
1

Title of work

Subtitle

First Name Last Name and First Name Last Name

OR

DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY
2020

MASTER THESIS

Henrik Persson

Visualization of

Data Netwoks

Abstract In this day and age with so much information available, networks of
information, but how do you interpret that information. It is just too much
effort to read it all in endless lists, following data relations and analysing it in
hopes of fulfilling your use cases. The goal of this thesis is to explore how to
more effectively convey information to people through visualizations. It explores
different mediums, graphs and other tools that can help with creating a good
way to give information to users and help them in their analyses. The thesis
describes a work process to get the desired information, and also creation of a
functional prototype.

The conclusion is that considering the use cases and the nature of the data
is of paramount importance. There were four general use cases which were the
ability to see the importance of data nodes, the ability to see what kind of
connections they had, the ability to follow the relationships several steps and
the ability to see clusters of data forming with your network. It is hard to
visualize a network with all the use cases in mind, so users were asked what
they prioritized and why it was important. User tests revealed that visual-
izing the information would help them with some of their work tasks. For
some cases it would be enough to have a graph that is shown without interact-
ing with it. But for other cases, adding additional features that enhances the
graph in an aspect specifically tailored to the use case solved it for them instead.

Keywords Graph, Visualization, Network, Relation, Data.

2

Sammanfattning I dagens samhälle finns det s̊a mycket information tillgängligt,
hela nätverk av information, men hur tolkar man den informationen. Det är för
mycket att läsa all data i oändliga lister, följa datarelationerna och analysera
det i hopp om att det uppfyller vad man behöver. S̊a denna uppsatsen utforskar
hur man mer effektivt kan förmedla information genom grafiska visualiseringar.
Projektet uforskar olika medium, grafer och andra verktyg som kan hjälpa till
med att skapa ett bra sätt att ge information till användare, samt att hjälpa
dem i deras analyser. Uppsatsen beskriver en arbetsprocess för hur man kan f̊a
informationen man behöver samt skapa en fungerande prototyp.

Slutsatsen som dragits är att användarfall och typen av data, är väldigt
viktigt. Det fanns fyra generella användarfall, det var förm̊agan att se hur
viktig en datanod är, förm̊agan att se vad för kopplingar som finns mellan
datanoderna, förm̊agan att följa kopplingarna i flera steg samt förm̊agan att se
kluster av data som har bildats i nätverket. Det är sv̊art att visualisera ett
nätverk med allt det i åtanke, s̊a användare blev fr̊agade vilka användarfall de
prioriterade och varför de tyckte att de var viktiga. Användartesten visade att
användarna trodde att en visualisering av deras data hade hjälpt dem i deras
arbete. I vissa fall s̊a var det tillräckligt att endast ha en graf som man inte
behöver interagera med. Men i andra fall s̊a behövdes interaktiva verktyg som
förhöjde grafens egenskaper till att specifikt hjälpa ett visst användarfall.

3

Contents

Contents 4

1 Introduction 7
1.1 Infrasight Labs . 7

1.1.1 Service Mapping . 7
1.2 Purpose . 10
1.3 Work Process . 10
1.4 Related Work . 11

2 Background 12
2.1 Usability . 12

2.1.1 Aesthetics . 12
2.2 Data Visualization . 12
2.3 2D vs 3D . 14
2.4 Graph Databases . 15

2.4.1 Visualizing Graph Databases Use Cases 15
2.5 What Makes a Good Graph . 16

2.5.1 Data Relations . 16
2.5.2 Scalability/Interactability 17

2.6 PageRank . 18

3 Investigation Phase 19
3.1 Basic Functional Requirements 19
3.2 Quality Requirements . 21
3.3 Scalability . 27
3.4 Graph Analysis . 28

4 Existing Products With Network Diagrams 29
4.1 The Different Graphs . 29
4.2 Current products analysis . 33

4.2.1 Features . 34

5 Prototyping Phase 36
5.1 Context . 37
5.2 Prototype . 37

6 Implementation Phase 40
6.1 Developing Minimum Viable Product 40
6.2 Adding Features . 43
6.3 Demo Product Notes . 46
6.4 Setting Up the Test . 47
6.5 Test Results . 48
6.6 Quantifiable Results . 48

6.6.1 Feature Requests . 50

4

6.7 Test Result Analysis . 50
6.8 Test Discussion . 51
6.9 Improvements . 52

7 Discussion 56
7.1 Use Case Discussion . 56

7.1.1 UC1: Centrality Analysis 56
7.1.2 UC2: Connection Analysis 56
7.1.3 UC3: Path Analysis . 57
7.1.4 UC4: Community Analysis 57

7.2 Work Process Discussion . 57

8 Conclusion 58

9 References 59

A Appendix 61
A.1 Test Person A & B . 61
A.2 Test Person C . 62
A.3 Test Person D . 63
A.4 Test Person E . 64

5

Dictionary

• Node: A data object.

• Network: In this context, a data set of nodes and relations between
them.

• Community: In data sets there are clusters of nodes that are connected
to each other but have few connections outside of this cluster.

• Service: A system that supplies a function.

• Component: In the context of this report is a data object that could be
pretty much anything. A server, service, user, datastore.

• Relation: A connection between two data nodes.

• Degrees of separation: The amount of relations traversed to get from
one node to another.

• API: Application programming interface is a communication protocol be-
tween different parts of a computer program. In this report it will be how
the graph program fetches information from the database.

6

1 Introduction

There is a theory called six degrees of separation that says that all people in the
world are six, or fewer social connections away from each other [1]. So at most
someone you know, knows someone, who knows someone, who knows someone,
who knows someone, who knows Kevin Bacon. So through whom do you know
Kevin Bacon? Well most people do not know that. Because you know who
you know, but not everyone someone else knows. Your best bet to get to him
would be through the one you know that knows the most amount of people
and who does something related to what he does, but who is that? Then there
is the Wikipedia game [2]. A game where you are given a random Wikipedia
page and through their hyperlinks are to navigate to another random page in
as few clicks as possible. In this game, it is still difficult to navigate through
the links to your desired destination, and there you get every relation listed.
Your best bet would be through links that are in turn connected to a lot of
other things, that are also related to where you want to go, but which link is
that? This is how a lot of systems work, but to explore relationships this way
in bigger data sets is highly ineffective. That is where visualizations come in
to play, visualizations can give more easily digestible information to a viewer
to aid in their use cases. But what should the visualization show, everything
in the network? That would be seven billion people or five million Wikipedia
pages. So how much do you show the user? The goal of the thesis is to explore
what do you show the user, and how do you show it so that the user can digest
the information as easy as possible? What does the user want to know?

1.1 Infrasight Labs

Infrasight Labs is a company that specializes in a single product, vScope, which
connects information from complex IT networks to help organizations to visu-
alize important metrics [3]. This product can give their users a report on their
components and their services. This however, lacks a good way to explore re-
lations and dependencies between services and components of different types.
This can be very important in IT as it can show the root of IT-related problems.

1.1.1 Service Mapping

Infrasight Labs vScope includes a feature, Service Mapping, see figure 1. This
feature allows their users to catalogue their services into service cards, (see
figure 2), and in those service cards the users can add relationships between
their services and their components that vScope has found while inventorying
their systems or that is added manually by the user. This gives the user an
overview of their systems and it shows a list of all their services and when
clicked on it will display everything that service is related to in several lists.

7

Figure 1: vScope’s service mapping, listing service cards

8

Figure 2: The service card of an example service, Zookeeper, which shows rela-
tionships to other components, and other information.

9

1.2 Purpose

The purpose of this project is to explore how to create a visualization graph,
which will help users to get a better understanding of their networks. Based
on the findings, I will create a functional prototype visualizing Service Mapping.

Research Questions:

• How to efficiently visualize a network to a user?

• What to consider when visualizing a network?

1.3 Work Process

This project’s design process is divided into three phases, see figure 3.

• Investigation Phase, where existing theory and products will be analysed.

• Prototyping Phase, where the information gathered from the investigation
phase is used to design a prototype.

• Implementation Phase, where a graph is made, used to get use cases from
the users and tested, then improved.

Figure 3: A flowchart of the work process

10

1.4 Related Work

There are several studies that have been important for this thesis, some of them
will be mentioned in this section and their result will be used later in the project.
One article explored how to most efficiently show relations and how to structure
the visualizations, this article discusses other studies to find out how to do a
good graph layout [17]. Another important article researches what users might
want from the graphs, here they investigate what users wants to find out from
their graph databases [12]. Analysis of design properties, like color and size, as
well as how someone can use them is written about in another article [8].

11

2 Background

Several types of theories are explained in this chapter, which are to be used in
the report.

2.1 Usability

In interaction design, usability is of high importance to ensure a good experience
for the user and an effective product. Usability can be broken down into several
goals [4]:

• Effective to use. Effectiveness is a very general term to describe how good
a tool is to accomplish the users goal.

• Efficient to use. Efficiency is a goal to have the user use as little effort as
possible to complete their goal.

• Safe to use. Safety refers to keep the user from danger, both in physical
form and from making high impact or irreversible errors that might impact
data. So both keep the user from making errors but if they still make errors
its impact should be low and reversible.

• Have good utility. Utility is a goal where the system should have an
appropriate amount of functions to achieve their goals.

• Easy to learn. Learnability is how easy a system is to learn, how long it
takes to start core operations and to learn everything the user needs to
use to complete their tasks.

• Easy to remember how to use. Memorability is how easy it is to remember
how to use the system, which can be different depending on the functions
in the system where frequently used functions does not need to be as easy
remember as the less frequently used.

2.1.1 Aesthetics

Aesthetics is the visual attractiveness of an object. While usability is about how
intuitive functions are, studies has shown that better aesthetics leads to better
usability rating from users when all other usability factors are the same. It
creates an attractiveness bias which makes the user more forgiving to usability
flaws in a product. Users are more inclined to not quit on a product early on
if it is visually appealing. However what is and is not aesthetic is more often
than not subjective and culturally dependent [5].

