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Abstract 
Smoothed Particle Hydrodynamics (SPH) is used to study the mechanisms 

of landslide-generated waves. As the landslide dynamics and the evaluation 

of impact forces acting on water are most important, landslide is modelled as 

a highly viscous fluid. Incompressible SPH (ISPH) is used for fluid 

simulation. Since the landslide is assumed as highly viscous fluid, it needs to 

satisfy the condition for the viscous term with respect to time step in addition 

to CFL condition. To use moderate time step, we adopt an ISPH with a fully 

implicit time integration. The rheology of the soil is characterized by 

Bingham fluid model. The yield stress is determined by Mohr-Coulomb 

failure criterion. At the interface of multiphase flows, a conventional SPH 

framework applies the material properties from neighboring particles for the 

target particle even though some of them are belonging to a different material. 

Therefore, we modify the approach to adopt the material properties of the 

same phase on the target particle. Three validations are made to study the 

accuracy of the proposed method. It is concluded that the present method is 

capable of describing the wave generation and propagation phenomena and 

capturing the soil behavior based on the Mohr-Coulomb parameters. 
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Chapter 1  

Introduction 

1.1 Background 

Tsunamis are a series of gravity waves generated by the sudden 

displacement of water in a water body such as rivers, lakes, reservoirs and 

oceans due to various types of sources such as earthquake, landslide, volcanic 

eruption and meteorite. These waves have devastated infrastructures such as 

dams, bridges, buildings, breakwaters and seawalls, on top of that, it caused 

human losses. A proper understanding of the formation, propagation and 

destructive consequences of such hazards is one of the significant matters 

among researchers in recent years. This paper focuses on Landslide-

Generated Waves (LGWs). Landslide and volcanic eruption are the most 

common sources of tsunamis after earthquake. In fact, Earthquake-Generated 

Waves (EGWs) has many attentions since we experience such disasters more 

frequently. However, the recent assessment of tsunami hazards in the US 

Atlantic margin conducted by ten Brink et al. [1] showed that LGWs have 

potential to create the biggest tsunami hazard to the coast. As an example of 

LGWs hazard, on December 22, 2018, the coastal area of Sunda Strait in 

Indonesia experienced tsunami waves generated by the lateral collapse of 

Anak Krakatau volcano due to its volcanic activity. According to the survey 

conducted by Takabatake et al. [2], Inundation heights of over 10 m were 
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measured in some coastal areas. In Japan, 1792 Unzen earthquake and 

tsunami is also one of those types of disaster. In Shimabara (Nagasaki 

Prefecture), Mt. Mayuyama in front of Mt. Unzen had a huge landslide due to 

the volcanic activities. The sediments were sliding into the sea, causing the 

tsunami that struck the coastal line at the other side of the ocean in Higo 

(Kumamoto Prefecture). Compared to earthquakes, landslide may create 

waves with relatively shorter wave lengths and locally higher wave 

amplitudes, inducing large runups among the adjacent area. Hence, a better 

understanding of LGWs is of great importance in hazard assessments. Note 

that the term “landslide” includes all types of natural gravity mass 

movements with any materials such as soil, rock. Lava, ice and snow.  

According to Heller [3], the wave generation process of LGWs are 

associated with the initial position of landslide materials relative to the water 

surface, which is categorised to three types, namely (1) Subaerial LGW 

involving a solid, water and air. In extreme cases (i.e. the high-speed 

landslide), it might generate an impact crater; (2) Partially submerged LGW 

that is slower than a subaerial slide because landslide material is already 

under the effects of water pressure in the initial position but may still be a 

three-phase mixture flow; (3) Submarine LGW which tends to much smaller 

waves, only involving two phases, a solid and water. The present study 

considers only two phases, a solid and water. 

  

1.1.1 Numerical Frameworks for Large Deformation of Soil 

According to Soga et al. [4], the landslide dynamics involve at least three 

distinct scales: (a) the microscopic scale, associated with the contact between 

grains; (b) the meso-scale, involving microstructure such as grain 

rearrangement; (c) the macroscopic scale, where geological or 

geomorphologic features such as soil layering or faults are considered. For 

 
Figure 1. Classification of landslide generated waves 
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example, a huge landslide is also involved with the grain-grain interactions. 

In general, continuum frameworks have been adopted especially when the 

difference of scales between the micro-scale and the macro-scale sizes of the 

geometry is large enough. The grain level description of the granular material 

enriches the macro-scale variables even for simulating post-failure process of 

landslides. Discrete-Element Method (DEM) attains the grain level 

description by directly modelling the grain itself and calculating the grain-

grain interactions such as a collision and a friction. This method is able to 

evaluate quantities which are difficult to measure in experiments. It gives a 

useful insight into further studies of the mechanism. Although the current 

DEMs can simulate a huge number of grains, there is a limit for scales. Such 

engineering problems could be targets for the continuum frameworks. 

There are various numerical tools for modeling the landslide behavior. The 

mesh-based Lagrangian methods, such as Finite-Element Method (FEM) or 

Finite-Difference Method (FDM) can follow history-dependent material 

behavior and define free surfaces. On the other hand, in order to avoid 

numerical errors in simulating large deformation problem, complex re-

meshing and remapping of variables are necessary. 

Particle Finite-Element Method (PFEM) is a mesh-less numerical simulator, 

in which the nodal points represent the particles and meshes are constructed 

based on these points. Then, the governing equations are solved with respect 

to the meshes, however, it still requires frequent re-meshing. 

Material Point Method (MPM) is a particle-based method represents a part 

of the material as a collection of material points. Their behaviors are tracked 

by Newton’s laws of motion. The MPM is a hybrid Eulerian-Lagrangian 

approach, since it uses moving material points and computational nodes on a 

background mesh. The advantage of this method is that it can incorporate 

advanced history-dependent soil constitutive modes. 

Smoothed Particle Hydrodynamics (SPH) is the one of mesh-free 

Lagrangian techniques, in which the continuum is discretized into the finite 

number of particles. Each particle represents a certain fraction and has 

physical quantities. The relationship between particles is defined by the 

weighted average function, called as “kernel function”. SPH has been applied 

in geomechanics for solving large deformation and post-failure problems. In 

this study, SPH is used and developed in order to assess the landslide 

behavior. Bui et al. [5] successfully applied SPH for the large deformation 
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and post-failure of soil. They described the soil with an elastoplastic 

constitutive model. Although there are still some difficulties such as tensile 

instability problem, it is found that SPH has a potential to be able to simulate 

soil behavior based on solid mechanics. 

 

1.1.2 Previous Works on Landslide-Generated Waves 

LGWs have been having attentions from researchers and engineers. It thus 

motivates them to study the phenomena and the consequences of the event 

through various approaches. This section shows some experimental and 

numerical approaches. Wiegel [6] conducted a laboratory study to get more 

understandings in the phenomenon of waves induced by underwater rigid 

body sliding down an inclined plane. Heinrich [7] carried out a submarine 

landslide experiment with a rigid wedge sliding down a slope. Fritz et al. [8] 

investigated landslide generated waves in a two-dimensional laboratory test 

based on the generalized Froude similarity. Furthermore, many researchers 

studied landslide induced tsunami through numerical approaches. Generally 

numerical simulation techniques are classified as two frameworks: Eulerian 

and Lagrangian, and three grid types: structured, unstructured and meshless 

according to Yavari and Ataie-Ashtiani [9]. Eulerian methods have been the 

most popular technique to described fluid flows. FDM is the most well-

known numerical approach of LGW models because it can offer high 

accuracy and efficiency even for the simulation with complex geometries 

with a simple application. Finite Volume Method (FVM) and FEM have been 

recently more often used than FDM because of the integral form of 

conservation laws that obeys the rules of physics. Lagrangian method is also 

often applied in recent years due to the advantage of mesh-less which enables 

to easily describe the large deformation problem. The key feature of this 

scheme is (1) the motion of particles representing the continuum is tracked; 

(2) the fluctuations of free surface or the surface between different phase 

flow are automatically followed; (3) fluid can freely move around; (4) the 

resolution can be determined by a function of space and time. SPH is one of 

the particle based Lagrangian method, which is applied to simulate such 

flows. Ashtiani and Shobeyri [10] conducted submarine rigid body slide and 

submarine deformable mass slide using an SPH. Capone et al. [11] 

implemented rheological SPH model for landslide deformation. 
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1.2 Motivation and Aims 

1.2.1 Motivation 

Landslide-generated waves might cause serious damages on the adjacent 

area. Thus, a better understanding of the mechanism such as wave generation 

and propagation and the consequences would be of great importance in 

hazard prediction. Because of the uncertainty regarding landslide 

characteristics and the absence of the observed data, a proper and reasonable 

numerical model is required. Our research group has already developed 

numerical simulation tools to tackle tsunami related problems such as 

stabilized ISPH method proposed by Asai et al. [12] for tsunami propagation 

and inundation, a SPH with an impulse method for fluid-structure interaction 

and a SPH-DEM coupling method for fluid-soil interaction. In this paper, we 

improve the current method to study such problems and capture the features 

of the wave generation and propagation processes. 

 

1.2.2 Aims 

The aims of this study are to 

1. develop the SPH framework with fully implicit time integration; 

2. introduce a rheological model in the viscous term; 

3. improve the boundary treatment especially for the interface of multiphase 

flows; 

4. validate the accuracy of the proposed method especially for LGW events. 
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Chapter 2  

Methodology 

2.1 Modelling of Soil 

The modelling of landslide material is very complex involving many 

different factors. Wide range of grain sizes and water contents may vary 

depending on the state and external environment, which decide the landslide 

behavior such as material entrainment, the landslide movement, and the final 

deposit. The slop stability is controlled by the effective stress, which is 

determined by external forces, pore pressure, material properties such as 

water content and temperature, geological feature and geometry according to 

Pastor et al. [13]. It imposes proper evaluation of effective stress to describe 

the initiation phase of landslide. However, as the main target of this study is 

the generation process of waves due to landslide, the landslide dynamics and 

the evaluation of impact forces acting on water are more important than the 

slop stability. Accordingly, landslide is modelled as fluid, especially highly 

viscous fluid, in this study. We regulate the landslide motion with pressure 

field instead of effective stress. The characteristics of landslide material is 

determined by density and viscosity, and we consider fully saturated or dried 

soil. The detailed description for the modelling of landslide material is shown 

in Chapter 4. As landslide is assumed to behave as highly viscous fluid, both 
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water and landslide is modelled as fluid while they have different material 

properties.  

