
A Concept for an Intrusion Detection System
over Automotive Ethernet

Hanna Lindwall Pontus Ovhagen
dic14hli@student.lu.se dic14pov@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Paul Stankovski Wagner

Examiner: Thomas Johansson

March 18, 2020



© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund



Abstract

A modern automotive vehicle is a complex technical system, containing many
electronic, mechanical, and software parts. Typically, a high-end vehicle contains
70 or more electronic control units (ECUs) on average. These are controlling
a large number of distributed functions, of which many are safety-critical, and
adding complexity, which is surpassing 100 million lines of code.

Furthermore, the communication link in the automotive architecture is also
being upgraded from the traditional controller area network (CAN) bus to Auto-
motive Ethernet, in order to enable higher communication bandwidth and handle
the increasing complexity. However, introducing Ethernet opens up for new at-
tacks and loopholes to be exploited by hackers. Attacks on ECUs are even more
dangerous than web attacks, as these involve the safety of the persons inside the
vehicle. To secure the in-vehicle communication the automotive industry needs
to look into traditional cybersecurity protection techniques from an automotive
perspective. One security solution gaining more and more attention regarding
in-vehicle security is the concept of an intrusion detection system (IDS).

In this thesis, we propose a concept for a host-based IDS relying on two differ-
ent detection methods. We suggest a combination of specification-based, focusing
on message sequencing and allowed elapsed time in between a request and its re-
spective response, and anomaly-based detection, evaluating the frequency, payload
length and timeout for request-response pairs. To evaluate our IDS we execute
five different attack scenarios, where we calculate binary classification metrics and
measure its classification speed. Our evaluation shows that the proposed IDS suc-
cessfully detects malicious events such as delay, packet injection, exhaustion and
two different flooding attacks.

Based on our experience designing an in-vehicle IDS, we describe potential dif-
ficulties, limitations and future improvements that engineers can use to implement
or improve their adaptation of an in-vehicle IDS system. We believe the results
of this master’s thesis can be applied in more advanced research, especially in the
field of IDS for in-vehicle networks, and can hopefully contribute to a safer driving
experience.

Keywords: Intrusion Detection System, Deep Packet Inspection, Specification-
based Detection, Anomaly-based Detection, V2G, Automotive Ethernet.

i





Acknowledgements

Throughout this master’s thesis, we have acquired help from ESCRYPT and other
research teams at Bosch. The IDS team at ESCRYPT conducted a demonstration
of their solution and always answered our questions. Due to tough competition
in the industry and for security reasons, it is not easy to find public research on
security solutions for vehicles, so we are grateful for their support.

iii





Popular Science Summary

A Concept for an Intrusion Detection System over Automotive
Ethernet by Hanna Lindwall and Pontus Ovhagen

With the transition to automotive Ethernet as a standard network bus,
the faster network speeds and additional bandwidth benefits will be the
main advantages for internal vehicle networks. However, there are also
inevitable security risks by introducing Ethernet in vehicles and this is
the main problem we are trying to address in our master’s thesis.

The automotive industry has to in-
vestigate traditional cybersecurity so-
lutions used to secure traditional net-
works, in order to reach the goal of se-
curing in-vehicle automotive Ethernet
networks. Today, firewalls are com-
monly used as a first layer of protection,
but as attacks have become increas-
ingly sophisticated, a firewall’s detec-
tion mechanisms can easily be bypassed.
Therefore, the automotive industry has
started to look into proactive security
solutions that can detect new threats,
which have not been made public or dis-
covered yet. One solution is implement-
ing an intrusion detection system (IDS),
which has been practiced in various in-
dustries since the early days of network
security and is now being applied for
automotive use cases. An IDS moni-
tors and detects attacks or other threats
present inside the network. Compared
to a firewall, the IDS takes a more
proactive position by reporting, alerting
and logging detected threats against a

system. An IDS often relies on exten-
sive deep packet inspection to inspect
deeper into a packet and can, therefore,
screen packets on an application-level
basis. Common functionalities of IDS
include, for example, updating the sys-
tem for future attacks, analysis of po-
tential attack patterns on the network,
alerting other security mechanisms in
place or generating warnings for net-
work administrators.

In this master’s thesis we propose a
concept for a host-based in-vehicle IDS.
We then implement and test its capa-
bilities by launching a series of attacks
against the IDS and measure its de-
tection performance. To detect threats
we incorporated two different detec-
tion methods: specification-based and
anomaly-based detection.

The specification-based detection
focuses on deviations from specified be-
havior in a protocol. We chose to
focus on the ISO 15118 specification,
which describes a protocol for perform-

v



ing Vehicle-to-Grid charging sessions.
In our implementation, we mainly focus
on deviations in message sequences and
timeouts outlined in the protocol.

After further research, it became ap-
parent that the specification-based de-
tection did not have full detection cov-
erage. For this reason, we decided on
integrating an anomaly-based detection
method into our IDS. Anomaly-based
detection is also a method for detecting
anomalous behavior and relies on a sta-
tistical approach. In our IDS, we collect
data from different examples of charg-

ing sessions and based on this data the
IDS classifies the incoming packet either
as a threat or a normal packet. The
anomaly-based detection method eval-
uates the expected frequency, payload
length and the time elapsed between a
message request and its respective re-
sponse.

The IDS overall performed very well
for the five attack scenarios we deployed
and shows that an IDS with this hybrid
approach is a promising security solu-
tion for in-vehicle automotive Ethernet
networks.

vi



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Goals . . . . . . . . . . . . . . . . . . . . . 2
1.3 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Literature Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Network Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Modern Automotive Industry . . . . . . . . . . . . . . . . . . . 10
2.3 Automotive Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Security in Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Method 27
3.1 General Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Establish Requirements and Select a Concept . . . . . . . . . . . . . 27
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Design Concept 37
4.1 IDS Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 DPI Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 V2G IDS Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . 45

5 Implementation 51
5.1 IDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 V2G Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Result 59
6.1 Specification-based Results . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Anomaly-based Results . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



7 Discussion 67
7.1 Evaluation of the IDS Implementation . . . . . . . . . . . . . . . . . 67
7.2 Key Takeaways from Result . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Conclusions 75

References 77

Appendices 85

A V2G Related Information 85

B Anomaly-based detection Results 89
B.1 Anomaly-based Detection Performance for AC V2G Sessions . . . . . 89
B.2 Anomaly-based Detection Performance for DC V2G Sessions . . . . . 91

C Scoreboards for Configurations 93

viii



List of Figures

1.1 Future vehicle architectural setup with a distributed gateway and DCUs.
Figure inspired by [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The TCP/IP model compared with the OSI model. . . . . . . . . . . 7
2.2 An illustration of a frame for Ethernet II. . . . . . . . . . . . . . . . 8
2.3 TCP header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 TCP connection establishes through a three-way handshake. . . . . . 9
2.5 UDP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Automotive electronics cost as a percentage of total car cost worldwide

from 1950 to 2030. Credit to Deloitte for statistics [21]. . . . . . . . 11
2.7 An ISO model of ESCRYPT’s CycurGATE. Protocols used for vehicle

communication, with protocols in grey representing protocols used
over automotive Ethernet [35]. . . . . . . . . . . . . . . . . . . . . . 14

