.1 Overall performance . 32
5.2 Performance on applications of varying loan amounts 33
5.3 Performance stability testing . 34

5.3.1 Cross-validation of performance 34
5.3.2 Data volume effect on performance 35
5.3.3 Stability of performance in time 37
5.3.4 Oversampling effect on performance 37

5.4 White-boxing and evaluation of feature importance 38
5.4.1 Permutation importance 38
5.4.2 Explaining overall predictions using SHAP 39
5.4.3 Explaining individual predictions through SHAP 40
5.4.4 Explaining individual predictions through LIME 41

6 Discussion 42
6.1 Model prediction performance . 42
6.2 Model complexity and transparency . 42
6.3 Data insufficiency and stability . 43
6.4 Conclusion . 45

7 Further work 46
7.1 Profitability analysis . 46
7.2 Gathering of new input features- Extended feature engineering 46

8 References 47

A Input Features 49

B Supplementary results 52
B.1 Permutation importance for RFO, SVC, SVO . 52
B.2 Explaining overall predictions through SHAP for RFO, SVC, SVO 53
B.3 Explaining individual predictions through SHAP for RFO, SVC, SVO 55
B.4 Explaining individual predictions through LIME for RFO, SVC, SVO 57

iv

List of Figures

2.1 Decision tree . 4
2.2 Support vector machine . 7
2.3 Neural network . 11
2.4 Dropout layer . 16

3.1 Confusion Matrix . 20

4.1 Property owner distribution plot . 26
4.2 Correlation heatmap . 27
4.3 Loan amount distribution plot . 28

5.1 Average precision curve . 32
5.2 Permutation importance LOG . 38
5.3 Permutation importance MLP . 38
5.4 SHAP values for overall predictions LOG . 39
5.5 SHAP values for overall predictions MLP . 39
5.6 Individual explanation by SHAP of LOG on a "bad" customer prediction 40
5.7 Individual explanation by SHAP of MLP on a "bad" customer prediction 40
5.8 Individual explanation by SHAP of LOG on a "good" customer prediction 40
5.9 Individual explanation by SHAP of MLP on a "good" customer prediction 40
5.10 Individual explanation by LIME of LOG and MLP on a "bad" customer prediction . . 41
5.11 Individual explanation by LIME of LOG and MLP on a "good" customer prediction . 41

B.1 Permutation importance RFO . 52
B.2 Permutation importance SVC . 52
B.3 Permutation importance SVO . 53
B.4 SHAP values for overall predictions RFO . 53
B.5 SHAP values for overall predictions SVC . 54
B.6 SHAP values for overall predictions SVO . 54
B.7 Individual explanation of RFO on a "bad" customer prediction 55
B.8 Individual explanation of SVC on a "bad" customer prediction 55
B.9 Individual explanation of SVO on a "bad" customer prediction 55
B.10 Individual explanation of RFO on a "good" customer prediction 55
B.11 Individual explanation of SVC on a "good" customer prediction 56
B.12 Individual explanation of SVO on a "good" customer prediction 56
B.13 Individual explanation by LIME of RFO on a "bad" customer prediction 57
B.14 Individual explanation by LIME of SVC on a "bad" customer prediction 57
B.15 Individual explanation by LIME of SVO on a "bad" customer prediction 57
B.16 Individual explanation by LIME of RFO on a "good" customer prediction 58
B.17 Individual explanation by LIME of SVC on a "good" customer prediction 58
B.18 Individual explanation by LIME of SVO on a "good" customer prediction 58

v

List of Tables

2.1 Illustration of a soft voting ensemble . 17

4.1 Soft voting model configuration . 30

5.1 Model abbreviations . 31
5.2 Overall performance on test set . 32
5.3 Performance on test subset 1 (large loan amounts) 33
5.4 Performance on test subset 2 (mid-sized loan amounts) 33
5.5 Performance on test subset 3 (small loan amounts) 33
5.6 Average performance over 18-fold cross-validation on full test set 34
5.7 Average performance over 18-fold cross-validation on test subset 1 (large loans) . . . 34
5.8 Average performance over 18-fold cross-validation on test subset 2 (mid-sized loans) . 34
5.9 Average performance over 18-fold cross-validation by models trained on only 7% of data 35
5.10 Average performance over 18-fold cross-validation on test subset 3 (large-sized loans),

by models trained on 7% of data . 35
5.11 Average performance over 18-fold cross-validation on test subset 2 (mid-sized loans),

by models trained on 7% of data . 35
5.12 Average performance over 18-fold cross-validation by models trained on 35% of data

(1814 samples) . 36
5.13 Average performance over 18-fold cross-validation on test subset 3 (large-sized loans),

by models trained on 35% of data . 36
5.14 Average performance over 18-fold cross-validation on test subset 2 (mid-sized loans),

by models trained on 35% of data . 36
5.15 Performance on test set chosen as the "newest" 20% of samples 37
5.16 Performance on test subset 1 (large loan amounts) chosen as the "newest 20% of samples 37
5.17 Performance on test subset 2 (mid-sized loan amounts) chosen as the "newest 20% of

samples . 37

A.1 Collection of input features before re-coding . 49
A.2 Feature Subset 1 . 50
A.3 Feature Subset 2 . 50
A.4 Feature Subset 3 . 51
A.5 Feature Subset 4 . 51

vi

Chapter 1
Background

1.1 Introduction to the problem

Today there are numerous machine learning methods used on a wide variety of application areas,
and the use of these techniques is increasing across various industries. Among banks and credit
institutions, credit scoring has been used for more than 50 years to assess risk. The first model
was proposed in US in 1941, and credit scoring received complete acceptance in 1975, with the
passing of the US Equal Credit Opportunity Act I. A credit scoring model assigns scores to the
borrower based on characteristics of the borrower as well as other factors such as historical default
that may indicate a higher risk. Prior to these more formal methods, judgmental decisions were
made by the credit analyst based on personal knowledge of the applicant. This method has many
shortcomings since it is unreliable, not replicable, hard to teach, not scalable and subjective. To
be able to determine a loan applicant’s creditworthiness, the credit institutions gather data about
the applicant, including financial, demographic and other relevant information. This is however a
difficult classification problem since it is hard to find characteristics that have enough discrimina-
tory power to make an accurate scoring. However, a reliable scoring model can provide a helpful
tool for credit analysts, assisting them with statistical facts based on previous customers. (Bolton,
2009, p.8-9)

In this report, six different machine learning methods are compared to predict default risk for
customers to a Swedish consumer credit institute. The models that are used are logistic regression,
support vector machine, tree-based classifiers (including decision tree and random forest), k-nearest
neighbors, artificial neural networks and voting models. They are considered to cover the most
widely used techniques within credit rating today as well as some rather uncommon for these types
of classification problems. Furthermore, the models have different advantages and disadvantages
when it comes to complexity, transparency, computational power and stability.

1.2 Problem description

The data set for this report was provided by a Swedish consumer credit institute (hereafter re-
ferred to as "the Company"), and consists of 8771 unique loan applications between June
2017 - August 2018. The product is a high-risk consumer credit, which generally is a smaller loan
between 1-25 kSEK with higher interest rates and shorter duration compared to e.g. mortgages or
car financing loans. Also, the loan is without security, meaning that the customer does not need a
security such as a property to be granted a loan. According to the Swedish consumer credit law, a
high-risk (or high-cost) consumer credit is defined as a loan to a private consumer with an interest
rate higher than the Swedish reference rate plus 30 percent, and that is not tied to a purchase of a
specific product or property (Swedish Code Of Statutes, 2018, 2018:478 2§). The data set consists
of both new customers applying for a credit as well as recurring customers that want to extend
their current credit limit.

1

Background 2

The outcomes are denoted "good" and "bad", which is determined by the loan’s condition after 6
months from that the application was granted. If the customer has failed to follow the repayment
plan after 6 months, the outcome is categorized as "bad", otherwise "good". About 14.8% of the
data is categorized as "bad" loans. Ideally, one would have wanted to evaluate the loan condition
after at least 12 months from that the loan was granted. However, given that data only was avail-
able approximately 18 months back in time, that would have resulted in a significant loss of data
samples to use. Given the relatively short duration of the loans (between 1-12 months), it was
regarded sufficient with 6 months as evaluation time.

The aim of this report is to provide a statistical model that can be used to support the Company’s
credit analysts when making credit assessments. One challenge is the combination of an imbalanced
data set and a limited amount of historical data. Another issue is stability, since the models are
expected to be used over time and must handle changing characteristics for new customers. To
deal with the lack of data and imbalance between defaulting and non-defaulting customers, various
approaches of over-sampling techniques will be compared and used to determine whether it makes
an improvement or not. To assess the stability issue, appropriate metrics are used as well as cross-
validation to combat variance of performance metrics. The resulting models should, to the degree
possible, meet following criteria:

• Precise and efficient, as being able to prevent a large share of potentially defaulting customers
to be granted a loan whilst maintaining a high precision to avoid rejecting too many non-
defaulting ("good") customers.

• Risk agile, so that the Company can monitor the trade-off between precision and how re-
strictive they want to be on a monthly or weekly basis.

• Generalizable and stable over time, so that it can be trusted over a given period of time in
the future without hurting performance significantly.

• Interpretable to the user, so that every scoring made can be decomposed and understood by
a human.

1.3 Limitations

This study only uses data from loan applications that have been granted by the Company and how
they have performed. Thus, the models will not be able to evaluate potential customer segments
that the Company rejects today. This creates a bias where information about rejected customers
is excluded from the modelling. To reduce this bias, one could take into account the rejected credit
applications and create a proxy on their performance based on publicly available information.
However, since the Company erases information about non-active customers within three months
in accordance with GDPR, this was not possible for this study.

Furthermore, the outcome of the loans is denoted "good" or "bad", i.e. a binary outcome is as-
sumed. Ideally, several risk categories depending on level of risk for each loan should be used to get
a more nuanced perception of a loan’s potential default risk and recovery rates in case of default.
A clear distinction between different risk segments other than "good" or "bad" was however not
available within this data set. Additionally, given the increased complexity in multiclass classifi-
cation and the nature of the data set at hand, the chosen approach was to limit the problem to
binary classification.

External factors in order to handle unlikely macroeconomic events such as a financial crisis are gen-
erally included by credit institutions for credit ratings when assessing mortgage risks and company
valuations. The effect of external factors is excluded in this report, given the short loan duration
and relatively small loan amounts. The models are only intended to be used in relatively stable
economic circumstances and should be discarded if e.g. a severe economic recession occurs.

Chapter 2
Classifiers

2.1 Logistic regression

Logistic regression is considered the most favored credit scoring method for practical use in the
banking industry (Bolton, 2009, p.19). There are two main differences in assumptions between an
ordinal linear regression and logistic regression. To generalize linear regression to the case when the
output is binary, y ∈ {0, 1}, the Gaussian distribution of y is replaced by a Bernoulli distribution,
i.e.

p(y|x,w) = Ber
(
y|µ(x)

)
(2.1)

Where x is the input and µ(x) = E[y|x] = p(y = 1|x). Furthermore, one has to ensure that
0 ≤ µ(x) ≤ 1. This is done by computing a linear combination of the inputs, and then mapping
the sum through the sigmoid function, also known as logit function. µ(x) is now defined as

µ(x) = sigm(wTx) =
1

1 + e−wT x
=

ew
T x

ewT x + 1
(2.2)

To determine the model parameters, the Negative log-likelihood is minimized. The NLL is defined
as

NLL(w) = −
N∑
i=1

log
(
µ
1(yi=1)
i × (1− µi)

1(yi=0)
)

=

= −
N∑
i=1

(
yilogµi + (1− yi)log(1− µi)

)
(2.3)

Since the problem is not on closed form as in the case of linear regression, one has to use an
optimization algorithm to compute the maximum likelihood estimators. Common used methods
are steepest descent, Newton’s method and quasi-Newton methods. (Murphy, 2006, p.22, 250-252)

3

Classifiers 4

2.2 Tree-based classifiers

2.2.1 Decision tree

A decision tree is a function that returns a single output value, or a "decision", taking a vector of
attribute values as input. In a Boolean decision tree, there are exactly two possible output values.
The architecture of the model is represented as a tree with internal nodes, where each internal node
in the tree corresponds to a test of the value of one of the input attributes. The tree’s branches
are the paths created depending on the outcome of the tests at each node.
Decision trees is a simple but widely used model in scorecard modelling. It works by recursively
splitting the input space, and defining a simple local model in each resulting region of input space.
The classification procedure for a new input x can be illustrated as a binary tree as in Figure 2.1.

x1 > θ1

x2 ≤ θ2

1 0

x2 > θ3

x1 ≤ θ4

1 0 0

N

N Y

Y

N

N Y

Y

Figure 2.1: Decision tree

In the first node (the root), the input space is divided into two regions depending on which side
of the threshold θ1 that x1 belongs, where θ1 is a parameter of the decision tree model. These
two subregions can then be subdivided independently a finite number of steps. The nodes on the
last layer of the tree (the leaves) are the final subregions in which the inputs are categorized. To
determine the classification of any new input x, you start at the root of the tree and follow a path
down to a specific leaf according to the specified decision criteria at each passed node. Each region
is then assigned a specific class, in this example 1 or 0, where the classification is depending on
the class distribution in every leaf. (Bishop, 2006, p.663-664)

The decision tree model can be written on the following form:

f(x) = E[y|x] =

M∑
m=1

wm1(x ∈ Rm) =

M∑
m=1

wmφ(x; vm) (2.4)

Where Rm is the m’th region, wm the mean response (or class distribution) in region m, and vm
the choice of variable to split on, and the threshold value on the path from the first node to the
m’th leaf. Since the optimal solution is NP-complete, a greedy procedure is commonly used to
compute a locally optimal maximum likelihood estimation. The function that measures if a node
is worth splitting is defined as

4cost(D)−
n∑

i=1

|Di|
|D|

cost(Di) (2.5)

Where D is the data in the current leaf, and Di is the new amount of data in leaf i after splitting
D into n new nodes.