 
 

2.2 Smoothed Particle Hydrodynamics 

Smoothed Particle Hydrodynamics (SPH) is proposed by Lucy [14], and 

further developed by Gingold and Monaghan [15] originally for astrophysical 

problems. In addition, SPH is extended to treat free-surface incompressible 

flows by Monaghan [16], showing its application to a dam break, a bore, 

wave oscillation and wave propagation. This method is a Lagrangian-based 

particle method, in which the continuum is discretized into a finite number of 

particles. Because of the absence of grids, SPH is particularly useful for the 

 
Figure 2. Landslide generated waves 

Highly viscous fluid

Water

 
Figure 3. Basic concept of SPH approximation 

Target particle 
 

Particles inside of  
the support domain 
 

Particles outside of  
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computation of discontinuous objects and large deformation problem such as 

free-surface flow regarding breaking and fragmentation, while it is known as 

a limitation of mesh-based Eulerian methods due to the distortion. The 

concept of SPH approximation is illustrated in Figure 3. The details of the 

method will be explained in the following sections. 

 

2.2.1 SPH Formulations 

In SPH, a fluid domain is discretized into a finite number of particles, each 

of which tracing the flow and representing the fraction of the continuum as an 

interpolation point, and with physical quantities such as pressure, velocity 

and density. In SPH formalization, the particle which we want to calculate is 

referred as “target particle”, and a particle around this particle are referred as 

“neighboring particle”. As the relationship of a target particle and its 

neighboring particles must be determined to estimate spatial distribution of 

the physical quantities, the physical quantities of a target particle are 

interpolated by a weighted average of neighboring particles’ values. The idea 

is that the closer particles have more contribution to the target particle. In 

SPH literature, the function of the weighted average is referred as “kernel 

function” and the distance in which they have contribution is referred as 

“smoothing length”, which depends on the kernel function we choose. The 

approximation for a physical quantity of a particle located at 𝒙𝑖  can be 

written as, 

𝜙𝑖 ≈ ⟨𝜙𝑖⟩ = ∑
𝑚𝑗

𝜌𝑗
𝜙𝑗𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

, (1) 

where 𝜙𝑖 , 𝑚𝑗 , 𝜌𝑗 , 𝑊 , 𝒓𝑖𝑗 , and ℎ are physical scalar function at position 𝑖 , 

mass, density at position 𝑗, kernel function, relative position and smoothing 

length, respectively. The subscripts 𝑖 and 𝑗 indicate the position of a target 

particle and a neighboring particle. ⟨ ⟩ denotes the SPH approximation of a 

function. The gradient and the Laplacian of scalar 𝜙𝑖 and vector 𝝓𝑖  can be 

approximated as, 

∇𝜙𝑖 ≈ ⟨∇𝜙𝑖⟩ =
1

𝜌𝑖
∑𝑚𝑗(𝜙𝑗 − 𝜙𝑖)∇𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

(2) 
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              = 𝜌𝑖∑𝑚𝑗 (
𝜙𝑗

𝜌𝑗
2 +

𝜙𝑖

𝜌𝑖
2)∇𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

, (3) 

∇ ⋅ 𝝓𝑖 ≈ ⟨∇𝜙𝑖⟩ =
1

𝜌𝑖
∑𝑚𝑗(𝝓𝑗 −𝝓𝑖) ⋅ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

(4) 

= 𝜌𝑖∑𝑚𝑗 (
𝝓𝑗

𝜌𝑗
2 +

𝝓𝑖

𝜌𝑖
2) ⋅ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

, (5) 

∇2𝜙𝑖 ≈ ⟨∇
2𝜙𝑖⟩ = ∑𝑚𝑗

𝜌𝑖 + 𝜌𝑗

𝜌𝑖𝜌𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗 , ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑗=1

, (6) 

where 𝜂  is small number introduced to avoid numerical errors. 

Approximation for any value can be obtained with these formulas, enabling 

discretization of the fluid equation. 

 

2.2.2 Kernel Functions 

The kernel function plays an important role in SPH approximation as it 

controls accuracy, smoothness and efficiency of the computation. The kernel 

function is defined under the following rules. 

 
1. The summation of kernel function over its the support domain must be 1(unity 

condition): 

∫ 𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′ = 1
Ω

. (7) 

 

2. The support domain is defined by the smoothing length ℎ and a scale factor 𝜅 

that is regarding the spread of the specified smoothing function. Kernel 

function outside of the support domain must be negligible: 

𝑊(𝑥 − 𝑥′, ℎ) = 0  when  |𝑥 − 𝑥′| > 𝜅ℎ. (8) 
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3. Kernel function must be converged to the Dirac delta function as ℎ approaches 

0: 

lim
ℎ→0

𝑊(𝑥 − 𝑥′, ℎ) = δ(𝑥 − 𝑥′). (9) 

 

4. Kernel function must be continuously at least first order differentiable:  

∃
𝑑𝑊
𝑑𝑟
|
Ω

∈ ℝ. (10) 

Also, some notable kernel functions are introduced. 
A) Cubic B-spline 

𝑊(𝑟𝑖𝑗, ℎ) = 𝛼𝑑

{
 
 

 
 1 −

3

2
(
𝑟𝑖𝑗

ℎ
)
2

+
3

4
(
𝑟𝑖𝑗

ℎ
)
3

, 0 ≤ 𝑟𝑖𝑗 ≤ ℎ

1

4
(2 −

𝑟𝑖𝑗

ℎ
)
3

,  ℎ < 𝑟𝑖𝑗 ≤ 2ℎ

0,  2ℎ < 𝑟𝑖𝑗

. (11) 

B) Quintic B-spline 

𝑊(𝑟𝑖𝑗, ℎ) = 𝛼𝑑

{
 
 
 

 
 
 (3 −

𝑟𝑖𝑗

ℎ
)
5

− 6(2 −
𝑟𝑖𝑗

ℎ
)
5

+ 15 (1 −
𝑟𝑖𝑗

ℎ
)
5

,  0 ≤ 𝑟𝑖𝑗 ≤ ℎ

(3 −
𝑟𝑖𝑗

ℎ
)
5

− 6(2 −
𝑟𝑖𝑗

ℎ
)
5

, ℎ < 𝑟𝑖𝑗 ≤ 2ℎ

(3 −
𝑟𝑖𝑗

ℎ
)
5

, 2ℎ < 𝑟𝑖𝑗 ≤ 3ℎ

0, 3ℎ < 𝑟𝑖𝑗

. (12) 

C) Wendland 

𝑊(𝑟𝑖𝑗, ℎ) = 𝛼𝑑 {
(1 −

1

2

𝑟𝑖𝑗

ℎ
)
4

(1 + 2
𝑟𝑖𝑗

ℎ
) , 0 ≤ 𝑟𝑖𝑗 < ℎ

0, 2ℎ ≤ 𝑟𝑖𝑗

. (13) 
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2.3 Stabilized Incompressible SPH 

2.3.1 The Governing Equation 

As landslide is assumed to behave as a fluid, the motions of water and 

landslide are regulated by the same fluid equations, particularly 

incompressible fluid equations, indicating that the density of fluid is constant. 

The governing equations of the fluid, the continuity equation and the 

momentum equation (also Navier-Stokes momentum equation) are defined 

as, 

∇ ∙ 𝒖 = 0, (14) 
𝑑𝒖

𝑑𝑡
= −

1

𝜌
∇𝑃 + 𝜈∇2𝒖 + 𝒈, (15) 

where 𝒖, 𝑃  indicate velocity and pressure, respectively. 𝜌 , 𝜈 , 𝒈, 𝑡  indicate 

density, kinematic viscosity, the gravitational acceleration and time. The 

pressure 𝑝 and the velocity 𝑢 are unknown in the equation.  

 

2.3.2 Projection-Based ISPH 

Projection-based SPH method proposed by Cummins and Rudman [17] to 

model incompressible fluid flow is employed in this study. The method uses 

a pre-step with the viscosity term first integrated forward in time and 

estimates an intermediate velocity without enforcing incompressibility, which 

is finally updated in the next step where incompressibility is strictly taken 

into consider with a pressure gradient calculated by solving the Pressure 

Poisson Equation (PPE). This enables to use the fluid represented velocity 

rather than the sound speed for the CFL condition, thus the computational 

costs can be significantly reduced. Here, we mainly explain the time 

integration scheme of the projection method. The differentiation of velocity is 

divided into two steps defined by, 

𝑑𝒖

𝑑𝑡
=
𝒖𝑛+1 − 𝒖𝑛

∆𝑡
=
𝒖𝑛+1 − 𝒖∗

∆𝑡
+
𝒖∗ − 𝒖𝑛

∆𝑡
, (16) 

where superscripts of  𝑛 , ∗  and 𝑛 + 1  indicate previous, intermediate and 

current time steps. First, an intermediate velocity is evaluated with the 

viscosity term of the momentum equation as, 
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𝒖∗ − 𝒖𝑛

∆𝑡
= 𝜈𝛻2𝒖𝑛 + 𝒈. (17) 

Afterwards, the velocity at current time step is calculated with the pressure 

gradient term of the momentum equation described as, 

𝒖𝑛+1 − 𝒖∗

∆𝑡
= −

1

𝜌
𝛻𝑃𝑛+1. (18) 

These two steps are called as “predictor step” and “corrector step”, 

respectively. As a first-order Euler time step is applied in this study, the 

particle positions 𝑟  are updated with the velocity at the current time step 

described as, 

𝒓𝑛+1 = 𝒓𝑛 + 𝒖𝑛+1∆𝑡. (19) 
The SPH formulations of the gradient and second derivative of velocity and 

pressure are, 

∇ ⋅ 𝒖𝑖 =
1

𝜌𝑖
∑𝑚𝑗(𝒖𝑗 − 𝒖𝑖) ⋅ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

, (20) 

∇2𝒖𝑖 =∑𝑚𝑗
𝜌𝑖 + 𝜌𝑗

𝜌𝑖𝜌𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝒖𝑖 − 𝒖𝑗)

𝑗

, (21) 

∇𝑃 = 𝜌𝑖∑𝑚𝑗 (
𝑃𝑗

𝜌𝑗
2 +

𝑃𝑖

𝜌𝑖
2)∇𝑊(𝒓𝑖𝑗, ℎ)

𝑁

𝑗=1

, (22) 

∇2𝑃𝑖 =∑𝑚𝑗
𝜌𝑖 + 𝜌𝑗

𝜌𝑖𝜌𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗 , ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝑃𝑖 − 𝑃𝑗)

𝑁

𝑗=1

. (23) 

 

 

2.3.3 Pressure Poisson Equation 

As the momentum equation has 3 equations although we have 4 unknown 

values (𝑣 , 𝑝 ), the PPE is constructed to add an equation to close the 

equations. The PPE must be carefully chosen to obtain the proper pressure 

which enforces incompressibility of fluid. The original paper (by Cummins 

and Rudman [17]) proposed the following PPE using the continuity equation. 