2.8 Simple overview over communication between EV, V2G unit, home
and power grid [40]. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 The eight different specifications within the ISO 15118 family. Source
Wikipedia [43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 IDS placement inside a network. . . . . . . . . . . . . . . . . . . . . 22
2.11 A snippet of V2G communication from the ISO 15118 specification. . 24
2.12 Visual comparison of inspection range between shallow and deep packet

inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Hardware setup for the project development environment. . . . . . . 28
3.2 The confusion matrix for binary classification in an IDS [71]. . . . . . 31
3.3 An illustration of anomaly-based detection outputs with an upper

bound threshold and a tolerance of three. The x-axis represent an
arbitrary class value ranging from zero to higher values. . . . . . . . 34

5.1 Illustration of the implemented IDS. . . . . . . . . . . . . . . . . . . 52
5.2 The V2G session object (struct) which the IDS updates depending

on the incoming message. . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 A terminal window running the EVCC application. . . . . . . . . . . 56
5.4 A terminal window running the SECC server application with a suc-

cessful connection made to EVCC client. . . . . . . . . . . . . . . . 57

ix



5.5 A terminal window running the EVCC client application with attacks.
The initiated attack is SDP flooding from a single source address
(indicated by the number one following -a flag). . . . . . . . . . . . 58

x



List of Tables

2.1 Possible attackers or persons performing unauthorized modifications
[52]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Table of metrics taken for evaluation. . . . . . . . . . . . . . . . . . 31
3.2 The different configurations used when testing the IDS. . . . . . . . 34
3.3 Implemented attack scenarios for testing of the IDS. . . . . . . . . . 35

4.1 Possible attacker scenarios in V2G communications. . . . . . . . . . 41

6.1 The specification-based results for both AC and DC tests. . . . . . . 59
6.2 The configurations resulting in the best performance for the anomaly-

based detection performing an attack delaying a random number of
message types with timeout 2 seconds, see Table 3.2 . . . . . . . . . 61

6.3 The configurations resulting in the best performance for the anomaly-
based detection when performing an attack injecting a random number
of SessionSetup-, ServiceDiscovery- and CableCheck request-
response pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 The configurations resulting in the best performance for the anomaly-
based detection when performing an attack trying to exhaust the server
by sending 80-200 ChargeParameterDiscovery requests in a row. . 62

6.5 The configurations resulting in the best performance for the anomaly-
based detection when performing an attack trying to flood the server
by sending 210 ChargeStatus requests in a row. . . . . . . . . . . . 63

6.6 Classification speed measurements in microseconds during AC charg-
ing sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.7 The configurations resulting in the best performance for the anomaly-
based detection performing an attack delaying a random number of
message types with timeout 2 seconds, see Table 3.2 . . . . . . . . . 64

6.8 The configurations resulting in the best performance for the anomaly-
based detection when performing an attack injecting a random number
of SessionSetup-, ServiceDiscovery- and CableCheck request-
response pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



6.9 The configurations resulting in the best performance for the anomaly-
based detection when performing an attack trying to exhaust the server
by sending 80-200 ChargeParameterDiscovery requests in a row. . 65

6.10 The configurations resulting in the best performance for the anomaly-
based detection when performing an attack trying to flood the server
by sending 310 ChargeStatus requests in a row. . . . . . . . . . . . 65

6.11 Classification speed measurements in microseconds during DC charg-
ing sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Best configurations for anomaly-based detection for each attack for AC. 68
7.2 Best configurations for anomaly-based detection for each attack for DC. 68
7.3 Scoreboard for balanced accuracy, f1-score and f0.5-score showcasing

which configuration worked best overall. . . . . . . . . . . . . . . . . 69

A.1 Different message types defined in the ISO 15118 specification for a
V2G session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Different timeouts for message types defined in the ISO 15118 speci-
fication for a V2G session. . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 The different definitions of the detection codes and their respective
hexadecimal representation used by the IDS. . . . . . . . . . . . . . 87

B.1 Different configurations used when testing the IDS. . . . . . . . . . . 89
B.2 Performance for the anomaly-based detection when performing an at-

tack delaying random number of message types with timeout 2 sec-
onds, see Table A.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3 Performance for the anomaly-based detection when performing an at-
tack injecting random number of SessionSetup-, ServiceDiscovery-
and CableCheck request and response pairs. . . . . . . . . . . . . . 90

B.4 Performance for the anomaly-based detection when performing an at-
tack trying to exhaust the server by sending 80-200 ChargeParameterDiscovery
requests in a row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.5 Performance for the anomaly-based detection when performing an at-
tack trying to flood the server by sending 210 ChargeStatus requests
in a row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.6 Performance for the anomaly-based detection when performing an at-
tack delaying random number of message types with timeout 2 sec-
onds, see Table A.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.7 Performance for the anomaly-based detection when performing an at-
tack injecting random number of SessionSetup-, ServiceDiscovery-
and CableCheck request and response pairs. . . . . . . . . . . . . . 91

B.8 Performance for the anomaly-based detection when performing an at-
tack trying to exhaust the server by sending 80-200 ChargeParameterDiscovery
requests in a row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.9 Performance for the anomaly-based detection when performing an at-
tack trying to flood the server by sending 310 ChargeStatus requests
in a row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii



C.1 Scoreboard for balanced accuracy for each attack scenario with ses-
sions which included false positives. . . . . . . . . . . . . . . . . . . 93

C.2 Scoreboard for f1-score for each attack scenario with sessions which
included false positives. . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.3 Scoreboard for f0.5-score for each attack scenario with sessions which
included false positives. . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiii





Abbreviations

AC Alternating Current

CA Certificate Authority

CAN Controller Area Network

DC Direct Current

DCU Domain Control Unit

DoS Denial of Service

DPI Deep Packet Inspection

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECU Electronic Control Unit

E/E Electrical/Electronic

EIM External Identification Means

EV Electric Vehicle

EVCC Electric Vehicle Communication Controller

EXI Efficient XML Interchange

FNR False Negative Rate

FPR False Positive Rate

HIDS Host-based Intrusion Detection System

HSM Hardware Security Model

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IoT Internet of Things

xv



IV Initialization Vector

LIN Local Interconnect Network

LnUB Lower- and Upper Bound

MAC Media Access Control

MCU Microcontroller Unit

MOST Media Oriented Systems Transport

NIDS Network-based Intrusion Detection System

OEM Original Equipment Manufacturer

PKI Public Key Infrastructure

PnC Plug and Charge

ROC Receiver Operating Characteristic

SDP SECC Discovery Protocol

SECC Server Communication Controller

SOME/IP Scalable Service-Oriented Middleware over IP

SSL Secure Socket Layer

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TLS Transport Layer Security

TPR True Positive Rate

UDP User Datagram Protocol

V2G Vehicle-to-Grid

V2GTP V2G Transfer Protocol

V2I Vehicle-to-infrastructure

V2V Vehicle-to-vehicle

XML Extensible Markup Language

xvi



Chapter1
Introduction

This chapter gives the reader a brief introduction to the master’s thesis. We also
address the problem at hand and what goals have been set for the project. Further-
more, this section recognizes previous work and further explains the contributions
of this thesis.