2.2 Data Visualization

Data visualization is the graphical representation of data. It is using images
to represent data. The images are mostly created for human consumption,

12

this means that a lot of research in cognitive sciences has been done to de-
termine how a human is most optimized to receive information. Research has
concluded that the human eye is good at effortlessly distinguishing differences
in position, size, orientation, shape and color [6]. While processing raw ta-
bles with just rows of information a graph will remove the reasoning part for
the user and do the analysis for them. Using what the human eye is good at
both reduces cognitive load and time spent. As can be seen in figure 4 if the
biggest number is signified using size, orientation and color it is found instan-
taneous while the one without any of those indicators take longer to find. Us-
ing design principles such as gestalt principles can trick the brain to associate
different data points by for example proximity, common region and color [7].

Figure 4: Four columns with different ways of highlighting the biggest number,
where the first column not having any hints [8].

Visualization properties can be used to represent different things, however
the different kinds of properties have varying amount of distinguishable values.
While someone can more easily see differences in a lot of different sizes, it might
not be as easy to distinguish between several levels of saturation. A table of
this can be seen in figure 5, along with recommended ways of using them.

13

Figure 5: A table of visualization properties, how many useful values they have,
and what they can be used to visualize [8].

2.3 2D vs 3D

Visualizations can be made in both 2D and 3D. Using 3D versions of common 2D
data graphs in a 2D environment is usually bad, considering that the perspective
might change how a user interprets the data as for example what is closer might
appear bigger. If a graph does not add any informational value using the z-axis
then it usually is better to create the visualization in 2D instead of 3D [9].

14

Figure 6: Showing example of a 2D graph made to be 3D [8].

There are advantages and disadvantages with both, one study from Goksör
and Kemvik [10] argued that virtual reality could be a great tool to help a user
understand relations between large amounts of data. They state however that
it might be harder to share the perspective of the user. As in a virtual reality
application the user and the user alone can fully see their own perspective.
So virtual reality as a tool might be a better alternative if the goal is for one
user to understand something, but might be lacking if a user wants to share
their understanding or their findings in a data set. Or if several users wants to
collaborate to find something.

2.4 Graph Databases

Graph databases are in contrast to relational databases more dynamic as they
use nodes to relate data instead of primary and foreign keys [11]. This leads to
graph databases being more flexible than the conventional relational databases
as they link data between the nodes. Where instead relational databases has
lists with common keys that when accessing relations between data needs more
advanced queries, especially fetching information that is relations of a relating
data node of a relating data node or even more layered data. In that use case
a graph database would instead store the relations of every data node [12].

2.4.1 Visualizing Graph Databases Use Cases

There are several use cases (UC) for visualizing a graph database including [12]:

• UC1 Centrality analysis: In networks there are nodes that are con-
nected to a lot of other nodes, this can mean that a lot of other nodes
are dependent on it so it is the center of a community or network. If for
example, a network has a server that most of the services depend on. You
may want to see that and decide measures to protect important nodes or
distribute the weight.

15

• UC2 Connection analysis: Showing how many nodes are connected to
a node and see what kind of relations it has. If it has a lot of dependencies
or if it is dependent on others. If for example a famous social media user
might take information from a few sources and spreading it to a huge
audience or if a user is taking information from a lot of sources but is not
sharing to anyone else.

• UC3 Path analysis: Showing roads to get to different nodes in connec-
tions as well as shortest paths. If for example you have a road network
showing roads will help you travel between cities in the shortest path
possible.

• UC4 Community analysis: In graphs of big data there often exists
clusters of information that is connected to each other like communities
[13]. If for example you have a big IT-structure you can see patterns of
smaller network that act like communities where most of their connections
are with each other and not with anyone outside that network.

2.5 What Makes a Good Graph

There are different attributes that can be used to help the user, and all have
different features. The positioning of the data object can imply relations and
categorizing by placing the data objects in close proximity, it can also be used
to order datasets (like in a list) [8]. It has an infinite amount of useful values
in the graphs as the data points can be placed anywhere in the graph. The
size of the object can imply order and importance of the data point, it has
many useful values in the graph. The color can show categorization, while
the saturation of the object can display order. Both have relatively few useful
values in order to effectively fast differentiate between them. Shape, icon and
texture is also good for categorization with more alternatives than coloring.
Enclosure and connection using boxes and lines can be used an infinite amount
of times and is good at showing relations and categories, where the patterns
of the lines and line endings might help with displaying different categories or
types of relations. The patterns of the lines and line endings only have a few
types of easily differentiable values.

2.5.1 Data Relations

When displaying data relations there are several criterias to ease the perception
of graph according to Sugiyama et al [14], Sindre et al [15] and Purchase et al
[16]. Some of them listed here [17]:

• Minimize line crossings.

• Minimize line bendings.

• Even spacing between nodes, and lines.

16

• Even and biggest possible angles between links.

• Place data points that are related to each other in close proximity.

• Maximize symmetry.

Purchase found that minimizing line crossings were the most important of these
aesthetics to make it easier for the user to view a graph. However keeping
connected nodes straight was even more important for the path analysis use
cases as it helps with traceability according to Ware et al [18].

2.5.2 Scalability/Interactability

When the data set becomes to big and the amount of nodes and links increase
the graphs become harder to understand. To help mitigate this, a useful tool is
intractability. When the user is able to manipulate the graph the user is able
to get information at their own pace and only get information that is relevant
to them. Features that can be added when adding interactability includes [19]:

• Hover for more information.

• Put data point in center of focus.

• Toggle on/off different aspects.

• Move around and zoom in/out.

• Change complexity.

• Search for objects.

17

2.6 PageRank

PageRank is an algorithm created by google for their search engine, to not only
get relevant pages when the user search for something but also more reputable
[20]. So to distinguish the more important pages from the other they imple-
mented an algorithm to set a PageRank value to each site. This algorithm is
calculated by giving each site a base value and if a site has links to other sites it
increases those sites PageRank by its own PageRank divided by the number of
links to other sites it has. So after that, sites that have more links to them are
deemed as more relevant. However to make it more accurate it is done again
but with its base value updated to the PageRank it was given the last run. This
is then done iteratively a number of times, the amount of times depends on
the amount of sites, so that relationships between more important sites weigh
more. The algorithm also uses a damping factor for the algorithm, but that is
basically the algorithm. This is then used when someone searches for something
then the user will get a list of relevant results and the pages will be displayed
in descending order by their PageRank (more sophisticated algorithms are im-
plemented in googles search results now however). This concept could be used
to value node importance of practically any system based on relationships.

Figure 7: Visualization of a PageRank algorithm [21].

18

3 Investigation Phase

To start off an investigation begun to see what kind of visualizations would be
suitable to solve the project problems. What have been researched before and
how does the existing products do their visualization.

3.1 Basic Functional Requirements

Due to the useful features of data visualization it was elected to investigate
different kinds of graphs to be used to represent the data to the user. An array
of diagrams that could be used to effectively show relations between data points
were made (see figure 8).

Figure 8: An array of diagrams that can be used to show relations [22].

An analysis of those graphs were made based on its features. Those features
had to be relevant to the Service Mapping in the vScope. The most basic features
that had to be visualized were discussed with the product owner of vScope. The
discussion was a brainstorm session with the product owner, which brought up
these four features as the most basic necessities for the graph:

• Allowance for many relationships.

• Supporting several categorizations.

• Show a few levels of relations.

• Show cross relations.

The result from the analysis is visualized in table 1, there it is shown with a
check mark if a graph fulfills a basic feature and with a cross if it does not.

19

Table 1: Various diagram types, and functional requirements.
Diagram Requirements

Diagram
type

Many rela-
tions

Several cate-
gories

Few levels of
relations

Cross rela-
tions

Arc diagram
3 3 3 3

Chord dia-
gram 3 3 3 3

Flow chart
3 3 3 7

Network dia-
gram 3 3 3 3

Sunburst di-
agram 3 3 3 7

Timeline
7 3 3 7

Non ribbon-
chord dia-
gram

3 3 3 3

Tree dia-
gram 3 3 3 7

The graphs that covers all requirements are arc, chord, network and non
ribbon-chord diagram (see figure 9).

Figure 9: An array of diagrams that can be used to show relations [22].

Those diagrams can show many relationships with its lines, use coloring
and placement to display categories and the lines can use different color, line

20

patterns and line endings to show different kinds of relationships. Every data
point also shows its relation to other data points for cross relations.

3.2 Quality Requirements

With the basic functional requirements out of the way we can see what kinds
of graphs can do the job. However to see which one is the best, there was an
investigation using quality requirements stemming from previous research in the
field.

Table 2: Diagram types and quality requirements.
Diagram Requirements

Diagram
type

Minimize
line
crossings

Minimize
line
bendings

Even
spacing
between
nodes

Even
space
between
lines

Even and
as big
angels as
possible

Place
data in
proximity

Symmetry
maxi-
mization

Arc diagram
7 7 3 7 7 3 7

Chord dia-
gram

7 7 3 7 7 3 7

Network dia-
gram

7 3 3 7 7 3 7

Non ribbon-
chord dia-
gram

7 3 3 7 7 3 7

With the table 2 an analysis was made to see which of the previously stated
quality requirements of the data relations were able to be fulfilled with the
diagrams that met the functional requirements. The data relations quality re-
quirements were:

• Minimize line crossings.

• Minimize line bendings.

• Even spacing between nodes, and lines.

• Even and biggest possible angles between links.

• Place data points that are related to each other in close proximity.

• Maximize symmetry.