The idea is that the density is assumed constant, and all particles strictly 

satisfy the mass conservation.  
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𝛻 ⋅  
1

𝜌
𝛻𝑃𝑛+1 =

1

∆𝑡
𝛻 ⋅ 𝒖∗. (24) 

Shao and Lo [18] introduced an alternative scheme using the deviation of 

the density instead of divergence free condition for the PPE, which is 

analogous to the concept of Koshizuka et al. [19] using the particle number 

density in the MPS method as following, 

𝛻 ⋅  
1

𝜌∗
𝛻𝑃𝑛+1 =

1

∆𝑡2

𝜌 − 𝜌∗

𝜌
, (25) 

where 𝜌∗  denotes intermediate fluid density of particles, which can be 

evaluated with SPH approximation. The difference of these two schemes is 

appearing at the right side of the PPE. Hu and Adams [20] introduced a 

scheme combining both schemes. As they discussed, the keeping divergence 

free scheme in Equation (21) evaluates a smoothed pressure field but a large 

density variation will appear. On the other hand, the keeping density 

invariance scheme in Equation (19) can offer good particle locations while 

numerical instability is found in the pressure field. In this study, the relaxed 

density invariance scheme incorporated with divergence-free scheme 

proposed by Asai et al. [12] is applied. The idea of this method is that 

physical density should keep its initial value for incompressible flow. 

However, in the computation, the particle density may change slightly from 

the initial value since the particle density is strongly dependent on particle 

locations in the SPH method. If the particle distribution can keep almost 

uniformity, the particle density may be close to the constant physical density. 

Therefore, they introduced additional term derived using the particle density 

shown as, 

𝛻 ⋅  
1

𝜌
𝛻𝑃𝑛+1 =

1

∆𝑡
𝛻 ⋅ 𝒖∗ + 𝛼

1

∆𝑡2

𝜌 − 〈𝜌
𝑖
𝑛〉

𝜌
, (26) 

where 𝛼  is a relaxation coefficient (0 ≤ 𝛼 ≤ 1 ) and 〈𝜌𝑖
𝑛〉  is the particle 

density under the SPH interpolation. Note that this scheme is combining the 

divergence-free and a relaxed density-invariance scheme, and a particular 

case using 𝛼 = 0 leads to the original divergence-free scheme. The effect of 

the relaxation coefficient is already tested in Asai et al. [12]. 𝛼 is dependent 

on the initial particle distance. The PPE is solved using an Incomplete 

Cholesky Conjugate Gradient (ICCG) solver. 
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2.3.4 Turbulence Stress 

The conventional SPH enhances numerical stability to prevent numerical 

oscillations by introducing artificial viscosity in pressure gradient term. 

However, current SPH introduces a turbulence model in the source term of 

the PPE. Here, the turbulence model is added in the viscous term in the 

predictor step, resulting in stable simulation of 3-dimentional dynamic fluid 

flow. Particularly, we apply one of Large Eddy Simulation (LES) model, 

Smagonrinsky model which is developed by Smagorinsky [21]. This model is 

the most simple and practical model and has already been implemented in 

SPH simulations shown as, 

𝜈𝑡 = (𝐶𝑠∆)
2|𝑆̅|, (27) 

where the Smagorinsky constant, 𝐶𝑠 = 0.2, ∆ denotes mixing length which is 

the particle distance in this study and the local strain rate is given by the 

formula proposed by Violeau and Issa [22], as in,  

|𝑆̅| = −√𝑚𝑗
𝜌𝑖 + 𝜌𝑗

𝜌𝑖𝜌𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
|𝒖𝑖 − 𝒖𝑗|

2
. (28) 

The turbulence model can prevent unrealistic splash of water when it hits 

the wall because the viscosity increases in the case where the velocity 

difference between the target particle and neighboring particles is large.  

 

2.4 Fully Implicit Time Integration 

In general, for numerical accuracy and stability, the simulator with an 

explicit time integration scheme has to satisfy Courant-Friedrichs-Lewy 

(CFL) condition as well as the condition of the viscosity term for time step, 

expressed as following equation, respectively [22], 

∆𝑡1 ≤ 𝐶
𝑑

𝑢𝑚𝑎𝑥
, (29) 

∆𝑡2 ≤ 𝐷
𝑑2

8𝜈
, (30) 

where 𝐶  and  𝐷  is Courant number and the parameter for the condition, 

respectively. 𝑑 denotes the particle distance. 𝑢𝑚𝑎𝑥 is the maximum velocity 

of the simulation. Generally, this velocity is replaced by the speed of sound. 
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However, in this study, we use the maximum velocity since we assume the 

incompressibility of the fluids. The time step is determined by the minimum 

value based on two conditions (∆𝑡 = min(∆𝑡1, ∆𝑡1)). If the target is low 

viscous fluid like water, the condition for viscous term does not have to be 

taken into consider because CFL condition impose stronger restriction, 

otherwise it has to. Since one of our targets is highly viscous fluid, the 

condition for viscous term might be stricter than CFL condition. As an 

example, Figure shows the comparison of time step between these two 

conditions when kinematic viscosity is 10m2/𝑠. When particle distance is 

1m, time step under the condition for viscous term is 100 times smaller than 

the one under CFL condition. 

 
 

 

 

 

To avoid the condition for the viscous term and use moderate time step, we 

develop fully implicit version of ISPH. Currently, our ISPH is based on semi-

implicit time integration; predictor step is explicit and corrector step is 

implicit. Therefore, in predictor step, we use intermediate velocity for source 

term instead of the velocity at the previous time step as, 
𝒖∗ − 𝒖𝑛

∆𝑡
= (𝜈𝛻2𝒖𝑛 + 𝒈) →  

𝒖∗ − 𝒖𝑛

∆𝑡
= (𝜈𝛻2𝒖∗ + 𝒈). (31) 

The SPH approximation of the viscous term is described as, 

 
Figure 4. shows comparison of these conditions when kinematic viscosity 

is 10 m2/s. 
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𝜈𝑖∇
2𝒖𝑖 =∑𝑚𝑗

𝜌𝑖 + 𝜌𝑗

𝜌𝑖𝜌𝑗

𝜈𝑖𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝒖𝑖 − 𝒖𝑗)

𝑗

=∑𝐵𝑖𝑗(𝒖𝑖 − 𝒖𝑗)

𝑗

,

(32) 

where  

𝐵𝑖𝑗 = 𝑚𝑗
𝜌𝑖 + 𝜌𝑗

𝜌𝑖𝜌𝑗

𝜈𝑖𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
. (33) 

Using Equation (28) and (29), Equation (27) is rewritten as, 

(1 − Δ𝑡∑𝐵𝑖𝑗
𝑗

)𝒖𝑖
∗ + Δ𝑡∑𝐵𝑖𝑗𝒖𝑗

∗

𝑗

= 𝒖𝑛 + Δ𝑡𝒈, (34) 

which is the linear equation with a 3𝑁 × 3𝑁  coefficient matrix for three-

dimensional problems. However, in Cartesian coordinates 𝑥 , 𝑦  and 𝑧 , the 

equation can be divided into three independent directions with 𝑁 ×𝑁 

coefficient matrixes.  
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Chapter 3  

Boundary Treatment 

3.1 Solid Boundary 

A boundary treatment at the interface of fluid and solid is one of the 

challenging and important issues to obtain an accurate result using a particle 

method. The main objectives of the treatment for solid boundaries are 

following: 
(i) Preventing unphysical penetration of fluid particles into solid boundaries; 

(ii) Avoiding the kernel truncation; 

(iii) Giving the velocity treatment with the slip and non-slip conditions to fluid 

particles around the boundary; 

(iv) Satisfying the Pressure Newmann condition. 

As a variety of studies on this issue has been made, different types of the 

approaches have been proposed. Violeau and Rogers [23] categorized the 

approaches into three groups depending on their characteristics: (a) Fictitious 

particles, (b) repulsive functions and (c) boundary integrals.  

The fictitious particles technique (a) is commonly used in many 

applications. The fictitious particles are generated to represent the solid 

domain and used to improve the SPH numerical accuracy by compensating 
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the incomplete kernel support. Yildiz et al. [24] suggested the Ghost 

Boundary Particle (GBP) where the fictitious particles are generated as a 

mirror image of the fluid particles and the GBP can store the boundary 

conditions for the velocity and pressure by mirroring and overwriting. 

However, the GBP approach has two main limitations: One is it is difficult to 

place the GBP in complex geometries like sharp corners because the GBP is 

generated only at the mirroring position to the line, and the other one to 

impose arbitrary non-homogeneous pressure boundary condition. Marrone et 

al. [25] proposed the Fixed Ghost Particle (FGP) to overcome the limitations 

by employing the fixed fictitious particle. The FGP utilize the virtual 

markers, which is a measuring point and not directly regarding SPH 

interpolation of fluid particles. These virtual markers are placed inside the 

fluid domain for measuring physical quantity from fluid particles using SPH 

approximation, and the physical quantity is mirrored onto the fixed wall 

particles. 

The repulsive functions technique (b) is proposed by Monaghan 1994 where 

a repulsive force is exerted on the fluid particles adjacent to the boundary. 

The repulsive force is described in the Lennard-Jones form. According to Ye 

et al. [26], the repulsive force goes to infinite when two particles approach 

each other, in addition to this, it is sensitive to two empirical parameters and 

the initial particle distance. If the initial particle distance is too large, 

unnecessary repulsive force might be applied on fluid particles. This results 

in the occurrence of initial disturbance and explosion of fluid particles. If the 

initial particle distance is too small, it might allow fluid particles to penetrate 

the boundary before exerting sufficient repulsive force on the fluid particles. 