1.1 Background

The modern automobile industry has to provide drivers with a wide range of safety,
comfort and assistance functionalities to keep up with consumer demands and the
harsh competition. This development has resulted in an evolution of additional
features in new vehicle generations. Most of the functional domains are electronic,
which has led to the emergence of advanced electrical/electronic (E/E) architec-
tures. More and more of the vehicle system is dependent on connectivity and
communications within and outside the vehicle, hence manufacturers are nowa-
days required to develop systems that can handle high bandwidth in addition to
being well-timed [1].

To cope with the increase of data streams, automotive Ethernet has been in-
troduced as a solution. Automotive Ethernet has established itself as the future
protocol for data communication in vehicles and can be used as the central back-
bone to connect multiple domain control units (DCUs) with a gateway [2], see
Figure 1.1. A DCU is a coordinating control unit which processes data and pro-
vides operations within a specific domain in a vehicle. With its fast data speeds up
to several Gbit/s, automotive Ethernet outperforms previous standards. Automo-
tive Ethernet is based on the Ethernet protocol, but with additional requirements
for the automotive industry. Ethernet is well-known and tested, due to the fact
that it has been around for over 30 years, but so has its security flaws.

Imagine driving down a highway and suddenly the engine is shut off, or you
start the engine and are not able to control the steering. This may be a possibility
due to modern auto industry being a nodal point in the internet of things (IoT).
While IoT increases convenience and versatility, it also presents a bigger target for
cyber attackers [4].

Ever since the introduction of ECUs in vehicles, these units have been the
target for malicious attacks [5]. Introducing communication over Ethernet to ve-
hicles comes with inevitable security risks, which can be combated with traditional

1



2 Introduction

Figure 1.1: Future vehicle architectural setup with a distributed
gateway and DCUs. Figure inspired by [3].

security solutions, such as a firewall or an intrusion detection system. However,
as mentioned, the automotive industry has requirements for in-vehicle communi-
cation, such as low latency and well-timed communication, which has to be taken
into account when developing security solutions for vehicles.

Robert Bosch GmbH is a renowned international company in the technology
industry and delivers vast amounts of products and software within multiple fields.
One of these fields is security in the automobile industry, where Bosch is developing
embedded software for devices that will be utilized for the automotive Ethernet
standard.

The ambition is to introduce new features using deep packet inspection (DPI)
in combination with an intrusion detection system to discover potential threats.
This master’s thesis is a cooperation with ESCRYPT, a wholly-owned subsidiary
of a Bosch company called ETAS GmbH, and will focus on DPI and IDS for
automotive Ethernet.

1.2 Problem Statement and Goals

The problem addressed in this thesis is: How can one integrate IDS using DPI
in an automotive setting to increase security coverage? Moreover, the answer to
this problem is based on specified key questions that can be seen below. These
questions are essential to the scope of this report and serve as a foundation for the
model implementation, discussions and conclusions presented.

Academic questions

1. Which requirements are associated with DPI for automotive Ethernet?



Introduction 3

2. Which requirements are associated with IDS in the context of automotive
Ethernet?

• What functions of IDS are valuable from the perspective of automotive
Ethernet?

To measure progress and set tangible milestones for the project, a set of goals
have been established. These goals, in addition to the key questions mentioned
above, are further evaluated in the closing chapters of this thesis.

Goals

• Analyse which IDS features would fit the automotive domain from security
and resource point of view.

• Propose a proof of concept of how some of those features would be designed
and implemented.

• Implement the proof of concept for at least one attack vector.

1.3 Delimitations

This report mainly focuses on the use of DPI and IDS in the context of automotive
Ethernet.

With the use of Ethernet in automobiles, the car’s internal systems now in-
teract as any device connected to the Internet. Hence, there is extensive amount
of protocol implementations which could be studied in detail for security threats.
The scope of this thesis is therefore delimited to the ISO 15118 specification, both
theoretically and for the implementation of IDS features. The specification covers
Vehicle-to-Grid (V2G) interaction and the thesis will focus on this type of com-
munication. The main focus is on delivering a working proof of concept that we
can test and evaluate.

In this project, we will not evaluate the actual integration aspects of deploying
an IDS into a vehicle, we leave this part of the project for others to pursue and
evaluate. The reason being the time constraints on completing the project within
the set deadline. Furthermore, this implementation cannot be seen as production-
ready, and we do not address further challenges that come with porting, running
and testing successfully in a different environment than the one mentioned in this
thesis.

V2G charging is a fairly new and unexplored area for ESCRYPT. Conse-
quently, there is no prior work for us to build on. With no luck finding captures
with ISO 15118 traffic, we have to rely on the fairly static session generation from
open-source projects. The two projects OpenV2G and RISEV2G were used as
basis for training and testing our implementation. This will make the IDS par-
tially biased towards our training examples, with no complete assurance of similar
results being produced for authentic in-vehicle session data.



4 Introduction

1.4 Contributions

The major contributions of this report can be stated as follows.

• We select an evaluation framework based on binary classification and state
how this framework is used to evaluate the IDS in Chapter 3.

• We outline requirements for an IDS implemented for automotive Ethernet
in Chapter 4.

• We outline requirements for DPI incorporated into a security solution for
automotive Ethernet in Chapter 4.

• We propose a proof of concept for a host-based IDS (Chapter 5) and show
that the implementation works by launching a series of attacks against it.
The best configurations of our IDS are presented in Chapter 6. The config-
urations can be used for other studies or as a stepping stone for developers
to use in their implementation.

1.5 Related Work

1.5.1 Design and Implementation of an IDS for In-vehicle Networks

The controller area network data link protocol has been the standard for the auto-
mobile industry under a considerable amount of time. The science community has
over the years researched CAN thoroughly and many contributions have pointed
out its security flaws [6, 7, 8].

Salman and Bresch [9] implemented an IDS system for a CAN network topol-
ogy, but rather than being present in a network switch, the IDS is deployed on a
single ECU in the car network. Their implementation highlights how to design a
hybrid IDS using specification-based and anomaly-based detection methods. Some
valuable features include: detection of unauthorized messages in specific domains
on the network, setting a threshold for fluctuations of speedometer data and ac-
counting cycle times for messages sent on the CAN bus. Even though the CAN
protocol differs from the ISO 15118 specification in several aspects, these features
accentuate what type of functions are of interest from an automotive perspective
when implementing an IDS. Finally, they conclude that having one detection ap-
proach is not enough. Instead, using a combination of two methods is a more
promising alternative.

1.5.2 Anomaly Detection for SOME/IP using Complex Event Processing

Herold et al. [10] also implemented an IDS but for the SOME/IP protocol, which
is a service-oriented protocol that manages both CAN and automotive Ethernet
related messages. Their solution incorporated specification-based and anomaly-
based detection where they used static rule sets and checked both frequency and
timing. Their prototype was implemented in Java, and Esper was chosen as the
Complex Event Processing engine. It accepts rules written in the Event Processing
Language, a subset of SQL, extended with features for stream processing.



Introduction 5

1.6 Literature Study

1.6.1 Security Analysis of Ethernet in Cars

Talic [11] conducted a thorough security investigation of automotive Ethernet with
its associated protocols. The evaluation in this thesis was carried out with the
help of a framework called OSSTMM. This framework allowed him to perform an
extensive comparison between different configurations of his testbed and effectively
measure the impact on security from adding or removing features he discovered
in his analysis. Notable attack surfaces that were successfully discovered include
ARP cache poisoning, SOME/IP spoofing of real-time data and denial of service
(DoS).

