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Abstract

Many models have been developed throughout the years to describe the evo-
lution of short term rates. One of the famous models is the Vasicek model.
It was first introduced in 1977 and describes interest rates as a mean rever-
sion process which is a specific characteristic that sets it apart from other
financial assets. This model has the ability to let interest rates to be negative
which was perceived as a weakness of the model before the 2008 financial cri-
sis. However, it has become one of its strengths in the current negative rates
environment set by central banks in an effort to stimulate the economy. The
Cox–Ingersoll–Ross model was introduced in 1985 as a way to limit interest
rates from being negative. Many complex and dynamics models were devel-
oped in the years that followed to describe the movement of short term rates.
However, fewer models were interested in the long term rates. This is due to
the impact macroeconomic variables have on these rates.

In this thesis, we detail three approaches to the modeling of long term interest
rates in the United States and Germany. The first one is based on anticipation
of future short term rates, the second one looks at the effect on macroeconomic
variables on these long term rates and the last one describes the evolution of
the yield curve.
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Chapter 1

Introduction

The main reason behind buying Bonds is to provide a predictable income
stream for investors. Financial institutions, such as banks and asset manage-
ment firms, use bonds (and sovereign bonds in particular), which are contracts
that guarantee a payment and an interest rate at maturity, as a hedge and a
safe asset in order to protect part of their investments or to cancel the dis-
counting effect of inflation. However, it can be used for various other reasons
such as speculation on the future trajectory of interest rates by traders in order
to make a profit.

There are different types of bond. The safest ones are government bonds.
These are debt instruments used by most administrations in order to raise
money for various projects and close their budget deficit. Another type of
bonds is corporate bonds. They are similar to government bonds and are used
by companies as a way to raise capital instead of issuing equity. Bonds are
subject to ratings by rating companies such as Moody’s and S&P and could
fit in two categories - Investment Grade or High Yield.

Modelling the fluctuations of interest rates has always been an important study
subject to many research academics and financial institutions. The volatility
of interest rates has an impact on the economy in general, and on companies’
finances in particular, as many firms use bonds as a means to raise capital
which makes them vulnerable to the changes in interest rates. For example, the
US 10-year interest rate is considered to be a ‘safe haven’ for many investors.
In addition, the spread between the 10-year and 2-year US bond yields is
considered to be a good predictor of future recessions (Fig.1).
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Figure 1.1: US 2y10y spread (blue) and Recessions (Gray bars).
Source: Recession Signals: The Yield Curve vs. Unemployment Rate Troughs, Eco-
nomic Research Federal Reserve Bank Of St. Louis

In this paper, we talk about about three different approaches to model and
analyse the long term interest rates:

- Anticipation theory:

This approach is based on modelling the long term rates as an average of
short term rates which are modelled using either a stationary model such as
the Vasicek model or non stationary model.

- Time Series/Regression Analysis:

This approach is based on using macroeconomic variables that impact the long
term rates.

- Term Structure Modelling:

This approach is based on using the level, slope and curvature of the yield
curve in order to model the long term interest rates.
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Chapter 2

Theory

2.1 Short Rate Models

Short rates models are mathematical processes used to describe the changes
in the short rate rt, which is the instantaneous spot rate of borrowing money
for an infinitesimal short period of time dt. Although specifying the short rate
impacts the yield curve, it mainly influences the short part of of the curve
while the long part changes are mostly impacted by macroeconomic events
and investor appetite.

The price at time t of a zero-coupon bond that matures at time T - under
no-arbitrage arguments and taking the evolution of rt as a stochastic process
under a risk-neutral measure Q - is given by:

P (t, T ) = EQ

[
exp

(
−
∫ T

t

rs ds

)∣∣∣∣Ft] , (2.1)

where P (T, T ) = 1.

The yield curve is a line plot, at a specific date, of the interest rates of zero
coupon bond with different maturities. From the previous equation, specifying
a short rate model would give us the future prices of the zero coupon bonds.
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We can get the forward rates based on bond prices using the formula below:

f(t, T ) = − ∂

∂T
ln(P (t, T )). (2.2)

The short rate can then be derived as:

rt = f(t, t) (2.3)

There are many models used to analyze and evaluate the evolution of the short
rate. In this thesis, we will look at both the Vasicek and CIR models. These
models assume that the interest rates are Markovian processes.

The short rate models follow the following stochastic differential equation:

dr(t) = µ(r, t)dt+ σ(r, t)dW (t) (2.4)

2.1.1 The Vasicek Model

The Vasicek model is a one-factor short rate model. It can be used for the
pricing of interest rate derivatives. This model captures the mean reversion
character of the short rates.

The stochastic process equation for this model is given by:

drt = κ(µ− rt)dt+ σdWt (2.5)

where κ, µ and σ are constants and W (t) is a Wiener process.

The κ(µ − rt) factor is the drift term and represent the expected change in
interest rates. µ is the long term equilibrium interest rate and κ is the speed
at which the rate goes back to its long term equilibrium.

Using Ito’s formula on Xt = rte
κt :

dXt = µκeκtdt+ σeκtdWt (2.6)
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Using the last two equations and a simple discretization, we get the following
expression for rt.

rt+∆t = e−κtrt + µ(1− e−κ∆t) + σe−κ(t+∆t)

∫ t+∆t

t

e−κtdWt (2.7)

The mean and variance of rt are:

E(rt+∆t | rt) = e−κ∆trt + µ(1− e−κ∆t) (2.8)

V (rt+∆t | rt) =

(
σ2

2κ

)
(1− e−2κ∆t) (2.9)

When κ goes to zero, the expected value goes to rt and the variance to zero.
And when, κ goes to infinity, the expected value goes to µ and the variance
to zero σ2

2κ

2.1.2 The Cox–Ingersoll–Ross Model

Now, we consider the Cox–Ingersoll–Ross (CIR) model, the stochastic differ-
ential equation for this model is:

dr(t) = κ(µ− rt)dt+ σ
√
rtdW (t) (2.10)

where κ, µ and σ are constants and Wt is a Wiener process.

One of the drawbacks of using the Vasicek model is that it allows the interest
rate to be negative. The CIR model is an extension of the Vasicek model and
solves the issue by adding the term

√
rt to the standard deviation factor. The

drift factor is the same as the Vasicek model.

Using Ito’s formula on Xt = rte
κt :

dXt = µκeκtdt+ σeκt
√
XtdWt (2.11)
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Using a simple discretization and the last two equations, we get a normally
distributed rt.

rt+∆t = e−κ∆trt + µ(1− e−κ∆t) + σe−κ(t+∆t)

∫ t+∆t

t

e−κt
√
rtdWt (2.12)

This means that the mean and variance of rt are as follows:

E(rt+∆t | rt) = e−κ∆trt + µ(1− e−κ∆t) (2.13)

V (rt+∆t | rt) = e−κ∆trt

(
σ2

κ

)
(1− e−2κ∆t) + µ

(
σ2

2κ

)
(1− e−2κ∆t)2 (2.14)

When κ goes to zero, the expected value goes to rt and the variance to zero.
And when, κ goes to infinity, the expected value goes to µ and the variance
to zero µσ2

2κ

2.2 Anticipation Theory

The Anticipation Theory defines the long term interest rate as the average of
future expected short term rates with an added risk premium that we assume
to be constant. The risk premium is the compensation for investors to tolerate
the extra risk holding an asset.

This theory has two main principles: no arbitrage and rational anticipation.
We take Rt, the interest rate of a long term zero coupon bond at time t, as
the average of expectations of future yields at times t, t+ 1, ..., t + n− 1 plus
a risk premium:

Rt =
1

n

n−1∑
i=0

Etrt+i + λT (2.15)

The risk premium λT could change with different maturities T . However, we
assume that it as a constant throughout time.
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For coupon paying bonds, the long term interest rates are given by:

Rt =
1− β
1− βn

n−1∑
i=0

Etβ
irt+i + λ (2.16)

Where β = 1
1+R̄

and R̄ is the mean of the long term rates.