The boundary integrals technique (c) is able to give the slip or non-slip 

condition and the pressure Neumann condition on the solid surface 

analytically without the kernel truncation.  
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Figure 5. Classification of methods for the solid boundary in SPH 

 

In this study, the FGP technique is employed since this approach is 

straightforward and pragmatic. Here, a basic procedure of the approach is 

described. Note that the fixed ghost particle is referred to as “wall particle” in 

this section. 

 

Step 1. Arrange wall particles inside the wall domain with an equal interval 

The wall particles are arranged with the same distance as the initial particle 

distance. Each of particles has information of the distance from the particle to 

the nearest wall surface 𝑑𝑖 and the normal direction with respect to the wall 

 
(a) Fictitious particles 

 
(b) Repulsive functions 

 
(c) Boundary integrals 

Target fluid particle 

Fluid particle inside the support 

domain 

Fluid particle outside the support 

domain 

Wall particle 

Repulsive wall 
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surface 𝒏𝑖, which are calculated in the preliminary process. In general, 3 or 4 

layers of wall particles are enough to compensate the kernel, while it depends 

on the smoothing length of the kernel function. 

 

Step 2. Generate the virtual marker corresponding to each wall particle 

In this study, the virtual markers are placed at the symmetrical position to 

the wall. Therefore, the position of each virtual marker 𝑿𝐼  is obtained as 

following, 

𝑿𝐼 = 𝒙𝑖 + 𝑑𝑖𝒏𝑖, (35) 
where 𝒙𝑖 denotes the position of boundary particle. The subscript 𝐼 indicates 

the target virtual marker. Note that the virtual marker is not directly regarding 

the SPH calculation for fluid particles, and act as a measuring point to give 

the proper boundary condition for the physical quantities such as velocity and 

pressure to the corresponding wall particles. Furthermore, the virtual marker 

technique can also achieve a more robust boundary condition that can 

produce stable fluid flow state near the wall.  

 

Step 3. Measure the velocity on the virtual marker with SPH interpolation 

The velocity and pressure at the virtual marker are obtained with Equation 
(25) which is analogous to Equation (1) as, 

⟨𝜙𝐼⟩ = ∑
𝑚𝑗

𝜌𝑗
𝜙𝑗�̃�(𝑟𝐼𝑗, ℎ)

𝑁

𝑗=1

, (36) 

where ⟨𝜙𝐼⟩ is SPH approximation of a physical quantity at the virtual marker. 

The different between the above equation and the original SPH formulation is 

the form of the weight function. Equation (25) use the normalized weight 

function �̃�  instead of the original weight function 𝑊 . As the number of 

particles in the support domain is insufficient because we interpolate the 

values on the virtual marker using fluid particles’ information, the normalized 

weight function is needed to satisfy the unity condition of the kernel function, 

which is shown as, 

�̃�(𝑟𝐼𝑗, ℎ) =
𝑊(𝑟𝐼𝑗, ℎ)

∑
𝑚𝑗
𝜌𝑗
𝑊(𝑟𝐼𝑗, ℎ)𝑗

. (37) 
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Step 4. Calculate velocity on the wall using slip or non-slip condition 

The velocity on the wall particle is given by the slip and non-slip condition 

associated with the velocity on the virtual marker obtained from the 

aforementioned modified weight function. Theoretically, the velocity of 

viscous fluid at the wall surface is zero and the rapid change of velocity is 

observed in the immediate vicinity of the wall. In the SPH, generally the 

particles are arranged with a certain interval which is not small enough to 

describe the rapid velocity change near the wall, resulting in the reduction of 

fluid velocity when non-slip condition is applied. In this study, in addition to 

the slip and non-slip condition, we introduce the boundary treatment scheme 

allowing us to describe the intermediate state of two conditions with a 

flexible parameter.  

 

 

Figure 6. Schematic image of (a) slip condition and (b) non-slip condition 

 

For the slip velocity condition where the velocity vector of the wall particle 

is symmetric velocity vector of the virtual marker with respect to the wall 

surface, the velocity at the wall boundary 𝒖𝑖
𝑠𝑙𝑖𝑝

 can be calculated by the 

following mirroring procedure, 

𝒖𝑖
𝑠𝑙𝑖𝑝 = 𝑴𝒖𝐼 , (38) 
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where 𝑴 denotes the second order tensor mapping the velocity on the wall 

particle, which can be described using the Kronecker delta δ and the normal 

vector of the wall as following, 

𝑀𝑎𝑏 = 𝛿𝑎𝑏 − 𝑛𝑎𝑛𝑏 , (39) 
where subscript 𝑎 , 𝑏  denote the Cartesian components 𝑥 , y , z  with the 

Einstein convention applied to repeated indices.  

Meanwhile, for the non-slip velocity condition, the velocity on the wall 

particle 𝒖𝑖
𝑛𝑜𝑛−𝑠𝑙𝑖𝑝

 can be obtained by mapping the reversely oriented vector 

of the virtual marker using the second order point symmetrical tensor 𝑹 as, 

𝒖𝑖
𝑛𝑜𝑛−𝑠𝑙𝑖𝑝 = 𝑹𝒖𝐼 , 𝑅𝑎𝑏 = −𝛿𝑎𝑏 . (40) 

Furthermore, in order to combine two conditions, the velocity at the wall 

boundary 𝒖𝑖 is controlled by the arbitrary coefficient 𝛽 (0 ≤ 𝛽 ≤ 1) as, 

𝒖𝑖 = 𝛽𝑴𝒖𝐼 + (1 − 𝛽)𝑹𝒖𝐼 . (41) 
The coefficient 𝛽 is chosen depending on the initial particle distance. 

 

Step 5.  Solve the PPE under the pressure Neumann condition 

The pressure at the wall boundary is calculated under the Neumann 

condition to prevent fluid particle penetrating to the solid boundary. The 

velocity of the fluid particle on the solid boundary has to satisfy the 

following equation, 
𝒖𝑓 ⋅ 𝒏𝑤 = 0, (42) 

where 𝒖𝑓 and 𝒏𝑤 denotes the velocity of fluid particle on the solid boundary 

and the normal vector of the wall, respectively. This equation shows that the 

fluid velocity in the normal direction on the wall is zero. The momentum 

equation (Equation (15)) can be rewritten by partially differentiating with 

the normal direction and substituting Equation (31) as, 
𝜕𝑃

𝜕𝒏
= 𝜌(𝜈∇2𝒖 + 𝒈) ⋅ 𝒏. (43) 

Note that this equation expresses the pressure gradient with respect to the 

normal direction. Accordingly, the pressure 𝑃𝑖  on the wall particle can be 

calculated in the following equation to approximately satisfy the above 

condition,  

𝑃𝑖 = 𝑃𝐼 + 𝑑𝑖𝜌(𝜈𝐼∇
2𝒖𝐼 +𝒈) ⋅ 𝒏𝑖, 𝒙𝑖 ∈ Ω

𝑤𝑎𝑙𝑙 , (44) 
where subscripts 𝑖 and 𝐼 indicates the wall particle and the virtual marker, 

respectively. 𝑑𝑖  is the distance from the virtual marker to wall boundary. 
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Ω𝑤𝑎𝑙𝑙 indicates the wall domain, meaning that all wall particles satisfy the 

pressure Neumann conditions described as the above equation. Then, the 

pressure of fluid particle is updated by solving the PPE with this pressure on 

the wall particles. 𝜈𝐼∇
2𝒖𝐼 + 𝒈 and 𝑃𝐼  are calculated with SPH interpolation 

using the information of the previous step. 

 

Step 6. Interpolate the pressure on the virtual marker 

After solving the PPE under the pressure Neumann condition, the pressure 

of each fluid particle at current step is calculated. Then, by employing 

Equation (33), the pressure of wall particles is properly determined. 

 

Step 7. Applying the Dirichlet boundary condition to velocity 

Although the pressure Neumann condition gives good performance for the 

boundary treatment, the penetration might still occur. Therefore, in order to 

strictly prevent penetration of fluid particles to the solid boundary, the normal 

components of the fluid velocity near the solid boundary needs to be 

vanished using the following Dirichlet boundary condition shown as,  
𝒖𝑓 ⋅ 𝒏𝑤 = 0  𝑖𝑓 𝒖𝑓 ⋅ 𝒏𝑤 > 0 𝑎𝑛𝑑 𝒙𝑓 ≤ 𝑑𝑥, (45) 

where 𝒖𝑓 denotes the velocity of current step and previous step, respectively. 

𝑑𝑥 is the particle distance.  

Note that the velocity is modified only when the particle is moving towards 

the wall, in other word the product of velocity vector and normal vector is 

positive since the normal direction in our simulation setting is outward 

normal of the wall surface. 

Through these series of the procedure for treating solid boundary, the 

 
Figure 7. Dirichlet boundary condition 
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𝒏 

𝑥𝑓 < 𝑑𝑥
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pressure and virtual velocity are provided for all wall particles. After that, the 

normal algorithm of the ISPH can be implemented. It is worth mentioning 

that the virtual markers are created just once at the pre-process and no 

modification is required for modelling these markers. 

 

3.2 Free-Surface Detection 

The boundary condition at the free surface of fluid is required to close the 

computational domain and has significant effects on the accuracy of fluid 

simulation. In recent years, the SPH method has been successfully developed 

to catch the 3-dimentional and dynamic behavior of fluids. In order to deal 

with these flows with complex free-surface patterns such as fragmentation, a 

proper detection technique of free-surface particles is significantly important. 

In general, the Dirichlet boundary condition for the free-surface has to be 

satisfied to solve the PPE, in other words, the pressure values at free-surface 

has to be zero. In this session, two different schemes widely used in the SPH 

are introduced.  

The first one is the scheme that finds the free-surface particles by 

considering its particle density. The idea of this method is pretty simple. As 

the value of the particle density is dependent on the number of particles, the 

particle density is expected to decrease at the free surface where a smaller 

number of particles exists. This scheme has been implemented in many SPH 

simulations and gives good performance with acceptable errors in various 

types of fluid flows. However, it might cause some instabilities on the free 

surface particularly when it is involved with the complex fluid behavior. For 

example, if the target fluid is highly viscous, the separation of fluid particles 

sometimes occurs, resulting in the miss detection of free-surface particles. 

Additionally, the reference value of particle density that judges free surface is 

arbitrary and dependent on simulation cases and a smoothing length of the 

kernel function. 