1.6.2 Deep Packet Inspection for Intrusion Detection Systems: A Survey

Abuhmed et al. conducted a survey over techniques, challenges, and algorithms
for DPI in 2007 [12]. Their work highlights several key challenges such as which
search algorithm should be used, how to handle an increasing number of intruder
signatures and also the challenge of inspecting locations of unknown signature
locations. The latter is a central problem when performing DPI and dictates the
degree of packet inspection performed at certain locations in security architecture.
Furthermore, they compared hardware implementations of DPI from a collection
of different sources where a matching algorithm using a Quad Bloom filter was
found to be the highest performer with an output of 20.4 Gbit/s, compared to
ternary content-addressable memories (TCAMs) that had a throughput of 12.35
Gbit/s.

1.6.3 Firewall and IDPS Concept for Automotive Ethernet

An important aspect of security architectures in vehicles is to divide the responsi-
bilities between different subsystems or devices. In Firewall and IDPS concept for
automotive Ethernet [13] written by Yilmaz in cooperation with Bosch, he derives
a concept for an automotive firewall and IDPS (Intrusion Detection and Prevention
System) to secure in-vehicle communication over automotive Ethernet. His model
consists of a firewall that acts as an initial filter of incoming packets, where mostly
header data is checked for malicious signatures. These signatures are identified as
sequences of bytes or as a set of malicious instructions. The firewall is equipped
with a TCAM and a rate meter for fast initial processing of packets at wire-speed.
However, TCAM has its limitations due to e.g., high resource consumption. More-
over, unclassified packets from the firewall are routed to an IDPS for an extended
search in the packet payload, where appropriate measures are taken to filter or
block malicious packets. Both subsystems interchange information about detected
threats and create dynamic rules as they adapt to newly discovered threats.



6 Introduction

1.6.4 An approach to Specification-based Attack Detection for In-vehicle
Networks

Larson et al. [14] presented a specification-based approach based on the CAN
v2.0 and CANopen v3.01 specifications. Some features include the specification
rules for message correctness, expected values and message cycle times. They
further analyze the implications of placement and find that placing one detector
on each ECU was optimal since they can omit transmitter and receiver identities.
Conclusively, they state that their approach readily shows that most attack vectors
specified can be detected from the attack scenarios they considered.

1.6.5 An Assessment Method for Automotive Intrusion Detection Sys-
tem Performance

On the behalf of the United States Department of Transportation, Stachowski et
al. [15] present an assessment method on how to test and assess IDS solutions in a
vehicle. Through simulating attacks over a CAN bus (by injecting packets), they
evaluate the implementation by viewing the IDS as a binary classifier. With the use
of receiver operating characteristic (ROC) plots and calculated ratio metrics, they
evaluate several suppliers’ IDSs by running the tests on three different vehicles.
ROC plots are used to graphically illustrate the diagnostic ability of the binary
classifier system (i.e., the IDS).

Even though this work is tailored towards an IDS designed for CAN use cases,
the test methodology can be applied on IDS implementations supporting other
protocols.

1.6.6 Road Vehicles - Vehicle-to-Grid Communication Interface

The ISO 15118 specification [16] describes a communication protocol for V2G
charging that is expected to be one of the leading charging standards in the fu-
ture. With the increased adoption of this standard, Hauck et al. [17] made a
high-level overview of some of the security challenges and mitigation techniques
that can be used to limit risks associated with modern vehicles. Among other
threats, they highlight the risk of tampering in a charging station – enabling the
attacker to affect the power quality of the local power system or obtain free charg-
ing sessions. This attack vector can be prevented with the use of strong encryption,
removal of all external input jacks and integrating alerting mechanics. Further-
more, they suggest mitigation approaches such as always utilizing transport layer
security (TLS) when possible, having highly protective storage for digital certifi-
cates and private/public keys as well as using digital signatures and encryption
for all vulnerable messages.



Chapter2
Background

This chapter covers both basic and more advanced material in network security
and automotive Ethernet. The chapter is meant to inform the reader of all the facts
needed to better understand the discussions presented in the subsequent chapters
in the report.

The experienced reader with knowledge in network basics, network security or
automobile technologies may skip parts of the background, though it is advised to
at least cover the material for security in vehicles (Section 2.4) and V2G charging
(Section 2.3.1).

2.1 Network Basics

2.1.1 Transmission Control Protocol/Internet Protocol Model: TCP/IP
Model

Figure 2.1: The TCP/IP model compared with the OSI model.

In 1979, the International Organization for Standardization published the OSI ref-
erence model. This model can be seen as a framework to guide the development
of existing and new network standards. In the OSI model, there are seven dif-
ferent layers: application, presentation, session, transport, network, data link and
physical. To pass data from one application to another, the data has to pass from
the first application layer via the physical layer in order to get to the receiving
application layer [11].

7



8 Background

In contrast, the TCP/IP model provides a framework for networking protocols
and uses a four-layer architecture, which combines the three upper layers and
combines the first and second lower layers from the OSI model. The model was
developed to provide a mechanism for implementing the internet by the defense
advanced research projects agency DARPA [18]. TCP and IP were developed
almost hand in hand, creating this widely used model. One can see the comparison
between the two models in Figure 2.1. In this report, we commonly refer to the
application- or transport layer defined in this model.

Ethernet

Ethernet is a collection of several computer network technologies used to transfer
data between devices – defined in the ISO 802.3 specification.

There exist multiple standards for Ethernet, the first commercially available
standard was 10BASE5 and it allowed for speeds of 10 Mbit/s. However, the suc-
ceeding development of 10BASE-T introduced a full-duplex which makes it possi-
ble to send and receive simultaneously [19]. Advances in Ethernet have progressed
significantly during the last two decades, the introduction of Fast Ethernet (i.e.,
100BASE–X) and Gigabit Ethernet (i.e., 1000BASE–X) have greatly increased
performance with speeds of up to 1 Gbit/s.

Ethernet is in its design a connectionless protocol with support for broadcast,
multicast, and unicast communication. Typically, all participants are connected to
a switch where frames are processed and exchanged between endpoints. A device
connected to an Ethernet network uses a media access control (MAC) address to
identify itself and other hosts on the network, though, there is no routing based
on MAC addresses that enables cross-network communications. Features such as
network routing are left to protocols applied on top of Ethernet.

An example of an Ethernet II frame can be seen in Figure 2.2.

Figure 2.2: An illustration of a frame for Ethernet II.

Transmission Control Protocol: TCP

TCP is a connection-oriented protocol that establishes a connection between two
hosts before any data is transmitted. This makes it possible to verify whether
packets have been received or not and arrange retransmission in case of loss of
packets. TCP provides many functions, e.g., fragmentation of large data that can-
not be sent as one packet, data stream reconstruction, socket services for multiple
port connections on a remote host, flow control and packet sequencing and re-
ordering. With all these built-in functions, transmission over TCP implies bigger
header sizes and longer processing times.



Background 9

The IP layer handles routing between machines with IP addresses but does
not know which process on the machine that should receive the message. Finding
the correct process is up to the transport layer and is achieved by using port
numbers. Each process on a machine has a port number, for example, HTTP uses
port number 80. In Figure 2.3, one can observe that a port is composed of 16 bits
[19].