The main difficulty was choosing between either a stationary or non stationary
approach for the short term interest rates models. Most short term interest
rate models that have been developed are stationary models (Vasicek 1977,
CIR 1985) even if most empirical tests fail to reject non-stationary models.

2.2.1 Stationary model

We use the stationary approach with the Vasicek model.

drt = κ(µ− rt)dt+ σdWt (2.17)

Using the discrete method, we have:

rt = κµdt+ (1− κdt)rt−1 + σ
√
tet (2.18)

We denote: a = (1 − κdt), g = κµdt and et is an i.i.d, standard normally
distributed process. Thus, we have:

rt = g + art−1 + σ
√
tet (2.19)

Using this model, the expectation is given by:

E(rt+i | rt−1) = ai+1rt−1 +
(1− ai+1)

(1− a)
g (2.20)
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We use this equation to get the formula for the long term rates using the
anticipation theory.

Rt/t−1 = E(Rt | rt−1) =
1

n

n−1∑
i=0

Etrt+i + λ

=
g

1− a
+
a(1− an)

n(1− a)
(rt−1 −

g

1− a
) + λ

(2.21)

Once the short term model has been estimated, we can use the previous equa-
tion to estimate the long term rate at time t+k where k ≥ 0 using the following
formula:

Rt+k/t−1 = E(Rt+k | rt−1)

=
g

1− a
+
ak+1(1− an)

n(1− a)
(rt−1 −

g

1− a
) + λ

(2.22)

2.2.2 Non Stationary Model

We start by taking a process with a drift α and a deterministic trend where µ:

rt = α + µt+ art−1 + σet (2.23)

We use the first differences approach:

drt = µ+ adrt−1 + σet (2.24)

Where et is i.i.d, standard normally distributed process.

The expectation is given by:
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E(rt+i | rt−1) = rt−1 +
i∑

k=0

E(∆rt+k)

= rt−1 +
i∑

k=0

(ak+1∆rt−1 +
(1− ak+1)

(1− a)
µ)

= rt−1 + a
(1− ai+1)

(1− a)
(∆rt−1 −

µ

(1− a)
) + (i+ 1)

µ

(1− a)

(2.25)

We use this equation to get the expression for the long term rates :

Rt/t−1 = E(Rt | rt−1) =
1

n

n−1∑
i=0

Etrt+i + λ (2.26)

We take µ = 0 and get the following formula:

Rt/t−1 = rt−1 +
a

(1− a)
∆rt−1(1− a(1− an)

n(1− a)
) + λ (2.27)

2.3 Time Series-Regression Analysis

Long term interest rates show a recent surprising dynamic in the United States
and the euro-zone between 1986 and 2005. There had been a downward trend
during the past 15 years which can mainly be explained by multiple funda-
mental factors such as the low macroeconomic volatility, low inflation antic-
ipations and the change in strategy of communication of the various central
banks regarding the monetary policies. However, these are not the only factors
influencing the long term interest rates in the US and Europe. In the United
States, the long term interest rates stayed constant around 4% even with the
higher public deficit over the years. Same as in Europe where the interest rates
stayed around 2 %.

This Time Series Analysis models the long term interest rates using certain
macroeconomic factors that influence rates. Hence, the most important ques-
tion is the choice of the different variables that could be used. The variables
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believed to have an impact of the long rates can be classified into three cate-
gories:

- Fundamental variables: Inflation - Short rates

- Central bank variables: Fed Balance Sheet (for the US)

- Macroeconomic variables: GDP - Foreign Investments - Industrial Production
- Unemployment rate

The choice of the variables is based on the correlation with the long term rates
but also on the independence between the different variables.

The long term interest rates, in the last decades, show a non-stationary dy-
namic that would dismiss using linear regression. However, we can use a coin-
tegration analysis which is a method that estimates the long-run parameters
in systems with non-stationary variables.

A set (X,Y ,Z) are each integrated of order I(1) - this means that the first
difference of a variable is a stationary series - if a linear combination aX +
bY +cZ is stationary - of order I(0). Formally, a set of variables (X1,X2,...,Xn),
integrated of at least order d, is said to be cointegrated if a linear combination
of these variables is integrated of order less than d.

We study here two methods for testing cointegration: Engle–Granger test and
Johansen test.

2.3.1 Engle–Granger test

We consider Y and X to be non-stationary variables where X is the dependent
variable and X is the explanatory variable.

The Engle–Granger method is a two-step method. The first step is to estimate
β using an Ordinary Least Square in the following equation:

Yt = βXt + et (2.28)

The next step is to test the stationarity of the residual et. It can be done using
the Dickey–Fuller test or the Phillips–Perron test. Another regression is used
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to test for a unit root for the process et.

et = αet−1 + ut (2.29)

A cointegration between the variables exists only if |α| < 1 .

2.3.2 Johansen test

The Johansen test is a method that can estimate more that one cointegration
relationship between the variables. Let Y the (n x 1) dependent variable and
X is the (n x p) matrix the p columns are explanatory variables. We consider:

Xt = AXt−1 + et (2.30)

Where A is an (n x n) matrix. We have thus:

∆Xt = AXt−1 −Xt−1 + et

= ΓXt−1 + et
(2.31)

Where Γ = A− I is an (n x n) matrix.

The number of cointegrating relationships is given by the rank of the matrix Γ.
If the rank of Γ is zero, then there is no cointegration. In case of a rank r=p,
the cointegration is always true meaning that the variables must be stationary
in the first place. Finally, the existence of stationary relationships is proven
when the rank r<p.

2.4 Term structure analysis: Nelson-Siegel Ap-
proach

The Nelson and Siegel model is widely used to describe the interest rate yield
curve. The Bank of International Settlements has reported that many Central
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Banks use the Nelson-Siegel to model the interest rate term structure. The
forward rate, based on this model, is given by the following formula:

ft(τ) = β1(t) + β2(t)e−λτ + β3(t)λτe−λτ (2.32)

Where τ is the maturity and λ is the decay factor.

Since the yield is given by the following fomula:

rt(τ) =
1

τ

∫ τ

0

ft(u)du (2.33)

We get:

rt(τ) = β1(t) + β2(t)
1− e−λτ

λτ
+ β3(t)

(
1− e−λτ

λτ
− e−λτ

)
(2.34)

The Nelson and Siegen models the yield curve based on three main factors:

- The first factor is β1(t). It represents the level of the yield curve. It remains
constant with regards to maturity. It is also viewed as the long term factor
since the other factors tend to zero for very long maturities.

- The second factor is β2(t) and represents the slope of the yield curve. It has
an impact on the short term due to the fact that the term 1−e−λτ

λτ
, next to β2(t)

in the formula, decays from 1 at time t=0 to 0 as time goes by.

- The third factor is β3(t) and represents the curvature of the yield curve. It
has an impact on the medium term as the term, (1−e−λτ

λτ
−e−λτ ), next to β3(t),

increases to the maximum before decaying to zero in the long term. This factor
captures what is called the ’butterfly effect’ of the yield curve.

There is another factor that we need to talk about: λ. It is referred to as the
decay factor. The estimation of this parameter is usually fixed first before the
other factors (β1(t),β2(t),β3(t)). By fixing λ, the estimation of the other factors
becomes easier and could be done by an Ordinary Least Squares method.
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Chapter 3

Data

This thesis presents multiple approaches to interest rate modelling and, as
discussed before, we use data from both the United States and Europe. We
decided to use and analyze the 3-months, 2-year and 10-year US treasury yields
and German bond yields.

Figure 2 below presents the historical US treasury bond yields dating back to
2000:

2000 2001 2003 2004 2005 2007 2008 2009 2011 2012 2014 2015 2016 2018
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Yield

D
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10-year

Figure 3.1: US 3-months, 2-year and 10-year treasury bond yields
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The 3-month and 2-year treasury yields are closely correlated to the Fed rates.
Thus, we can clearly see that the low Fed rates since the financial crisis in
2008 have a clear impact on these short term yields. However, the 10-year
yield is partially related to the Fed rates but is impacted by multiple other
macroeconomic factors.