The second one is the scheme that finds accurate normal vectors towards 

the free surface and define the free-surface particles, proposed by Marrone 

[25]. Here, the basic algorithm is introduced.  

This free-surface detection algorithm is constructed with two phases of the 

procedures. In the first step, the eigenvalues of the renormalization matrix are 

evaluated, resulting in the huge reduction of the number of particles that is 
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investigated in the second step. In the second step, the target fluid particle is 

judged if it has a certain amount of vacant region according to geometric 

properties. 

 

First procedure: Judging by the eigenvalue 

Calculate the minimum eigenvalue 𝜆𝑖  of the renormalization matrix 𝑩𝑖 
which is expressed as: 

𝑩𝑖 =∑
𝑚𝑗

𝜌𝑗
(𝒓𝑗 − 𝒓𝑖) ⊗ ∇𝑊(𝒓𝑖𝑗 , ℎ)

𝑁

𝑗=1

, (46) 

where ⊗ indicates the tensor product. 𝜆𝑖 depends on the spatial organization 

of the neighboring particles. According to Marrone [25], 𝜆𝑖  approaches 

theoretically to zero when the target particle is located in the fluid domain, on 

the other hand, 𝜆𝑖  approaches theoretically to 1 when the target particle is 

going away from the fluid domain. This allows to define regions of the fluid 

domain where the free surface exist. They classified all of the fluid particles 

into three complementary subsets: 𝔼 composed by particles belonging to the 

free surface, 𝕀 composed by particles located inside the fluid domain and 

away from the free surface, 𝔹 composed by particles located in the vicinity of 

the free surface or in the domain where particles are not uniformly 

distributed. The threshold values for the classification is studied through 

several numerical tests as following,  

{

𝜆𝑖 ≤ 0.20 ⇒ 𝑖 ∈ 𝔼
0.20 ≤ 𝜆𝑖 ≤ 0.75 ⇒ 𝑖 ∈ 𝔹
0.75 ≤ 𝜆𝑖 ⇒ 𝑖 ∈ 𝕀

. 

The above threshold valued are employed in our study. The main advantage 

of this first procedure is to significantly reduce computational costs in the 

subsequent procedure by detecting a large number of particles belonging to 𝕀 
and 𝔼 during first procedure. The group 𝔹 is investigated more deeply in the 

following procedure. 
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Second procedure: Judging by the geometry 

The local normal vector to the free surface 𝒏𝑖  is calculated using the 

renormalization matrix 𝑩𝑖,  

𝒏𝑖 =
𝒍𝑖
|𝒍𝑖|
, (47) 

𝒍𝑖 = −𝑩𝑖∑∇𝑊(𝒓𝑖𝑗, ℎ)
𝑚𝑗

𝜌𝑗
 

𝑗

. (48) 

This normal vector 𝒏𝑖  enable to define the domains outside of the free 

surface as illustrated in Figure. If no particle among the neighboring particles 

in the domain S1 or S2 in Figure, the target particle is judged as a free-

surface particle. The domain S1 ΩS1 and the domain S2 ΩS2 are defined as, 

 

{
|𝑟𝑖𝑗| < √2𝐻, 𝑎𝑐𝑟𝑜𝑠𝑠 (

𝒏𝑖 ⋅ 𝒓𝑗𝑖

|𝒓𝑗𝑖|
 ) <

𝜋

4
⇒ ΩS1

|𝑟𝑖𝑗| ≥ √2𝐻, |𝒓𝑗𝑇| < 𝐻 ⇒ ΩS2

. (49) 

 

The position of the point 𝑇 in Figure is given by,  

 

 
Figure 8. Concept of the free-surface detection technique  
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𝒓𝑇 = 𝒓𝑖 + 𝐻𝒏𝑖. (50) 
 

The distance from the free surface to the position 𝑇 is described from the 

initial particle distance 𝑑 and the coefficient 𝑐 as 𝐻 = 𝑐𝑑. The coefficient is 

dependent on the type of the kernel function. The original paper uses 𝑐 of 

1.33.  

 

3.3 Interface Treatment for Multiphase Flow 

Numerical simulation of multiphase flow is challenging due to the existence 

of interface between two different fluids. The fluid interface is theoretically a 

movable surface of zero thickness and two different fluids exist at different 

pressure balanced by the surface tension. The treatment of the interface is a 

severe challenge to conventional Eulerian grid-based methods since it 

requires special algorithm to find and track the position of the interface. 

However, in SPH, the motion of fluid is described by the particles which 

freely move, and their material properties for each particle are defined at 

initial stage, meaning that the fluid surface is automatically defined. 

Therefore, no interface tracking is needed. SPH modelling of multiphase flow 

has been proposed by many researchers.  

According to Hu and Adams 2007 [20], velocity, pressure and viscous forces 

are continuous for a discontinuous density. Therefore, ∇𝑃/𝜌 also has to be 

continuous, which indicates that ∇𝑃 is discontinuous as 𝜌 is. They assume the 

multiphase interface is located at the center 𝑚 between particle 𝑖 and 𝑗. And, 

to keep the continuity of ∇𝑃/𝜌 across the interface, they define the inter-

particle pressure, 

𝑃𝑚 =
𝜌𝑖𝑃𝑗 + 𝜌𝑗𝑃𝑖

𝜌𝑖 + 𝜌𝑗
. (51) 

The SPH approximation of the pressure gradient is calculated as, 

 
1

𝜌𝑖
∇𝑃𝑖 =

1

𝑚𝑖
∑(𝑉𝑖

2 + 𝑉𝑗
2)𝑃𝑚∇𝑊(𝒓𝑖𝑗 , ℎ)

𝑗

, (52) 

where 𝑉 denotes the representing volume.  

Chen et al. [27] have conducted some investigations on this modelling 

technique. This approximation plays a good performance for multiphase flow 
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with small density differences. For example, when the difference of density 

between two fluid is large (e.g. 𝜌𝑖 ≤ 𝜌𝑗 ), the inter-particle pressure is 

approximately equal to the pressure of the lighter fluid as shown in the 

following equation. Subscripts 𝑖  and 𝑗  denote the lighter particle and the 

denser particle, respectively. 

𝑃𝑚 =
𝜌𝑖𝑃𝑗 + 𝜌𝑗𝑃𝑖

𝜌𝑖 + 𝜌𝑗
=

𝜌𝑖
𝜌𝑗
𝑃𝑗 + 𝑃𝑖

𝜌𝑖
𝜌𝑗
+ 1

≈ 𝑃𝑖. (53) 

Therefore, the influence of the denser fluid on the lighter fluid is reduced, 

even though it should not be reduced in practice. In addition, in the case 

where fewer particles exist in the same phase due to complex interface, it 

might further magnify the errors caused by the above approximation 

(Equation (42) ). Accordingly, they introduce another technique for the 

interface treatment instead of applying inter-particle pressure with the 

assumption that the pressure and the space is continuous as shown in Figure 

9.  

In this technique, all the neighboring particles of other phases in its support 

domain are regarded as the particles of the same phase, meaning that the 

physical properties of all neighboring particles are same with the target 

 
Figure 9. The pressure and density distribution at the interface 
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particles. The information of position, velocity, volume and pressure are 

taken into consideration. Accordingly, SPH interpolation of the pressure term 

and the viscosity term in momentum equation is described as, 
1

𝜌
∇𝑃𝑖 =

1

𝜌𝑖
∑𝑉𝑗𝑃𝑗∇𝑊(𝒓𝑖𝑗, ℎ)

𝑗

, (54) 

𝜈𝑖∇
2𝒖 =∑2𝜈𝑗𝑉𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗 , ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝒖𝑖 − 𝒖𝑗)

𝑗

, (55) 

where 𝜈 denotes kinematic viscosity.  

The above assumption and these formulations are reasonable for most of 

multiphase flows. However, for those with different viscosity, the influence 

of that from neighboring particles of other phases is improperly extended on 

the target particle because viscosity is also one of material properties 

characterizing the fluid behavior as density. We believe it is reasonable to 

adopt the material properties of the same phase on the target particle during 

interpolation. Therefore, we modify the SPH formulation for the velocity 

term as following, 

𝜈𝑖∇
2𝒖 = 𝜈𝑖∑2𝑉𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝒖𝑖 − 𝒖𝑗)

𝑗

. (56) 

The concept of this technique is illustrated in Figure 10. 

As a consequence of this improvement, when solving the simultaneous 

linear equations of the viscous term with implicit time integration, the matrix 

turns into an asymmetric matrix. In the present study, we apply ICCG to 

solve the linear equations, which is developed to solve only symmetric 

 
Figure 10. Treatment of material properties at the multiphase interface 
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matrix. For the asymmetric matrix, Bi-Conjugate Gradient (BCG) is often 

employed. Because it might increase computational costs, we adopt an 

alternative technique where the asymmetric matrix is divided into the product 

of two different symmetric matrixes. The detailed explanation of the 

technique is given in Appendix. 

For the wall boundary, we arrange fixed wall particles at equal intervals and 

locate the virtual maker at the symmetric position with respect to the wall 

boundary and measure the pressure on the marker with SPH approximation 

using neighboring fluid particles. In this study, pressure Neumann condition 

is introduced to prevent penetration of fluid particles at the wall boundary. It 

needs the measured fluid pressure on the virtual marker as well as density 

information for pressure calculation on the wall particle. Originally, we 

choose constant values of density for wall particles. However, it causes 

numerical instability at the boundary due to the difference of pressure 

between wall particles and fluid particles. Therefore, we use weighted 

average density of fluid particles around the virtual markers,  

𝑃𝑤𝑎𝑙𝑙 = 𝑃𝑣𝑚 + 2𝑑∑𝜌𝑗(𝑣𝑗∇
2𝒖𝑗 + 𝒈) ⋅ 𝒏

𝑗

, (57) 

where 𝑑 , 𝑔  indicate the distance between the wall particle and the wall 

surface. The concept of this treatment is illustrated in Figure 11. 