Figure 2.3: TCP header

A TCP full-duplex connection is setup through a three-way handshake and
this handshake process is executed at the start of each TCP session. Figure 2.4
visualizes the three-way handshake process. In combination with Figure 2.3, one
can see the header fields involved in the handshake.

Figure 2.4: TCP connection establishes through a three-way hand-
shake.

User Datagram Protocol: UDP

The second protocol that occupies the transport layer is the user datagram proto-
col (UDP). UDP is a connectionless transport layer protocol, meaning there are no



10 Background

handshakes, no acknowledgments, no way to account for lost datagrams, and no
flow control. There is no need for a connection to be established before transmit-
ting data. Therefore, it is often described as unreliable compared to TCP. Packets
are still sent to sockets or ports, but there is no support for retransmission as for
TCP.

To send a UDP datagram there is not a lot of header data required, there are
no synchronization or priority parameters, no sequence numbers nor timers and
no retransmission of packets. The header is small and the protocol is faster than
TCP. Below in Figure 2.5, a UDP header is shown.

Figure 2.5: UDP header.

Transport Layer Security: TLS

The transport layer security and its predecessor, secure socket layer (SSL), are
application protocols, which are designed to provide communication security. The
connection is secure because symmetric cryptography is used to encrypt the data
transmitted between the two parties. The keys for this symmetric encryption are
generated uniquely for each connection and are based on a shared secret that
was negotiated at the start of the session. The identity of the communicating
parties can be authenticated using public-key cryptography. The connection is
also reliable because each message, which is being transmitted, includes a message
integrity check using a message authentication code. With this code, one can
prevent the alteration of message data during transmission [20].

2.2 The Modern Automotive Industry

Automobiles were seen as mechanical machines until the introduction of electron-
ics. Electronics have been taking over mechanic and hydraulic systems since the
’70s, with ECUs taking over the central importance for many new automotive ap-
plications and services [13]. ECUs are embedded systems that control electrical
subsystems, everything from brake control to engine control to transmission con-
trol. The cost of electronics is approximately 35% of the manufacturing costs and
as one can see from Figure 2.6 below, the cost-share has been increasing since the
beginning of the automobile industry. Furthermore, it is approximated that by
2030 automotive ECUs will account for 50% of the total cost of the car [21].



Background 11

Figure 2.6: Automotive electronics cost as a percentage of total
car cost worldwide from 1950 to 2030. Credit to Deloitte for
statistics [21].

Back in 2006, the average compact-class vehicle had around 40 ECUs, while
the more high-end class vehicle had almost 70 ECUs [22]. Today a modern car has
around a hundred built-in or installed ECUs, with luxury cars having as many as
150 ECUs [23]. The interconnection of all these electronic devices creates what is
commonly referred to as the internal network of a car.

With the many ECUs and the growing complexity of automobile systems,
one can understand why point-to-point communication with cables is not feasible.
During the ’80s the cabling was becoming increasingly complex, the cables were
long, and weighed more than 100 kg [24]. Fieldbuses were introduced where sev-
eral ECUs could communicate over the same bus, in order to decrease weight and
complexity. There are four embedded networks commonly used in the automotive
industry: CAN, local interconnect network (LIN), media oriented systems trans-
port (MOST) and FlexRay. These protocols have been around for a long time
in the automotive industry, nevertheless, the usage of automotive Ethernet is in-
creasing. However, before diving into why in Section 2.3, here is a brief description
of the protocols mentioned above.

2.2.1 The Local Inteconnect Network: LIN

In 1998, the LIN Consortium was founded by five automakers: BMW, Volkswagen
Group, Audi, Volvo Cars and Mercedes-Benz [25]. LIN is a serial bus system
and serves as a communication infrastructure for low-speed control applications in
vehicles, with bitrate support from 1 kbit/s to 20 kbit/s.

The LIN was created to function as a standard and low-cost alternative to
CAN for less demanding and noncritical applications, such as door modules and
air conditioning systems [26].



12 Background

2.2.2 The Control Area Network: CAN

The CAN is a widely-used communication fieldbus system, which efficiently sup-
ports distributed real-time control, developed by Robert Bosch GmbH in 1983 and
standardized in 1994 [11].

Nowadays the CAN is used as a society of automotive engineers network for
real-time control in, e.g., the powertrain, body and chassi domains in vehicles. It is
a faster protocol, compared to the LIN, supporting bitrates up to 1 Mbit/s. Carrier
sense multiple access with collision avoidance is used in the broadcast bus CAN.
CAN also implements fixed priority to guarantee that real-time processes receive
messages in time. Nevertheless, with the growing number of ECUs connected to
the CAN and computing power, the maximum speed of the CAN is not enough
for distributed real-time systems [27].

2.2.3 FlexRay

In 2000, the two automotive original equipment manufacturers (OEMs) Daimler-
Chrysler and BMW joined together with the two chip producers Motorola and
Philips to create the foundation FlexRay Consortium [28]. FlexRay is a fault-
tolerant protocol designed for high data rates, advanced control applications [27].
Safety- and time-critical automotive applications were the focus when creating this
protocol. FlexRay evolved as an alternative to CAN for tasks which needed better
performance and higher data rate [11, 28]. Today FlexRay is used for anti-lock
braking, electronic power steering, and vehicle stability functions.

2.2.4 Media Oriented Systems Transport: MOST

The development of the MOST protocol was initiated in 1998 and it is designed for
infotainment and media-oriented communication, such as audio, video, navigation
and telecommunication systems. MOST is a high-speed protocol with a maximum
data rate of 24.8 Mbit/s and it provides support for up to 64 nodes. The high data
rates make the MOST bus a good fit for real-time audio and video transmission
applications [29]. However, in the advent of Ethernet, the usage of MOST is
decreasing.

2.2.5 E/E Architecture

As mentioned previously, the continuous development of the automotive indus-
try is inevitable, and a big reason for this is that the industry is moving more
and more towards autonomous systems, Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication. Both the amount of ECUs and micro-
controller units (MCUs) have been and probably will continue increasing, with
emphasis on the amount of MCUs [30]. The growing number of control units has
led to an evolution of embedded memory, power, and processing systems. In a
near-future vehicles will generate and consume approximately 40 TB of data every
eight hours of driving, and the average vehicle will produce 4 TB of data a day for
merely one hour of driving. Today, cameras alone generate 20-40 Mbit/s and the
radar system generates 10-100 kbit/s [31].



Background 13

Looking at current wired networking technologies in the automotive domain,
LIN and CAN are the strongest technologies. The MOST protocol is the most
widely used networking technology for multimedia and infotainment systems. In a
modern automotive system, there is a need for several communication technologies
to co-exist [32].

For a long time, the distributed E/E architecture has been the top choice for
automobile manufacturers. In this architecture, each ECU is created for specific
functionality. They are grouped and placed in domains based on the relation
with each other. The intercommunication of ECUs at different vehicle domains
is established via a central gateway [13]. However, with increased functionality,
the amount of data sent within the system increases and more bus systems with
higher bitrates are added, so that the central gateway architecture simply reaches
its limits.