Figure 3 presents the historical German government bond yields dating back
to 2000:

2000 2001 2003 2004 2005 2007 2008 2009 2011 2012 2014 2015 2016 2018
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Figure 3.2: German 3-months, 2-year and 10-year Govt. bond yields

In The Nelson-Siegel model, we analyse the term structure of the US treasury
bonds. Here is a representation of the US yield curve as of the 31/10/2018.

0 5 10 15 20 25 30

2.5

3

Curve

Y
ie
ld

Figure 3.3: US yield curve as of the 31/10/2018

14



Since then, the short part of the yield curve has steepened more in 2019. The
yield curve looked more like a ’butterfly’ and was partially inverted in August
2019. As said before, this has been a good indicator of a recession but hasn’t
always been accurate.

Here is a representation of the interest rate surface which is a plot of the change
of the yield curve over time.

Figure 3.4: US yield surface
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Chapter 4

Calibration Method

Using the historical data from the previous chapter, we need to calibrate the
different models that we relayed before.

There are two main methods to estimate the parameters of the different meth-
ods. The first one is the Ordinary Least Squares method. The principle of
this method is to find the minimum of the sum of squared errors. We use
this approach to find the P-dynamics and the parameters κ, µ and σ for the
Vasicek model. By using the Euler discretization, we get:

rt+∆t = rt + κ(µ− rt)∆t+ σ(Wt+∆t −Wt) (4.1)

The parameters in the drift factor, κ and µ are estimated by solving the
following equation:

(κ̂, µ̂) = arg min
(κ̂,µ̂)

N−1∑
i=1

(ri+1 − ri − κ(µ− ri)∆t)2 (4.2)

Once we have solved the equation above, we use the standard deviation of the
residuals to estimate σ. The advantage of using this method is that there are
only weak assumptions regarding the probability density of the errors.

The same approach is used to estimate the Q implied dynamics in the Nelson-
Siegel model. As said before, the parameter λ is fixed and the estimation

17



of (β1(t), β2(t), β3(t)) is made by an OLS estimator. The equation that we
should minimize is thus:

arg( ˆβn1 (t), ˆβn2 (t), ˆβn3 (t)) min
N−1∑
i=1

(
rt(τi)− β1(t)− β2(t)

1− e−λτi
λτi

− β3(t)

(
1− e−λτi
λτi

− e−λτi
))2

(4.3)

The second method to find parameters is the Maximum Likelihood (ML). This
method was used in the time series approach. The principle of this method is
to minimize the likelihood function (or log-likelihood) in order to estimate the
parameters for the regressions in the Engle–Granger two-step method.

The likelihood function to be maximized is given by the following formula:

β̂ = arg max
β

n∑
i=1

log(f(yi | xi; β)) (4.4)

18



Chapter 5

Results and Analysis

5.1 Anticipation Theory

5.1.1 Stationary models

We start our analysis by modelling the short term rates using the Vasicek
model on the 3-month US treasury yields and German bonds:

drt = κ(µ− rt)dt+ σdWt (5.1)

Using the OLS method above, we find the following parameters for the Vasicek
model:

Stationary Model

United States Germany
κ 0.061 0.282
µ 1.941 1.02
σ 0.745 1.18
R2 0.01 0.01

Table 5.1: Short term model parameters for the 3-month interest rates
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The R2, which measures how close the data is to the fitted models, seems
to be very low for both models. This could be related to the assumption of
stationarity of the short term rates. We attempt to use a non-stationary model
in the next section.

Using the equation (21), we have the following plots of the fitted US and
German 10 year yields:
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Figure 5.1: US fitted VS real yields
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Figure 5.2: German Fitted VS real yields
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5.1.2 Non-Stationary models

We use the equations (22) for the short rate process and get the following
parameters.

Stationary Model

United States Germany
µ -0.001 -0.002
a 0.09 -0.26
R2 0.01 0.06

Table 5.2: Short term model parameters for the 3-month interest rates

The figure below shows the new fitted long term rates using the non-stationary
short term rates and both equations (23),(24) and (25).
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Figure 5.3: US estimated VS real yields
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Figure 5.4: German estimated VS real yields

These plots are very similar the ones using the stationary models. This means
that the models used for the modelling of the short term rates are not very
accurate and thus do not give satisfactory results.

The estimated long term yields have similar dynamics of short term rates.
Indeed, we can clearly see that the parameter (α) in both stationary and non
stationary models is close to 0, which means that the modeling of the short
term rates is not effective.

The two approaches give us clear over-estimation in certain years and under-
estimation in some others. The results are a bit better for the German long
term bonds than for the US bonds.

The Anticipation theory could be improved by taking more accurate short
term models. The Vasicek model, for example, could be tweaked by allowing,
µ, which is the value that the short term rates revert back to, to be time
dependent. This will allow rates to change over time taking into account the
changes in Fed rates. We could also use two-factor models to ameliorate our
short rate expectations. This theory could be further enhanced using a time
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dependent risk premium, which could be modeled using macroeconomic or
volatility factors.

The residual of these models are given in the figure below. As expected, the
residuals are stationary but not white.

1993 1996 1998 2001 2004 2007 2009 2012 2015 2018
−3

−2

−1

0

1

2

Time

R
es
id
ua

ls
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Residual between the German real and estimated yield

Figure 5.5: Residuals for the US and German sovereign bond yields fitted models

5.2 Time Series Analysis

In this approach, we use macroeconomic inputs to get a ’fair-value’ of the long
term interest rates. The fair value is the value where the bond yield should be
based on the inputs that we have.
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5.2.1 United States

We start by looking at the different inputs that we can use in our model.
There are many variables that can be used here such as: Inflation, Short
rates, FED balance sheet, GDP growth, Unemployement rate, Foreign Invest-
ments growth and Industrial Production (IP) index which is a measure of the
production output of manufacturing, mining and utilities.(All the data comes
from Bloomberg)

These variables can be divided into three categories: fundamental variables
(inflation and Short term rates (3 month yields)), monetary variables (Fed
rates and balance sheet) and other macroeconomic variables (GDP growth,
Unemployement rate, Foreign Investments growth and Industrial Production
index).

The first step is to look at the correlation between the long term yields and
each of the variables. We also look at the correlation between the variables.

yield10y yield3m Inf Fed BS F I GDP Unemploy
yield10y 1.0000 0.7951 0.4551 -0.8705 -0.7484 0.3153 -0.3447
yield3m 0.7951 1.0000 0.5285 -0.6759 -0.6085 0.5510 -0.6193
Inflation 0.4551 0.5285 1.0000 -0.4823 -0.2708 0.4107 -0.3308
Fed BS -0.8705 -0.6759 -0.4823 1.0000 0.6551 -0.2317 0.1961

Foreign Inv -0.7484 -0.6085 -0.2708 0.6551 1.0000 -0.3934 0.5175
GDP 0.3153 0.5510 0.4107 -0.2317 -0.3934 1.0000 -0.6782

Unemploy -0.3447 -0.6193 -0.3308 0.1961 0.5175 -0.6782 1.0000

Table 5.3: Correlation between the macroeconomic variables and the 3-month interest
rates

The first column represents the correlation between the 10 year US treasury
yield and the rest of the variables. Based on the table above, we’ve decided
to not take the Unemployment rate into account based on the possible depen-
dence between this variable and the other ones.

The multiple unit root tests (Augmented Dickey–Fuller test and Phillips–Perron
test) on the long term rates state that the rates not stationary and, thus, we
use the Engle-Granger co-integration analysis.

We start by evaluating the integration orders of the variables. Using the
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MATLAB function jcontest, we conclude that the variables used here are all
non-stationary and their first differences is stationary. This means that all the
variables are integrated of order 1.