  

 
Figure 11. Treatment of density at the wall boundary 
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Chapter 4  

Rheological Model 

4.1 Non-Newtonian Fluid 

There are numerous rheological models representing the dynamic behavior 

of landslide. Here, we show some novel works. A comprehensive review of 

landslide model is provided by Yavari-Ramshe and Ataie-Ashtiani [9]. One 

simple conceptual model of landslide represents the sliding mass as rigid 

body, especially a single lumped mass and its kinematic parameters are 

defined for the center of mass. The lumped mass is assumed to be moving 

along the bottom topography under the influences of bottom friction, 

gravitational forces, pore water pressure and ambient resistance force 

(Pariseau [28]). A new type of landslide models is introduced by Ward and 

Day [29]. Avalanches are treated as a large number of independent particles 

moving under the effect of topographically derived gravitational and 

centripetal acceleration. On top of that, landslides are commonly assumed to 

behave as a fluid-like flow with a rheology. The landslide rheology model 

describes constitutive structure of landslide material which is regarding the 

shear stress  𝜏, the shear rate �̇�. The general form of a rheological flow model 

is 

𝜏 = 𝜏𝑐 + 𝑎
′𝛾�̇� + 𝑏′(𝑢), (58) 
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where 𝜏𝑐 is a threshold critical stress below which the sliding mass behaves 

as a rigid body and above that as a fluid and 𝑢 is the sliding velocity along 

the slope. Commonly applied rheological models are given in Table 1 

provided by Yavari-Ramshe and Ataie-Ashtiani [9]. 

 

Table 1. Classification of rheological models 

𝝉 = 𝝉𝒄 + 𝒂
′𝜸�̇� + 𝒃′(𝒖) 

Rheology 

 

𝝉𝒄 
 

𝒂′ 
 

𝒏 

 

𝒃′(𝒏) 
Newtonian 0 𝜇𝑑 1 0 

Bingham 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜇𝐵 1 0 

Coulomb 𝜎′ tan 𝛿 0 0 0 

Voellmy 𝜎′ tan𝜙 0 0 (𝑢/𝑐𝑧)
2 

Herschel-Bulkley 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜅𝐻𝐵 ≤ 1 0 

Dilatant 0 𝑘𝐷 > 1 0 

Bagnold’s grain inertia 0 𝑘𝐷 2 0 

Bagnold’s macroviscous 0 𝑘𝐷 1 0 

𝝁(𝑰) 0 𝜇𝑒𝑓𝑓𝑃 0 0 

 

A sliding mass can be described as a single-phase (homogeneous), a 

mixture or a multi-phase (two-phase or three-phase) flow. 

In the present study, the Bingham fluid model is used to describe the dynamic 

behavior of landslide. This model is the simplest and the most known model, 

expressed as, 

𝜏 = 𝜏𝐵 + 𝜇𝐵�̇�, (59) 
where 𝜏, 𝜏𝐵 , 𝜇𝐵  and �̇� are shear stress, yield stress, constant viscosity after 

fluid starts to move and shear rate, respectively. In this model, when shear 

stress is below the yield stress, the fluid behaves as a solid resisting any shear 

stress while it behaves as a Newtonian fluid when shear stress exceeds the 

yield stress. The effective stress on the Bingham fluid model 𝜇𝑒𝑓𝑓  is 

described as, 

𝜇𝑒𝑓𝑓 = 𝜇𝐵 +
𝜏𝐵
�̇�
. (60) 

In the current numerical procedure, the shear stress below the yield stress 

cannot be evaluated. To overcome this, we use one of the pseudo plastic 

systems, the Cross model, proposed by Cross [30] as, 



33 

 

 

 

𝜇𝑒𝑓𝑓 = 𝜇∞ +
𝜇+0 − 𝜇∞
1 + 𝛼�̇�𝑛

, (61) 

where 𝜇+0 , 𝜇∞ , 𝛼 , 𝑛  are limiting viscosity at zero rate of shear, limiting 

viscosity at infinite rate of shear, a constant associated with the rupture of 

linkages and constant parameter. The relation of two models are illustrated in 

Figure 12. 

The Cross model use four different parameters, and Shao and Lo [18] 

adopted this approach to define these parameters with respect to the Bingham 

fluid parameters. In order to adopt it with a simple way, they assume 𝑛 is 

unity and 𝛼�̇� ≫ 1. Under this assumption, Equation (57) can be rewritten as, 

𝜇𝑒𝑓𝑓 = 𝜇∞ +
𝜇+0/𝛼

�̇�
. (62) 

Comparing Equation (56) and equation (58), two other parameters in the 

Cross model are defined as, 

𝜇∞ = 𝜇𝐵, (63) 

𝛼 =
𝜇+0
𝜏𝐵
. (64) 

Thus, the remaining unknown parameters is the limiting viscosity at zero 

rate of shear 𝜇+0. In the original Bingham mode, the effective stress 𝜇𝑒𝑓𝑓 

theoretically reaches infinity when rate of shear is very close to zero. Since 

such large values will cause numerical divergence, generally the values are 

 
Figure 12.  Cross model 

�̇�

𝜏
𝜇𝐵

𝜇𝑒𝑓𝑓

Bingham model

Cross model

𝜏𝐵
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fixed at a certain high value enough for adequate performance in the 

computation. Shao and Lo [18] conclude that through the several 

investigations on the accuracy of their numerical solution with different 

values, it is sufficient with the value 103 times larger than the limiting 

viscosity at infinite rate of shear 𝜇𝐵 . Therefore, we set 𝜇𝑚𝑎𝑥 = 𝜇+0 =
103𝜇∞. Finally, the equation of Cross model including the relationships of 

parameters shown in the above equations can be represented as, 

𝜇𝑒𝑓𝑓 = 𝜇𝐵 +
(𝜇𝑚𝑎𝑥 − 𝜇𝐵)𝜏𝐵
𝜏𝐵 + 𝜇𝑚𝑎𝑥�̇�

. (65) 

Note that the advantage of the Cross model using parameters associated 

with the Bingham model is that the effective viscosity is continuous, enabling 

to avoid numerical instability. 

4.2 Yield Criteria 

In general, the yield stress in the Bingham model is constant value. In order 

to tackle soil deformation problems, we adopt the fluid model to associate 

behavior of the Bingham with the characteristic of soil. The total shear stress 

during the soil collapse is defined by Mohr-Coulomb failure criteria, which is 

generally described with the frictional resistance based on Coulomb’s friction 

law and cohesive resistance, defined as, 
𝜏𝑦𝑖𝑒𝑙𝑑 = 𝑐 + 𝜎 tan𝜑 , (66) 

where 𝑐 and 𝜑 are cohesion and internal friction angle, respectively. In the 

fluid simulation, we use pressure instead of stress, thus, the above equation is 

adopted as, 
𝜏𝑦𝑖𝑒𝑙𝑑 = 𝑐 + 𝑝 tan𝜑 . (67) 

However, this criterion is not proper to evaluate the yield stress when soil is 

involving with water because of fluid pressure. For example, when the soil is 

fully soaked in water, large fluid pressure force is exerted on the soil. 

Therefore, it is more reasonable to use effective pressure instead of pressure 

since the motion of soil is controlled by effective stress. Terzaghi adopt 

Mohr-Coulomb criteria with the concept of effective stress, which is 

rewritten using pressure instead of stress as, 
𝜏𝑦𝑖𝑒𝑙𝑑 = 𝑐

′ + 𝑝′ tan𝜑′ , (68) 
where 𝑐′ and 𝜑′ are cohesion and internal friction angle based on the analysis 

using effective stress 𝜎′, respectively.  
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Chapter 5  

Validation 

The stabilized ISPH proposed by Asai et al. [12] has been developed and 

applied in numerous simulations within our research group. The main 

advantage of this method is that the velocity divergence-free condition and 

density invariance condition are approximately satisfied at the same time, 

enabling to prevent unrealistic pressure fluctuations and obtain good particle 

distribution, in other words, keep the volume by introducing the relaxation 

coefficient 𝛼. The efficiency and accuracy of 𝛼  is already checked by the 

dam break simulations carried out by Asai et al. [12]. Several numerical 

examples in simulating dam breaks, with and without obstacles, multi-phase 

flows, and violent water induced impact problems were conducted by Aly in 

his Ph.D. work as initial validation tests. 

Since several numerical tests for the method itself are conducted and proven 

to work well for the fluid simulations, the present author will test the 

accuracy of the method especially focusing on the newly proposed 

techniques. Note that there are three main modifications on the method in this 

study; (1) reformulating the SPH interpolation of velocity and pressure at the 

multiphase interface, (2) applying the Bingham fluid model and Mohr-

Coulomb criteria into the viscous term, (3) introducing fully implicit time 

integration scheme. For validation, three experimental cases are numerically 

simulated using the proposed method. In section 5.1, submarine rigid-body 
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slide simulation is conducted. This test aims to assess the wave generation 

and propagation processes focusing on the accuracy of fluid simulation by 

using the simple landslide model. In section 5.2, a simulation regarding soil 

deformation is conducted and the effect of the introduced rheological model 

is investigated. In section 5.3, submarine deformable landslide simulation is 

conducted to test the proposed schemes.  

 

 

5.1 Submarine Rigid-body Slide 

In this section, the simulation of submarine rigid-body slide is conducted. 

The experiment of the box sliding down the 45° inclined plane is carried out 

by Heinrich [7] and compared to the numerical simulation. The reservoir is 

the 0.55m wide and 1.5m deep. The box is triangular in cross section (0.5m × 

0.5m) and as wide as the reservoir. The density of the box is 2000 kg/m3. In 

the original experimental setting, water depth was varied from 0.20m to 

1.2m. In this study, 1m of water depth is used. Top of the box is initially 

below 1 cm below the water surface to prevent flashing of water due to the 

slide. The box is equipped with four rollers, therefore, assumed to slide into 

the water under only the influence of gravity. The movement of the box is 

stopped when it reaches the bottom of the reservoir. The surfaces of the box 

were carefully checked to achieve as closely as possible the numerical 

simulation where the surface is no friction in the experiment. The 

computational domain is shown in Figure 13. 

 
Figure 13. The initial condition of submarine rigid body slide simulation 
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A time step of 0.0005s, initial particle distance of 0.01m and 0.01 of the 

relaxation coefficient 𝛼 are used in the computations. The boundary of the 

box surface is treated by the same scheme for the solid boundary. In the 

experiment, the box is freely sliding to the water with gravitational 

acceleration. The velocity variation of the box during the motion was 

investigated by Grilli and Watts [31]. According to them, the vertical velocity 

of the box can be described by, 

𝑢(𝑡) = {
𝑐1 tanh(𝑐2𝑡) , 𝑡 ≤ 0.4𝑠
0.6, 𝑡 > 0.4𝑠

, (69) 

where 𝑐1 and 𝑐2 are constant values that are 86 and 0.0175, respectively in 

our computations referred from Ataie-Ashtiani and Shobeyri [10], and 𝑡 
denotes time. The velocity of the box is given based on its position. 