A new architecture is currently underway to the wider market, where the cen-
tral gateway function is split into domains. These domains are then interconnected
by an Ethernet backbone [33]. Nowadays the automotive industry is developing
hardware and software systems for domain-centralized E/E architecture, see Fig-
ure 1.1. Each set of related functions are grouped under a domain control unit,
each of which is interconnected via the central gateway where Ethernet is used
as the central communication backbone. Commonly used definitions of vehicle
domains are chassis, powertrain, body, and infotainment. With Ethernet as the
backbone, the different domains can use different network techniques. For exam-
ple, LIN is good enough for certain sub-domains, there is no need to replace it with
Ethernet and acquire a higher bandwidth than necessary. Because the domain-
centralized approach enables layered architecture this system offers greater depth
in security [13].

One essential problem with security in cars is the storage limitations, a car has
a finite amount of space and to keep the costs down manufacturers cannot always
install the largest and best hardware for storage. However, if the security solutions
are divided into domains or down to individual ECUs the solutions become both
more customized and they separate the memory load as well. OEMs can use
smaller storage solutions and possibly decrease the cost of the security solution.

2.3 Automotive Ethernet

The initial problem with implementing Ethernet as the backbone was at the phys-
ical layer. The Ethernet transceivers did not fulfill the automotive standards
and the physical medium used in vehicles did not fulfill Ethernet requirements.
Although, when the single-twisted pair cable was invented, the obstacles of the
physical layer seemed possible to overcome [33].

The automotive industry is entering a new era where connectivity and high-
speed data transfer is the name of the game. In the Ixia whitepaper, the current
state of the industry is stated as follows:

“The industry is highly motivated by the significant benefits of ex-
panded bandwidth, reduced labor cost and vehicle weight. Ethernet is



14 Background

poised to replace the disparate communication means, or to tie them
together in a single backbone.” ([34], p.18)

The Ethernet backbone is formed by an Ethernet switch, which in fact main-
tains point-to-point connections to the domain gateway. The advantage of this
architecture is that the gateway processing is split, and at the same time, the
domain gateway can perform additional tasks for its local domain [33]. This archi-
tecture also prevents message congestion and enables a more customized security
solution for each domain [13].

Automotive Ethernet has four main areas of usage, which include advanced
driver assistance systems, diagnostics over IP, infotainment and communication
backbone [11]. The reason why automotive Ethernet is preferred as the commu-
nication network for these services is that it can handle and adapt to the growing
bandwidth requirements. In addition to the high data rates Ethernet technology
can support, it is a protocol that is stable, long-established and well-understood
as a result of the widespread deployment.

Below in Figure 2.7,1one can observe an ISO model of ESCRYPT’s Cycur-
GATE, which serves as an example of protocols used in the automotive domain.
There are the seven different layers from the OSI model and their respective pro-
tocol(s). The color grey represents a protocol that communicates over automotive
Ethernet.

Figure 2.7: An ISO model of ESCRYPT’s CycurGATE. Protocols
used for vehicle communication, with protocols in grey repre-
senting protocols used over automotive Ethernet [35].

In the future, automotive Ethernet will expectantly form the foundation upon
which all in-vehicle communications will occur, resulting in a network where all
protocols and data formats will be consistent. Consequently, the network will be
scalable [36].

1©ESCRYPT, used with permission.



Background 15

2.3.1 Vehicle to Charging Grid: V2G

There are many factors which have driven the automotive industry towards electric
vehicles (EVs), not only the fact that ECUs weigh less and enable more services,
it is also due to political and environmental factors the industry has taken steps
to move away from fossil fuel-driven vehicles [37]. Furthermore, the improvements
in EV technology have changed the outlook for the automotive industry.

EVs are considered promising candidates to replace fossil fuel-powered vehicles.
Not only do they have the potential to lead to cleaner transportation, but can also
provide electric storage capabilities for other applications, such as V2G, Vehicle-to-
Home, Vehicle-to-Load, V2I and V2V [38]. This is why EVs are such an important
part of the IoT industry.

V2G technology enables bi-directional sharing of electricity between EVs and
the electric power grid. The technology turns each vehicle into a power storage
system, increasing power reliability and the amount of renewable energy available
to the grid during peak power usage [39]. There are 50 V2G projects around the
world trying to figure out how to make it work for all participants — EV owners,
EV utilities, auto OEMs and EV charging developers [40].

ISO 15118

In Sweden, there are 3670 public charging stations with a total of 17097 charging
plugs [41]. Whereas most of the charging is approximated to be done at home,
where the projected influx of EVs could increase stress on the grid during peak
demand hours of 6-9 a.m. and 5-9 p.m [40].

In 2010, the creation of the ISO 15118 standard for V2G communication was
initiated. The international standard outlines the digital communication protocol
that an EV and charging station should use to recharge the EV’s battery. This
includes wired (AC and DC) and wireless charging applications.

The smart charging mechanism built into the standard enables the electrical
grid to match the capacity of the grid with the energy demand for the growing
number of EVs that connect to the electrical grid. ISO 15118 enables bi-directional
energy transfer in order to realize V2G applications by feeding energy from the
EV back to the grid when needed. Additionally, the standard makes it possible
to integrate EVs into the smart grid. A smart grid is an electrical grid that inter-
connects energy producers, consumers, and grid components like transformers by
means of information and communication technology, see example in Figure 2.8.2

Figure 2.8: Simple overview over communication between EV, V2G
unit, home and power grid [40].

2©Cenex, non-commercial use in Copyright, Designs and Patents Act 1988.



16 Background

Furthermore, this allows the EV and charging station to exchange informa-
tion dynamically and a proper charging schedule can be negotiated. It is of great
importance that the EVs operate in a grid-friendly manner, which means that
the charging system supports the charging of multiple vehicles at the same time –
while preventing the grid from overloading. To ensure that these smart charging
applications calculate an individual charging schedule for each EV, they use the
information available about the state of the electrical grid, the energy demand
of each EV, and the departure time and driving range of each driver [42]. In
this report, the charging system is defined as the supply equipment communica-
tion controller (SECC) and the charging system deployed by the EV is called the
EV communication controller (EVCC), based on definitions from the ISO 15118
specification.

As one might have noticed previously in Figure 2.7, there are several parts of
the ISO 15118 standard, in total there are eight specifications of the standard that
all focus on different parts of the communication. See Figure 2.9 below.

Figure 2.9: The eight different specifications within the ISO 15118
family. Source Wikipedia [43].

In this paper, we focus on ISO 15118-2: Network and application protocol
requirements. This specification specifies the V2G communication, including the
different message types with their respective contents and flow charts over the
order messages should arrive to the client or server. All the different message



Background 17

types can be found in Appendix A.
Before going into specifics about how a session works, it is important to men-

tion how data is encapsulated. In the ISO 15118 specification [16], the V2G
transfer protocol (V2GTP) is the transport protocol for V2G data transfers (used
at the session layer) and can be considered the HTTP of V2G communications.
The V2GTP frame contains a header and a payload field. The header has a length
of eight bytes with four different parameters: protocol version, inverse protocol
version, message type, and payload length, while the V2GTP payload field repre-
sents the actual data to be transferred. Regardless of which message type is used,
a V2G message will always be encapsulated according to this format.