Classifiers 5

Before defining the cost functions, the estimations of class-conditional probabilities for the data D
in a leaf is calculated as:

π̂c =
1

|D|
∑
i∈D

1(yi = c) (2.6)

Where π̂c is the probability that a random entry in the leaf belongs to class c. There are three
mainly used cost functions in classification problems that measure quality of a split. Those are:

• Misclassification rate. The most probable class label is defined as ŷc = argminc π̂c, with the
corresponding error rate

1− π̂ŷ =
1

|D|
∑
i∈D

1(yi 6= ŷ) (2.7)

• Entropy, or deviance

H(π̂) = −
C∑

c=1

π̂clog(π̂c) (2.8)

• Gini index, or the expected error rate

C∑
c=1

π̂c(1− π̂c) =
C∑

c=1

π̂c −
C∑

c=1

π̂2
c = 1−

C∑
c=1

π̂2
c (2.9)

Growing an optimal (and thereby increasingly complex) tree will eventually lead to overfitting.
The approach of stop growing the tree by examining if the decrease in error justifies the increased
complexity is usually not a successful method. If the discriminatory power in each feature on its
own is too low, it would eventually make no or very few splits. Instead, a method called pruning
is performed. This means that a "full" tree is grown, where the branches are removed one at a
time in a way that results in the lowest increase in error. (Murphy, 2006, p.544-546)

2.2.2 Random forest

Another approach to solve the common problem with overfitting when using decision tree clas-
sification is a method called random forest. The model splits the training data into M different
subsets, and trains M different trees on each of the subsets, and then computes the ensemble

f(x) =

M∑
m=1

1

M
fm(x) (2.10)

Where fm is the m’th tree and M the number of trees in the ensemble. This technique is commonly
known as bagging or "bootstrap aggregating". There is an issue though. When using the same
algorithm multiple times on different subsets of the training data, the resulting trees can be highly
correlated, which increases the prediction variance. By picking a randomly chosen subset of input
variables as well as randomly picking subsets of data cases, this effect can be dealt with. (Murphy,
2006, p.550-551)

Classifiers 6

2.3 k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) model is one of the simplest machine learning algorithms. The
method assesses the similarities between the pattern identified in the training set and the input
pattern. A new data point will be assigned to the respective class c of which the majority of the
neighbors belong by considering the k points in the training set that are nearest to the test input
x. In this case, "nearest" refers to the training set samples that are most similar to the observed
data point when looking at input feature values in x. This can be expressed as

p(y = c|x,D, k) =
1

k

∑
i∈Nk(x,D)

I(yi = c) (2.11)

Where NK(x,D) are the indices of the k nearest points to x in the training setD. When performing
k-NN, a crucial part is choosing the metric to use. A commonly used metric is the standard
Euclidean norm given by

p1(x, y) =
√

(x− y)′(x− y) (2.12)

Where x and y are measurement vectors. When choosing the k, i.e. the number of nearest
neighbors to consider, there is a trade-off between variance and flexible fitting. Generally, a lower
k allows more complex classification but with the cost of a higher variance, since it will be more
affected by potential outliers and irregularity in the training data. The higher the k, the more
samples are used in the classification and hence a more stable model, with the drawback of being
less flexible and precise. (Murphy, 2006, p.16-17)

Classifiers 7

2.4 Support vector machine

Support vector machine (or SVM) is a classification algorithm (commonly referred to as a support
vector classifier in the case of classification problems) that computes the optimal separating hy-
perplane for linearly separable patterns. SVMs are also capable of classifying non-linear patterns
by transforming the original data to map into higher dimensions where the data is linearly sepa-
rable. Compared to other classification algorithms, SVM considers only the data points closest to
the decision hyperplane, i.e. the data points most difficult to classify, to determine the optimal
hyperplane. These data points are referred to as support vectors. In Figure 2.2 an illustration of
a separating hyperplane in two dimensions is shown, where the support vectors are marked in red:

x1

x2

w
· x

+
b =

0
w
· x

+
b =

1

w
· x

+
b =
−1

2‖w‖

b‖w‖

w

Figure 2.2: Support vector machine

The hyperplanes H are defined such that:

wxi + b ≥ +1 when yi = +1
wxi + b ≤ −1 when yi = −1

Where y is the target value, w is a weight vector, x the input vector and b is a bias.

H1 and H2 are the planes:

H1: wxi + b = +1
H2: wxi + b = −1

The plane H0 is the median of H1 and H2. d+ denotes the shortest distance to the closest positive
point and d- the shortest distance to the closest negative point, which defines the margin of the
separating hyperplane. The optimal hyperplane is then given by the hyperplane that maximizes
the margin of separation d. The classifications of new data points are then determined by looking
at the sign of the function

f(x) = wx+ b (2.13)

In the case of a linear separator, the distance d is maximized. The distance between H0 and H1

can be expressed as

d = ||w · xi + b|| = 1

||w||
(2.14)

Classifiers 8

The total distance between H1 and H2 thus becomes 2/||w||. This means that the margin is
maximized by minimizing

1

2
||w|| (2.15)

with the condition that no data points are between H1 and H2, i.e.{
xi · w + b ≥ 1 when yi = 1

xi · w + b ≤ −1 when yi = −1

which can be combined into following constraint:

yi(xi · w + b) ≥ 1 (2.16)

This is now a constrained optimization problem that can be solved using the Lagrange function
with the constraints in (2.15) and (2.16):

L(w, b) =
1

2
||w||2 −

N∑
i=1

ai[yi(wxi + b)− 1] (2.17)

s.t. ∀i, ai ≤ 0 where ai is the Lagrangian multiplier and N is the number of data points in
the training set. From calculating the derivatives of (2.17) with respect to w and b and put the
derivatives equal to 0 yields

∂L

∂w
= 0⇔ w =

N∑
i=1

aiyixi (2.18)

∂L

∂b
= 0⇔

N∑
i=1

aiyi = 0 (2.19)

Instead of minimizing over w, b, subject to constraints involving a, the Lagrangian dual problem
instead maximizes over a subject to the relations stated for w and b in (2.18) and (2.19) respectively.
Substituting (2.18) and (2.19) in (2.17), the dependency of w and b is removed, and results in the
Lagrangian dual equation:

L̂(a) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyj

(
xi · xj

)
(2.20)

Subject to {∑N
i=1 aiyi = 0

ai ≥ 0

Introducing a so-called Kernel Trick, the SVM can be computed for non-linear decision surfaces.
One defines a function φ(x) that maps the data into a feature space of a higher dimension, and
the Lagrangian dual equation in (2.20) instead becomes

L̂(a) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyj

(
φ(xi) · φ(xj)

)
(2.21)

Depending on the polynomial grade of the function φ(x), calculating the dot product will be
computationally expensive. Instead, defining the kernel function K such that K(xi, xj) = φ(xi) ·
φ(xj), the dot product computation is not needed since the kernel function defines inner products
in the transformed space. Thus, the function to optimize becomes

L̂(a) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjK
(
xi · xj

)
(2.22)

Classifiers 9

Subject to {∑N
i=1 aiyi = 0

ai ≥ 0

(MIT-OpenCourseWare, retrieved 2019)

To classify a new data sample, the sign of f(x) expressed in (2.13) is written in terms of the kernel
function and a by substituting w with the expression in (2.18):

f(x) =

N∑
i=1

aiyiK
(
x, xi

)
+ b (2.23)

A constrained optimization of this form satisfies the KKT conditions, which means that following
holds:

ai ≥ 0

yif(xi)− 1 ≥ 0

ai
(
yif(xi)− 1

)
= 0

(2.24)

This means that for every data point in the training set, either ai = 0 or yif(xi) = 1. For every
data point where ai = 0 will not make a contribution to the sum in (2.23), i.e. will not be involved
in classifying new data points. The remaining data points are so called support vectors. Since they
fulfill yif(xi) = 1, they correspond to data points on the maximum margin hyperplanes. This is
a central insight in understanding the use of support vector machines. When training the model,
only the support vectors will be retained which significantly decreases the dimensionality of the
problem. To determine the parameter b, the fact that any support vector xi satisfies yif(xi) = 1
is used combined with the expression in (2.23)

yi

(∑
j∈S

ajyjK
(
xi, xj

)
+ b

)
= 1 (2.25)

where S denotes the set of indices of the support vectors. To solve for b, one multiplies by yi on
both sides, using the fact that y2i = 1, and then computing the average over all support vectors:

b =
1

NS

∑
i

(
yi −

∑
j

ajyjK
(
xi, xj

))
(2.26)

where NS denotes the number of support vectors.

By now, the assumption that the training data is linearly separable in the feature space φ(x) has
been used, meaning that the resulting SVM will give an exact separation. However, in difficult
classification problems where there are significant overlaps between class distributions such as in
the case of credit scoring, exact separation tends to cause poor generalization. To deal with this,
the constraints in (2.16) will be replaced with

yif(xi) ≤ 1− ξi (2.27)

Where ξi is a slack variable, that for different values will lead to misclassification:

ξi = 0 Correctly classified
0 < ξi ≤ 1 Inside the margin

ξi > 1 Misclassified
(2.28)

Classifiers 10

The function to minimize thus becomes

min C
N∑
i=1

ξi +
1

2
||w||2 (2.29)

Where C > 0 represents the trade-off between the slack variable penalty and the margin. The
responding Lagrange function for minimizing (2.29) with respect to (2.27) becomes

L(w, b, a) =
1

2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

ai
(
yif(xi)− 1 + ξi

)
−

N∑
i=1

µiξi (2.30)

Where ai ≤ 0 and µi ≤ 0 are Lagrange multipliers. The KKT conditions are

ai ≥ 0

yif(xi)− 1 + ξi ≥ 0

ai
(
yif(xi)− 1 + ξi)

)
= 0

µi ≥ 0

ξi ≥ 0

µiξi = 0

(2.31)

Using the same technique as in (2.20) to eliminate dependency of w, b and ξi, the following dual
Lagrangian is introduced

L̂(a) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjK(xi, xj) (2.32)

which is minimized with respect to

0 ≤ ai ≤ C∑
i=1

aiyi = 0 (2.33)

As before, the data points where an = 0 do not contribute to the predictive model, and the
remaining points constitute the support vectors, satisfying

yif(xi) = 1− ξi (2.34)

The parameter b is then estimated by

b =
1

NM

∑
i∈M

(
yi −

∑
j∈S

ajyjK(xi, xj

)
(2.35)

where M represents the set of indices for data points that fulfils 0 < ai < C. (Bishop, 2006,
p.328-335)

Classifiers 11

2.5 Artificial neural network

2.5.1 Neural network structures

Feed-forward neural networks, or multilayer perceptrons (MLPs), is a deep learning model with the
goal of approximating some function f∗. A feed-forward network defines a mapping y = f(x;w)
and learns the value of the parameters w that results in the best function approximation.