The egcitest function on MATLAB shows that there is a cointegration rela-
tionship in this case. We start by the first regression analysis:

The plot of the estimated long term rates is given by:
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Figure 5.6: US estimated VS real 10 year yields
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The residuals are shown in the plot below. We test the stationarity of this
residual with both the Augmented Dickey–Fuller test and Phillips–Perron test.
Both of these tests confirm that the residuals are stationary. However, there
is clearly auto-regression features remaining.
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Figure 5.7: Residual of the model

5.2.2 Germany

We use the same approach as before. The first step is to choose the inputs
that we use in the model.

The first step is to look at the correlation between the long term yields and
each of the variables. We take the one-year German bond yield, inflation rate,
GDP and G4 balance sheet (Aggregate Central Bank balance sheets of the
Fed, ECB, BOJ and BOE) as inputs. (All the data comes from Bloomberg)
We also look at the correlations and the correlation between the variables.
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yield10y yield1y Inf GDP G4 BS
yield10y 1.0000 0.9252 0.3007 -0.0537 -0.9521
yield1y 0.9252 1.0000 0.3892 0.1574 -0.8912
Inflation 0.3007 0.3892 1.0000 0.3997 -0.2290
GDP -0.0537 0.1574 0.3997 1.0000 0.0609

G4 Balance Sheet -0.9521 -0.8912 -0.2290 0.0609 1.0000

Table 5.4: Short term model parameters for the 3-month interest rates

The next step is the cointegration analysis. For the German bonds yields, we
use the Johansen Cointegration Test.(The choice of this test is only based on
a desire to try new methods). By using the functions jcontest and jcitest
in MATLAB, we know that the variables are all integrated of order 1 and that
there is only one cointegration relationship between them.

The model in this case is given by:

∆yt = A(Byt−1 + c0) +
k∑
1

Ck∆yt−k + et (5.2)

Where yt is a (5 x 1) vector with all the variables, et is a white noise and
Byt−1 + c0 is the cointegration term.

The estimated parameters are:

B = [-1.3422 0.5146 1.2490 -0.4414 -0.1102]T

A = [ 0.0144 -0.0467 -0.0696 -0.0115 0.0620]

c0 = 4.0833

The plot of the estimated long term rates and the residuals are in the next
page. The residuals are stationary bu not completely white.
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Figure 5.8: German estimated VS real 10 year yields
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Figure 5.9: Residual fir the German sovereign bond yields fitted model
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The main idea behind this approach is to find fair values of the yields based
on the macroeconomic variables that we used. By comparing the results for
both countries, we can clearly see that the fitted US yields fluctuate much less
than for German yields. The low volatility of the US fitted yields is more in
line with our goal to find accurate fair values. One possible explanation for
this is the multiple variables used for the US relative to Germany.

We get better results using this method than the anticipation theory approach
before. The strength of this approach is the accuracy. However, the main
weakness is that the forecasts will be based on the anticipations of the different
macroeconomic variables from economists. which could be inaccurate.

5.3 Term Structure Modeling

This last approach is widely used by central bankers to analyze the yield
curve. The use of three factors - level, slope and curvature - helps catch
all the effects of the term structure on the short, medium and long term.
We fix λ = 0.2262. In this thesis, we will not get into detail on how this
parameter has been estimated but it has been in discussed in the following
paper. Source: Calibrating the Dynamic Nelson-Siegel Model: A Practitioner
Approach. Ibanez, Francisco Central Bank of Chile 14 December 2015

5.3.1 US

As said before, we use the OLS method to estimate the parameters in the
formula below.

rt(τ) = β1(t) + β2(t)
1− e−λτ

λτ
+ β3(t)

(
1− e−λτ

λτ
− e−λτ

)
(5.3)

The figure below shows a chart of the three parameters discussed before:
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Figure 5.10: Estimated Nelson-Siegel parameters for the US treasury bond yields

The following figure presents a plot of the estimated interest rates:
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Figure 5.11: US fitted VS real yields
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5.3.2 Germany

We use the same approach as in the previous case. We use the OLS method
to estimate the parameters in the formula below.

rt(τ) = β1(t) + β2(t)
1− e−λτ

λτ
+ β3(t)

(
1− e−λτ

λτ
− e−λτ

)
(5.4)

Here is a chart of the three parameters discussed before:
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Figure 5.12: Estimated Nelson-Siegel parameters for the German treasury bond yields

The following plot is the representation of the estimated interest rates:

31



2000 2001 2003 2004 2005 2007 2008 2009 2011 2012 2014 2015 2016 2018

0

2

4

Time

Y
ie
ld

Estimated German 10 year yield
German 10 year yield

Figure 5.13: German fitted VS real yields

5.3.3 Modeling of parameters

In this section we attempt to model the different parameters based on the
different macroeconomic inputs, that we discussed in the Time Series Analysis
before. The analysis will be done to the US 2 year and 10 year treasury bond
yields.

- The first factor: level. The level parameter is not stationary but the first
differences is, which means that this factor is I(1). The Engle–Granger test
confirms the cointegration relationship with the following variables - Short
term rates, inflation, GDP and Foreign investments referred to in the equation
below as X1,X2 and X3 respectively.

factor1(t) = α1 + α2X1 + α2X2 + α3X3 (5.5)

We get the following parameters:
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The following figure shows the estimated level.
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Figure 5.14: Level factor estimation

The model doesn’t fit the data very well . One reason is the fact that the level
parameter has a lot of noise. The residual analysis shows that the residual is
stationary but not white.

- The second factor: slope. The modelling of the slope parameter is simi-
lar to the level factor since it is also I(1) and there is a cointegration rela-
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tionship with the variables - Short term rates, inflation, GDP and Foreign
investments.referred to in the equation below as X1,X2 and X3 respectively.

factor2(t) = α1 + α2X1 + α2X2 + α3X3 + α4X4 (5.6)

We get the following parameters:

The following graph shows the estimated level.
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Figure 5.15: Slope factor estimation
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The residual is stationary. However, it is not white. As said before, the slope
of the yield curve is a good estimator of an upcoming recession. Thus, the
modeling of this factor could help forecast a recession and thus be used in
risk management.( (For more: Benzoni, Luca and Chyruk, Olena and Kelley,
David, Why Does the Yield-Curve Slope Predict Recessions? (September 28,
2018))

- The last factor: curvature. Unlike the other factors, This factor is stationary
and is the hardest one to model and predict. As said before, this parameter
represents the medium term and captures the ’butterfly effect’ of the yield
curve. We decided to here an AR(2) model as it was more accurate than using
macroeconomic variables in this case. The parameters are given by:
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Figure 5.16: Curvature factor estimation
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The 2 year and 10 year bond estimates based on the estimated factors is shown
in the following graphs:
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Figure 5.17: US 2 year yield estimation
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Figure 5.18: US 10 year yield estimation

36



The results show that our estimates are overvalued in certain years and under-
valued in other ones. The residuals from both these estimations are stationary
but still not white.

This approach could be improved using better and more accurate macroeco-
nomic inputs. However, I believe that this approach would not be well suited
for forecasting purposes. The idea of using macroeconomic variables to fore-
cast each factor could lead to major errors in estimation of the yields as each of
the three factors would be inaccurate if one of the variables is badly forecasted.
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Chapter 6

Conclusion

Financial companies have always been interested in modelling interest rates
for various purposes and the choice of the interest rate models is not trivial.
Financial intermediaries such as banks and brokers use interest rate models
mainly for the pricing of financial derivatives such as caps, swaptions, bond
options etc. Several models have been proposed such as Vasicek model (1977)
and Cox, Ingersoll and Ross (1985) as short rate models for this purpose.
Other financial companies, such as pension funds and asset management com-
panies use them for predictions on the future fluctuations of bond yields using
financial statistics and time series analysis models such as ARCH and GARCH
models.