A session starts with the client multicasting its demand for charging, a so-
called SECC discovery protocol (SDP) request is sent via UDP. Through the SDP
request-response pair a security parameter, which indicates whether TCP or TLS
should be used for the session, is set. Following this, a server initiates the TCP or
TLS session setup with a handshake [16].

The messages sent after the SDP request-response pair use the XML/EXI
data representation format. Efficient XML interchange (EXI) is a compact rep-
resentation of the extensible markup language (XML). Using a relatively simple
algorithm, which is amenable to fast and compact implementation, and a small
set of datatype representations, EXI reliably produces efficient encodings of XML
event streams [44].

V2G communication can be AC or DC specific and there are message types
that are only sent for AC respective DC communication. It is stated in Appendix A
which messages are AC or DC-specific [16].

There is also the matter of authentication of user and payment method. One
can use external identification means (EIM), the traditional method of payment
with card or cash. In addition to EIM, the ISO 15118 specification introduces a
feature called plug & charge (PnC) [42]. PnC both enables the EV to automat-
ically identify itself to the charging station and to gain authorized access to the
energy it needs to recharge. Moreover, PnC deploys several cryptographic mech-
anisms to ensure that the communication maintains confidentiality, integrity, and
authenticity of all exchanged data.

Security in ISO 15118

The security of the ISO 15118 specification is based on the digital certificates and
public key infrastructure made available through the PnC feature. The ISO 15118
specification follows a common hybrid approach, using asymmetric-key algorithms
to create and verify digital signatures, in addition to agreeing upon a symmetric
key. The symmetric key can then be used to encrypt and decrypt all messages
during a charging session with a symmetric key algorithm. In order to achieve a
successful PnC session, both the EV and the charging system must support the
three main security characteristics: confidentiality, integrity, and authenticity [45].

First off, the messages must be encrypted to ensure that no third party or
malicious actor will be able to eavesdrop on the communication. Secondly, it is
important that if a message has been modified, it is detected in order to attain
data integrity. Lastly, to ensure that the other party is who they claim to be,



18 Background

the EV and charging system must verify its communication counterpart. To make
sure that these three security characteristics are fulfilled, a TLS session is used to
secure the V2G communication.

For the security of the transport layer, the communicated messages between
EVCC and SECC are encrypted using a symmetric key negotiated during the
TLS key negotiation phase. The key agreement protocol used to agree upon a
shared symmetric TLS session key is called elliptic curve Diffie-Hellman (ECDH)
[45]. ECDH is a key agreement protocol that allows two parties, each having a
private/public key pair (asymmetric), to establish a shared secret over an insecure
channel [46]. The symmetric key is used to encrypt and decrypt the messages using
a block cipher suite called AES_128_CBC_SHA256. To decrypt the sender’s
message the receiver needs the symmetric key. Therefore, a message cannot be
decrypted if one does not have access to the key, ensuring confidentiality [16].

Similar to the TLS cipher suite, the ISO 15118 specification provides another
key agreement scheme that establishes an encryption key for certain messages with
sensitive data. This encryption key is used to provide message security – mainly
utilized to encrypt private keys sent between the EVCC and another third party.
In this scheme, the ephemeral-static ECDH protocol is used, which allows for the
creation of a shared session key from a static public key already present inside the
vehicle. This is further explained in Annex G in the ISO 15118 specification [16].

Verifying authenticity and data integrity are features that are realized through
asymmetric cryptography, using a key pair composed of a private/public key. The
private key must be kept secret and is only used by the entity to which it belongs in
order to create digital signatures. The public key is distributed to peers in the same
ecosystem and used to verify the signature that was created with the associated
private key. The public-key cryptography is used to create and verify signatures
in order to control the authenticity of the sender and the integrity of the received
message. The cryptographic algorithm used for this is the elliptic curve digital
signature algorithm (ECDSA) [45]. In addition to the security measurements
described by the ISO 15118 specification, there are also security methods built into
TLS. For example, the message authentication code algorithm, which efficiently
verifies the authenticity of the message given a symmetric key and a tag. The
message is accepted when the message and tag are not tampered with or forged,
otherwise, the message is rejected.

The ISO 15118 specification outlines an ecosystem of digital certificates that
need to be in place for PnC to work. This is where public key infrastructures
(PKIs) come into play. A PKI defines an infrastructure including different entities,
policies, and devices that can manage, distribute and revoke digital certificates
based on asymmetric cryptography. In a PKI system, public keys are associated
with an identity through a process of registration and issuance of certificates.
The connection is established both at and by a certificate authority (CA) [47].
These CAs manage the creation, storage, distribution, and revocation of digital
certificates. A digital certificate is an electronic document used to verify that a
public key belongs to an authorized party. Therefore, it is also known as a public
key certificate.

In the case of the ISO 15118 specification, there are SECC certificates that are
signed and placed in the charging station by a certified charging operator. The



Background 19

EVCC uses these to authenticate the SECC over TLS. There are also contract cer-
tificates in the EVCC to authenticate against an SECC and/or secondary actor,
these are used for signing in the V2G session. Lastly, there are V2G root cer-
tificates and potential Sub-CA certificates that certify the aforementioned SECC
certificates and contract certificates. These are all essential to maintaining trust
and security in the PnC process.

One of the biggest improvements with the PnC feature is that the driver does
not need to do anything in order to authenticate the vehicle, beyond plugging the
charging cable into the vehicle and charging station. There is neither a need for
entering a credit card, nor scanning a QR code, nor opening an app. This makes
the ISO 15118 specification very user-friendly [42].

2.4 Security in Vehicles

Confidentiality means that one should ensure that communication between au-
thorized parties is secret and unauthorized access to data transmission in vehicles
should be impossible. It is also essential to make sure that unauthorized modi-
fication of data is infeasible or at minimum detected. The prospect of unautho-
rized modification to system assets or actual transmitted data is obviously bad
and includes writing, changing and deleting messages. It is also important that
unauthorized modifications of any hardware or software in the vehicle are either
infeasible or at least detectable. The purpose of authentication and identification
is to establish and assure that the origin of the message is correctly identified. In
a vehicle, there is a great need for this, because only authenticated and identifi-
able assets should be able to communicate with a certain ECU [48]. Security in
vehicles is becoming a serious matter in the car manufacturing industry and there
is engagement from a legislative perspective as well (e.g., the SPY Car Act in
the US [49]). With autonomous driving and integration of V2V and V2I features
gaining momentum, new security vulnerabilities are inevitable. This places the
responsibility on the manufacturers to use proper and proven security architecture
in their vehicles.

When considering safety in vehicles, one of the most prominent aspects is the
concern of passenger safety. When Miller and Valasek managed to gain remote
control over a 2014 Jeep Cherokee, they show that a breach of the internal network
can have fatal consequences [50, 51]. With their remote exploitation, they sent
CAN messages to activate blinkers, lock the car, prompt remote steering and
kill the engine. Whereas safety is the number one priority, privacy and integrity
concerns are expected to be upheld as well, just as it is for modern websites today.
As a practical example, no one should be able to track a driver by accessing GPS
data or eavesdrop on a hands-free phone call.

Table 2.1 below shows the three general different groups of possible system
intruders of a vehicle: first-hand user, such as the car owner; car manufacturers,
car mechanics and garage personnel; different unauthorized parties, such as an
institution [6].