Neural networks are composed of nodes connected by directed links. A link from node i to node j
serves to propagate the activation from i to j. For each link, there is a corresponding weight wi,j

that can be interpreted as the significance of the connection. The feed-forward network is often
depicted as a sequence of layers, more specifically an input layer, any number of hidden layers and
an output layer. The nodes are constructed in a way that each node receives input only from nodes
in the immediately preceding layer. (Russell and Norvig, 2010, p.727-732) In Figure 2.3 a simple
feed-forward neural network with one hidden layer is illustrated.

x1

x2

x3

x4

Input
layer

h1

h2

h3

h4

Hidden
layer

ŷ1

Output
layer

Figure 2.3: Neural network with one input layer, one hidden layer and one output
layer

2.5.2 Forward propagation

When using a feed-forward neural network to accept an input x and produce an output ŷ, infor-
mation flows forward through the network. The input x provides the initial information that then
propagates up to the hidden units at each layer and finally produces ŷ. This is called forward
propagation. During training, forward propagation continues onward until it produces an error,
which is defined by the error function E(w). (Goodfellow et al., 2016, p.200)
Each node in the feed-forward network computes a weighted sum of its inputs of the form

aj =
∑
i

wijzi (2.36)

Where zi is the output of node i that sends a connection to unit j, and wij is the weight associated
with that connection from node i to j. The sum of inputs aj to node j is transformed by the
activation function g(·) to give the activation (or output) zj of node j in the form

zj = g(aj) (2.37)

Classifiers 12

The corresponding inputs and activations (outputs) for all of the hidden layer and output nodes
are calculated for all patterns in the training set, by repeatedly applying (2.36) and (2.37). For a
neural network with one input layer, one hidden layer and one output layer, the forward propagation
procedure can be formulated as

y(x,w) = f

(M∑
j=1

w
(2)
jk g

(D∑
i=1

w
(1)
ij xi

))
(2.38)

Where f is the output activation function and g is the activation function for the hidden layer
with w(1) being the trainable weights between input and hidden layer and w(2) being the trainable
weights between the hidden layer and the output layer. The variable x is the set of input features
acting as the initial zi. (Bishop, 2006, p.227-240)

2.5.3 Activation functions

Activation functions can be used between layers in a neural network to introduce non-linear map-
pings to the model. This can enable the model to capture more complex relations in the data.
From the last hidden layer to the output layer it is very common to use an activation function
to map the result to something interpretable for the problem at hand. For example, mapping
to a number between 0 and 1 can be interpreted as a risk probability, or for a binary problem
the activation function could be a step function producing either a 0 or a 1. There are various
activation functions used depending on the nature of the data and what the intended use of the
model is. The most commonly used activation functions are:

• Sigmoid functions

zj = g(aj) =
1

1 + e−aj
(2.39)

Which maps zj between 0 and 1. The sigmoidal function is useful since it saturates to 1 when
zj is very positive, saturates to 0 when aj is very negative, and is only strongly sensitive
to the input when zj is near 0. The logistic sigmoid function has many useful applications,
where the perhaps most obvious one is to map a model output to a probabilistic result. It
can also be used to approximate step functions between hidden layers, as a step function is
not continuously differentiable.

• Rectified Linear Unit (ReLu)

zj = g(aj) = max{0, aj} (2.40)

The ReLu function essentially removes negative inputs. This may seem illogical but has
actually shown to have similarities to observable processes. The ReLu function is commonly
used between hidden layers in deep neural networks and is very useful when working with
computer vision among other applications.

• Softmax function

yk = fk(z,w) =
eak(z,w)∑
j e

aj(z,w)
(2.41)

This is a convenient activation function for the output layer in a multiclass classification
problem since it both satisfies 0 ≤ yk ≤ 1 as well as

∑
k yk = 1 and thus can be interpreted

as probabilities of belonging to each class.

(Bishop, 2006, p.242-245)

Classifiers 13

2.5.4 Backpropagation

Backpropagation refers to the method of computing the gradient of an error function E(w) for a
neural network by propagating errors backwards through the network. This calculation requires
high computational power, and is done efficiently using the chain rule of calculus which states that

∂En

∂wij
=
∂En

∂aj

∂aj
∂wij

(2.42)

The "error" δ is defined as

δj =
∂En

∂aj
(2.43)

Using (2.36) it can be re-written as

∂aj
∂wij

= zi (2.44)

Substituting (2.43) and (2.44) into (2.42) gives the following expression

∂En

∂wij
= δjzi (2.45)

This means that the gradient of the error function with respect to a given weight wij is computed
by multiplying the value of δ for the output end of the weight by the value of z for the unit at the
input end of the weight. To find δ for the hidden nodes, the chain rule of calculus is again used, as

δj =
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

(2.46)

Here, the sum refers to all nodes to which node j sends connections. By substituting the expression
for δ in (2.43) into (2.46), the backpropagation formula is defined as

δj = g′(aj)
∑
k

wjkδk (2.47)

To summarize, the computation of gradients in the neural network can be explained in following
steps:

1. Forward propagate the input vector x through the network by using (2.36) and (2.37) to
calculate all activations z for hidden and output nodes.

2. Calculate δ for the output nodes using the observed error.

3. Calculate δ for all hidden nodes in the network using the backpropagation formula in (2.47).

4. Compute the gradients by using (2.45)

(Bishop, 2006, p.241-244)

2.5.5 Error functions

The error function for the network can be defined as

E(w) =

N∑
n=1

En(w) (2.48)

Where En(w) is the error function for a particular path n. There are various error functions to
consider. Below, some of the most commonly used error functions are listed:

Classifiers 14

• Cross Entropy

E(w) =

N∑
n=1

En(w) =

N∑
n=1

(
ynlog(ŷn) + (1− yn)log(1− ŷn)

)
(2.49)

which measures the divergence between the predicted outcome ŷ and the true outcome y.
One commonly used for binary classification, since it is proven to improve training speed
and reduce overfitting, compared to other models.

• Mean squared error

E(w) =

N∑
n=1

En(w) =

N∑
n=1

(yn − ŷn)2 (2.50)

This is one of the simplest error functions, that basically measures the sum of the squared
errors between the true value and the predicted value of the classifications. (Bishop, 2006,
p.227-240)

2.5.6 Optimization algorithms

Different variations of Gradient Descent optimization are by far the most commonly used optimiza-
tion algorithms when it comes to neural networks. Depending on the amount of information used
to update the weights, there will be a trade-off between variance of the updates and computation
time.

Batch Gradient Descent

The Batch Gradient Descent approach performs each update (or epoch) using data from the entire
training set, which consequently means that it becomes increasingly slow for larger data sets since
gradients must be computed for the entire data set in each update. This is done by:

wn+1 = wn − η · ∇wE(wn) (2.51)

Where η is the learning rate.

Stochastic Gradient Descent

Instead of using the entire training set to perform one update, Stochastic Gradient Descent uses
only one sample at a time for each update.

wn+1 = wn − η · ∇wE
(
wn;x(i); y(i)

)
(2.52)

This yields a much faster algorithm than Batch Gradient Descent. However, since only one sample
is used at every update, it results in a higher variance between updates.

Mini Batch Gradient Descent

This method combines the speed of Stochastic Gradient Descent and the accuracy and stability of
Batch Gradient Descent by creating subsets of the training data with m samples in each subset
and performs each update using only one subset at a time. An update thus becomes

wn+1 = wn − η · ∇wE
(
wn;x(i:i+m); y(i:i+m)

)
(2.53)

This is a popular approach used in neural networks, since it is both fast and robust.

Classifiers 15

Adaptive Moment Estimation (Adam)

A common problem in gradient descent optimization is to choose the learning rate. If the learn-
ing rate is too high, the algorithm will overshoot and having difficulties to converge to a local
minimum. If the learning rate is too low on the other hand, the convergence will be extremely
slow. Furthermore, the same learning rate is used for all parameter updates, which is not ideal
since the input features have different characteristics. There is also a concern that the algorithm
tends to get stuck in suboptimal local minima such as saddle points, where all gradients are close
to zero. There are however various methods that recursively updates the learning rate that can
deal with these issues. Adam is a method that computes an adaptive learning rate by storing an
exponentially decaying average of past gradients mn as well as the uncentered variance of past
gradients vn. This can be expressed as

mn = β1mn−1 + (1− β1)gn (2.54)

vn = β2vn−1 + (1− β2)g2n (2.55)

Where gn is the gradient of the error function and β1 and β2 are momentum parameters that define
how much weight to add from the past time step to the current update vector. Proposed values
are β1 = 0.9 and β2 = 0.999.

The estimates of mn and vn are, especially in the initial steps, subjected to a bias towards 0 since
they are calculated from zero vectors. To avoid this, following modification is made:

m̂n =
mn

1− βt
1

(2.56)

v̂n =
vn

1− βt
2

(2.57)

Using (2.56) and (2.57) the update of the weights becomes

wn+1 = wn −
η√

v̂n + ξ
m̂n (2.58)

Where ξ is a smoothing term with default value 10−8 to avoid issues with dividing by zero in the
case of v̂n taking infinitesimal values. (Ruder, 2017)

2.5.7 Regularization

Early stopping

Early stopping can be seen as a time-based regularization. Basically, both training set error and
test set error are considered. For the optimization algorithms used, the error is usually a non-
increasing function of the iteration index. The test set error on the other hand generally shows a
decrease initially, but at a certain point starts to increase as model complexity grows. By using
early stopping, training can be stopped at the point where the test set error reaches its minimum
value, which ultimately is the performance goal of a well-functioning model. (Bishop, 2006, p.259-
260)

Dropout layers

With increasing complexity, the neural network is able to find complex relations in the training
data, but it also increases the generalization error. This is especially the case when there is a
shortage of training data, where sampling noise that is not present in the test data might corrupt
the model. This may lead to poor generalization and an increasing test error. Dropout is a tech-
nique that prevents overfitting and also works as an approximation of combining exponentially
many different network architectures without being computationally expensive. Dropout nodes

Classifiers 16

with all its ingoing and outgoing connections are temporarily removed by random. In Figure 2.4,
the dropout procedure for a neural network with two hidden layers is shown.

×
×

×

×

×

×

×

Figure 2.4: Illustration of the dropout layer procedure.

For a neural network with n nodes, there are 2n possible thinned networks. Since they still
share weights, the computation of the parameters will remain O(n2) complex. So, using dropout
essentially means that instead of training a network with complexity O(n2), a set of 2n thinned
networks with extensive weight sharing is trained where each of the thinned networks are trained
very rarely. When the model is used on the test data, the thinned networks are scaled down and
combined into one single neural network. This has shown to significantly improve generalization
errors in a variety of classification problems and outperform other regularization techniques such
as early stopping. (Srivastava et al., 2014)

L1 and L2 Regularization

When using L regularization, the error function is modified with a regularization function that
penalizes complexity. The modified error function becomes

Ê(w) = E(w) + λComplexity(h) (2.59)

Where λ is the regularization term. The complexity is a function of the weights

Complexity(hw) = Lq(w) =
∑
i

|wi|q (2.60)

L1 regularization is the sum of absolute values of the weights, i.e. q = 1. For L2 regularization
the function is the sum of squared weights, i.e. q = 2. In practice, L2 is the most favored method
compared to L1 regularization when using neural networks. (Russell and Norvig, 2010, p.721)

Classifiers 17

2.6 Voting classifiers

Instead of relying on one classifier alone, one idea is to combine several classifiers to reduce vari-
ability and receive more accurate predictions. Voting models is a simple concept where several
different machine learning classifiers are trained individually and combined into a voting model.

2.6.1 Hard voting

A hard voting model works by the principle of majority voting. Simply, it will classify a given data
sample according to what the majority of a set of classifiers have predicted. Assume that a set of
five classifiers are used in the hard voting model for a binary classification problem y ∈ {0,1} with
following predictions:

Classifier 1→ 0

Classifier 2→ 1

Classifier 3→ 1

Classifier 4→ 0

Classifier 5→ 0

(2.61)

The hard voting model will then classify the data sample as a 0 according to the majority of the
voters. In case of a tie, there is a ranking order where the higher ranked classifier will have a
casting vote.

2.6.2 Soft voting

The soft voting model (or soft voting ensemble) instead considers the average weighted probability
computed by its classifiers, where each classifier is assigned a weight w. Assume that a set of five
classifiers are used in the soft voting model for a binary classification problem. For simplicity, the
classifiers are weighted equally with w1 = w2 = ... = w5 = 1

5 . The prediction for a soft voting
ensemble will be computed as the weighted average of the predictions for the classifiers:

Classifier Weight Output {0,1}
Classifier 1 0.2 0.1
Classifier 2 0.2 0.5
Classifier 3 0.2 0.8
Classifier 4 0.2 0.2
Classifier 5 0.2 0.4
Soft voting ensemble 1 0.4

Table 2.1: Illustration of a soft voting ensemble

Assuming that the threshold is set at 0.5, the soft voting model will classify this particular data
sample as a 0. Compared with the hard voting model, the soft voting model takes into account
the level of certainty of its classifiers rather than an absolute vote. This usually contributes to a
higher model performance. (Pedregosa et al., 2009–2018, Section 1.11.5)

Classifiers 18

2.7 White-boxing techniques

For simple models such as a logistic regression model, the predictions are transparent and it is easy
for the user to understand the classification of a specific data sample. For more complex models
however, such as neural networks or support vector machines, it is not possible for a human to
understand the basis of every classification. (Ribeiro et al., 2016)

In general, the human interaction in machine learning is indeed important, and the ability to
understand the model is crucial for a credit analyst when making credit assessments. Primarily, it
could be of interest to be able to motivate to the loan applicant why the application was rejected.
Secondly, not understanding how the classifier works means that there is no way of knowing that
the model actually uses relevant features to make predictions or if the predictions are made based
on sample noise. If a model cannot be trusted it surely will not be used.