The table was made by creating example graphs that visualized a special sce-
nario. This scenario visualize an overly simplified case that could occur in
Service Mapping, and it is just an example to illustrate how well the different
graphs could handle such a case. The scenario was: A service (Service 1) has
three servers (Server 1, Server 2 and Server 3), three different users (User 1,

21

User 2, User 3), two other services (Service 2 and Service 3) that has two of
the users (User 1 and User 2) that the other service has and two of the servers
(Server 1 and Server 2). This a very small scale scenario of what could be needed
to visualize in the finished product. And the results were these graphs of the
arc diagram (Figure 10), chord (Figure 11) and non-ribbon chord diagram (also
doubles as a network diagram as it would look the same in this scenario) (Figure
12).

Figure 10: Graph of an arc diagram visualizing a set scenario.

22

Figure 11: Graph of a chord diagram visualizing a set scenario.

Figure 12: Graph of a non-ribbon chord- or network diagram visualizing a set
scenario.

Those graphs did not fulfill many of the quality requirements, neither graph
passed even half of the requirements as the data created too many relations.

23

Neither graph was able to have few line crossings as the cross relations were
too many even in this small scenario case. The line bending case was just
relevant for arc and chord diagrams, as they inherently depends on having bent
lines in their visualizations while network and non ribbon chord diagram does
not. Even spacing between nodes is easily managed by all graph types in this
scenario. However the space between the lines and their angels is completely
decided by where the connecting nodes are and cannot be guaranteed by any
graphs. All graphs were successfull in placing the categorically relating nodes
grouped up to signify that they are of similar type. But it was not possible to
make the graphs appear symmetrical in its connections due to the chaos of all
connections relating to each other everywhere.

With the failure of the first graphs another set of graphs were made to display
graphs where they only visualized the relations of Service 1 in full (one degree
of separation) and the other services relations having lower opacity to help the
user by making them only focus on one thing at a time while still letting them
explore other paths if they want. This would require intractability to function as
the user would need to change which node to highlight. The results were this arc
diagram (Figure 13), chord diagram (Figure 14) and non-ribbon chord/network
diagram (Figure 15).

Figure 13: Graph of a arc diagram visualizing a set scenario.

24

Figure 14: Graph of a chord diagram visualizing a set scenario.

Figure 15: Graph of a non-ribbon chord- or network diagram visualizing a set
scenario.

Non-ribbon chord diagram and network diagram would look pretty much
the same and function the same with these requirements, however if a certain

25

node is the object of focus another kind of network graph can be made like
(Figure 16) where you could show every relation in clusters to their respective
categories.

Figure 16: Graph of a network diagram visualizing a set scenario.

This would require interactability to scale up to a bigger network and to
display relations of relating nodes. One way to do this scaling is to have a
preview of the nodes relations on for example hover like in Figure 17.

Figure 17: Graph of a network diagram visualizing a set scenario.

This would allow for the network to be consistent but it would not guarantee
the quality requirements of angles that are even and as big as possible. Whereas
in the figure 18 it is made to show the hovered nodes related nodes in the same
way as the original model.

26

Figure 18: Graph of a network diagram visualizing a set scenario.

This to ensure that the quality requirements are still working and helps by
always placing the same category of nodes at the same place which might help
the user to always get a structured symmetric view. However if a program
requires this to scale up to a bigger graph to get more overview, this would not
work.

3.3 Scalability

When sizing up the graphs everything gets more cluttered. If a use case needs
a full view of a network so it has to be viewed without restrictions and there is
a big data set, the different graphs run in to certain problems. Since naturally
formed data sets often have communities [13], this helps the usability for network
diagrams in the sense that the nodes can be placed in clusters which the user
can track without getting lost in other crossing relations of other clusters. This
means that a network could have an infinite size and still be readable as the
data could still be formed in easier to view communities if the user zooms in the
relevant community (this however might have a heavy computational cost). The
network could work like a map of the world where the user can see the world

27

as it is with all its countries (communities), but the user can also also zoom in
to a country (community) and see the roads (relations) between cities (nodes).
The same could be done with the other diagrams, this would then zoom in on
a section of the graph and have all nodes in a community placed close to each
other. However the community relations between each other would be harder
to see.

3.4 Graph Analysis

When the data becomes bigger, network diagram becomes the only practical
way to visualize networks mostly due to its abilities to scale. But for a network
with a small data set one might want to prioritize aesthetics and go for a chord
diagram which arguably look prettier. In this case one might be able to bend
the quality requirement rules in favor of aesthetics as it would still be possible
to have the graph legible anyway. But this report will continue with network
diagrams because it is more practical data sets of varying sizes.

28

4 Existing Products With Network Diagrams

First to note is that most of these graphs are made for developers to create their
own features and visualizations and the analysis of the graphs is based on visu-
alizations that may or may not be supported by the companies that makes the
engines. But all these graphs are taken from websites related to the company
stated. Also to note is that the data that they visualize is not the same in either
case as it would bring too much work to create a database that is readable by
all the tools. So the examples all have their own sample data which may or
may not make the visualization look better than it is. Also to note is that this
is not a comparison of these tools to see which one is better, rather only to
find out what features existing visualizations have and to find out what kind of
layout and features to include to best fulfil the usability goals and the ability
to complete the use cases of visualizing graph databases.

4.1 The Different Graphs

There are several products that specializes in visualizing graph databases. Key-
lines is one product by Cambridge Intelligence [23]. They usually use network
diagrams with interactability. There the user can combine nodes and create
filters and add scripts to suit the specific data set that the user works with. An
example is figure 19 .

Figure 19: A graph of a network diagram made using Keylines

Another product is ConnectTheDots by Databasics [24] which also uses net-
work diagram that has a table beside the graph to show a list of connection and
its centrality number that means that if a user wants to travel in the diagram
these dots are good to use. And it shows how many connection each node have.
Clicking or hoovering over a node will show that nodes connections and central-

29

ity number and lowers the opacity on every node that is not directly connected
to the highlighted node. Example in figure 20.

Figure 20: A graph of a network diagram made using ConnectTheDots.

Alchemy.js by GraphAlchemist [25] also uses network visualization with the
interactability to show drag around nodes and the having its related nodes
dragged along with it to customize the view. It also has the ability to add
features using Javascript. Example in figure 21.

Figure 21: A graph of a network diagram made using Alchemy.js.

30

Another example is Kumu by Kumu Inc [26] which for the most part is
used to create network diagrams. In this graph the network, which is very
simple consisting of very few relations between objects, uses containers to group
categorically similar nodes, different kinds of lines to signify different kinds of
relations. It has a legend describing the different lines and a table that lists
the information on the left part of the screen if a node is selected. It also gives
the option to only show one, two or three degrees of relations from the selected
nodes as well. Example in figure 22.

Figure 22: A graph of a network diagram made using Kumu.

Infrasight Labs has their own graph visualizer internally using a network
diagram, this visualizer uses icons to categorize. Visualizes data in communities.
It has features to show data in different times, ability to filter out certain kinds
of nodes and categories. It shows information on hoover and ability to drag
around nodes. Dragging around nodes does not affect any other nodes positions
like alchemy.js.

31

Figure 23: A graph of a network diagram made using inhouse software at In-
frasight Labs.

32

4.2 Current products analysis

The products discussed all have differences in features. They have been analyzed
like the other diagrams to see if they fulfill the different quality requirements.
The results are shown in table 3.

Table 3: Comparison of existing programs and whether they meet the quality
requirements.

Diagram Requirements
Diagram type Minimize

line
crossings

Minimize
line
bendings

Even
spacing
between
nodes

Even
space
between
lines

Even and
as big
angels as
possible

Place
data in
proximity

Symmetry
maxi-
mization

Keyline
7 3 7 7 7 7 7

ConnectTheDots
7 3 7 7 7 3 7

Alchemy.Js
7 3 7 7 7 7 7

Kumu
3 7 3 3 3 3 7

Infrasight Labs
3 7 7 7 3 3 7

One thing to note is that while the Kumu graph does fulfill a lot of the re-
quirements, some of them would be very hard to fulfill it if the data were to be
more complex with more relations between objects. The data that the graphs
has been tested on has not been consistent as it has been their own test data
in each case. Which gives the graphs different levels of difficulty to complete
the quality cases. Whereas Kumu’s graph has good checks it has very low com-
plexity in the sense that there are quite few data nodes and very few relations.
So for this part it is very good at displaying the test data set but with more
relations and nodes it would probably clutter up too much (that said, this is
what graph visualization is all about, understanding the data set and show it
accordingly). Both Kumu’s graph and Infrasight Labs graph does a good job
at aiding community analysis. Infrasight does it by placement, each cluster is a
community whereas Kumu uses the grey boundaries to indicate a community.
ConnectTheDots and Alchemy.js uses color coding for their communities which
also makes it clear that the nodes are connected in some way. Keyline, Con-
nectTheDots and Alchemy.js has very messy line crossings everywhere which
makes the relations harder to do path analysis on, Infrasight Labs also has this
problem at several places however it is okay at others. Regarding Centrality
analysis Kumu does a decent job by having their central nodes in the middle
of the communities. Alchemy.js uses different sizes to show the most central
nodes which is a good way to get the attention of the user. ConnectTheDots
does not use visual elements to help the user in this task but instead uses the
table to show centrality, which makes it easy to find them but it does not give

33

any visual clues so it is not viewable from the graph and instead the user clicks
in the sidebar to highlight the different nodes to see their centrality. Using the
table to help with the centrality analysis however is a bit worse in a usability
standpoint as it does not give visual overview in the graph, instead the user
has to cross check with table to find the centrality. As for Infrasight Labs there
is no clear design property to support it however it has visual cues that where
the lines are thicker there is a lot of connections as there are lines that are
close to each other, this however would not be a desirable trait otherwise as
the clumped nodes makes path analysis harder. Regarding Connection analysis
only the Kumu graph has any indication on what type of connections the nodes
are having and only Kumu and Alchemy.js has any indication of the direction
of the relation.