Comparison between the simulated and experimental water surface elevations 

at t = 0.5s, 1s and 1.5s are shown in Figure 14. The good agreements are 

(a)  b)  

(c)   

Figure 14. Comparison between simulated and experimental water surface 

elevation at t = (a)0.5s, (b) 1s, (c) 1.5s 
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made for both cases, which prove the accuracy of the present method to 

simulate such flows. 

The particle configurations at the different time steps until 𝑡 = 4.0𝑠  are 

shown in Figure 15. 

 

 
(a) 𝑡 = 0𝑠 

 
(b) 𝑡 = 0.5𝑠 

 
(c) 𝑡 = 1𝑠 

 
(d) 𝑡 = 1.5𝑠 

 
(e) 𝑡 = 2.0𝑠 

 
(f) 𝑡 = 2.5𝑠 

 
(g) 𝑡 = 3.0𝑠 

 
(h) 𝑡 = 3.5𝑠 

 
(i) 𝑡 = 4𝑠 
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Figure 15. The particle configuration at different times (𝑡 =
0𝑠, 0.5𝑠, 1.0𝑠, 1.5𝑠, 2.0s, 2.5s, 3.0s, 3.5s, 4.0s) 

The initial particle distribution is (a). At (b) 𝑡 = 0.5𝑠, the water is moving 

backwards due to the box sliding down the slope and creating the space 

above the top of box. At (c) 𝑡 = 1.0𝑠, the water hits the right-side slope of the 

reservoir and the intensity of velocity field is decreased. At (d) 𝑡 = 1.5𝑠, the 

water reflects against the reservoir and moves towards the other side. At (e) 

𝑡 = 2.0𝑠, the water starts to form wave and is propagated to the left-side wall 

of the reservoir. At (f) 𝑡 = 2.5𝑠, the solitary wave is created and propagated. 

At (g) 𝑡 = 3.0𝑠 , the wave is still propagated. At (h) 𝑡 = 3.5𝑠 , the wave 

reflects against the wall. At (i) 𝑡 = 4.0𝑠 , the solitary wave is propagated 

towards the opposite direction. As there is no experimental data for 𝑡 > 1.5𝑠, 
the numerical results are not compared to the experimental data. However, 

we could successfully describe reasonable procedures of the phenomena; 

wave generation, propagation and reflection. 

 

5.2 Soil Deformation 

A numerical test of deformation of non-cohesive soil is conducted to check 

the accuracy of the simulator by comparing it with the experimental test 

performed by Bui et al. [5]. In this experiment, small aluminium bars with 

diameters of 1 and 1.5 mm, length of 50 mm and density of 2650 kg/m3 are 

used to model the soil. The parameters for the soil including cohesion 

coefficient and internal friction angle are determined by a shear box test. This 

test measures stress-strain relationships at four different low loading 

conditions, which specifies the peak shear stress at each loading condition to 

draw yield surface. The values of cohesion and internal friction angle are 

found to be 0 kPa and 19.8˚, respectively. 

The comparison between the experimental and simulated results is shown in 

Figure 16. The deformation pattern of soil in simulation are pretty similar to 

that of the experiment. In addition, the non-deformed and deformed areas are 

also well described in the simulation. 
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5.3 Submarine Deformable Landslide 

A deformable landslide is simulated with the setting of the experiment 

carried out by Rzadkiewicz et al. [32]. The experiments consist of water 

wave generated by allowing a mass of sand to slide freely down a frictionless 

45° or 30° inclined plane. The channel is 4 m long, 0.30 m wide, and 2 m 

high. The sand mass is same wide with the channel. The initial vertical 

profile of the mass is triangular and the its dimensions in cross section are 

0.65 m × 0.65 m. This mass is held in its initial position by a vertical water 

gate, which is lifted up quickly at 𝑡 = 0.0 s and crosses the water surface 

approximately at 𝑡 = 1.0 s. Tests using the channel without sand have been 

conducted to assess the effects of the gate. According to the tests, the 

amplitude of the generated splash is lower than 5 mm on the film and also on 

the wave gauges. Among the experiments, we study the case of coarse gravel 

sliding down a 45° slope. The mean apparent density is 1950 kg/m3. The 

water depth is 1.60 m and the top of the mass is initially 10 cm below the 

(a)  

(b)  

Figure 16. Comparison between (a) experimental result and (b) simulation 

result 
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water surface. The configuration of the simulation model is shown in Figure 

17. 

 

In the computation, an initial particle distance is 0.02 m, a constant time 

step is 0.0001. Although the apparent mean density is 1950 kg/m3, we use the 

actual density of 2640 kg/m3. In the absence of measurement, the parameters 

such as kinematic viscosity and yield stress are determined by trial and error. 

For the Bingham model parameters, the limiting viscosity at zero rate of 

shear is 1 m2/s, the limiting viscosity at infinite rate of shear is 0.001 m2/s, 

and the yield stress is 100 N/m2. The relaxation coefficient 𝛼 is 0.01. For 

boundary condition, the parameter defining the relation for slip and non-slip 

condition 𝛽 is 0.5. 

Comparison between the simulated and experimental water surface 

elevations at t = 0.4s and 0.8s are shown in Figure 18. The good agreements 

are made for both cases. 

 
Figure 17. The initial configuration of submarine deformable landslide  
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(a) (b)  

Figure 18. Comparison between simulated and experimental water surface 

elevation at t = (a)0.4s, (b) 0.8s 

The particle configurations at the different time steps until 𝑡 = 2.0𝑠  are 

shown in Figure 19. 

Figure 19. The particle configuration at different times (𝑡 =
0.4𝑠, 0.8𝑠, 1.2𝑠, 1.6s, 2.0s) 

 

For convenience, “forwards” means the object is moving towards the right 

side of the channel in terms of the above figure and “backwards” means the 

object is moving to the opposite direction in the following sentences. At (a) 
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(a) 𝑡 = 0.4𝑠 

 
(c) 𝑡 = 1.2𝑠 

 
(e) 𝑡 = 2.0𝑠 
 

 

 
(b) 𝑡 = 0.8𝑠 

 
(d) 𝑡 = 1.6𝑠 
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𝑡 = 0.4𝑠 , due to the deformation of the sliding mass, the small wave is 

generated. At (b) 𝑡 = 0.8𝑠, the structure of the mass changes dynamically 

and the wave generated in the former step moves forwards as well as 

backwards while the water that is initially located at the right side of the mass 

moves forwards, creating the small hill above the sliding mass. At (c) 𝑡 =
1.2𝑠, the mass is sliding down the slope and the head of the sand rises up by 

the effect of water pressure. The wave is propagated forwards. At (d) 𝑡 =
1.6𝑠, the mass is sliding down deeper, and the head of mass is rolling up due 

to the influence of water pressure. At (e) 𝑡 = 2.0𝑠, the mass reaches and at 

the bottom of the channel and is accumulated. The generation and 

propagation mechanism of water due to submarine landslide is examined 

based on the comparison of the water surface between the experiment and the 

simulation, and it shows adequate accuracy of the proposed method. 

Meanwhile, the motion of the mass is not compared to the experimental 

result. However, we could reproduce the phenomena with reasonable 

procedures; the mass deforms and accumulate at the bottom. 
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Chapter 6  

Implementation 

6.1 Landslide with Blocks 

The current numerical model assumes that the grain size is small enough to 

be represented by fluid. However, the actual landslide consists of various 

materials with different sizes and shapes including large grains, woods and 

rocks, which are also one of the properties controlling the motion of soil and 

impulse force acting on water. Thus, the simulation of landslide with blocks 

is conducted in this section, indicating the three-phase coupling simulation 

including fluid, soil and blocks 

such as woods and rocks. The 

blocks are assumed as rigid 

bodies, which are represented by 

the mass of particles. For multi 

rigid-body collision, energy 

tracking impulse method adopted 

by [33] is used. The details of this 

method are explained in 

Appendix. We use the reservoir 

that has 45° inclined plane at the 

one side. The 13 spherical rigid 

 
Figure 20. The schematic image of the 

numerical model 
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bodies are randomly arranged above the slope, each of which has 2000 kg/m3 

of density. The initial condition of the simulation model is depicted in Figure 

20. 

 

The simulation results are shown in Figure 21. 
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Figure 21. The simulation results shown (a) with water (b) without water at 

deffirent time steps: t = (1) 0s, (2) 1.0s, (3) 2.0s, (4) 3.0s and (5) 4.0s 

 

For convenience, “forwards” means the object is moving towards the right 

side of the channel in terms of the above figure and “backwards” means the 

object is moving to the opposite direction in the following sentences. At (2) 

𝑡 = 1.0𝑠, as the soil and rocks are sliding into water, the lower part of water 

are pushed forward while the upper part of water rises up and the wave is 

generated. At (3) 𝑡 = 2.0𝑠, the soil and rocks reach at the bottom of reservoir 

and the soil is accumulated due to the viscosity. The wave is propagated to 

the forwards. At (4) 𝑡 = 3.0𝑠, the wave is reflected at the left-side wall and 

moves backwards. Due to the motion of water, some rigid bodies are moved. 

At (5) 𝑡 = 4.0𝑠, the wave is reflected again at the right-side wall and moves 

forwards. This simulation is not compared to the experimental result. 

However, we could successfully simulate the three-phase coupling flows and 

achieve good stability and robustness. 

 

  

 (a5)  (b5)  
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Chapter 7  

Conclusion 

7.1 Conclusion 

• In order to alleviate the time step restriction, the SPH framework with a fully 

implicit time integration scheme is introduced. Especially for the Cross model, 

large values for maximum viscosity has to be used for adequate performance. With 

the improvement, the condition of the viscous term becomes negligible. 

• For rheology of soil, one of the non-Newtonian fluid model, the Cross model 

associated with Bingham fluid model is applied. Additionally, the yield stress is 

defined by Mohr-Coulomb failure criterion. In section 5.2, the comparison of 

deformation patterns between computation and experiment is made. It is concluded 

that the present method is capable of capturing the soil behavior based on Mohr-

Coulomb parameters, cohesion and internal friction, given by the experiment. 

However, if the soil is soaked in water, water pressure force is exerted on the soil, 

resulting in excessive values for soil pressure. Therefore, it might be reasonable to 

use effective pressure instead of total pressure since the motion of soil is controlled 

by effective stress, while it is time consuming to get the parameters in laboratory 

tests.  