2.7.1 Local Interpretable Model-Agnostic Explanations (LIME)

LIME is a tool developed to easier understand a model’s individual predictions by displaying the
significance of the most important features for the prediction of a specific sample. The explanation
of a model is defined as g ∈ G, where G is a class of interpretable models such that a human
can interpret the model with the help of visual aid. To measure the complexity, the complexity
of g is defined as Ω(g). In the case of a decision tree it could be the depth of the tree, and for a
neural network it could be the number of nodes. Further, the model that is explained is denoted
f : Rd → R. For classification, f(x) is the probability that the data sample x belongs to a certain
class. Further, πx(z) is the proximity measure between an instance z to x, defining the locality
around x. Combining these expressions, the faithfulness of the explanation is given by L(f, g, πx).
In order to achieve an interpretable as well as locally accurate explanation, L is minimized while
Ω(g) is kept at a low enough level for a human to understand. The LIME explanation is computed
by

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.62)

The LIME algorithm can be explained in following steps:

Require: Classifier f , Number of samples N

Require: Instance x, and its interpretable version x′

Require: Similarity kernel πx, Length of explanation K Z ← {}

for i ∈ 1, 2, 3, ..., N do
z′i ← sample around(x′)

Z ← Z ∪
(
z′i, f(zi), πx(zi)

)
end for w ← K − Lasso(Z,K) . with z′i as features, f(z) as target
return w

Essentially the LIME algorithm bases explanations on the feature values of samples close to the
sample being explained. The output is a vector containing positive and negative weights assigned
to each of the used input features. By analyzing these weights, one can understand which features
that the underlying model used and in which way it is important for the individual classification
decision. (Ribeiro et al., 2016)

Classifiers 19

2.7.2 Shapley Additive Explanation (SHAP)

The Shapley value is a solution concept derived from cooperative game theory. Originally, it is a
way to distribute the total gains to all players in a cooperation given each player’s contribution. In
the case of white-boxing techniques, the Shapley Additive Explanation (SHAP) value φi is found
by computing the effect of including a specific input feature in the set of features used to train a
model. This is done by computing a model fS∪{i} where feature i is present, and one model fS
where the feature is excluded, and then use the difference. This can be written as

φi =
∑

S⊆F\{i}

|S|!
(
|F | − |S| − 1

)
!

|F |!

[
fS∪{i}(xS∪{i})− fS(xS)

]
(2.63)

Where S ⊆ F is the feature subset S of F, where F is the set of all features and xS represents
the values of the input features in the subset S. SHAP values give the actual change in model
performance when removing a specific feature, and is considered a more unified and comprehensive
white-boxing technique than e.g. LIME. SHAP values can then be easily interpreted with visual
aids in order to better understand a complex model such as a neural network better. (Lundberg
and Lee, 2017)

2.8 Generalization and stability

It is reasonable to assume that characteristics of loan applicants will change slightly over time. In
the case of an economic recession for example, default rates are likely to increase. Therefore, it
is of high importance that the model used is stable, i.e. that minor changes in the model’s input
will not lead to any significant effect on the model’s performance. (Bousquet and Elisseeff, 2002)
Furthermore, the relatively low number of data samples available is likely to introduce variability
in performance.

2.8.1 Cross-validation and selection bias

When working on small data sets with seemingly poor generalizability, one way of ensuring stability
is through methods of cross-validation. The goal of the model is to accurately predict defaults in a
later point in time. One could therefore trivially choose the training set as the "oldest" data points
available and the test set as the "newest" to test how well the model is performing with changes in
time as the characteristics of the data changes. However, with a small number of samples to begin
with, problems like overfitting and selection bias are likely to occur when training and testing only
is performed on one train-test split. Ideally, the model should perform well on any split to ensure
that it is generalizable and stable for future use. (Cawley and Talbot, 2010)

Cross-validating is essentially splitting the data set into many train-test splits (folds), re-training,
testing and measuring performance of each model on each fold and then averaging the performance.
Furthermore, it is of importance that the performance does not vary too much between the splits
to ensure stability. One concern is how many folds that should be created when cross-validating.
There are exhaustive cross-validation methods that test performance on every possible fold. Of
course, the number of possible folds varies greatly with how the size of the test (validation) set is
chosen. Nevertheless, exhaustive cross-validation methods will for most practical data sets require
excessive computation power. For practical purposes, a non-exhaustive cross-validation method is
often sufficient. The perhaps most commonly used method is the k -fold cross-validation. The k
indicates how many folds that should be created, e.g. 10 -fold indicates re-training and validating
over ten randomly selected splits. For some purposes, especially when dealing with imbalanced
data sets, the k -fold approach can be extended with the condition of choosing the splits randomly
but stratified, thus ensuring the same class distribution in each fold. (Kohavi, 1995)

Chapter 3
Dealing with small and imbalanced data sets

Given an imbalanced data set, an appropriate way of measuring model performance has to be
determined. Only considering accuracy when having an imbalanced binary classification problem
can be problematic. Consider a data set of x-ray scans of potential tumors, with binary outcomes
balanced 99 to 1 for "not tumor" and "tumor" respectively. Then, the naive guess of assigning all
data samples to the largest category ("not tumor") will achieve an accuracy of 99%. This yields
a situation where evaluating model performance becomes difficult as accuracy does not reflect the
ability of the model to identify the minority class.

3.1 Relevant evaluation metrics

3.1.1 Confusion matrix and common metrics

When evaluating a binary classification method, where in this particular problem the outcome
can either be classified as "bad" (default) or "good" (no default), there are four different possible
events:

• True positive: The outcome is correctly predicted as "bad".

• False negative: The true outcome is "bad", and the prediction is "good".

• True negative: The outcome is correctly predicted as "good".

• False positive: The true outcome is "good", and the prediction is "bad".

These four possible events form the confusion matrix, from where many common performance
metrics are derived.

True
positivep′

p

False
positive

n total

P′

False
negativen′

total P

True
negative N′

N

Prediction
outcome

Actual value

Figure 3.1: Confusion matrix, showing the distribution of correctly and incorrectly
predicted outcomes

20

Dealing with small and imbalanced data sets 21

Accuracy
The total number of correctly classified outcomes in relation to the total number of samples
in the test set, given by

Accuracy =
TP + TN

P +N
(3.1)

Precision
The number of correctly classified "bad" outcomes in relation to the total number of samples
that were classified as "bad" outcomes in the test set, given by

Precision =
TP

TP + FP
(3.2)

Recall/Hit rate/True positive rate
The number of correctly classified "bad" outcomes in relation to the true number of "bad"
outcomes in the test set, given by

Recall =
TP

TP + FN
(3.3)

False positive rate
The number of "good" outcomes incorrectly classified as "bad" in relation to the true number
of "good" outcomes in the test set, given by

False positive rate =
FP

FP + TN
(3.4)

F1-score
The harmonic average of precision and recall, given by

F1-score =
2

1
Precision + 1

Recall

(3.5)

3.1.2 Average precision score

For classifying outcomes of loan applications, what seems most important is the relationship be-
tween precision and recall. It is possible to model a classifier that has very high precision but
captures very few of the "bad" customers. Conversely, a model configuration could find a high rate
(recall) of the "bad" customers, but also incorrectly classifying a high rate of "good" customers
as "bad". Ultimately it will come down to a trade-off between the loss of a defaulting customer
and the alternative cost of rejecting a non-defaulting customer in terms of lost revenue. Since this
relationship is not truly known, the overall performance of precision against recall needs to be
taken into account on the intervals that are deemed relevant.

F1-score includes both precision and recall but is considered a quite inaccurate metric for this
specific problem. Since it is the harmonic average, it doesn’t capture the full relationship between
the two, rather a blended metric. Also, it can only describe model performance for a specific
precision/recall threshold and not the overall performance of a model on a range of thresholds.

Dealing with small and imbalanced data sets 22

Receiver Operating Characteristics (ROC) is a common way of comparing models used on imbal-
anced data sets. ROC graphs are two-dimensional graphs plotting the relationship between true
positive rate (recall) and false positive rate for different thresholds. To compare performance of
different models, the Area Under the ROC Curve (AUC) is computed, and the higher the AUC
the better the model performance. (Fawcett, 2006)

For this specific problem an alternative to ROC is used called Average Precision score (AP), where
false positive rate is replaced by precision. Average precision is computed as the weighted mean
of precision for a sequence of thresholds, and weighted by the marginal increase in recall from the
preceding threshold. When increasing the threshold, recall will decrease and precision will increase.
The AP score is given by

AP =

N∑
n=1

(Rn −Rn−1)Pn (3.6)

Where Pn and Rn are the corresponding precision and recall pairs at threshold n. Essentially, AP
score is an approximation of the intergral of the precision-recall curve. (Buitinck et al., 2013)

Average precision can then be computed for threshold intervals that are the most relevant for
the specific task of credit scoring. When having classification problems with limited amount of
data samples and features with relatively weak prediction power, one can expect it to be hard
to maintain a decent precision for high recall levels. Therefore, it is not as relevant to examine
model performance on too high recall levels since the corresponding precision would be insufficient.
Likewise, the performance on too low recall levels are not believed to be relevant either, since
when implementing the classifier it would have too limited impact regardless of the corresponding
precision if it can’t capture enough "bad" customers.

3.2 Combating imbalance through oversampling of minority class

3.2.1 SMOTE

Synthetic Minority Oversampling Technique (SMOTE) is a method used for data sets with large
imbalances between classes. It creates synthetic samples of the minority class placed on line
segments joining any/all of the k nearest neighbors. The creation of one synthetic sample works
in the following way:

1. Pick a randomly chosen data sample from the minority class that is being oversampled

2. Compute the Euclidean distance between the feature vector of the data sample and its k
nearest neighbors

3. Multiply by a randomly generated number ∈ [0, 1], and add it to the data sample picked in
(1). Now, k new samples has been synthesized between the data sample under consideration
and its k nearest neighbor.

Depending on the severity of the imbalance, one can determine how much oversampling is needed.
By adjusting the number of neighbors to create synthetic points between, the amount of over-
sampling can be controlled.

SMOTE has also been generalized in order to handle both continuous and categorical features.
This is done by also computing the median of the standard deviations considering all data samples
belonging to the minority class. For each categorical variable differing from its nearest neighbors,
the computed median of standard deviations is added to the Euclidean distance. The categorical
feature is then picked based on the majority of its k nearest neighbors. (Chawla et al., 2002)

Dealing with small and imbalanced data sets 23

3.2.2 ADASYN

Adaptive Synthetic Sampling (ADASYN) uses the same basic idea of SMOTE by constructing
artificial samples using the Euclidean distance between a data sample and its k nearest neighbors.
The difference is that ADASYN uses a weighted distribution to generate synthetic data based on
information from minority class samples that are the most difficult to learn. The method can be
described in following steps:

1. For each minority class data sample, calculate the ratio of the k nearest neighbors belonging
to the majority class samples:

ri =
∇i

k
(3.7)

where ∇i is the number of majority class samples among the k nearest neighbors.

2. Normalize ri so it becomes a probability distribution:

r̂i =
ri∑
i ri

(3.8)

3. Calculate the required number of synthetic samples created for each minority sample.

gi = r̂i ·G (3.9)

where G is the total number of synthetic data samples created, depending on the imbalance
in the data and the desired outcome.

4. Repeat for all minority samples in the data set and create synthetic samples in the same
way as SMOTE by calculating the Euclidean distance.

By weighting minority class samples with many majority class neighbors (i.e. outliers) heavier when
synthesizing new samples, the classifier models will easier identify and learn these hard-to-classify
cases. (He et al., 2008)

3.2.3 Weighting

A simple yet effective way of dealing with imbalanced classes is to configure the model’s loss
function by penalizing misclassification of the minority class. This is done by assigning a larger
weight to minority class samples in the loss function in order to put more emphasis on accurately
predicting this class. Essentially, it has the same effect as copying and adding up minority class
samples in the training set to a desired level. By using trial and error, this method can improve
model performance to a certain degree when handling imbalanced data sets. (Pedregosa et al.,
2009–2018)

3.2.4 Undersampling

There are several techniques referred to as undersampling, which means that the class distribution is
balanced by removing samples from the majority class to achieve a desired percentage of minority
samples in the training set. The easiest way is by simply removing random samples from the
majority class until the desired ratio is reached. It is an effective and simple approach when
having vast amounts of data. (Chawla et al., 2002) However, considering the amount of data
available, the idea of undersampling was not considered since the actual problem lies within the
lack of minority class data rather than the imbalance itself. Undersampling an already small data
set would likely not improve performance.