4.2.1 Features

In addition to the quality features there is room for extra features that can help
the user to get a better view of the graph. An analysis was made for each of
the five products to get an understanding of how they worked as well as their
features and layout. Here is an analysis of what tools and functions the graphs
are using and a personal conclusion was made of which quality and functional
features that were intuitive and understandable. This entails that the analysis
was not the same for each product, instead based on their characteristics and
what the product should be used for. This was done to give an idea of how tools
and features can be used to fulfill the use cases.

Some aspects that were observed during the analysis was that Keyline uses
size on lines and objects to signify importance in relations and nodes. Connect-
TheDots categorizes by color and has a table on the right hand side to select
certain objects, when selected it fades the other nodes to highlight the selected
node. The table can be sorted in different ways to find nodes of interest, where
default is to list the most central nodes. The Alchemy.Js example has the fea-
ture to drag around nodes to place them as the user wants. When dragging
around nodes the nodes connected to it follows. The following nodes gets closer
to the followed node depending on how many other nodes it is connected to.
The Kumu graph has a table on the side that displays information of a high-
lighted node that is selected either by clicking on a node or using the search bar.
It has a legend describing the different lines. It also gives the option to only
show one, two or three degrees of relations from the selected nodes. Infrasights
graph visualizer has the feature to filter out categories of nodes using its sidebar
and has the ability to show data at different times. It shows type by icons and
displays nodes in community clusters.

According to this analysis Kumu does a great job with all the stated com-
mon use cases for graph database visualization. It even arguably has the best
aesthetics of all the analysed graphs. However Kumu’s data set is very small
and would probably not work as well with a bigger data set with more relations
and so on. While it does not follow the quality requirement of minimum line
bendings its curved lines might actually benefit it in usability through increased

34

aesthetics as the bent lines follows the through and through theme of round-
ness. But it might make the path analysis harder. Infrasight labs graph has a
more robust data set and does a good job at showing communities, however it
has a very hard time with path analysis as the lines are bent, have the same
shape, pattern and color and they are very cluttered at places. Keylines does
path analysis better as the lines have different sizes which help the user trace it
cluttered places. As it would seem that in graphs with big data sets it seems in-
credibly difficult to draw a whole network without crossing lines, so to mitigate
the damage some sort of way to distinguish the different lines would probably
help. One thing that Alchemy.js, Kumu and Keyline has is text labels under
each nodes to help the user identify a node without hovering it.

35

5 Prototyping Phase

With the information gathered from the investigation phase examples, certain
features were suggested to help with the different use cases. As a network
diagram was decided to be the best choice to move forward with. Since it was
the best graph with the quality requirements and scalability. Several features
were listed to help the different use cases. Each feature followed by how many
different usable values each feature has. From many, medium and few [8].

• Path Analysis

– Straight lines, many.

– Line color (To differentiate close lines), few.

– Line patterns (To differentiate lines close to each other), few.

– Line thickness (To differentiate lines close to each other), few.

– Position (Spacing), few.

• Connection Analysis

– Arrows (To see direction and what kind of relationship), few.

– Line color (What kind of relationship), few.

– Saturation/fading (To see direction), few.

– Line pattern (What kind of relationship), few.

– Line thickness (show importance or strength of relationship), few.

– Size (Size might mean how many nodes rely on this) , many.

• Community Analysis

– Position (Community by placing nodes in clusters), many.

– Color (Same color for nodes in a community), few.

– Background (Have a background color in clusters that boxes in the
nodes), many.

– Shape/Icon (Same shape/icon for nodes in a community), medium.

• Centrality Analysis

– Size (Size might mean how many nodes is connected to the node),
many.

– Position (Put it in the center of clusters), few.

– Angles/spacing of lines (So the user may focus on clumps of lines to
see central lines) , few.

There are more things that a feature can be used for example. To:

• Identify a node

36

– Text (Displaying the name), many.

– Shape/Icon (Showing the category or icon of node), medium.

Some of the features are distinct to one type of use case while others are a
used in more than one. Color, size and position is the most listed features for
different use cases. And while position can still be used in all use cases without
interfering with each other (nodes, can be spaced out, placed in communities
and central nodes can be centered in clusters without confusion). Color may
not have that ability. As if you give colors different meanings, for instance if
the color blue means that it is a part of a community, but the color blue on a
line means a special sort of relationship it might cause confusion for the user as
the same color might make them think it refers to the same thing. Size should
mean the same thing too, so for node size you could either set the size based
on the amount of connected nodes, including both dependencies on other nodes
and how many nodes depend on the node, or just how many nodes depends on
it. Different line patterns, colors and thickness could benefit both path analysis
and connection analysis. However for the path analysis it just helps that they
are different. If they are different to help connection analysis it would help path
analysis too in the case that all are not the same type of relation. You could
use both shapes and icons for nodes so there is room for two versions of that if
you need to.

5.1 Context

The diagram that is drawn should have different features depending on the
nature of the data and the prioritization of use cases. As seen in the Kumu
example it is very fitting on small amounts of data and relationships. And
Infrasight has a better graph with bigger data sets and they use very different
design approaches. A designer should therefore consider what features they use
at different places given the importance of the different use cases and the amount
of and different categories of data and relations. If a data set only have one kind
of relation or it is non-directional then it might be recommended to only use
one color for the lines and save the coloring for community or categorization.
And if the only important thing for the user to see is one node and its closest
relations then it is not necessary to clutter the graph with all other nodes. If
the use cases are more leaning towards either connection or centrality analysis,
then size could be used to indicate the more important one. So to design the
best possible graph visualization one should listen to the end users use cases
and have an understanding about the amount of and the nature of the data.

5.2 Prototype

Using the context information, a low-fi prototype was created, see figure 24.

37

Figure 24: Low-fi Prototype

Here it was prioritised that the node in focus should be centered so that the
user knows what view it is. Use the size to indicate importance of the nodes.
In Infrasight Labs own system, vScope, they have different colors and icons for
all different kinds of components like in figure 25, except for their services.

38

Figure 25: Icons of all components.

This was used to display the different kinds of nodes as it was assumed that
the users would recognize the icons and have some idea of what they represented.
As services did not have any specific color or icon it was made black. The
relationships are shown with lines and arrows to the target node and is in
the color of the node that has a dependency. What is shown in it is servers,
IP-adresses, services, datastores, applications and users. A legend where the
different items could be toggled on and off. And various tables of information
regarding the selected node is in the bottom of the graph. It also has a slider
that selects how many degrees of separation from the selected node that will be
shown.

This prototype was tested on employees on Infrasight Labs, which they
thought was an adequate solution. However they thought that to give the users
better perspective something more tangible and interactable had to be devel-
oped. Both to help their understanding and so they got a peak of the feature
that they could later use, so that they got something out of the meeting as well.

39

6 Implementation Phase

As context is so important to know when developing the visualizations there was
a need for the users input. When users heard of the service mapping feature
which this program is about visualize, several of them expressed a need for
a graph that could visualize the dependencies without knowing it was in the
works. However when asked about what they wanted it for they did not know,
but they wanted it. Answers were mostly in the sense of ’It would be nice to
see how things are connected’ or something similarly vague. So to get the most
of the user input a different approach was taken where a working prototype was
made to give the user something to draw their ideas from. As what was most
important to the project was to see what their most wanted use cases would be.
As there were limited amount of contacts and time with them we thought that
the best course of action would be to get the most amount of information from
what the user wants and as well get some sort of usability test, was to display
a kind of minimum viable product (MVP).

6.1 Developing Minimum Viable Product

A development started of a MVP. It was developed using the same tools that
Infrasight Labs use to ensure compatibility with the rest of their product. The
product used their API to display nodes representing components in their sys-
tem. It took a service component and visualized everything that it is connected
to. However this was not practical as the amount of data cluttered the screen
and from just one degree of separation the whole screen was full and a lot of
the objects were outside the screen. So as a start before the user has expressed
which type of components they want to see it was limited to just services, servers
and datastores. The servers and datastores got their icons and colors from the
table in figure 25 while services were black. A lot of services did not have ded-
icated icons, but if there already were an icon representing it, that would be
used, otherwise it would be its two signature letters (first letter in the first two
words or the first two letters in their only word, depending on the name of the
service. This is how it is represented in their Service Mapping tool). One service
is chosen as a starting point and then the program fetches its related services,
datastores and servers. It then continues to fetch its related services datastores
and servers related components iteratively until the ”whole network” is shown
(it wont be the whole network as everything might not be related to each other
and every relation is not explored). The nodes were then plotted on the screen
with even angles and space between them from the starting node and then for
every layer added it would share a set angle to have its nodes easier to follow,
as to fulfill the quality requirements of even angles between lines, even space
between the nodes and the ability to have as straight lines as possible so it is
easier to follow the relationship path between several nodes. This worked really
good in some cases, but in cases where there were too many nodes with relations
to a single node and it tried to have as straight lines as possible it would clump
up and nodes would end up inside each other. And in other cases nodes would

40

clump up inside each other if there were two nodes that would be close to each
other and both have a lot of relating nodes, as shown in figure 26.

Figure 26: Graph where the design makes nodes appear inside each other.

So to circumvent this a force was added to the nodes so that the nodes were
repelling each other, this however made the angles of the lines more uneven less
controlled, however it was very necessary to not have nodes inside other nodes
so it had to be done. However it also had a quality requirement benefit as it
would place nodes with more even spacing between them, see figure 27.

41

Figure 27: Graph where forces are added to prevent nodes to appear inside each
other.

A slider was also added so that it was possible to fade in different levels of
relationships in the graph. By levels meaning degrees of separation from the
original node, see figure 28.

42

Figure 28: Graph expanding in four levels.