We used three approaches in this paper. The first one is the Anticipation
theory, it uses the short term analysis using the Vasicek and CIR models and
use the anticipations to estimate the long term interest rates. The second ap-
proach is using a Time Series/Regression Analysis using many macroeconomics
inputs to get a estimate of the fair values of interest rates and forecasts. This
approach is used a lot in Asset Management companies for speculative and
hedging purposes and to get Quantitative Investment ideas about the future
path of the interest rates.For example, BNP Paribas Quant team developed
a indicator called MarFA that uses macroeconomic variable to estimate the
Fair Value of an asset and determines if the current market price is over or
undervalued. It has been a successful product that many clients of the bank
are interested in. Our last approach is the Term Structure Modelling using
the Nelson Siegel model. It is more broad approach as it uses the level, slope
and curvature to model the interest rate surface.
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To conclude, each of these models each have their strengths and weaknesses
and their use is based on the purpose of the modelling.
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Annex - Computer Code

%% Ant i c ipa t i on Theory : S ta t i onary
%% US
%% Data
c l e a r
c l c
data = importdata ( ’ Antic ipation_theory_data . mat ’ ) ;
N = length ( data ( 1 : end , 1 ) ) ;
data_US_3m = data ( : , 1 ) ;
data_US_10y = data ( : , 2 ) ;

% Vasicek model
y i e l d s = data_US_3m;
r e g r e s s o r s = [ ones ( l ength ( y i e l d s ) − 1 , 1) y i e l d s ( 1 : end −1) ] ;
[ c o e f f i c i e n t s , in te rv , r e s i d u a l s ] = r e g r e s s ( d i f f ( y i e l d s ) , r e g r e s s o r s ) ; . . .

% OLS r e g r e s s i o n
dt = 1/260 ;
t b l=tab l e ( d i f f ( y i e l d s ) , ones ( l ength ( y i e l d s ) − 1 , 1 ) , y i e l d s ( 1 : end − 1 ) , . . .

’ VariableNames ’ , { ’ d i f f_y i e l d s ’ , ’ ones ’ , ’ y i e l d s ’ } ) ;
lm1 = f i t lm ( tbl , ’ d i f f_y i e l d s ~ y i e l d s ’ , ’ In t e r cept ’ , t rue )

kappa = −c o e f f i c i e n t s (2)/ dt ;
mu = −c o e f f i c i e n t s (1)/ c o e f f i c i e n t s ( 2 ) ;
sigma = std ( r e s i d u a l s )/ sq r t ( dt ) ;

kappah = −t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / dt ;
muh=−t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / tab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 1 , 1 ) ) ;
sigmah = std ( tab l e2a r ray ( lm1 . Res idua l s ( : , 1 ) ) ) / sq r t ( dt ) ;

Par = [ kappa , mu, sigma ] ;
Parh = [ kappah , muh, sigmah ] ;

p l o t ( y i e l d s )

% Long term model
A = 1− kappa∗dt ;
G = kappa∗mu∗dt ;
n = 12/3∗10;
R = G/(1−A) + A∗(1−A^n )/( n∗(1−A) )∗ ( y i e l d s ( 1 : end−1)−G/(1−A) ) ;
lambda = mean(data_US_10y ( 2 : end)−R)
p lo t (R+lambda )
hold on
p lo t (data_US_10y ( 2 : end ) )

%% Germany
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%% Data
c l e a r
c l c
data = importdata ( ’ Antic ipation_theory_data . mat ’ ) ;
N = length ( data ( 1 : end , 1 ) ) ;
data_German_3m = data ( : , 3 ) ;
data_German_10y = data ( : , 4 ) ;

% Vasicek model
y i e l d s = data_German_3m ;
r e g r e s s o r s = [ ones ( l ength ( y i e l d s ) − 1 , 1) y i e l d s ( 1 : end −1) ] ;

[ c o e f f i c i e n t s , in te rv , r e s i d u a l s ] = r e g r e s s ( d i f f ( y i e l d s ) , r e g r e s s o r s ) ; . . .
% OLS r e g r e s s i o n

dt = 1/260 ; % da i l y data
tb l=tab l e ( d i f f ( y i e l d s ) , ones ( l ength ( y i e l d s ) − 1 , 1 ) , y i e l d s ( 1 : end − 1 ) , . . .

’ VariableNames ’ , { ’ d i f f_y i e l d s ’ , ’ ones ’ , ’ y i e l d s ’ } ) ;
lm1 = f i t lm ( tbl , ’ d i f f_y i e l d s ~ y i e l d s ’ , ’ In t e r cept ’ , t rue )

kappa = −c o e f f i c i e n t s (2)/ dt ;
mu = −c o e f f i c i e n t s (1)/ c o e f f i c i e n t s ( 2 ) ;
sigma = std ( r e s i d u a l s )/ sq r t ( dt ) ;

kappah = −t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / dt ;
muh=−t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / tab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 1 , 1 ) ) ;
sigmah = std ( tab l e2a r ray ( lm1 . Res idua l s ( : , 1 ) ) ) / sq r t ( dt ) ;

Par = [ kappa , mu, sigma ]
Parh = [ kappah , muh, sigmah ]

p l o t ( y i e l d s )

% Long term model
A = 1− kappa∗dt ;
G = kappa∗mu∗dt ;
n = 12/3∗10;
R = G/(1−A) + A∗(1−A^n )/( n∗(1−A) )∗ ( y i e l d s ( 1 : end−1)−G/(1−A) ) ;
lambda = mean(data_German_10y ( 2 : end)−R)
p lo t (R+lambda )
hold on
p lo t (data_German_10y ( 2 : end ) )

%% Ant i c ipa t i on Theory : Non − Stat i onary
%% US
%% Data
c l e a r
c l c
data = importdata ( ’ Antic ipation_theory_data . mat ’ ) ;
N = length ( data ( 1 : end , 1 ) ) ;
data_US_3m = data ( : , 1 ) ;
data_US_10y = data ( : , 2 ) ;

% shor t ra t e model
y i e l d s = data_US_3m;
r e g r e s s o r s = [ ones ( l ength ( y i e l d s ) − 2 , 1) y i e l d s ( 2 : end−1)−y i e l d s ( 1 : end −2) ] ;
[ c o e f f i c i e n t s , i n t e r v a l s , r e s i dua l s , r in t , s t a t s ] = . . .

r e g r e s s ( y i e l d s ( 3 : end)− y i e l d s ( 2 : end−1) , r e g r e s s o r s ) ; % OLS r e g r e s s i o n
dt = 1/260 ;
t b l=tab l e ( y i e l d s ( 3 : end)− y i e l d s ( 2 : end−1) , y i e l d s ( 2 : end−1)−y i e l d s ( 1 : end − 2 ) , . . .

’ VariableNames ’ , { ’ d i f f_y i e l d s ’ , ’ y i e l d s ’ } ) ;
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lm1 = f i t lm ( tbl , ’ d i f f_y i e l d s ~ y i e l d s ’ , ’ In t e r cept ’ , t rue )

kappah = −t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / dt ;
muh=−t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / tab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 1 , 1 ) ) ;
sigmah = std ( tab l e2a r ray ( lm1 . Res idua l s ( : , 1 ) ) ) / sq r t ( dt ) ;

Par = c o e f f i c i e n t s
Parh = tab l e2a r ray ( lm1 . C o e f f i c i e n t s )

p l o t ( y i e l d s )

% Long term model
A = c o e f f i c i e n t s ( 2 ) ;
n = 12/3∗10;
R = y i e l d s ( 2 : end−1) + A/(1−A)∗ ( y i e l d s ( 2 : end−1)−y i e l d s ( 1 : end − 2 ) ) ∗ . . .