Chapter 4
Implementation

4.1 Data set

4.1.1 Removing recurring customers

Initially, an attempt to classify both new and recurring customers with the same algorithms was
made. However, new and recurring customers were proved to be considerably different, with
recurring customers’ risk being explained by variables that are not available for new customers.
Since new customers are more difficult for the Company to predict and that they tend to default
more often, recurring customers were excluded from the data set. This narrows it down from 8771
samples to 4052 unique data points. Out of these, 17.8% are labeled as defaults.

4.1.2 Pre-Processing

An initial cleaning of the data set was made, where input features with no discriminatory power
such as ID-number, dates and other irrelevant information was removed. Furthermore, input
features that had very few entries were removed. An outlier detection was also performed to
catch wrongly generated data caused by system errors that could harm the performance of the
classifiers. Most of the data was however complete and there were no issues with replacing missed
values. Dummy variables denoted 0 and 1 were also constructed for selected features, in order to
be able to use as input during training of the models.

4.1.3 Training and test splits

The data set was split into a training set and a test set, with a ratio of 80/20. This means that
the training set consists of 3242 samples (80%) and the test set 810 samples (20%). The data was
shuffled to ensure that no time dependency or seasonality could corrupt the split. The shuffling
was made with a fixed random seed in order to evaluate the model performance during training.
Moreover, the splits were stratified in order to maintain the same ratio between "good" and "bad"
customers at 17.8%.

4.2 Feature Engineering

Recognizing both the shortage of data as well as an uneven class distribution between "good" and
"bad" outcomes, there are several things to take into account. Not having a large enough training
set restricts the number of input features that can be used without causing overfitting, commonly
referred to as "curse of dimensionality". Therefore, it was decided to carefully investigate all avail-
able input features to attain the most suitable set of features.

24

Implementation 25

In the data, there are several input features to take into account that were retrieved in the initial
loan applications. They were grouped into:

• Numerical features
This includes continuous variables such as monthly income, monthly expenses, age and what
amount of credit that was applied for.

• Binary features
This includes features with two outcomes, such as gender, marital status, property owner
(y/n) etc.

• Qualitative features
This includes features with several outcomes and no internal ranking, such as loan purpose,
family constellation and geographic location of residence.

All available input features before any re-coding are listed in Table A.1 in Appendix A.

4.2.1 Finding significant input features

Categorization

When making efficient categorization of both numerical and qualitative features, there are three
important factors to take into account:

1. Each category should consist of a minimum number of "good" and "bad" loans. Creating too
small categories with too few "bad" samples may hurt both accuracy and generalizability.

2. The samples in each category should have similar risk profiles. When creating categories for
different income levels for example, it is important to find income groups that show similar
risk patterns (i.e. low-income, middle-income, high-income individuals).

3. The resulting categorization should have a plausible risk pattern (given by Weight of Evi-
dence) and a high performance (given by Information Value).

To evaluate the third criteria, Weight of Evidence (WoE) and Information Value (IV) are two
metrics being used. These metrics are recommended when choosing and categorizing input features
used in scoring models especially for retail exposures, where qualitative variables such as marital
status, loan purpose etc. is predominant. WoE is a metric that expresses the discriminatory power
of a category within an input feature, and is calculated from the log percentage relation of "good"
vs "bad" outcomes within that category, i.e.

WoEc = ln
(
P (c|good))− ln(P (c|bad)

)
(4.1)

Where WoEc is Weight of Evidence for category c of a given input feature. From WoE, the IV
of an input feature with a given set of categories C are calculated from the percentage relation
weighted by WoE for each c, i.e.

IVC =

C∑
c=1

WoEc

(
P (c|good)− P (c|bad)

)
(4.2)

Making the right categorization of input features is a complex process, since there is a trade-off
between the requirements mentioned before. Having many and small categories will increase the
IV but might affect the final performance of the model negatively in terms of poor generalizability.
On the other hand, having too few categories will make the model too general and unable to make
accurate predictions. (Engelmann and Rauhmeier, 2011, p.34-35)

Implementation 26

Manual selection

Since credit assessment and predicting credit defaults is an area that has been deeply explored
historically, there are several characteristics widely known that intuitively should indicate a higher
risk such as an applicant’s income or the size of the loan. Given that many of the available inputs
are conceptually relevant combined with the results from the Information Value tests, the list of
input features to examine further was narrowed down.

Initially, each input feature was visualized separately against the default frequency. In Figure 4.1
it is illustrated that if the applicant owns a property, the average default frequency is significantly
lower than for customers that do not own a property. It is also shown that property owners con-
stitute 14% of the data set, which is considered a large enough category. This initial approach was
applied repeatedly to remove features that shown no difference in terms of discriminatory power,
and to remove or in some cases merge categories that were too small (<5% of the total population).
Using this procedure, the remaining input features were then ranked based on discriminatory power
and tested one by one to see the impact of adding and removing one input feature at a time to
achieve an optimal set of features.

Figure 4.1: Default frequency (left) and distribution (right) of customers with
and without a property

Permutation importance

To further ensure that the selected features contribute to the desired performance metric the
method of permutation importance was used. It is a crude method consisting simply of scrambling
the values of one input feature several times and measuring the difference in the desired perfor-
mance metric. In this instance, average precision in the interval 20-50% recall was used as the
desired metric. The values of each input feature vector were scrambled separately and the loss in
performance was measured one by one and ranked accordingly. (Breiman, 2001, p.18-20)

Implementation 27

Dealing with input correlation

In linear and logistic regression, multicollinearity is an issue, meaning that it hurts a model’s
stability to use input features with very high correlation. On the other hand, non-parametric
models such as support vector machines and neural networks are not as easily affected by high
input correlation. Therefore, the models that were theoretically affected by multicollinearity were
only trained on independent input features. The highest observed correlation between used inputs
was 0.52 which should not be an issue in terms of multicollinearity. (Bolton, 2009, p.27) In Figure
4.2, a correlation heatmap for selected variables is shown.

Figure 4.2: Correlation heatmap showing high positive correlation in dark coloring,
and no or negative correlation in light coloring.

4.2.2 Construction of optimal feature configurations

Using the aforementioned methods and evaluation criteria, the input features were carefully refined
and grouped accordingly to ensure high discriminatory power as well as generalizability, and is
shown in Appendix A. In Table A.2, Feature Subset 1 is shown, where all input features were
re-coded as dummy variables, i.e. only taking values 0 or 1. In Table A.3, Feature Subset 2 is
shown, where numerical variables such as income and age were categorized into 3-5 categories,
combined with dummy variables such as gender and property ownership. In Table A.4, Feature
Subset 3 is shown were numerical features remained untouched. A combination of these subsets
was constructed to generate the best performance results and is shown in Table A.5, later referred
to as Feature Subset 4.

Implementation 28

4.2.3 Separating test sets by loan amount

Large loans generate more revenues and are - when paid back in full - more profitable, since mar-
keting and handling costs are dependent on the number of loans rather than capital lent, leading
to lower marginal costs the higher the loan amount. They are however more risky, both in terms
of amount of capital at risk of default and costly in terms of tied up capital.

Loan amount seems to affect risk of default considerably. Larger loans tend to be riskier where
25% of every loan above 20 kSEK defaults while less than 10% of small loans (<4 kSEK) defaults.
Of the total number of approved loan applications, large loans (>20 kSEK) account for 26%. Of
the total principal amount of the lending volume however, large loans account for 53%, and of the
total principal amount of loans that defaulted, large loans account for 62%. Hence, it is critical for
the models to perform well on large loans, in terms of both precision and recall to prevent credit
losses without rejecting too many "good" customers. Therefore, the models were evaluated on how
well they performed depending on the loan amount for each loan application, in order to ensure
that large loans were at least as accurately predicted as the smaller loans. Three subsets of the
test set were constructed for the intervals 1-4kSEK (small loans), 5-20 kSEK (mid-sized loans) and
21-25 kSEK (large sized loans) to be tested separately in Section 5.2.

The default frequencies and percentage of total number of loans in the data set for the three subsets
are illustrated in Figure 4.3. Remember that the subset of large-sized loans only constitutes 26% of
the number of loan applications, but 53% of the total lending volume in terms of principal amount.

Figure 4.3: Default frequency (left) and distribution (right) for customers in the
three loan amount categories

Implementation 29

4.3 Classifier configuration and tuning

Initially, Feature Subset 1, 2 and 3 shown in Appendix A were tested on the models to investigate
whether one model would achieve higher performance than another on a different feature subset.
Finally a combination of the three subsets was chosen, referred to as Feature Subset 4, and is listed
in Table A.5 in Appendix A. Feature Subset 4 was chosen since it lead to better performance in all
instances, as well as simplifying the benchmarking process between the models by using the same
inputs.

The models were implemented using scikit-learn, an open source Machine Learning Package in
Python that provides efficient implementations of various Machine Learning algorithms and met-
rics tools. The model hyperparameters were then tuned by using a modified implementation of
average precision, allowing for computing average precision over specified recall intervals rather
than 0 to 100%. Grid search was used to tune the models. Grid search is a brute-force approach
which basically means that a large amount of model parameter combinations is evaluated using
cross-validation, and then the combination with the best performance (in terms of average preci-
sion in this case) is chosen. When a decent model parameter combination was obtained, manual
fine-tuning was performed to push performance further.

The model output is a value 0 ≤ ŷ ≤ 1. In order to classify a sample, a threshold u is defined,
where 0 ≤ u ≤ 1. If the output value ŷ is higher than u, the data sample is classified as "bad",
and classified as "good" if ŷ is lower than u. This also allows for risk adjusting without re-training
the models, which is convenient when used in practice. By increasing the threshold u, precision
increases and recall decreases, and vice versa when lowering u.

4.3.1 Logistic regression

The model was trained using the Newton’s conjugate gradient algorithm. Class-weights were set
to 1:1 since no improvement was shown by altering the weights.

4.3.2 Decision tree

The minimum sample split and minimum samples per leaf were set to 2 and 1 respectively. The
optimal max depth d was determined using grid search over the interval d = 1, 2, . . . , 19, 20. Final
max depth was set to d = 8. The quality of the splits was evaluated using Gini index. Class-weights
were set to 1:1 since no improvement was shown by altering the weights.

4.3.3 Random forest

A grid search was performed to determine the number of trees/estimators m over the interval
m = 1, 2, . . . , 199, 200 and the tree depth d over the interval d = 1, 2, . . . , 19, 20. The quality of the
splits was evaluated using Gini index, and the number of features considered for each split was set
as the square root of the number of trees

√
m, which is the recommended setting. Final number

of trees was set to m = 100 and depth of tree set to d = 7. Class-weights were set to 1:1 since no
improvement was shown by altering the weights.

4.3.4 k-Nearest Neighbors

The number of neighbors k to include in the algorithm was set using grid search between
k = 1, . . . , 99, 100. The final number of nearest neighbors was set to k = 30. Class-weights were
set to 1:1 since no improvement was shown by altering the weights.

Implementation 30

4.3.5 Support vector machine

Initially, the kernel type was set to ’linear’, which is the linear kernel function. The reason was
that the non-linear kernels ’poly’, ’rbf ’ and ’sigmoid’ required unmanageable computation time
and did not give any satisfying results despite various attempts.

When using the linear kernel function, the cost function C and class weights were the only hy-
perparameters needed to be tuned. They were determined using grid search for the interval
C = 10−5, 10−4, . . . , 104, 105 and class-weights in the interval 1:1, 1:1.5,. . .,1:4.5,1:5. C was fi-
nally set to C = 10 and class-weights set to 1:4.

4.3.6 Artificial neural network

Number of hidden layers was set to one. Two or more hidden layers were tested without increase in
performance and were therefore discarded. Learning rate was set to ’invscaling’ which gradually
decreases the learning rate at each time step using an inverse scaling exponent. Various regular-
ization methods were evaluated, where L2 regularization performed the best. An extensive grid
search was then performed with following parameters over respective intervals:

• Number of nodes in hidden layer: h = 20, 30, . . . , 190, 200.