6.2 Adding Features

As there was limited amount of time with the actual user the MVP was used
to get the wanted use cases from the users. However to make the most of the
meetings with the users some features were developed to help with some of the
expected use cases the users might have. So to help the use case of centrality
two different methods were developed where the node changes size depending
on how many relationships it had connected to itself, see figure 29.

43

Figure 29: Graph where node size is related to the number of relations to the
node.

The first one used the amount of relations that targeted the node and added
a fixed size per connection. The other method instead used the PageRank
method with every component there was. The PageRank method was added
since the first method only showed how many direct relationships it had and
does not weigh how ’big’ every node is. So that while one node might have
more nodes depending on it, it would still appear smaller as it has fewer direct
relations targeting it. With PageRank it would look like in figure, 30.

44

Figure 30: Graph where node size is decided by PageRank.

To make it easier to follow paths, the lines were colored by its source and
target node so that crossing lines would be able to be distinguished from each
other easier and so that if a line crosses a node it might indicate if it is part of
it or just passing through, like in the figures 29, 30. And as a extra feature to
fill a specific use case of following relationships that were directed in the same
way from the original node, a view like figure 31.

45

Figure 31: Graph where nodes and links that are dependent of the service
Marathon (MA) are shown as usual. Other nodes and links have lowered opacity.

This was meant to also fulfill the path analysis use case. It wont help the user
to see lines clearer for everything, but might suggest what can be affected if one
node is changed. There was no real feature to help with relationship analysis in
this stage however, it was only to be suggested different line patterns or colors
to the user.

6.3 Demo Product Notes

During the development it appeared that their own service mapping was wrongly
configured. Which became apparent with the amount of relationships shown
in the graph. Where services were both dependent on a service as well as that
service servers, where in fact they were only dependent on the service which was
dependent on its servers. After developing the PageRank algorithm for the node
sizes it appeared that it did not show the result that was wanted. Since it divides
its PageRank between every component regardless of what kind of relationship

46

it has. In their own dataset the biggest service divided its PageRank between
its servers and a service that it was dependent on. But the servers were just for
redundancy, so it does not share the same weight as the service that it needs.
This arose the problem of weighting in general which was not implemented in
Service Mapping so that relations have different level of relevance. The same
goes for the ranking of services, while a bigger service indicates its importance
as if it is affected several other things might also get affected. However services
that is extra important to the user might be small, so while it looks harmless
to change something that it might be a critical part of their operation.

6.4 Setting Up the Test

The purpose of the tests were to find out what use cases are of interest for
users and to do somewhat of a usability test of the product. It was an interview
divided up into three parts. The first part is asking questions to the user without
showing them anything of the visualization, so that we get what the user think
they want without any influence from the visualization. The second part is with
the MVP where the user gets a bit biased view from the graph and are asked
what is missing from this view to figure out what they want from a graph. And
lastly they are shown some features that might help some of the use cases. This
as a sort of usability test of those features and how useful they are in solving
their use cases.

The tests were started by asking for consent and after that they were asked
for information about themselves to figure out what kind of role they had, as
they can range from upper management with little to no technical experience to
the IT technicians that are very technically focused. This was done to categorize
user feedback to what the different kinds of users need. Next they were asked
whether or not they have used the Service Mapping tool, how much, for what
and how it has helped them in their job. If there is any features missing from
the tool, if they have felt a need to visualize their Service Mapping and if not, if
they think a visualization might have helped them. After that, they were asked
what they would use a visualization to do and which types of nodes were of
interest for them.

Following that, they were shown a service inside Service Mapping from In-
frasight Labs data set. So they would know the data that would be visualized.
There after they were shown the MVP displaying what was shown in the ser-
vice card, which was one degree of separation from the original node. They were
then asked what the graph they saw meant, to see if they understood the image.
And what they would want to be able to do from here or what they want to
know. After that the graph were scaled out to show more and more degrees of
separation and ask how the user experiences it and what features they want to
have. Next the testee was asked to rank the use cases of path, connection and
centrality analysis, and why they chose that rank. And after that they would be
shown the extra features and asked how well the features solved the important
use cases. And when having seen the complexity of it all, asked whether or
not it was important to see the whole network or only the communities like the

47

one they were shown. Lastly the interviewee was asked if they had any more
thoughts or questions.

6.5 Test Results

Five middle aged male test subjects were interviewed, three of them separate
and two did the interview together but had their answers noted separately. The
interview was conducted using a screen sharing program and the sessions lasted
around one hour. The test subjects had different kinds of roles, ranging from
more technical to upper management. Some questions were about getting more
comparable data and other were more about quality answers. The interviewees
answers were noted during the session and later summarized.

6.6 Quantifiable Results

The more quantifiable answers are listed in table 4.

Table 4: The test persons answers.
Test Results

Test Person Level of
manage-
ment

Service
Mapping
Exper-
ince

Want a
visualiza-
tion

Why
visualiza-
tion

Ranking
(UC)

Features
satisfies
ranking?

UC4 use-
ful?

A Mid-
lower

High Yes UC3,
Overview

3>1>2 Yes No, and
not possi-
ble

B Mid-
lower

High Yes UC3,
Overview

3>2>1 No, not
UC2

No, and
not possi-
ble

C Upper Medium Yes Overview,
Tracking

2>3>1 No, not
UC2

No, and
not possi-
ble

D Lower Low-none Yes UC1,
UC3,
Overview

1>3>2 Yes Yes

E Lower Low-
medium

Yes UC2,
UC3

3>1>2 Yes does not
matter

When asked previously no user seemed to have a good use case for the
visualization but everyone wanted one. In this test everyone wanted it and
could without showing how anything were setup say in someway what they
wanted it for. All but one explicitly described use case 3 (Path analysis) to some
extent, where the scenarios were more or less what would happen if something
happened to this component. Four of them said more vague things like overview
that could mean pretty much anything. Tracking was also suggested by two

48

of them in different stages throughout the interviews. This is a reference to
another tool vScope provides where they keep track of errors and warnings of
components, it could also refer to external systems with similar features. One
was very interested in relationships, wanting to have easy access to information
like how a connection is setup (which is not available in vScope at the moment).
And another wanted to use it for use case 1 where you could see what nodes
that might have big impact if they are changed in some way. After being shown
the MVP they were asked how they would rank the different use cases (1-3).

Use case 1: The second highest in the ranking was UC1 (Centrality anal-
ysis) just edging out UC2. For three of them this was important to see what is
important to protect, however those that did not think this was important at
all either thought that the MVP did a good enough job to show it as is. And
one did not think it was that important to just show how many relationships
was leading to a certain node. But everyone either wanted the different size
feature applied, and/or have it being dependent on a lot of parameters such as
importance of the service (no such value in vScope at the moment) or if the
aforementioned tracker case shows errors on the node or something.

Use case 2: The lowest rated was UC2 (Connection analysis), where the
user that rated it as the most important did not know what kind of information
he wanted in relations but he has a lot of experience with different kinds of
maps and charts. And he liked arrows are stuff. That user did not use service
mapping as much as other users on their company and he guessed that they
would be more interested in UC3. The other user that did not put UC2 as
lowest rating did not know what it could display at the moment, but would
want to be able to toggle on and off information about the relationships (which
does not exist in vScope at the moment).

Use case 3: The highest rank by a bit was UC3 (Path analysis). They
were all satisfied with how it was handled, using the feature of only showing
things that are dependent on a certain node or the other way around (figure
31). As the only use case for path that everyone could think of was when all
relationships were headed in the same directions (dependent on something that
is dependent on something and so on).

Use case 4: When asked about UC4 (Community analysis) Where you
would explore different communities next to each other, then it was requested
by one user where they wanted to be able to see the whole network in one
picture. Another user was indifferent as they thought that their system was so
small that it would be the same thing. The rest of the users did not think it
was possible as their network is so vast that it would not say anything at all.

General feedback: As for what components the users wanted to see, ev-
eryone wanted to see Services and servers. Other than that it was split. Two
had no opinion while others wanted to see an array of things such as licenses,
printers, users, owners, ports and suppliers. All of the users expressed a need
to themselves chose what kind of nodes would be present.

When the users were shown the graph with only one degree of separation
one did not understand what they were looking at, stated lack of descriptive
names and labels of the services and relations. There were some confusion from

49

others as well where they did not know what the arrow meant or where they
assumed wrong. But two of the users understood what was going on with the
nodes, but had trouble identifying nodes stating that in their vast system a lot
of nodes can have the same initials. When expanding it all but one were able to
handle two levels of separation, all but one got lost when expanding it further
than that, except the user that had a lot of experience with graphs.

6.6.1 Feature Requests

To help with the messiness all users wanted to be able to move the nodes around
and place them wherever they want, as well as filter what kind of nodes they
want to show. As for helping them understand the context of the situation they
want a title in the graph as well and some wanted labels on everything, or that
it is at least toggle-able. Everyone wanted to see more of the node name than
just the two letters on nodes without an icon. All wanted information given
on hover, while they did not know explicitly what information, examples given
were name, owner, supplier, tracker case, notes, amount of relations and how
critical a component is. Some commonly suggested features are to be able to
zoom in and out. Save their views as is. Have a link from the node to their
property page in vScope. Integrate the graph with tracker cases. Have the
ability to not only start on services but any node in their system to see their
relationships. And some features that one or two users requested were dark
mode, show things that have something in common, such as the same owner (a
bit the same as being able to start on any node). Another request from two
users were display everything in a hierarchical manner, so that nodes would be
placed in tiers with the same height as the other items in the same tier.