• Improvements on the boundary treatments especially for the interface of 

multiphase flows are made. The material properties such as density and viscosity 

are averaged among the particles inside the support domain in the conventional 

SPH approximation. Without this formulation, unreasonable gaps and numerical 

instabilities are found around the interface of different fluids. Accordingly, with a 
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reasonable assumption that the material information of one fluid should not be 

influenced by other different fluids, we derive the equations that has the own 

material properties. The computation becomes more stable and robust even with a 

complex interface and a large viscosity difference. 

• An alternative technique is adopted to the SPH formulation when solving the linear 

equations with ICCG solver which is formed for solving equations whose 

coefficient matrixes are symmetric. As the coefficient matrix has several 

asymmetric components due to the improvement on the boundary condition, most 

of the iterations are not converged. Even if it is converged, there is no guarantee 

for numerical accuracy and also it leads to large computational costs. Therefore, 

the asymmetric matrix is divided into the product of two different symmetric 

matrixes, enabling to construct the symmetric coefficient matrix. Then, the linear 

equations are solved with small number of iterations. 

• The validation test for submarine landslide with rigid body is conducted. This test 

aims to study the fluid behavior rather than the soil dynamics as the soil is 

represented by a rigid body. This simple model is suitable for this purpose since 

the laboratory tests with the actual soil such as sand or gravel involves many 

uncertainties such as variation of grain sizes, shapes and water contents. The 

simulator could successfully describe reasonable procedures of the phenomena; 

wave generation, propagation and reflection. 

• A simulation of submarine landslide with deformable soil is conducted. The results 

are compared to the experimental results with respect to the water elevations. We 

could achieve stable interfaces of multiphase flows without any numerical 

instability. 

• A simulation of submarine landslide with blocks is conducted, which is the three-

phase coupling simulation including fluid, soil and blocks such as woods and rocks. 

The interfaces of fluid-soil, soil-blocks and blocks-fluid is successfully simulated. 

There is no numerical instability such as oscillation of pressure field or 

unreasonable space distribution. 
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7.2 Future works 

• A simulation of landslide-generated waves with a simple model is carried out in 

this study, while the simulations with complex geometries and large scale have not 

been done yet. 

• Water contents and its relationship with fluid parameters are not taken into 

consider in this study: only fully saturated or dried soils are considered, and the 

Bingham viscosity is determined by calibration. There are some papers regarding 

the relationship between viscosity and water contents.  

• The current simulator is suited only for post-failure of soil. However, the study of 

slope stability is also an important task in hazard assessment. Thus, numerical 

modelling of soil based on solid mechanics could be added in the current method. 

• The evaluation of effective pressure inside soil is necessary to estimate the yield 

stress using Mohr-Coulomb parameters when solving submarine landslide 

problems. The fluid pressure inside the soil domain can be estimated by solving 

the linear equations only inside its domain adopting the fluid density and viscosity. 

The wall and fluid domain could be regarded as boundary. 
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Appendix 

A.1    The modification on Bingham fluid model 
Here, an alternative technique to adopt the Bingham fluid to numerical 

computation. To avoid discontinuous variable, we implement some 

modification to this model. We calculate effective viscosity using the 

following equation. As shear rate is getting close to 0, the viscosity is going 

to be too large. Therefore, we set maximum viscosity 𝜇𝑚𝑎𝑥  to avoid it as 

following, 

𝜇𝑒𝑓𝑓 = 𝜇𝐵 +
𝜏𝑦𝑖𝑒𝑙𝑑

�̇�
, (70) 

𝜏 = {
  𝜇𝑒𝑓𝑓�̇�     (𝜇𝑒𝑓𝑓 ≤ 𝜇𝑚𝑎𝑥)

𝜇𝑚𝑎𝑥�̇�     (𝜇𝑒𝑓𝑓 > 𝜇𝑚𝑎𝑥)
. (71) 

The shear stress-shear rate relationship is shown in Figure. Usually, 1000 

times larger value of 𝜇0 for 𝜇𝑚𝑎𝑥 is sufficient to obtain reasonable result. 

 
Figure A1. The shear stress-shear rate relationships 

 

The main advantage of the proposed scheme is when the rate of shear is 

large enough, the model completely follows the constant viscosity 𝜇𝐵, while 

the Cross model does not.  
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A.2    Symmetric matrix 
As is mentioned in Chapter 3.3, when solving the simultaneous linear 

equations of the viscous term with implicit time integration, the matrix is 

asymmetric although we currently apply ICCG which is specialized for 

symmetric matrix. Thus, we adopt an alternative technique in which the 

asymmetric matrix is divided into the product of two different symmetric 

matrixes. The second derivative of velocity is represented as, 

𝜈𝑖∇
2𝒖 = 𝜈𝑖∑2

𝑚𝑗

𝜌𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
(𝒖𝑖 − 𝒖𝑗)

𝑗

= 𝜈𝑖∑𝐵𝑖𝑗(𝒖𝑖 − 𝒖𝑗)

𝑗

, (72) 

where 

𝐵𝑖𝑗 = 2
𝑚𝑗

𝜌𝑗

𝒓𝑖𝑗 ∙ ∇𝑊(𝒓𝑖𝑗, ℎ)

𝑟𝑖𝑗2 + 𝜂2
, (73) 

(1 − Δ𝑡𝜈𝑖∑𝐵𝑖𝑗
𝑗

)𝒖𝑖
∗ + Δ𝑡𝜈𝑖∑𝐵𝑖𝑗𝒖𝑗

∗

𝑗

= 𝒖𝑛 + Δ𝑡𝒈. (74) 

Equation (74)  is the simultaneous linear equations where the kinematic 

viscosity 𝜈𝑖 impose the asymmetricity in the matrix. Note that 𝐵𝑖𝑗 = 𝐵𝑗𝑖. This 

equation can be described with the coefficient matrix 𝑨, velocity vector 𝒖∗ 
and the source term 𝒃 as, 

𝑨𝒖∗ = 𝒃, (75) 
where 

𝑨 =

(

 
 
 
 
 
 
 

1 − Δ𝑡𝜈1∑𝐵𝑖𝑗
𝑗

⋯ Δ𝑡𝜈1𝐵𝑖𝑗 ⋯ ⋯

⋮ ⋱ ⋮

Δ𝑡𝜈50𝐵𝑖𝑗 1 − Δ𝑡𝜈50∑𝐵𝑖𝑗
𝑗

⋮

⋮ ⋱ ⋮

⋮ ⋯ ⋯ ⋯ 1 − Δ𝑡𝜈𝑁∑𝐵𝑖𝑗
𝑗 )

 
 
 
 
 
 
 

, (76) 

𝒃 = 𝒖𝑛 + Δ𝑡𝒈. (77) 
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The diagonal component of the matrix 𝑨  does not contribute to the 

asymmetricity. The particle numbers which each viscosity is assigned with 

are same order with the rows of the matrix. Therefore, the diagonal matrix 

consisting of the viscosity 𝑪 can be extracted to the right side of the matrix 𝑨, 

which is shown in the following equations using the modified symmetric 

matrix 𝑨′,  
𝑨 = 𝑪𝑨′, (78) 

where 

𝑨′ =

(

 
 
 
 
 
 

1 − Δ𝑡𝜈1∑ 𝐵𝑖𝑗𝑗

𝜈1
⋯ Δ𝑡𝐵𝑖𝑗 ⋯ ⋯

⋮ ⋱ ⋮

Δ𝑡𝐵𝑖𝑗
1 − Δ𝑡𝜈50∑ 𝐵𝑖𝑗𝑗

𝜈50
⋮

⋮ ⋱ ⋮

⋮ ⋯ ⋯ ⋯
1 − Δ𝑡𝜈𝑁 ∑ 𝐵𝑖𝑗𝑗

𝜈𝑁 )

 
 
 
 
 
 

, (79) 

𝑪 =

(

 
 

𝜈1
⋱ 0

𝜈50
0 ⋱

𝜈𝑁)

 
 
. (80) 

Thus Equation (75) can be rewritten by substituting Equation (78) as, 

𝑨𝒖∗ = 𝑪𝑨′𝒖∗ = 𝒃. (81) 
Accordingly, the linear equations with the symmetric matrix is derived by 

transferring the symmetric components into the right-hand side of the 

equations, which is expressed as, 

𝑨′𝒖∗ = 𝑪−𝟏𝒃. (82) 
Then, ICCG algorithm is conventionally used to solve the above linear 

equations. As an example, showing the performance of this modification, the 

ICCG solver is converged with at least less than 70 iterations, ICCG with the 

original formulation of linear equations could not attain convergence even 

with 1000 iteration. 
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A.3    Energy-tracking impulse 
The impulse-based method can represent the collision response within a 

single time step by utilizing the coefficient of restitution 𝑒. The relation of 

velocities between before and after collision can be derived from the 

Newton’s impact law as,  

𝒗𝑟
+ = −𝑒𝒗𝑟

−, (83) 
where +  and –  denote post-collision and pre-collision, respectively. If the 

rotation of two rigid bodies is considered, the magnitude of impulse 𝜆  is 

given as, 

𝜆 =
−(1 + 𝑒)𝒗𝑟 ⋅ 𝒏

∑(𝑀𝑖
−1 + (𝑰𝑖

−1(𝒓𝑖 × 𝒏) × 𝒓𝑖) ⋅ 𝒏)
, (84) 

where 𝑀 and 𝑰 are the mass and inertia tensor of each rigid body and 𝒓𝑖 is the 

vector from the center of the mass to the rigid body particle. The linear 

velocity and the angular velocity are updated by the impulse. 

Energy-Tracking Impulse (ETI) is one of the impulse methods based on 

Stronge’s hypothesis, in which the energy loss due to the collision is 

determined by the coefficient of restitution. In Stronge’s hypothesis, the 

conservation of energy is guaranteed with respect to the direction of the 

friction and the energy dissipation with respect to the normal direction is 

given as,  

𝑊𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝜖
2𝑊𝑚𝑎𝑥, (85) 

where 𝑊𝑟𝑒𝑙𝑒𝑎𝑠𝑒 is the released energy and 𝑊𝑚𝑎𝑥 is the maximum compressed 

energy. The schematic image of ETI is shown in Figure A3. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A3. Schematic image of the ETI 