• L2 penalty parameter: α = 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 0.999

• Optimizer: ’quasi-newton’, ‘sgd’, ‘adam’

• Class weights: 1:1, 1:1.5,. . .,1:2.5,1:3

Final parameters were set to h = 100, α = 0.5, class weights 1:1.5 and the Adam algorithm used
as optimizer.

4.3.7 Voting ensemble

The soft voting model was used instead of the hard voting model since it performed better in all
instances. Then, various model combinations, feature subset combinations and weightings were
tried. The final version is shown in Table 4.1, where two logistic regression models, one using
Feature Subset 1 in Table A.2 and one using Feature Subset 4 in Table A.5 were weighted together
with a neural network trained as explained in Section 4.3.6.

Classifier Weight
Logistic regression (Feature Subset 1) 0.25
Logistic regression (Feature Subset 4) 0.5
Neural network (see Section 4.3.6) 0.25

Table 4.1: Included models in the soft voting ensemble with corresponding weights

Many attempts were made to include other models in the voting ensemble, but they failed to
improve performance.

Chapter 5
Results

Clarification of abbreviations and performance metrics

In this chapter, performance of five chosen classifiers is presented; 1. Logistic regression, 2. Ran-
dom forest, 3. Support vector machine, 4. Neural network and 5. Soft voting ensemble consisting
of two logistic regression models and a neural network. They are abbreviated in forthcoming ta-
bles as 1. LOG, 2. RFO, 3. SVC (Support Vector Classifier), 4. MLP and 5. SVO respectively.
k-Nearest Neighbors and the decision tree classifier were tested but their results are left out of this
chapter due to overall poor performance. In Table 5.1, the model abbreviations are listed.

Classifier Abbreviation

Logistic Regression LOG
Random Forest RFO
Support Vector Machine SVC
Neural Network MLP
Soft Voting Ensemble SVO

Table 5.1: Model abbreviations used in the forthcoming results tables

As one of the most important aspects of the model is flexibility to handle changes in the Com-
pany’s risk appetite over time, several measures of performance are needed to evaluate the models.
Precision is measured at 35% recall, this metric is called PRX in the following results. Average
precision score is also measured at recall intervals 20-35% and 35-50% to measure performance on
higher and lower recall levels. Average precision also serves as a measure of overall performance
rather than measuring precision at a certain precision/recall threshold. This factor was proved to
be important since precision demonstrated rather unstable behavior depending on which threshold
it was evaluated at. The metrics used throughout this chapter are referred to as:

• AP1 (Average precision at recall level 20-35%)

• AP2 (Average precision at recall level 35-50%)

Moreover, the precision-recall curve is initially displayed to illustrate the precision-recall trade-off
for each model where the area under the curve can be interpreted as the average precision score.

31

Results 32

5.1 Overall performance

In this section, model performance using the full data set was performed and evaluated. In Figure
5.1 the precision-recall curve is shown for the five models under consideration.

Figure 5.1: Average precision curve

As seen in Figure 5.1, most models offer similar performance and a somewhat smooth trade-off
between precision and recall. Notably, the random forest classifier has a more volatile trade-off
between precision and recall, as well as significantly under-performing on high precision/low recall-
pairs. The soft voting ensemble’s AP curve seems somewhat smoother than for the other individual
classifiers. In Table 5.2, the average precision scores for recall levels 20-35% and 35-50% as well as
precision at recall 35% is shown.

LOG RFO SVC MLP SVO

AP1 0.509 0.4688 0.4956 0.4974 0.5032
AP2 0.4275 0.4371 0.4191 0.4438 0.4355
PRX 0.4825 0.4867 0.4783 0.4867 0.4786

Table 5.2: Overall performance on test set

Table 5.2 confirms what was seen in Figure 5.1; most models show similar performance with the
random forest classifier as a slight under-performer on lower recall levels.

Results 33

5.2 Performance on applications of varying loan amounts

For the results below, the data set was divided into three subsets as explained in Section 4.2.3:

• Subset 1: Loans between 21-25kSEK, 1037 samples with 266 defaults (26%)

• Subset 2: Loans between 5-20kSEK, 1923 samples with 359 defaults (19%)

• Subset 3: Loans between 1-4kSEK, 1092 samples with 98 defaults (9%)

The models were then trained on the original 80 % training set and tested on each and one of the
three loan amount categories. The results are presented below.

LOG RFO SVC MLP SVO

AP1 0.5632 0.5058 0.557 0.5356 0.5794
AP2 0.5055 0.4592 0.4867 0.4917 0.5061
PRX 0.5333 0.4528 0.4898 0.5208 0.5217

Table 5.3: Performance on test subset 1 (large loan amounts)

As seen in Table 5.3, models are able to reject a large portion of defaulting large loans with a
precision of approximately 50%, thus indicating that the models perform better than average on
large loan amounts.

LOG RFO SVC MLP SVO

AP1 0.503 0.4954 0.4906 0.5106 0.492
AP2 0.3725 0.3741 0.3841 0.3951 0.3747
PRX 0.4528 0.5106 0.4615 0.48 0.4286

Table 5.4: Performance on test subset 2 (mid-sized loan amounts)

As seen in Table 5.4, the models are not predicting mid-sized loans as accurate as large sized loans.

LOG RFO SVC MLP SVO

AP1 0.2038 0.2011 0.1882 0.2073 0.1904
AP2 0.1714 0.1181 0.1556 0.1744 0.1686
PRX 0.18 0.125 0.15 0.1731 0.1765

Table 5.5: Performance on test subset 3 (small loan amounts)

As seen in Table 5.5, predicting defaults of small loan amounts (>4 kSEK) is very difficult. Only
9% of these loans default which could be part of the reason. Using a fixed risk threshold over
all loan amounts results in models predicting almost no defaults among small loan amounts and
few among the mid-sized loans. Going forward, the reader should keep in mind that performance
on large loan amounts is crucial and performance on small loan amounts is of lesser importance.
During the rest of the Results chapter which will explore stability of performance, following three
tables will be presented for each section, including the previously used metrics AP1, AP2 and
PRX :

1. Overall performance on the test set.

2. Performance on test subset 1 (large loan amounts).

3. Performance on test subset 2 (mid-sized loan amounts)

Results 34

5.3 Performance stability testing

5.3.1 Cross-validation of performance

Since precision seems to vary a lot over different recall levels for all models (see Figure 5.1) and
the test set is relatively small (only 810 samples of which 150 are denoted "bad") it is important
to evaluate performance across many different train/test splits to reduce some of the variance of
the performance measurements. Below, performance averaged from 18 randomized train-test splits
(18-fold cross-validation) is shown. The splits were made with 70% train data and 30% test data
to further help stabilize test results at expense of some performance.

LOG RFO SVC MLP SVO

AP1 0.4446 0.4178 0.442 0.4436 0.4439
AP2 0.3789 0.3777 0.3819 0.3813 0.3809
PRX 0.4137 0.4053 0.4088 0.4151 0.4142

Table 5.6: Average performance over 18-fold cross-validation on full test set

LOG RFO SVC MLP SVO

AP1 0.5211 0.4419 0.4552 0.5043 0.5187
AP2 0.4772 0.4218 0.4349 0.4689 0.4786
PRX 0.4989 0.43 0.4403 0.4864 0.4983

Table 5.7: Average performance over 18-fold cross-validation on test subset 1
(large loans)

LOG RFO SVC MLP SVO

AP1 0.3803 0.3541 0.379 0.3689 0.3766
AP2 0.3434 0.327 0.3425 0.3393 0.346
PRX 0.3556 0.3415 0.3584 0.3536 0.3605

Table 5.8: Average performance over 18-fold cross-validation on test subset 2
(mid-sized loans)

After cross-validating the performance results it becomes even more clear that the performance
scores are very similar for all models except random forest which shows poor performance. The
support vector classifier is also performing worse than logistic regression, neural network and
soft voting ensemble, especially on large loans. When estimating the standard deviations of the
performance scores over the 18 different splits, about the same standard deviations were obtained
for all models. For the results in Table 5.6, the standard deviations were approximately 3.5% for
all models and all performance metrics. Naturally, since the subsets of large and mid-sized loans
are smaller than the full set, the standard deviations of those scores were somewhat higher but
again about the same across all models.

Results 35

5.3.2 Data volume effect on performance

Starting out with a relatively small data set is often a challenge from a modelling standpoint.
Since the relevant data is generated by new customers, it is trivially impossible to gather more
data at a given point in time. This is particularly the case when limiting the data to the customers
of this particular risk segment. Data generated from competitors’ customers could potentially
be useful if the customer characteristics was sufficiently similar. Nonetheless, disregarding the
possibility of gathering more data at this point in time it is relevant to investigate how sensitive
the models are to changes in training data volume. This could potentially offer some insight to how
the model performance is expected to increase as time progresses and the training data naturally
grows. Cross-validated performance tests were run, but training on only 7% of the available data
as opposed to 70% in Section 5.3.1. The average precision score averaged over 18 train-test splits
with 7% train data and 93% test data are shown below.

LOG RFO SVC MLP SVO

AP1 0.3862 0.3376 0.3664 0.3828 0.3905
AP2 0.3409 0.3019 0.3292 0.3345 0.3443
PRX 0.3642 0.3185 0.3482 0.3577 0.3687

Table 5.9: Average performance over 18-fold cross-validation by models trained
on only 7% of data

LOG RFO SVC MLP SVO

AP1 0.4121 0.383 0.3675 0.4051 0.4114
AP2 0.3861 0.3541 0.3533 0.3747 0.385
PRX 0.3965 0.3643 0.3625 0.3855 0.3959

Table 5.10: Average performance over 18-fold cross-validation on test subset 3
(large-sized loans), by models trained on 7% of data

LOG RFO SVC MLP SVO

AP1 0.332 0.2708 0.3115 0.312 0.3302
AP2 0.3049 0.2601 0.2854 0.2908 0.3017
PRX 0.322 0.2662 0.3008 0.3042 0.3186

Table 5.11: Average performance over 18-fold cross-validation on test subset 2
(mid-sized loans), by models trained on 7% of data

The performance drop from training on only 7% of the data is clearly shown in the above tables
comparing with the results in Section 5.3.1 where 70% of the available data was used. However,
the drop is not as severe as might be expected from reducing the number of training samples from
2836 samples to only 284.

To be able to further draw conclusions from the effect on performance by increasing training data
volume, similar tests as above were run but with 35% of the available data used for training. The
results are shown in Figure 5.12, 5.13 and 5.14.

Results 36

LOG RFO SVC MLP SVO

AP1 0.4296 0.3977 0.4257 0.4273 0.4318
AP2 0.3721 0.3567 0.3719 0.3693 0.375
PRX 0.4021 0.3783 0.3988 0.4019 0.4052

Table 5.12: Average performance over 18-fold cross-validation by models trained
on 35% of data (1814 samples)

LOG RFO SVC MLP SVO

AP1 0.4855 0.4132 0.439 0.4717 0.486
AP2 0.4512 0.3988 0.4155 0.4352 0.4505
PRX 0.4755 0.408 0.4249 0.45 0.4677

Table 5.13: Average performance over 18-fold cross-validation on test subset 3
(large-sized loans), by models trained on 35% of data

LOG RFO SVC MLP SVO

AP1 0.3703 0.3223 0.3624 0.3634 0.373
AP2 0.3286 0.2985 0.3235 0.3216 0.3322
PRX 0.3475 0.309 0.3361 0.3402 0.351

Table 5.14: Average performance over 18-fold cross-validation on test subset 2
(mid-sized loans), by models trained on 35% of data

Comparing the results in Table 5.6, 5.7 and 5.8 (70% training data) to Table 5.9, 5.10 and 5.11 (7%
training data) as well as to Table 5.12, 5.13 and 5.14 above (35% training data) it is clear that an
increase in data volume has a positive effect on performance. It is however difficult to determine
when or if the gain in performance from increased data volume would stagnate further on. There
is no guarantee and rather unlikely that the performance gain would continue to increase with a
log-linear relationship as shown in the results. This is further discussed in Section 6.3.

Results 37

5.3.3 Stability of performance in time

Since the models in reality will be trained on historical loan applications and used to predict new
ones, it is important that performance does not sharply drop when training on old data and testing
on new. To test this, the models were trained on the "oldest" 80% of the data set and tested on
the "newest" 20%.