6.7 Test Result Analysis

Some features requested are not possible to complete within the scope of this
project, either from not having support for it in vScope, or that it would be too
time consuming with the support that currently exists. Every feature that was
requested did not affect anything outside the graph, and the only things that
would change anything is changing the filters or the placement of the nodes.
Otherwise everything is safe to use, and arguably those features would be easy
to revert. Some features could be implemented anyway just to show the proof
of concept while not having any support from the backend in wait for the ac-
tual features. Such as information about the different kinds of relationships, a
token text could be added as a feature on hover. While a filter for every kind
of component would be very extensive for this project with the current API
support it would be possible to implement the feature on the services, servers
and datastores that already exists in the MVP. Texts that are labels on the
graph like the title and more easily accessible name for every node could also
be a possible feature and even toggle-able. The feature to show information on
hover could also be added, but since what information it should show will not be
investigated further in this project. As the API does not support the saving of

50

states, this feature will not be implemented. However it will be prepared for the
feature regardless. A link to the property page from a select node is possible to
create with the resources that exists currently and seems like reasonable feature
that will not affect anything else in a negative way. Viewing things that have
stuff in common are also descoped, as it is dependent on things other than the
aforementioned Services, servers and datastores. The feature to display things
in a hierarchical manners will not be done either. The system is very complex
and the data is not inherently hierarchical in structure as is, and since the most
common relationship by far is between different services it would be extremely
bad for some of the quality requirements such as Minimize line crossings and line
bending. As users felt that the graph became cluttered and too hard to read,
more emphasis could be put on the quality requirements such as symmetry.

6.8 Test Discussion

First of all, if possible it would have been much easier to measure how much
the user understood of the test if their own data was used in test, which would
have been a logistical problem in this case (as there would need to be a lot of
permission settings and such before the tests). These four interview sessions
were the only opportunities to test the prototype with the end users, and to get
a better understand of how they interpreted the prototype. More test sessions
would have been preferable to get more accurate results, however to be given
this much time with this many users was very generous. All of the participants
were men, which might also affect the result. The product is supposed to be
used for both men and women, with different perspectives. Therefore it would
have been advantageously to have female participants as well.

Before this project when us sers asked vScopes product owner for the visu-
alization feature, he said that no user had any tangible use cases, just that it
would be nice to get an overview. However when asked during the tests everyone
but one specifically described use case 3. Use case 1 and 2 were also specifi-
cally requested. So as it was assumed that the user would not know what they
wanted without showing a MVP seems a bit wrong. It could also just have been
enough to give them time to think about what they wanted from a graph and
why, as they knew that they would be asked about their opinions in the meeting
they had booked. That said, it seemed that the graph helped make the concept
easier to grasp what features they wanted and what use cases to focus on. So
it would appear that the graph at least helped in some cases here. However
for the usability part of the test it would of course not be possible without the
prototype. That said, the graph might have been too advanced to be able to see
past the design flaws in it or not advanced enough to give the test person a full
view of what could be possible in a network graph. But the feedback received
seemed to have a good blend of feature request and design critiques, so it would
seem to be at an appropriate level. One thing that was noted during the test
sessions was that they all requested features and that they wanted to be able
to configure what they could see in every feature. The amount of configuration
that would be required if every feature they wanted had everything to configure

51

would be huge. So I think test subjects usually overestimate how much they
want to be able to configure. It is a battle between efficiency, learnability, utility
and effectiveness.

6.9 Improvements

Several features were made to improve from the feedback of the users. The
feathering of the nodes that was used to prevent nodes from ending up on top
of each other was removed. Instead a feature was implemented to drag around
nodes that placed them where the user wanted them. And to increase symmetry
and to avoid the previous problem of figure 26 where there were nodes inside
each other, the nodes with the most amount of relations were set in the center
instead. This would make it harder to see which node the graph is stemming
from. To facilitate context understanding a title was added that said ”Relations
to and from *Component name*”. The name of the nodes were displayed under
each node but with the ability to toggle it on and off. The default setting is
that the name is displayed for services but not for the servers or datastores. The
user would also be able to toggle on and off displaying servers and datastores.
This is configured in the improved legend that also shows what the relationships
mean. Now to see what kind of relationship two nodes has, the user hovers one
of the nodes and all relationships from that node is displayed in text. This text
appears in the color of the node that is dependent on the other node. The text
is in this version always ”Depends on” and angled with the line to give a sense
of direction in addition to the arrow. The feature to open a nodes property page
inside vScope was also added by holding down the shift key and clicking on the
node, which would open the property page in a new tab so that the user does
not lose their way in the graph.

52

Figure 32: Graph with default settings, hovering over Marathon to show its
relations.

53

Figure 33: Graph where all nodes are shown as well as their names.

54

Figure 34: Graph where only services are shown.

55

7 Discussion

In the visualizations of network context is king. So the product from this project
is not applicable for every scenario, but instead it is to guide the process on how
to do a network visualization and what to think about when doing so. The
product was aimed at the technical networks and the use cases of their users
and the nature of their data. With this data it limits the design choices with
for example color as the data already has colors and icons assigned to them
through Infrasight Labs program. But what the project does is list many tools
that the designer has when creating its own visualization and suggestions of
what it might be used to do. The project along with that gives an example
of an implemented product that has taken these things in mind and that has
conducted user tests that show what some users want and what to expect that
users might want.

7.1 Use Case Discussion

The use cases discussed in the report seemed to be accurate and what users
would want to see would most often fall under one of those. If it was not one of
those, it would be overview where it would be that the user did not know what
they wanted, but just to see how the system looked. And then the use cases
had different levels of importance to the users.

7.1.1 UC1: Centrality Analysis

With UC1 the solution was clear for all the users, but the metrics used might not
be the metrics needed. The most important node was displayed as bigger, but
the metrics for the most important node was its PageRank, however that does
not take into account how important relationships or the nodes were so it might
be misleading. In a case from Infrasight Labs, one service runs on four servers,
but the four servers works as a redundancy so that if one or two servers breaks
down it wont affect the service as a whole. But that relationship is weighed the
same as any other relationship, so the PageRank might be misleading. However
there is not any information about the importance of the relationship at the
moment. The same is for the components themselves, different services are of
different importance to the company but no such information is to be displayed.
So while the users were satisfied with the solution and understood it, it does
not necessarily show the ’complete truth’.

7.1.2 UC2: Connection Analysis

UC2 was not heavily focused as there was no real good information to display.
Instead only a proof of concept was implemented but not tested, where on hover
a token text was formed. This as it was not prioritized by users and by the ones
who wanted it they did not know what to display. But with further investigation
and more data available this could be explored further.

56

7.1.3 UC3: Path Analysis

With the test results it would seem that while the graph itself was not good
enough to solve the most important use case, UC3, easily without interaction,
the additional features were. As when the data sets become big enough it starts
getting cluttered, so while it would have been more efficient from a usability
perspective to design it in such a way that the user would not have to interact
with the graph to get the information they want. So it could be improved
with user customizable filtering, some of which were implemented, but a better
placement algorithm for the nodes might have solved the problem even better.
The solution is fine within the context of the program as it can tailor a bit to
the user, but might be considered worse if the user wants to share their view
with others as it is dependent on interaction.

7.1.4 UC4: Community Analysis

Community analysis is sort of what is happening, as the graph shows one com-
munity. However to show the community in relation to other communities were
not requested by most of the users just because of how vast their data sets were.
The program however has only been tested on Infrasight Labs own data set, and
to test it for other sets would be very useful for quality reassurance. Also more
thought in how the user should operate the graph would benefit it, as of now
features are there more as a proof of concept. And to implement the descoped
features would probably improve the product further.

7.2 Work Process Discussion

The work process was not always optimal as there was limited amount of time
to interact with the users, and to court the users it was elected to not test
low-fi prototypes as one usually does in a design process, and instead show the
MVP. However with the way it transpired I do not think that it would improve
the design process significantly. However that might have been due to a lucky
guess with what the users actually wanted, which was prepared for in the MVP.
However this ’lucky guess’ could very well be from the thorough investigation
process with the existing products and the theory. Of course with more time the
improvements made would preferably be tested on the users. And the descoped
features would be investigated more thoroughly. Preferably a more diverse range
of test subjects that still are users would be tested, but to even been given so
much time with relevant users was extremely helpful and contributed a lot with
the process.

57

8 Conclusion

Visualization of data is a great way to convey information to an audience. When
visualizing data it is important to pick the right medium for the data set, and
what the audience needs to know from the information. For small data sets there
are several types of graphs that are viable, and one might pick whichever one
likes best, and focus on aesthetics to make the graph more enjoyable. But with
sizeable data sets it would be of greater importance to focus more on the quality
design features of the graph. In bigger data sets, network graphs becomes the
most viable option due to its ability to scale and its abilities to fulfill qualitative
and functional requirements.

When visualizing, there are several tools to use (such as use of color, size,
placement and interactivity) that will help users with their analysis of the data.
It is important that the creator of the graph understands their user’s needs,
the data and their tools. The nature of the data might change how you can use
different tools, so while you might want to use colors to signify for example com-
munities or similar, colors might already be a part of what makes a component
recognizable to a user. While one would prefer that a user would understand the
graph and fulfill their use cases by just looking at the graph it is also possible to
implement interactive features that help manage the information or that does
analyses for the users.

While the users were interested in customizability of everything in the graph,
it might make the learnability worse but increase the utility and efficiency of the
system. So a balance of how much to customize needs to be reached. Customiz-
ability is important since while the users might be from similar backgrounds and
have similar use cases, they are most often not a monolith. So they might have
different points of interest in the data, and different levels of understanding.
It is also important to see what the users understand. It can not be assumed
that the user understand icons and colors even though they are frequently used
in the system. Therefore, names and legend might have to be used to clarify
different aspects.

In summary, to efficiently visualize a network it is important to consider and
understand the nature of the data, the visualization tools and the users.