(1−A∗(1−A^(n ) )/n∗(1−A) ) ;
lambda = mean(data_US_10y ( 3 : end)−R)
p lo t (R+lambda )
hold on
p lo t (data_US_10y ( 2 : end ) )

%% Germany
%% Data
c l e a r
c l c
data = importdata ( ’ Antic ipation_theory_data . mat ’ ) ;
N = length ( data ( 1 : end , 1 ) ) ;
data_German_3m = data ( : , 3 ) ;
data_German_10y = data ( : , 4 ) ;

% shor t ra t e model
y i e l d s = data_German_3m ;
r e g r e s s o r s = [ ones ( l ength ( y i e l d s ) − 2 , 1) y i e l d s ( 2 : end−1)−y i e l d s ( 1 : end −2) ] ;
[ c o e f f i c i e n t s , in te rv , r e s i dua l s , r in t , s t a t s ] = . . .

r e g r e s s ( y i e l d s ( 3 : end)− y i e l d s ( 2 : end−1) , r e g r e s s o r s ) ; % OLS r e g r e s s i o n
dt = 1/260 ;
t b l=tab l e ( y i e l d s ( 3 : end)− y i e l d s ( 2 : end−1) , y i e l d s ( 2 : end−1)−y i e l d s ( 1 : end − 2 ) , . . .

’ VariableNames ’ , { ’ d i f f_y i e l d s ’ , ’ y i e l d s ’ } ) ;
lm1 = f i t lm ( tbl , ’ d i f f_y i e l d s ~ y i e l d s ’ , ’ In t e r cept ’ , t rue )

kappah = −t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / dt ;
muh=−t ab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 2 , 1 ) ) / tab l e2a r ray ( lm1 . C o e f f i c i e n t s ( 1 , 1 ) ) ;
sigmah = std ( tab l e2a r ray ( lm1 . Res idua l s ( : , 1 ) ) ) / sq r t ( dt ) ;

Par = c o e f f i c i e n t s
Parh = tab l e2a r ray ( lm1 . C o e f f i c i e n t s )

% Long term model
A = c o e f f i c i e n t s ( 2 ) ;
n = 12/3∗10;
R = y i e l d s ( 2 : end−1) + A/(1−A)∗ ( y i e l d s ( 2 : end−1)−y i e l d s ( 1 : end − 2 ) ) ∗ . . .

(1−A∗(1−A^(n ) )/n∗(1−A) ) ;

lambda = mean(data_German_10y ( 3 : end)−R)
p lo t (R+lambda )
hold on
p lo t (data_German_10y ( 3 : end ) )
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%%Time S e r i e s Ana lys i s
%% US y i e l d s : LT
%% Read data
c l e a r
c l c
data = importdata ( ’ Time_Series_Analysis_data_US . mat ’ ) ;

% Data
yield3m = data ( : , 1 ) ; yield6m = data ( : , 2 ) ; y i e l d1y = data ( : , 3 ) ; y i e l d2y = . . .

data ( : , 4 ) ; y i e l d3y = data ( : , 5 ) ; y i e l d5y = data ( : , 6 ) ; y i e l d7y = . . .
data ( : , 7 ) ; y i e ld10y = data ( : , 8 ) ; y i e ld30y = data ( : , 9 ) ; % US Yie ld s

Inflation_CPI_yoy = data ( : , 1 5 ) ; % I n f l a t i o n
Unemployement_rate = data ( : , 1 9 ) ; % Unemployement
US_Treasury_Major_Foreign_Holdings = data ( : , 2 4 ) ; Treasury_Outstanding . . .

= data ( : , 2 5 ) ; Foreign_Holdings = . . .
US_Treasury_Major_Foreign_Holdings . / Treasury_Outstanding ;% Foreign H

Eurodol lar_Yie lds=(100−data (: ,27)+100− data ( : , 2 8 ) ) / 2 ; Eurodollar_1y = . . .
100−data ( : , 2 7 ) ; % Eurodo l la r Futures

FED_Balance_Sheet = data ( : , 4 2 ) ; Fed_Balance_GDP = data ( : , 4 4 ) ; GDP_yoy = . . .
data ( : , 4 8 ) ; % GDP

IP_index_yoy=data ( : , 5 6 ) ; PMI_US_index=data ( : , 5 7 ) ; PMI_EU_index=data ( : , 5 8 ) ;
PME_Germany_index = data ( : , 5 9 ) ;% Mani factur ing Ind i c e s

%% F i r s t Cor r e l a t i on between Var i ab l e s

r = y i e ld10y ;
N = length ( r ) ;
k = 0 ;

X=([ y i e ld10y (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) , . . .
Fed_Balance_GDP(1+k :N) , Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) , . . .
Unemployement_rate(1+k :N) ] ) ;

c o r r (X) ;

%% Regres s ion us ing Engle−Granger c o i n t e g r a t i o n

Y=([ y i e ld10y (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) , . . .
Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) ,Fed_Balance_GDP(1+k :N) ] ) ;

i = s i z e (Y, 2 ) ;
[ h0 , pValue0 ] = j c on t e s t (Y, 1 , ’ BVec ’ , { [ 1 z e r o s (1 , i −1 ) ] ’ , [ 0 1 . . .

z e r o s (1 , i −2 ) ] ’ , [ 0 0 1 z e ro s (1 , i −3 ) ] ’ , [ 0 0 0 1 z e ro s (1 , i − 4 ) ] ’ , . . .
[ 0 0 0 0 1 z e ro s (1 , i −5 ) ] ’ , [ 0 0 0 0 0 1 z e ro s (1 , i −6) ] ’ } , ’ Alpha ’ , 0 . 0 7 5 ) ;

[ h , pValue , s tat , cValue , reg1 , reg2 ] = e g c i t e s t (Y) ;

t b l=tab l e ( r (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) , . . .
Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) ,Fed_Balance_GDP(1+k :N) , . . .
’ VariableNames ’ , { ’ y ie ld10y ’ , ’ yield3m ’ , ’ In f lat ion_yoy ’ , . . .
’ Foreign_Hold ’ , ’GDP_yoy’ , ’ Fed_BS ’ } ) ;

lm1 = f i t lm ( tbl , . . .
’ y i e ld10y ~ yield3m+Inf la t ion_yoy+Foreign_Hold +GDP_yoy + Fed_BS ’ . . .
, ’ In t e r cept ’ , t rue ) ;

lm1

f i g u r e
t s1 = t ime s e r i e s ( lm1 . F i t t ed ) ;
p l o t ( t s1 )
hold on
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t s2 = t ime s e r i e s ( r (1+k :N) ) ;
p l o t ( t s2 )

legend ( ’ Yie ld 10y f a i r value ’ , ’ Yie ld 10y ’ )

r e s i d u a l = r (1+k :N)−lm1 . F i t t ed ;
f i g u r e
p l o t ( r e s i d u a l )
[ a d f t e s t ( r e s i d u a l ) , pptes t ( r e s i d u a l ) ] ;
a r ch t e s t ( r e s i d u a l )

w r i t e t ab l e ( t ab l e ( f l i p ud ( t s2 . Data ) ) , ’ Data_Time_Series . x lsx ’ , ’ Range ’ , ’ B2 ’ . . .
, ’ WriteVariableNames ’ , f a l s e ) ;

w r i t e t ab l e ( t ab l e ( f l i p ud ( t s1 . Data ) ) , ’ Data_Time_Series . x lsx ’ , ’ Range ’ , ’ C2 ’ . . .
, ’ WriteVariableNames ’ , f a l s e ) ;

w r i t e t ab l e ( t ab l e ( f l i p ud ( r e s i d u a l ) ) , ’ Data_Time_Series . x lsx ’ , ’ Range ’ , ’D2 ’ . . .
, ’ WriteVariableNames ’ , f a l s e ) ;

%% Germany y i e l d s : LT
%% Read data
c l e a r a l l
c l c
data = importdata ( ’ Time_Series_Analysis_data_G . mat ’ ) ;

%Data
yield3m = data ( : , 1 ) ; y i e l d2y = data ( : , 2 ) ; y i e l d3y = data ( : , 3 ) ; y i e l d4y = . . .