LOG RFO SVC MLP SVO

AP1 0.4388 0.3726 0.4338 0.4423 0.4403
AP2 0.3808 0.3648 0.3798 0.3777 0.377
PRX 0.4185 0.3775 0.4162 0.4278 0.4451

Table 5.15: Performance on test set chosen as the "newest" 20% of samples

LOG RFO SVC MLP SVO

AP1 0.5407 0.509 0.5315 0.5182 0.5374
AP2 0.5052 0.4429 0.506 0.4925 0.4968
PRX 0.5091 0.4746 0.5185 0.5185 0.4828

Table 5.16: Performance on test subset 1 (large loan amounts) chosen as the
"newest 20% of samples

LOG RFO SVC MLP SVO

AP1 0.3878 0.3215 0.381 0.3841 0.396
AP2 0.336 0.3238 0.3329 0.3231 0.3296
PRX 0.3776 0.319 0.3663 0.3737 0.3725

Table 5.17: Performance on test subset 2 (mid-sized loan amounts) chosen as the
"newest 20% of samples

Compared with the results from Section 5.3.1, the performance is in line with the 18-fold average
performance.

5.3.4 Oversampling effect on performance

SMOTE and ADASYN

Attempts were made to create synthetic "bad" samples by using the oversampling techniques
SMOTE and ADASYN described in Section 3.2 to generate 25% additional "bad" samples. These
attempts were however unsuccessful, since they resulted in lower performance for all models. There-
fore, the results are not presented nor further discussed. The believed reason for this is that the
imbalance itself might not be the issue, rather the limited data volume as a whole.

Results 38

5.4 White-boxing and evaluation of feature importance

5.4.1 Permutation importance

Permutation importance was evaluated with respect to the effect of each input feature on the
average precision between 20-50% recall. In other words, a weight of 0.1 should be interpreted
as contributing to an increase of 10% in average precision on the relevant recall levels. The
permutation tests were run on both training and test data on the original split of 80% train and
20% test data. The results are shown for logistic regression and the neural network, with the
results for the other models shown in Appendix B.

Figure 5.2: Permutation importance for logistic regression on test set (left) and
train set (right)

Figure 5.3: Permutation importance for neural network on test set (left) and train
set (right)

As seen in the above tables, the neural network seems to base predictions on very similar input
features to logistic regression with loan amount being the strongest predictor.

Results 39

5.4.2 Explaining overall predictions using SHAP

In Figure 5.4 and 5.5, the overall explanations for all predictions by the logistic regression model
and the neural network are shown using the SHAP approach. Similar plots for the other models
are found in Appendix B. A higher SHAP value indicates a higher predicted probability of default.
The coloring indicates the value of the specific input feature, where red is high relative to other
samples and blue represents low relative values. So, for the binary feature "man" taking values
0 or 1, a red value would indicate a high value, 1 (i.e. a male customer) and a red value (5) of
"income_5" indicates the highest income category (>27.5 kSEK). The distribution of samples with
respect to SHAP values is represented by the thickness of the blobs.

Figure 5.4: Effect on predictions by logistic regression per feature by SHAP value

Figure 5.5: Effect on predictions by neural network per feature by SHAP value

As seen in Figure 5.4 and 5.5, the logistic regression model and the neural network bases predictions
on very similar features. However, worth to notice is that the neural network does not assign the
same SHAP value to each sample for e.g. adtraction_no = 1.

Results 40

5.4.3 Explaining individual predictions through SHAP

Below, explanations of individual predictions are made using SHAP value on predictions performed
by logistic regression and neural network. Figure 5.6 and 5.7 show the explanation of a correctly
classified "bad" customer for each model respectively, and Figure 5.8 and 5.9 show the explanations
of a correctly classified "good" customer. The length of each segment in the diagram represents
the effect on the prediction by each input feature value adding up - from the base value - to the
model output. Similar plots for the other models are included in Appendix B.

Figure 5.6: Individual explanation of LOG on a "bad" customer prediction

Figure 5.7: Individual explanation of MLP on a "bad" customer prediction

Figure 5.8: Individual explanation of LOG on a "good" customer prediction

Figure 5.9: Individual explanation of MLP on a "good" customer prediction

The individual explanations provide an interpretable visualization of how the models made their
classification. As expected from Figure 5.4 and 5.5, the logistic regression model and the neural
network performed quite similarly.

Results 41

5.4.4 Explaining individual predictions through LIME

In Figure 5.10 and 5.11, individual predictions are explained using the LIME technique for cor-
rectly classified "good" and "bad" predictions, where each bar represents the importance of the
corresponding input feature.

Figure 5.10: Individual explanation of predictions by logistic regression and neural
network using LIME on a "bad" customer prediction

Figure 5.11: Individual explanation of predictions by logistic regression and neural
network using LIME on a "good" customer prediction

Much like SHAP, the LIME explanation technique provides a tool for interpreting and visualizing
individual predictions.

Chapter 6
Discussion

6.1 Model prediction performance

By comparing the overall average performance in Section 5.3.1, there is no clear superior model.
Logistic regression, support vector machine, neural network and the soft voting ensemble seem to
perform quite equal on all intervals. Hence, it is hard to draw any conclusions from these results
alone since there is a difference of about 1-3% in precision between the models. For a certain cutoff
level one model achieves the highest precision, and for another cutoff level the same model was not
the best performing, which is visualized in Figure 5.1. Random forest was not able to achieve the
same average precision as the other models on recall level 20-35%, which could be explained by
that it required strong regularization in order not to overfit completely. The k-Nearest Neighbors
and decision tree models were not performing well despite various attempts and were therefore
rejected on an early stage.

A key insight was that the most important input feature without doubt was the loan amount that
the loan applicant had applied for. For the largest loan amounts (in the interval 21-25kSEK) the
most successful models had a precision of >54% at recall level 20-35% and a precision of >51%
at recall level 35-50% (see Table 5.3). For mid-sized loans (in the interval 4-20kSEK), the most
successful models had a precision of >51% at recall level 20-35% and a precision of >37% at recall
level 35-50% (see Table 5.4). For the smallest loan amounts however, the precision were about
18-21%, which is almost equal to random guessing (see Table 5.5). It was expected that it would
be easier to classify larger loans because of the higher default frequency, but perhaps not by this
magnitude. This suggests that the models perhaps should only be used to classify loan applications
on loans between 4-25kSEK, or to achieve even higher precision, on loans between 21-25kSEK. As
discussed in Section 4.2.3, the loans in the interval 21-25kSEK accounts for 53% of the Company’s
total lending volume, and 62% of the total defaulted lending volume. Given the volume of this
group in terms of capital and that it has a default frequency of almost 25%, this subset of cus-
tomers is the most crucial to classify accurately. Why the models fail to classify the smallest loans
could be because of the low default frequency of ∼ 9% compared with the data set overall of 17.8%.

6.2 Model complexity and transparency

In Section 5.4, prediction explanations using SHAP values and LIME was illustrated for the neural
network and the logistic regression model. These models were chosen in order to illustrate the pos-
sibility of explaining a black-box model’s predictions as well as comparing the explanation with a
white-box model’s such as logistic regression. Since SHAP and LIME use two completely different
approaches in estimating an input feature’s importance, it was also expected that the explanations
would slightly differ as well. The two methods’ output showed quite similar results, and both are
able to explain an individual prediction quite illustrative and logical. Input features that showed a
higher default risk during the feature engineering process were also showing a higher effect on the

42

Discussion 43

classification decision according to LIME and SHAP. To get the insight that the neural network
uses input features logically to classify a data sample instead of using non-logical relationships such
as sample noise increases the model reliability. This means that when using the model, the credit
analyst can refer to the results of the explanation to understand the underlying model decision for
an individual prediction using either LIME or SHAP.

A clear advantage with the SHAP approach is that it can provide an overall explanation for the
entire data set, which is shown in Figure 5.4. The overall explanation seems to be consistent
with the individual predictions that were performed, which increases the reliability of the SHAP
approach. For LIME on the other hand, there is no currently available implementation such that
it can give an overall explanation of the whole data set. Not knowing the explanation over the
entire data set means that it is unknown whether the explanation is consistent over all predictions.
Therefore, a more reliable approach would be to use SHAP to get both individual explanations as
well as an overall explanation.

The fact that increased complexity did not improve model performance was not a surprise. Given
the relatively small data set of 4052 samples to both train and test the models, a simple logistic
regression model should theoretically perform almost equal to e.g. a strongly regularized neural
network. Also, when training the support vector machine, the non-linear classifiers showed no im-
provements, which would strengthen this assumption. Furthermore, the numerical input features
were re-coded in such a way that it would suit logistic regression by constructing simple generalized
dummy variables. If the input features were used without any re-coding, more complex models
might fare better than logistic regression.

By using SHAP or LIME, the issue with black-box models’ inability to provide a prediction explana-
tion is somewhat dealt with. Nonetheless, when choosing between two models that perform equal,
a reasonable choice would be to use the one with the lowest complexity and highest transparency.
This would suggest that the logistic regression model is superior to e.g. the neural network or the
soft voting ensemble, since it’s easier to update and adjust and is easier to comprehend when using
it. However, the more complex models should not be rejected in the long-term since they may
improve performance when more data samples and input features become available in the future.

6.3 Data insufficiency and stability

When evaluating model performance, the results varied significantly depending on how the train/test
split was made. For one specific split, one model was superior whereas for another split another
one performed better. This was an issue for all of the models, which could be explained by the
limited amount of data since all models were affected. To avoid the problem with instability, in
Section 5.3.1 the model performance was instead cross-validated on an average of 18 different splits
where the models were re-trained on each split to get the model that performed the best over the
entire data set. These results showed that logistic regression, neural network and the soft voting
ensemble performed similarly, with support vector machine and random forest showing slightly
worse performance, especially for large-sized loans. Using any of the classifiers, one should how-
ever be aware that the final precision may deviate quite significantly, although on acceptable levels
(standard deviation of approximately 3.5% for the average precision scores).

The models were also tested to ensure that they were stable over time. This was done by split-
ting the data chronologically by training the models on the "oldest" 80% of the loan applications
and testing the performance on the "newest" 20%. By studying the results in Section 5.3.3, the
models do not seem to lose more than limited predictive power over time, i.e. time dependency or
seasonality seems not to be that much of an issue. Comparing to the cross-validated performance
tests in Section 5.3.1, the "newest" 20% of the gathered data seem to be quite representative of
the data set as a whole. At least the model does not seem to have trouble predicting defaults in

Discussion 44

the newer data relative to predicting defaults in the whole data set, which is a satisfying result
given that the model will be used on future data. This is however not a guarantee that the model
will, if implemented, perform just as good on new data, but it is a moderate indication that the
performance will not sharply decline over time.

The issue with lack of data samples was examined in Section 5.3.2 where the models performed
significantly worse when training on only 7% and 35% of the available data as opposed to the
original training k -folds of 70%. There is a somewhat log-linear relationship between data volume
and performance which would suggest that the models will improve even further when more data
becomes available in the future, even though this is not a guarantee.

As seen during the feature engineering process in Section 4.2, the only input features available are to
be seen as relatively weak predictors. Even though there were many variables that in combination
yielded a stronger discriminatory power, the theoretical precision and recall that can be achieved
is somewhat limited. A precision of 50% could be interpreted as a poor performance compared to
e.g. classification of flower species, where features are available that enables a precision well above
90%. However, given the limited amount of data and weak predictors and the seemingly difficult
classification problem of scorecard modelling, the preferred way believed to improve the models is
a combination of 1) gather more data samples, and 2) find more input features that could have a
higher discriminatory power. Of course, extended fine-tuning of the models could be performed,
but is expected to have only marginal effect on performance.

Discussion 45

6.4 Conclusion

Given that four models with varying complexity performed equally well in terms of prediction per-
formance and stability, there is no additional value in increased complexity, rather the opposite.
Thus, the logistic regression model which is the simplest of the well-performing models should be
proposed for further use. However, more sophisticated models such as the neural network should
not be ruled out for future use, since it has shown superior performance in complex decision pro-
cesses where large data sets can be used for training. This is nonetheless ahead in time and should
be regarded as a long-term experimental activity.

Since the Company has no current statistical scoring model implemented long enough that can be
benchmarked against, it is hard to determine whether the results actually offer any improvements
in terms of increased profitability. By using a machine learning classifier however, the Company
has the potential to reject approximately 20-35% of its current "bad" customers to the cost of
rejecting one "good" customer for each "bad" (given a ∼ 50% precision as shown in Section 5.1).
This 50/50 trade-off seems reasonable in a profitability perspective, since one defaulting customer
will by all means be a higher cost than the lost revenue of rejecting a non-defaulting customer,
given the Company’s loan interest rates of about 30%. Thus, even without an existing model to
benchmark against, it can be concluded that it would be financially favorable for the Company to
apply a model to classify loan applications.