58

9 References

[1] ”Six Degrees of Separation”. Wikipedia, Visited February 2020.
https://en.wikipedia.org/wiki/Six degrees of separation

[2] ”Wikipedia:Wiki Game”. Wikipedia, Visited February 2020.
https://en.wikipedia.org/wiki/Wikipedia:Wiki Game

[3] ”Your IT environment – All in one place”. Infrasight Labs, Visited Febru-
ary 2020. https://www.vscope.net/

[4] Preece, J, Rogers, Y, Sharp, H (2002). ”Interaction Design: Beyond Hu-
man Computer Interaction” John Wiley & Sons, Inc.

[5] ”Aesthetics”. Interaction Design Foundation, Visited November 2019.
https://www.interaction-design.org/literature/topics/aesthetics

[6] ”Data Visualization for Human Perception”. The Interaction Design Foun-
dation. Visited February 2020.

[7] ”Gestalt principles”. Interaction Design Foundation, Visited October 2019.
https://www.interaction-design.org/literature/topics/gestalt-principles

[8] Vale, F. Wayson, T. (2018). ”Charts and custom visual-
izations - beyond the map”. esri, Visited November 2019.
http://proceedings.esri.com/library/userconf/ devsummit18/papers/dev-
int-101.pdf

[9] Wilke, C. (2019) ”Fundamentals of Data Visualization”. O’Reilly.

[10] Goksör, N., Kemvik, A (2019). ”Data Visualization of Product Relations
- An Interactive Virtual Reality Solution” Lunds Tekniska Högskola.

[11] ”Graph database”. Wikipedia, Visited October 2019.
https://en.wikipedia.org/wiki/Graph database

[12] Shetty, S. (2017). ”When, why and how to use Graph ana-
lytics for your big data” Packt Hub, Visited November 2019.
https://hub.packtpub.com/when-why-and-how-to-use-graph-analytics-
for-your-big-data/

[13] M. A. Porter; J.-P. Onnela; P. J. Mucha (2009). ”Communities in Net-
works”. Notices of the American Mathematical Society. 56: 1082–1097,
1164–1166.

[14] Sugiyama, K., S. Tagawa, and M. Toda (1981). ”Methods for visual un-
derstanding of hierarchical system structures.” IEEE Transactions on Sys-
tems, Man and Cybernetics.

[15] Sindre, G., B. Gulla, and H. Jokstad (1993). ”Onion Graphs: Aesthetic
and Layout.” Proc. 1993 IEEE Symposium on Visual Languages.

59

[16] Purchase, H. C., R.F. Cohen, and M. James (1996). ”Validating Graph
Drawing Aesthetics.” Proc. Symp. Graph Drawing

[17] Aris, A. Shneiderman, B (2006). ”Network Visualization by Semantic Sub-
strates”. IEEE Transactions on Visualization and Computer Graphics.

[18] Ware, C., Helen Purchase, Linda Colpoys, and Matthew McGill (2002).
”Cognitive measurements of graph aesthetics.” Information Visualization.

[19] Grant, R (2018). ”Data Visualization Charts, Maps, and Interactive
Graphics”. Chapman and Hall/CRC New York.

[20] Gleich, D (2015). ”Pagerank beyond the Web”. SIAM.

[21] ”PageRank”. Wikipedia, Visited January 2020.
https://en.wikipedia.org/wiki/PageRank

[22] Ribecca, S. ”The Data Visualisation Catalogue” The Data Visualisation
Catalogue, Visited October 2019. https://datavizcatalogue.com/

[23] ”Visualizing Graph Databases with KeyLines”.
Cambridge Intelligence, Visited November 2019.
https://www.youtube.com/watch?v=9EB6cZjT4nQ

[24] ”ConnectTheDots: Les Misérables Character Co-
occurence”. Databasics, Visited November 2019.
https://www.databasic.io/en/connectthedots/results/5b736b0c9dfb0a00e15f0816

[25] ”Alchemy.js”. GraphAlchemist, Visited November 2019.
http://graphalchemist.github.io/Alchemy/#/examples

[26] ”Javascript Fatigue Kumu”. Kumu Inc, Visited November 2019.
https://Kumu.io/dan/javascript-fatigue#javascript-fatigue/nodejs

60

A Appendix

Here are test summaries from the different test persons in Swedish.

A.1 Test Person A & B

De hanterar och dokumenterar systemen. B̊ada är lite blandad niv̊a i tekniken.
De sitter i en driftgrupp senast. Har hand om system, nät och allt möjligt.

De har haft det länge, men började dokumentera allt för ca: 2 m̊anader sen.
Men allt är inte ifyllt än. De har p̊abörjat relationskopplingar osv.

De använder det för att byta ut inventeringslistan och koppla hur saker
funkar. Inventering, dokumentation. T.ex AD, licenser, klienter, servrar och
skrivare. De inventerar inte nätverket s̊a de försöker h̊alla koll p̊a relationerna.
Samlad bild p̊a användare och servrar och se hur de är beroende av varandra.

De vill ha en övergripande skiss s̊a att de kan dela med det med andra.
Andra kan se servicekort men inte först̊a meningen i det. B̊ade p̊a avdelningar
som inte har n̊agot koll p̊a it, men även för nya folk i It-avdelningen. De vill
kunna ha en uppdaterad dokumentation som de kan dela med sig av. S̊a de vill
f̊a service mapping att g̊a mer fr̊an it till andra avdelningar.

De vill kunna sortera p̊a flera saker och lättare behörighetsdelning (inte
relaterat till exjobb).

De tror att det hade kunnat ge en snabb överblick till helpdesk till exempel.
De har f̊att information om en incident och se vad det kan ha p̊averkat eller vad
som p̊averkat det. (Use case 3)

De hade velat använda det för att se kopplingen mellan olika system och
funktioner. Flöde, felsökningsperspektiv. Planeringsarbete. Och de vill starta
om detta, vad kommer det drabba. (Use case 3)

De vill se komponenterna webserver, application pools, sites, services, servrar/maskiner,
databaser. I kartan. Och p̊a n̊agot sätt se grupper, ägare, leverantör.

När de blev visade prototypen s̊a trodde (och hade rätt) person A att de
förstod vad pilarna betydde men person B tyckte det var otydligt.

Person A ville att man skulle kunna visualisera saker mer hierarkisk. B̊ada
ville kunna hoovra för information och se fullt namn p̊a allting man kan f̊a plats
med. Det funkar inte att bara ha de tv̊a bokstäverna som finns annars. För att
det ger bättre överblick.

De var intresserade att se längre än första steget. P̊a andra steget tyckte
de att det blev mer plottrigt (det blev lite fel i testet här med en del buggar).
Person B trodde det kunde vara ett bra verktyg för att se ifall man dokumenterat
rätt eller inte.

De hade velat kunna filtrera bort saker. De tycker att saker borde försvinna
d̊a som är endast kopplade till den. Vilja se nära relaterade åt ett h̊all (use case
3). Sv̊art att följa vägarna som de är nu.

Person A rankar 3¿1¿2. 3: Samma som innan, tycker det är sv̊art i detta
laget, men funktionen uppfyller A’s krav. 1: Har lite sv̊art att säga varför, men
vill kunna se viktighet i andra saker som t.ex tracker case eller liknande. 2

61

Person B rankar 3¿2¿1. 3: samma som A. 2: Vet inte vilken kopplingsinfor-
mation som finns i vScope atm, men tänker om man p̊a n̊agot sätt kan sätta
p̊a/av kopplingsinfo i relationer. Vill ha information som troligen inte finns i
vScope just nu. 1: Känner att det kan hjälpa men vet inte när.

B̊ada featuresen hjälpte med use case 3 och 1 och störde inte. Men ser inga
fall man tjänar p̊a olika storlek p̊a noder.

De vill se andra features som att man kan se vyer med gemensamma förvaltare.
De tycker det är viktigt att den endast visualiserar ner i hierarkin och inte

upp igen.
De tror att deras dataset är för stort för att ha en bild av allting.
De tror att en visualisering hade hjälp dem absolut, de har brist av system-

skissar.
Övrigt: De hade velat ha rubrik s̊a man vet var man är. Sätt att exportera

det (inte relevant för exjobb). Sätta p̊a och av namn för allt. Ha en länk
fr̊an grafen till egenskapssidan för komponenten. Person A vill haDarkmode.
Integrera med tracker case (funktion som h̊aller koll p̊a varningar och errors
till komponenter). T.ex visa det i komponenterna. Visa saker som har n̊agot
gemensamt, t.ex samma ägare eller user. Kunna g̊a in p̊a specifik dator och se
vem som äger den.

A.2 Test Person C

Hen är en enterprise-arkitekt. H̊aller ihop helheten p̊a företaget. Ser relationer
mellan teknologier. Lite mer upper management.

Hen har använt service mapping lite tidigare, men det är mer andra som
använder det oftare p̊a företaget. Hen har använt det för att mappa tjänster,
men använder oftast ett annat system för att visa det. Hen kvalitetsgranskar
information som är kopierad fr̊an deras masterdata som finns p̊a ett annat ställe.
Som inte har inventerad data.

Hen saknar logisk gruppering av tjänster i service mapping.
Hen kände att en visualisering var inte nödvändigt för Hen utan för andra

i företaget, de som använder det oftare. Vill se antal servrar, varningar, prob-
lem med servrar och integration med andra tjänster de har som h̊aller koll p̊a
ändringar osv i visualiseringen.

Hen hade velat ha en visualisering för att skapa först̊aelse s̊a att folk slipper
ställa fr̊agor om allt om t.ex vilka servrar/OS som behöver uppdateras. Samt
velat ha en geografisk karta för att se var infrastrukturen är fördelad.

Har ingen egen åsikt om vilka komponenter som ska visas, tror att olika delar
av organisationen vill ha sina egna saker.

Tycker att det är otydligt vad pilen representerar, om det är dataflöde eller
dependencies för att det är olika beroende p̊a system annars. Sv̊art att se utan
kontext. Hen vill att jag ska namnge Vyn. Ha legend som visar vad pilar och
symboler betyder. Samt att man inte ska blanda beroende och flöde, vilket inte
görs i bilden.