data ( : , 4 ) ; y i e l d5y = data ( : , 5 ) ; y i e l d7y = data ( : , 6 ) ; y i e l d8y = . . .
data ( : , 7 ) ; y i e ld10y = data ( : , 8 ) ; y i e ld30y = data ( : , 9 ) ; % US Yie ld s

Euribor_rates = data ( : , 3 0 ) ; ECB_rate = data ( : , 1 2 ) ; Euribor_rates_1y = . . .
data ( : , 3 0 ) ; % EU ra t e s

Inflation_CPI_EU_yoy = data ( : , 1 4 ) ; Inflation_CPI_Germany_yoy = . . .
data ( : , 1 5 ) ; % I n f l a t i o n

Unemployement_EU = data ( : , 1 9 ) ; Unemployement_Germany=data ( : , 20 ) ;% Unemploy
G4_Balance_Sheet_percentage_of_GDP = data ( : , 2 2 ) ; GDP_yoy = data ( : , 3 4 )∗100 ;
% GDP

%% Fi r s t Cor r e l a t i on between Var i ab l e s

r = y i e ld10y ;
N = length ( r ) ;
k = 0 ;

X=([ y i e ld10y (1+k :N) , yield3m(1+k :N) , Inflation_CPI_Germany_yoy(1+k :N) , . . .
GDP_yoy(1+k :N) , G4_Balance_Sheet_percentage_of_GDP(1+k :N) ] ) ;

c o r r (X) ;

Y=([ y i e ld10y (1+k :N) , yield3m(1+k :N) , Inflation_CPI_Germany_yoy(1+k :N) , . . .
GDP_yoy(1+k :N) ] ) ;

i = s i z e (Y, 2 ) ;
[ h0 , pValue0 ] = j c on t e s t (Y, 1 , ’ BVec ’ , { [ 1 z e r o s (1 , i − 1 ) ] ’ , . . .

[ 0 1 z e r o s (1 , i −2 ) ] ’ , [ 0 0 1 z e ro s (1 , i −3) ] ’ } , ’ Alpha ’ , 0 . 0 5 ) ;

%% Cointegrat i on us ing Johansen t e s t
Y=X;
[ h , pValue , s tat , cValue , mles ] = j c i t e s t (Y, ’ model ’ , ’H1∗ ’ , ’ d i sp lay ’ , ’ f u l l ’ ) ; h
mles . r1 . paramNames
YLag = Y( 1 : end −1 , : ) ;
T = s i z e (YLag , 1 ) ;
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A = mles . r1 . paramVals .A;
B = mles . r1 . paramVals .B; B=B( : , end ) ;
c0 = mles . r1 . paramVals . c0 ’ ;
param = [−c0/B(1);−B( 2 : end )/B( 1 ) ] ’ ;
r e s i d u a l = YLag∗B/B(1)+repmat ( c0 ’ ,T, 1 ) /B( 1 ) ;
Yhat = [ ones ( s i z e (YLag , 1 ) , 1 ) YLag ( : , 2 : end ) ] ∗ param ’ ;
p l o t (Yhat )
hold on
p lo t ( y i e ld10y )
f i g u r e
p l o t ( r e s i d u a l )
[ a d f t e s t ( r e s i d u a l ) , pptes t ( r e s i d u a l ) ]
a r ch t e s t ( r e s i d u a l )

w r i t e t ab l e ( t ab l e ( f l i p ud ( y i e ld10y ) ) , ’ Data_Time_Series . x lsx ’ , ’ Range ’ , ’ E2 ’ , . . .
’ WriteVariableNames ’ , f a l s e ) ;

w r i t e t ab l e ( t ab l e ( f l i p ud (Yhat ) ) , ’ Data_Time_Series . x lsx ’ , ’ Range ’ , ’ F2 ’ , . . .
’ WriteVariableNames ’ , f a l s e ) ;

w r i t e t ab l e ( t ab l e ( f l i p ud ( r e s i d u a l ) ) , ’ Data_Time_Series . x lsx ’ , ’ Range ’ , ’G2 ’ , . . .
’ WriteVariableNames ’ , f a l s e ) ;

%% Nelson S i e g e l Approach
%% Parameters
c l c , c l e a r
terms = [3/12 6/12 1 2 3 5 7 10 20 ] ;
spot = [3/12 6/12 9/12 12/12 15/12 18/12 21/12 24/12 30/12 36/12 4 : 1 : 2 0 ] ;
lambda = 0.2262 ;

%% Yie lds base con s t ru c t i on
c l c
n s e r i e s=length ( terms ) ; % We count the number o f s e r i e s .

data = importdata ( ’ Nelson_Siegel_data . mat ’ ) ;
t imes = importdata ( ’ Nelson_Siegel_time . mat ’ ) ;
N = length ( data ( 1 : end , 2 ) ) ;
data1 = data ( 1 :N, 1 : 9 ) ; % US
%cmt = data ( 1 :N, 1 0 : 1 8 ) ; % Germany
y i e l d s = data1 ( : , 1 : end ) ;
dates = datenum( times ) ;

%% Bootstrapping the y i e l d s .
time=datet ime ( dates , ’ ConvertFrom ’ , ’ datenum ’ ) ;
spot_sur face = ze ro s ( l ength ( dates ) , l ength ( spot ) ) ;
f o r i =1: l ength ( dates )

yie ld_matr ix=[ y i e l d s ( i , : ) ’ / 1 0 0 z e r o s ( l ength ( terms ) , 1 ) ] ;
f o r j =1: l ength ( terms )

yie ld_matr ix ( j ,2)= addtodate ( dates ( i , 1 ) , terms ( j )∗12 , ’month ’ ) ;
end
yie ld_matr ix=yie ld_matr ix (~any ( i snan ( yie ld_matr ix ) , 2 ) , : ) ;
[ z , t ]= pyld2zero ( yie ld_matr ix ( : , 1 ) , y ie ld_matr ix ( : , 2 ) , dates ( i ) ) ;
t=yea r f r a c ( dates ( i ) , t ) ;
spot_sur face ( i , : )= s p l i n e ( t , z , spot )∗100 ;

end
c l c , c l e a r i j z t yie ld_matr ix

%% Curve F i t t i n g .
term_factor=ze ro s ( l ength ( spot ) , 3 ) ;
term_factor ( : , 1 )=1 ;
term_factor (: ,2)=−(1− exp(−lambda .∗ spot ’ ) ) . / ( lambda .∗ spot ’ ) ;
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term_factor (: ,3)=(1− exp(−lambda .∗ spot ’ ) ) . / ( lambda .∗ spot ’ ) . . .
−exp(−lambda .∗ spot ’ ) ;

l s c=ze ro s ( l ength ( dates ) , 3 ) ; % Time s e r i e s vec to r

%% Estimation
bounds=[0 −15 −15 ; 15 15 15] ;% Parametersboundries .
r e s t =[−1 ,−1 ,0];%(b1+b2)>0
opt=opt imopt ions ( @lsq l in , ’ Display ’ , ’ o f f ’ , ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
f o r i =1: l ength ( dates )

l s c ( i , : )= l s q l i n ( term_factor , spot_sur face ( i , : ) , r e s t , 0 , [ ] , [ ] , bounds . . .
( 1 , : ) , bounds ( 2 , : ) , [ ] , opt ) ;

end
p lo t ( time ( 1 : 1 5 : end ) , l s c ( 1 : 1 5 : end , : ) )
l egend ( ’ Level ’ , ’ Slope ’ , ’ Curvature ’ )
Yhat = l s c ∗ term_factor ’ ; Yhat = Yhat ( : , 1 7 ) ;

p l o t (Yhat )
hold on
p lo t ( y i e l d s ( : , 8 ) )