Future performance cannot be guaranteed in terms of stability and time-dependency, despite
promising indications showed in the results. If a model were to be implemented, the recom-
mendation is to use it with caution. The model could initially be tested and evaluated on a small
portion of the loan applications before using it on a full scale given that the results are satisfactory.
When more data samples and/or input features becomes available, the models should regularly be
re-trained and evaluated to ensure both precision and stability. Optimally, a high precision/ low
recall configuration should be used in order not to jeopardize revenues by incorrectly rejecting too
many "good" customers. Profitability-wise, incorrectly classifying "bad" customers as "good" is
not considered an introduced business risk since the Company would have accepted these customers
anyways if no model were used. Incorrectly classifying too many "good" customers as "bad" on the
other hand is more problematic, since it potentially could cause falling revenues without lowering
the default rates enough to compensate. The risk of having a configuration with high recall is that
the model might show poor precision, which could be costly in terms of losing "good" customers.
Anyhow, machine learning classification shows great potential in classifying high-risk consumer
credits and should definitely be considered to be included in the Company’s application approval
process.

Chapter 7
Further work

7.1 Profitability analysis

With a reliable classification model at hand, the next step is to calculate the profitability of a loan
for a given customer in order to set the optimal trade-off between precision and recall. This can be
seen as a fairly complex analysis that involves calculating revenues (such as interest rate, reminder
charges etc.) and costs (such as marketing costs, personnel, financial expenses etc.) for each loan
based on its loan size, as well as determining the recovery rate for a defaulted loan (i.e. how many
percent of the principal amount of a default is an actual loss). This is beyond the scope of this
report but is a central part in order to configure the model efficiently, since increased profitability
together with regulatory purposes would be the ultimate goal of using a scoring model.

7.2 Gathering of new input features- Extended feature engineering

As discussed, perhaps the largest area of model improvement lies in finding input features with
stronger predictive power. One action to take is for the Company to gather vast amounts of
information both retrospectively and prospectively and evaluate if there are any significant findings
in terms of discriminatory power. Also, there are potentially combined variables that can be created
out of existing ones that could improve the model performance further.

46

Chapter 8
References

[Bishop 2006] Bishop, Christopher M.: Pattern Recognition and Machine Learning. Cambridge
CB3 0FB, U.K : Microsoft Research Ltd, 2006. – Available at: https://bit.ly/2dfDYWs

[Bolton 2009] Bolton, Christine: Logistic regression and its application in credit scoring.
Pretoria, South Africa : University of Pretoria, 2009. – Available at: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.1024.2660&rep=rep1&type=pdf

[Bousquet and Elisseeff 2002] Bousquet, Olivier ; Elisseeff, André: Stability and Gener-
alization. In: Journal of Machine Learning Research 2 (2002), S. 499–526. – Available at:
http://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf

[Breiman 2001] Breiman, Leo: Random Forests. Berkeley, CA 94720 : Statistics Department,
University of California, 2001. – Available at: https://www.stat.berkeley.edu/~breiman/
randomforest2001.pdf

[Buitinck et al. 2013] Buitinck, Lars ; Louppe, Gilles ; Blondel, Mathieu ; Pedregosa,
Fabian ; Mueller, Andreas ; Grisel, Olivier ; Niculae, Vlad ; Prettenhofer, Peter ;
Gramfort, Alexandre ; Grobler, Jaques ; Layton, Robert ; VanderPlas, Jake ; Joly,
Arnaud ; Holt, Brian ; Varoquaux, Gaël: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, 2013, S. 108–122

[Cawley and Talbot 2010] Cawley, Gavin C. ; Talbot, Nicola L. C.: On Over-fitting in Model
Selection and Subsequent Selection Bias in Performance Evaluation. (2010). – Available at:
http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf

[Chawla et al. 2002] Chawla, Nitesh V. ; Bowyer, Kevin W. ; O.Hall, Lawrence ;
Kegelmeyer, W.Philip: SMOTE: Synthetic Minority Over-sampling Technique. In: Jour-
nal of Artificial Intelligence Research 16 (2002), S. 321–357. – Available at: https://www.cs.
cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html

[Engelmann and Rauhmeier 2011] Engelmann, Bernd ; Rauhmeier, Robert: The Basel II
Risk Parameters- Second edition . Springer-Verlag Berlin Heidelberg, 2011. – Available at:
http://www.hkfrm.org/resources/Risk_Parameters.pdf

[Fawcett 2006] Fawcett, Tom: An introduction to ROC analysis. In: Pattern Recognition
Letters 27 (2006), Nr. 8, S. 861–874. – Available at: https://doi.org/10.1016/j.patrec.
2005.10.010

[Goodfellow et al. 2016] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep
Learning. MIT Press, 2016. – Available at: http://www.deeplearningbook.org

[He et al. 2008] He, Haibo ; Bai, Yang ; Garcia, Edwardo A. ; Li, Shutao: ADASYN: Synthetic
Sampling Approach for Imbalanced Learning. International Joint Conference on Neural Network,

47

References 48

Universidad de Granada, 2008. – Available at: https://sci2s.ugr.es/keel/pdf/algorithm/
congreso/2008-He-ieee.pdf

[Kohavi 1995] Kohavi, Ron: A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. Morgan Kaufmann, 1995. – 1137–1143 S. – Available at: https://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.529

[Lundberg and Lee 2017] Lundberg, Scott M. ; Lee, Su-In: A Unified Approach
to Interpreting Model Predictions. In: Part of: Advances in Neural Information Pro-
cessing Systems 30 (NIPS) (2017). – Available at: https://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

[MIT-OpenCourseWare retrieved 2019] MIT-OpenCourseWare: Lecture on Support Vector
Machines. retrieved 2019. – Available at: http://courses.csail.mit.edu/6.034f/ai3/SVM.
pdf

[Murphy 2006] Murphy, Kevin P.: Machine Learning- A Probabilistic Perspective. Cambridge,
Massachusetts : The MIT Press, Massachusetts Institute of Technology, 2006

[Pedregosa et al. 2009–2018] Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ;
Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ;
Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay,
E.: Scikit-learn: Machine Learning in Python,v0.20.3. In: Journal of Machine Learning Research
12 (2009-2018)

[Ribeiro et al. 2016] Ribeiro, Marco T. ; Singh, Sameer ; Guestrin, Carlos: "Why
should I trust you?" Explaining the Predictions of Any Classifier. Seattle, WA 98105, USA :
University of Seattle, 2016. – Available at: https://www.kdd.org/kdd2016/papers/files/
rfp0573-ribeiroA.pdf

[Ruder 2017] Ruder, Sebastian: An overview of gradient descent optimization algorithms.
Insight Centre for Data Analytics, NUI Galway, 2017. – Available at: https://arxiv.org/
pdf/1609.04747.pdf

[Russell and Norvig 2010] Russell, Stuart ; Norvig, Peter: Artificial Intelligence: A Modern
Approach, 3rd ed. Upper Saddle River, New Jersey 07458 : Pearson Education Inc, 2010

[Srivastava et al. 2014] Srivastava, Nitish ; Hinton, Geoffrey ; Krizhevsky, Alex ;
Sutskever, Ilya ; Salakhutdinov, Ruslan: Dropout: A simple way to Prevent Neural Net-
works from Overfitting. In: Journal of Machine Learning Research 15 (2014), S. 1929–1958. –
Available at: http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

[Swedish Code Of Statutes 2018] Swedish Code Of Statutes: SFS 2018:478
Lag om ändring i konsumentkreditlagen (2010:1846). 2018. – Available at:
https://www.lagboken.se/Lagboken/sfs/sfs/2018/400-499/d_3243282-sfs-2018_
478-lag-om-andring-i-konsumentkreditlagen-2010_1846

Appendix A
Input Features

Variable Type Description

gender Binary man/woman
kfm Binary history from Kronofogdemyndigheten
loan again Binary Intention to loan again
property owner Binary owning a property yes/no
recurring customer Binary recurring customer yes/no
age Numerical age (years)
expense children Numerical childcare expenses (kSEK)
expense general Numerical other expenses (kSEK)
expense household loans Numerical household’s loan expenses (kSEK)
expense loans Numerical individual loan expenses (kSEK)
expense rent Numerical individual rent expenses (kSEK)
expense travels Numerical travel expenses (commuting etc)
income household Numerical household’s income (kSEK)
income individual Numerical individual income (kSEK)
loan amount Numerical application’s credit limit (kSEK)
nbr of adults Numerical nbr of adults in household
nbr of kids Numerical nbr of kids in household
property value Numerical value of property (kSEK)
surplus household Numerical household’s surplus (kSEK)
surplus individual Numerical individual surplus (kSEK)
time Numerical time of day the application was made (h)
civil status Qualitative civil status (4 categories)
loan purpose Qualitative reason for loan application (6 categories)
mkting channel Qualitative how applicant reached the website
weekday Qualitative weekday of application (Mon-Sun)

Table A.1: All available input features before any re-coding

49

Input Features 50

Variable Type

loan amount < 4000 Binary
loan amount > 20001 Binary
income < 15001 Binary
income > 25001 Binary
age < 25 Binary
age > 56 Binary
expense loans < 2000 Binary
expense loans > 7001 Binary
man Binary
kfm no Binary
properties yes Binary
loan purpose Binary
loan again no Binary
adtraction no Binary
married yes Binary

Table A.2: Feature Subset 1, with all variables as dummies

Variable name Type Values

man yes Binary 0 or 1
income 5 Categorized numerical (0-15|16-18|19-22|23-27|27.5-)
age 5 Categorized (18-25| 26-30|31-45|46-54|55-)
loan amount 3 Categorized (0-4|5-20|21-25)
expense loans 3 Categorized (0-3|4-6|7-)
kfm no Binary 0 or 1
loan purpose Binary 0 or 1
loan again no Binary 0 or 1
adtraction no Binary 0 or 1
properties yes Binary 0 or 1
married yes Binary 0 or 1

Table A.3: Feature Subset 2, with numerical variables re-coded into 5 and 3
ranked categories respectively

Input Features 51

Variable Type

loan amount Numerical
income Numerical
age Numerical
expense loans Numerical
man Binary
kfm no Binary
properties yes Binary
loan purpose Binary
loan again no Binary
adtraction no Binary
married yes Binary

Table A.4: Feature subset 3, with numerical variables not being re-coded as in
the case in Feature Subset 2

Variable name Type Values

loan amount < 4000 Binary 0 or 1
loan amount > 20001 Binary 0 or 1
income 5 Categorized numerical (0-15|16-18|19-22|23-27|27.5-)
age < 25 Binary 0 or 1
age > 56 Binary 0 or 1
expense loans < 2000 Binary 0 or 1
expense loans > 7001 Binary 0 or 1
man Binary 0 or 1
kfm no Binary 0 or 1
properties yes Binary 0 or 1
loan purpose Binary 0 or 1
loan again no Binary 0 or 1
adtraction no Binary 0 or 1

Table A.5: Feature Subset 4 - the one used in the final models, with combined
binary and re-coded numerical variables

Appendix B
Supplementary results

B.1 Permutation importance for random forest, support vector classifier
and soft voting ensemble

Figure B.1: Permutation importance for random forest on test set (left) and train
set (right)

Figure B.2: Permutation importance for support vector machine on test set (left)
and train set (right)

52

Supplementary results 53

Figure B.3: Permutation importance for soft voting ensemble on test set (left)
and train set (right)

B.2 Explaining overall predictions through SHAP for random forest, sup-
port vector classifier and soft voting ensemble

Figure B.4: Overall effect on predictions by random forest per feature by SHAP
value

Supplementary results 54

Figure B.5: Overall effect on predictions by support vector machine per feature
by SHAP value

Figure B.6: Overall effect on predictions by soft voting ensemble per feature by
SHAP value

Supplementary results 55

B.3 Explaining individual predictions through SHAP for random forest,
support vector classifier and soft voting ensemble

Figure B.7: Individual explanation of RFO on a "bad" customer prediction

Figure B.8: Individual explanation of SVC on a "bad" customer prediction

Figure B.9: Individual explanation of SVO on a "bad" customer prediction

Figure B.10: Individual explanation of RFO on a "good" customer prediction

Supplementary results 56

Figure B.11: Individual explanation of SVC on a "good" customer prediction

Figure B.12: Individual explanation of SVO on a "good" customer prediction

Supplementary results 57

B.4 Explaining individual predictions through LIME for random forest,
support vector classifier and soft voting ensemble

Figure B.13: Individual explanation of prediction by random forest using LIME
on an actual "bad" customer

Figure B.14: Individual explanation of prediction by support vector classifier using
LIME on an actual "bad" customer

Figure B.15: Individual explanation of prediction by soft voting ensemble using
LIME on an actual "bad" customer

Supplementary results 58

Figure B.16: Individual explanation of prediction by random forest using LIME
on an actual "good" customer

Figure B.17: Individual explanation of prediction by support vector classifier using
LIME on an actual "good" customer

Figure B.18: Individual explanation of prediction by soft voting ensemble using
LIME on an actual "good" customer