Samma typ av vy i större kontext med fler komponenter, vill kunna sortera
noder genom att dra i dem, samt att filtrera och zooma in och ut.

62

Hen vill ha information vid hover, viktiga bitar som namn och notes, vad
folk än känner är relevant.

Hen vet vad allt är s̊a hen tyckte det var begripligt. Vill fortfarande kunna
zooma och filtrera, vill kunna byta vy s̊a att man bytar vad som sätts i centrum.
S̊a byter man nod s̊a byter man vy.

Hen säger att hen tror folk tycker väg är viktigast och sen vad som är vik-
tigast är väg-¿ relation -¿ viktighet. Hen tycker att vilken sorts relation är
viktigast för Hen. Att man is̊afall har en legend med olika sorters pilar som be-
tyder olika saker. Men kan inte säga vad det ska vara för sorters relationer. Hen
missförstod min förklaring av väg, men tyckte att vad som skulle vara viktigt är
att se är det som är gjort i funktionen där man endast ser ett beroendeh̊all fr̊an
en nod. Kanske se alla kopplingar mellan tv̊a noder, men tror inte att det är
relevant s̊a länge de inte har samma sorts kedja (Alla relationer g̊ar åt samma
h̊all). Hen tycker att man kan se vägen, men man f̊ar inte informationen s̊a
lätt. Måste anstränga sig. Hen tycker att det är redan självklart vilka som har
flest kopplingar till sig, men gillar koncept som PageRank, men att man har fler
faktorer i det, som hur viktigt det är eller tracker cases (Verktyg i vScope som
h̊aller koll p̊a status). Tyckte dependencies featuren var bra och att det blev
lättare och trevligare att titta p̊a den grafen och att det hjälpte med storleken.

För att visa relationer vill man inte skriva information bredvid för att det
blir för plottrigt, men kanske vid hoover.

Hen tror att det kunnat hjälpa hen i arbetet, men främst först̊aelse för tjänst-
managers s̊a att det blir lättare att förvalta tjänster, s̊a de vet var de ska g̊a
med saker och hur de ska förvalta tjänster. Att visa hela nätverket utzoomat
hade inte funkat alls p̊a ett företag i deras storlek. Det hade varit aldeles för
stort.

Hen vill att man ska kunna gruppera om s̊a att det fastnar, s̊a man kan öka
tydligheten.

A.3 Test Person D

Hen är en it operations manager som ansvarar för allt som har med teknik att
göra och drift. Avtal med mera. Hen hade inte använt service mapping men
f̊att det demat för sig, Hen tänkte börja använda det för att ersätta befintliga
excellark s̊a att de kan öka transparensen mellan avdelningar. Vilka applika-
tioner de har s̊a att t.ex folk inte kommer och köper in system som redan finns
osv. Hen har känt ett behov av att visualisera det innan. Hen hade velat ha
en systemkarta och se relationerna. Hen hade velat se servrarna och dess re-
lationer, information om dem och uttryckte egentligen b̊ade use case om väg
samt om storlek. Ett use case var att Hen ville se hur en förändring skulle
kunna p̊averka andra komponenter. Samt se vilka saker som man inte borde
pilla p̊a om man vill undvika förändringar i m̊anga saker. Hen vill se servar,
mer kan Hen inte säga. Hen har inte satt in sig i service mapping än s̊a. Vad
händer vid en förändring. Och en korrekt dokumentation över systemet. Hen
hade velat kunna se bättre bilder, tjänsterna säger Hen inget, Hen vill ha en
rubrik, Hen vill se vilken tjänst Hen utg̊ar ifr̊an och vad det är för karta Hen

63

vill titta p̊a. Hen vill kunna dra och släppa nodes och spara dessa vyerna till
senare. Hen tycker andra iterationen är rörig, massa pilar och Hen vill dra i
lite saker. I detta skedet s̊a saknar Hen fortfarande namn, Hen vill ha namn
p̊a alla komponenter alltid eller val att filtrera bort det. Samt check boxes för
att dölja saker Hen ej vill se. När det sen var helt utfällt s̊a tyckte Hen att det
var ännu stökigare, annars samma feedback. Hen vill att ifall en relation är åt
b̊ada h̊allen s̊a vill Hen se det. Hen vill kunna dölja allt som inte är i direkt
relation med komponenten. Hen vill även kunna se hela kartan utzoomad s̊a
även andra communities är med för att lättare kunna se var man kan pilla om
man vill. Rangordning. 1: Sa det innan att Hen ville ha det, men viktigaste
komponenter vill Hen se lätt. 3: Ville kunna se en saks närmre relationer (antar
att det betyder att Hen ville se ett relationsflöde som dep/isdep). 2: Vilken sorts
relation verkade inte vara s̊a viktig äns̊alänge. Hen kunde gissa vilka relationer
som var viktigast p̊a ordinariebilden men tyckte det blev tydligare i unstupify.
Hen trodde att pilarna betydde dataflöde och inte beroende till varandra. (S̊a
de är p̊a fel h̊all). De nya funktionerna hjälpte till “enormt”. Hen ville kunna
släppa in och uppdatera alla sina systemkartor, bra att Hen kunde slippa in p̊a
shellpoint osv ser fram emot att använda visualiseringen sen. Hen bad om att
kunna skapa egna vyer eller kartor och även kunna lista saker om den markerade
komponenten.

A.4 Test Person E

Hen är samordnare för IT-infrastruktur. Samordnar server, lagring och datakom-
munikation. VMware, nätverkskommunikation och AD. Hyffsat l̊agniv̊a, allts̊a
väldigt teknisk. Har kollat p̊a service mapping innan, testat det när det utveck-
lades. Planer att snart fylla i det och byta ut excell därifr̊an. De använder det
för att se systemägare och förvaltare och deras kopplingar. Knyta servrar osv
med certifikat. S̊a knappt börjat med det.

Hen saknar visuella relationer s̊a att Hen kan se beroende enkelt. Hen vill
se vad som händer ifall man gör n̊agot p̊a en server. Hen vill kunna lägga till
och ta bort information i table explorer (inte relevant för mig). Vill ha vy som
de har i excel och kunna filtrera efter ägare t.ex. Vilka system som ägs av vissa
förvaltningar och vilka kolumner som ska visas.

Hen vill ha mer information om hur de ansluts, t.ex de kopplas genom denna
porten. Vill kunna se tcp-portar osv. (Funktionen saknas i vScope) Hen visste
inte om featuren att deklarera olika sorters beroende.

Vill se det visuellt men vet inte helt varför mer än att se relationer mellan
objekt och en visuell bild av systemet i sig. Men kallar det en nice to have.

Hen hade använt en graf för att kvalitetssäkra förändringar s̊a att de vet
vilka saker som kan p̊averkas vid en ändring av en viss komponent. S̊a se vägar,
aka use case 3.

Hen vill se tjänster, servrar, konton, portar, ägare, förvaltare, leverantör,
support. Kanske att man kan expandera. (Vill ha det lättare att inventera fr̊an
AD till grupper och users i service-kortet. Utanför exjobbet)

64

Hen förstod de olika ikonerna och fattade hur beroenden var riktade. Vill
hoovra för snabbkort med vissa detaljer, namn, description, samt kunna själv
välja vad Hen vill visa där. Hen vill se en snabb överblick som trackercase vid
hoover. Vill se skillnader p̊a olika sorters connections, indikation p̊a relation till
certifikat och kunna hämta certifikat för att visa dess relationer istället för att
utg̊a ifr̊an en tjänst. S̊a att man g̊a fr̊an vilken nod som helst för att visa vad
det är relaterat till.

Hen tycker det är sv̊art att se vad som är tjänster s̊a att kanske byta det
till en annan form för att urskilja det. Lite sv̊art att se relationer. Hen vill
kunna ha ett filter s̊a Hen kan sätta p̊a och av olika komponenter samt dess
relationer. Ha det i kanske en lista. Hen vill se user-groups och kanske antalet
users. Hen vill kunna h̊alla p̊a en pil för att se connectionen. T.ex vilken port de
pratar över (funktion saknas i vScope, men kanske skriva description eller typ av
kommunikation). Hen vill veta dataflöde och vad den gör i den här kopplingen
(Finns inte i vScope). Hen är intresserad av en hiererkisk struktur för att lättare
h̊alla koll p̊a servrar osv. (Kanske p̊averkat av ett tidigare existerande verktyg).

Rangordnar det som 3,1,2. Hen vill se vad som p̊averkas i en ändring, kanske
i textform p̊a tjänstekortet (men var lite osäker ifall Hen bara ville ha en niv̊a
där eller flera).

Vill se hur viktade beroende är (Funktion saknas i vScope), samma sak med
hur viktiga olika tjänster är. (Funktion saknas i vScope).

Hen vill kunna välja olika sätt att visa saker, som t.ex markera hur l̊angt
ifr̊an orginalnoden de är genom storlek eller n̊agot. Vill se antalet relationer vid
hoover.

Det var sv̊art att se relationsvägen fr̊an början, men blev lättare vid featuren
att se beroende.

När jag ändrade storleken s̊a vill Hen själv välja vad som ska indikera en
storleksökning, t.ex antal relationer in, eller deras vikt, eller vikt av noden osv.

Hen kunnat hjälpa men Hen tyckte att det var stökigt i slutet oavsett.
Hen hade kanske velat ha systemet i en dashboard men att det är mer nice

to haves. Eller att visa det med tracker case s̊a att i content ha versioner där
man kan visa vad som p̊averkas när n̊agot sl̊ar larm (Inte relevant för exjobbet).

Sa att community inte hade varit relevant för hen eftersom det hade allt
hängt ihopa.

65