%% Term s t ru c tu r e p l o t
c l c
c l e a r X Y
X=repmat ( time , 1 , s i z e ( y i e l d s , 2 ) )
Y=repmat ( terms , s i z e ( y i e l d s , 1 ) , 1 ) ;
s u r f a c e (X,Y, y i e l d s )

%% Modeling o f the parameters
%% Take monthly va lue s
range = datet ime ( ’ 01/13/2001 ’ ) : calmonths ( 1 ) : datet ime ( ’ 10/30/2018 ’ ) ;
par1=tab l e ( time , l s c ( : , 1 ) ) ;
par2=tab l e ( time , l s c ( : , 2 ) ) ;
par3=tab l e ( time , l s c ( : , 3 ) ) ;

f o r i =2: l ength ( range )
i f isempty ( l s c ( f i nd ( par1 . time==range ( i ) ,1)))==0

parameter1 ( i )= l s c ( ( f i nd ( par1 . time==range ( i ) ) ) , 1 ) ;
parameter2 ( i )= l s c ( ( f i nd ( par2 . time==range ( i ) ) ) , 2 ) ;
parameter3 ( i )= l s c ( ( f i nd ( par3 . time==range ( i ) ) ) , 3 ) ;

e l s e
i f isempty ( l s c ( f i nd ( par1 . time==range ( i )−1 ,1)))==0

parameter1 ( i )= l s c ( ( f i nd ( par1 . time==range ( i ) −1) ) ,1 ) ;
parameter2 ( i )= l s c ( ( f i nd ( par2 . time==range ( i ) −1) ) ,2 ) ;
parameter3 ( i )= l s c ( ( f i nd ( par3 . time==range ( i ) −1) ) ,3 ) ;

e l s e
i f isempty ( l s c ( f i nd ( par1 . time==range ( i )−2 ,1)))==0

parameter1 ( i )= l s c ( ( f i nd ( par1 . time==range ( i ) −2) ) ,1 ) ;
parameter2 ( i )= l s c ( ( f i nd ( par2 . time==range ( i ) −2) ) ,2 ) ;
parameter3 ( i )= l s c ( ( f i nd ( par3 . time==range ( i ) −2) ) ,3 ) ;

e l s e
parameter1 ( i )= l s c ( ( f i nd ( par1 . time==range ( i ) −3) ) ,1 ) ;
parameter2 ( i )= l s c ( ( f i nd ( par2 . time==range ( i ) −3) ) ,2 ) ;
parameter3 ( i )= l s c ( ( f i nd ( par3 . time==range ( i ) −3) ) ,3 ) ;

end
end

end
end
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%% Read data US

c l e a r
c l c
data = importdata ( ’ Time_Series_Analysis_data_US . mat ’ ) ;

% Data
yield3m = data ( : , 1 ) ; yield6m = data ( : , 2 ) ; y i e l d1y = data ( : , 3 ) ; y i e l d2y = . . .

data ( : , 4 ) ; y i e l d3y = data ( : , 5 ) ; y i e l d5y = data ( : , 6 ) ; y i e l d7y = . . .
data ( : , 7 ) ; y i e ld10y = data ( : , 8 ) ; y i e ld30y = data ( : , 9 ) ; % US Yie ld s

Inflation_CPI_yoy = data ( : , 1 5 ) ; % I n f l a t i o n
Unemployement_rate = data ( : , 1 9 ) ; % Unemployement
US_Treasury_Major_Foreign_Holdings = data ( : , 2 4 ) ; Treasury_Outstanding . . .

= data ( : , 2 5 ) ; Foreign_Holdings = . . .
US_Treasury_Major_Foreign_Holdings . / Treasury_Outstanding ;% Foreign H

Eurodol lar_Yie lds=(100−data (: ,27)+100− data ( : , 2 8 ) ) / 2 ; Eurodollar_1y = . . .
100−data ( : , 2 7 ) ; % Eurodo l la r Futures

FED_Balance_Sheet = data ( : , 4 2 ) ; Fed_Balance_GDP = data ( : , 4 4 ) ; GDP_yoy = . . .
data ( : , 4 8 ) ; % GDP

IP_index_yoy=data ( : , 5 6 ) ; PMI_US_index=data ( : , 5 7 ) ; PMI_EU_index=data ( : , 5 8 ) ;
PME_Germany_index = data ( : , 5 9 ) ;% Mani factur ing Ind i c e s

%% Model l ing o f the l e v e l , s l ope and curvature − AR(1)+endogenous v a r i a b l e s
%% Level
r = parameter1 ’ ;
N = length ( r ) ;
k=0;
Y = [ r (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) ,Fed_Balance_GDP . . .

(1+k :N) , Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) ] ;
t b l=tab l e ( r (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) , . . .

Fed_Balance_GDP(1+k :N) , Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) , . . .
Unemployement_rate(1+k :N) , ’ VariableNames ’ , { ’ parameter ’ , ’ yield3m ’ , . . .
’ In f lat ion_yoy ’ , ’ Fed_Balance_GDP ’ , ’ Foreign_Hold ’ , ’GDP_yoy ’ , . . .
’ Unemployement_rate ’ } ) ;

lm1 = f i t lm ( tbl , ’ parameter~In f la t ion_yoy+GDP_yoy +yield3m+Foreign_Hold ’ . . .
, ’ In t e r cept ’ , t rue ) ;

lm1

p lo t ( lm1 . F i t t ed )
hold on
p lo t ( r (1+k :N) )

%% Slope
r = parameter2 ’ ;
N = length ( r ) ;
k=0;
Y = [ r (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) ,Fed_Balance_GDP . . .

(1+k :N) , Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) ] ;
tb2=tab l e ( r (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) , . . .

Fed_Balance_GDP(1+k :N) , Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) , . . .
Unemployement_rate(1+k :N) , ’ VariableNames ’ , { ’ parameter ’ , ’ yield3m ’ , . . .
’ In f lat ion_yoy ’ , ’ Fed_Balance_GDP ’ , ’ Foreign_Hold ’ , ’GDP_yoy ’ , . . .
’ Unemployement_rate ’ } ) ;

lm2 = f i t lm ( tb2 , ’ parameter~In f la t ion_yoy+GDP_yoy +yield3m+Foreign_Hold ’ . . .
, ’ In t e r cept ’ , t rue ) ;

lm2
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p lo t ( lm2 . F i t t ed )
hold on
p lo t ( r (1+k :N) )

%% Curvature
r = parameter3 ’ ;
N = length ( r ) ;
k=0;
Y = [ r (1+k :N) , yield3m(1+k :N) , Inflation_CPI_yoy(1+k :N) ,Fed_Balance_GDP . . .

(1+k :N) , Foreign_Holdings (1+k :N) ,GDP_yoy(1+k :N) ] ;
th = ar ( parameter3 , 2 ) ;
par = th . a ;
p_pred = [−par (2 ) −par ( 3 ) ] ∗ [ r ( 2 :N−1) r ( 1 :N−2 ) ] ’ ;
p l o t ( p_pred )
hold on
p lo t ( r ( 3 :N) )

%% Plot s
y i e l d s = l s c ∗ term_factor ’ ;
l sc_pred = [ lm1 . F i t t ed lm2 . F i t t ed lm3 . F i t t ed ] ;
y ie lds_pred = lsc_pred ∗ term_factor ’ ;

t s1 = t ime s e r i e s ( y ie lds_pred ( : , 8 ) ) ;
p l o t ( t s1 )
hold on
t s2 = t ime s e r i e s ( y i e l d2y ) ;
p l o t ( t s2 )

legend ( ’ Yie ld 2y f a i r value ’ , ’ Yie ld 2y ’ )

f i g u r e

t s1 = t ime s e r i e s ( y ie lds_pred ( : , 1 7 ) ) ;
p l o t ( t s1 )
hold on
t s2 = t ime s e r i e s ( y i e ld10y ) ;
p l o t ( t s2 )

legend ( ’ Yie ld 10y f a i r value ’ , ’ Yie ld 10y ’ )
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