The first two attacker groups have full physical access to all transmission media
and respective affected devices of the automotive network. As the car owner



20 Background

Table 2.1: Possible attackers or persons performing unauthorized
modifications [52].

Attackers Knowledge Physical Access
Owner Varied (mostly low) Full

OEMs, mechanics etc. High Full
Unauthorized third party Varied (can be high) Limited or none

normally has only low theoretical and technical capabilities, the bigger risk factor is
the second group. The people in this group might have both adequate background
knowledge and the technical tools for completing a successful intrusion attack,
which might result in permanent damages to both software and hardware in the
vehicle. Possible motivations for an unauthorized attack from a third party might
be to acquire private passenger information, through phone tapping or data theft
[6].

2.4.1 Challenges

The majority of the foreseeable security issue arise as by-products of intercon-
necting the various vehicle bus systems. LIN, CAN or MOST are bus systems
interconnected, which basically may access and send messages to any other ECU.
Furthermore, a single compromised bus system endangers the entire in-vehicle
communication network.

In combination with the increasing integration with outer networks, such as
V2V, V2G, and V2I, future attacks on automotive communication systems can be
accomplished without any physical contact, just by passing a car or via cellular
phone from almost anywhere in the world [6].

Lightweight Devices

Modern communication over the Internet implements security solutions for authen-
tication, integrity checks and provide confidentiality with protocols and algorithms
based on cryptography. In many cases, these security properties can be introduced
quite effortless and they introduce a limited amount of latency with today’s modern
computing power. However, consider a modern car network; consisting of multi-
ple smaller devices (switches, MCUs, ECUs, sensors, etc.) that operate on lower
wattage with lower rates of processing power and memory resources available. If
one is to apply a cryptographic protocol scheme or another security measurement
in the automotive setting, the selection of algorithms used needs to be carefully
considered to not strain the performance of these lightweight devices.

Access Mediums

In-vehicle security is not only limited to remote threats but also needs to address
physical access aspects. Hence, even with physical access to the car, it should not
be possible to compromise its internal systems.



Background 21

Connectivity

One could argue connectivity is a double-edged sword in the context of in-vehicle
security. As car network architecture is growing, with the introduction of V2V,
V2G, and V2I concepts there will be new useful features available. For instance,
vehicles will be able to find available parking spaces at a parking lot, share in-
formation about immediate dangers on the road or support autonomous driving
systems with traffic information. With all these benefits, there will be trade-offs
between conveniences and the potential attack surfaces, introduced for exploita-
tion or violation of privacy. It is therefore crucial that independent components
and sub-domains, as well as the entire internal network of the car, are secured for
this new paradigm of connectivity.

2.4.2 Firewall

A firewall is a system used to prevent unauthorized access between networks,
primarily screening traffic entering or exiting a private network. It is either im-
plemented in hardware or software depending on the network, or in some cases,
a combination of both. Firewalls have been used as the first barrier of entry for
attacks over a long period of time, and they are now being integrated into modern
vehicles. A firewall typically has one or several of the following functionalities (as
mentioned by Cisco in [53]):

• Packet filtering: The firewall inspects each and every packet entering or
leaving the network. Based on a certain set of rules, it accepts or rejects
packets.

• Stateful filtering: A stateful firewall remembers the state of previous com-
munications between parties. Thus, it can filter based on expected state or
connection properties as communication is taking place.

• Operating as a proxy: The firewall acts as a proxy for applications by han-
dling e.g., connection establishment in their place.

• Application layer filtering: Newer generations of firewalls can inspect certain
application protocols such as HTTP, FTP or DNS.

Stateful Inspection

Stateful packet inspection is a type of inspection method done in software and is
carried out with shallow packet inspection into the transport layer. It recalls the
state of previous communications with an entry into a table, this entry will serve as
a means to compare incoming packets, belonging to the same session, allowing for
faster processing of arriving packets. A typical characteristic of a stateful filter is
high latency at the start of reception – since no previous matching has been done
in a clean state – but it will quickly become effective as entries are added to the
table. A downside to using stateful packet filters are the memory requirements,
maintaining the state of active connections on the network [54].



22 Background

2.4.3 Intrusion Detection System: IDS

Intrusion detection has been a practiced method in various industries since the
early days of network security and it is now being applied for automotive use
cases. An IDS is commonly applied as a dedicated physical device on the network
or as a software program. Furthermore, it is utilized as a second-line of defense
in a network security architecture, often strategically placed behind a firewall to
detect ongoing attacks. An example of IDS placement in a network topology can
be seen in Figure 2.10.

Figure 2.10: IDS placement inside a network.

An IDS differs from a firewall, whose sole purpose is to screen traffic between
networks and prevent intrusions, instead, an IDS monitors and detects attacks
or threats present inside the network. Its goal is not to prevent malicious threats
observed on the network (unless it possesses prevention functionalities), but rather
it takes a more proactive position by alerting and logging information [55]. An
IDS often relies on extensive DPI, which can screen packets on an application-
level basis. Common functionalities of an IDS include, for example, updating the
system for future attacks, analysis of potential attack patterns on the network,
alerting other security mechanisms in place or generating warnings for network
administrators.

There are generally two methods of IDSs: host-based intrusion detection sys-
tem (HIDS) and network-based intrusion detection system (NIDS).

An HIDS is an IDS system that is installed on a host machine and monitors
dynamic behavior on the host system. It typically looks at system audit logs and
tries to detect malicious activity. For instance, an HIDS can check the integrity of



Background 23

files or check against known signature patterns in a database.
A NIDS on the other hand, is referring to an IDS residing on the network. It

acts as an inline sniffer, sampling packets as they arrive at the network. Typically,
you would see a NIDS incorporated into a network switch or central gateway, to
be able to process all network traffic. Consequently, a NIDS device must allow for
high-speed processing of packets to avoid introducing bottlenecks in the network.

There are different detection methods for how to detect anomalous behavior
in an IDS. Namely, signature-, anomaly- and specification-based methods. One
approach is to use one of these features to secure a system, or they could be used
in unison as a hybrid IDS implementation.

Signature-based Detection

A signature-based detection engine relies on pattern matching to detect known
malicious behavior in sequences of bytes or subsets of malicious instructions. To
realize a signature-based approach one has to define unique rule sets for a specific
network. For instance, detecting and not responding to an ICMP ECHO request
allows a host to not be discovered by a network mapper (nmap) scan. The command
nmap is used to discover hosts and services on a computer network by sending
packets and analyzing the responses. It can be used to perform port scan- or port
sweep attacks.

In signature-based methods pattern matching algorithms are the central com-
ponent determining the performance. Since a software-based IDS operates within
the boundaries of a typical application, there are subjects of concern regarding
CPU usage, memory, and power consumption. There have been multiple studies
on enhanced algorithms, some examples are Myers algorithm [56] and Wu-Manber
[57]. Nevertheless, which algorithm should be applied depends on the network
requirements and accessible hardware on a given system.

A clear advantage of signature-based implementations is the ability to use a
multitude of signature patterns that can protect against already known attack
patterns, this safely secures the system against discovered threats and gives the
incentive to share rules in security communities. Although, the signature-based
method has its downsides as well, mainly since it cannot protect against zero-day
attacks (attacks on vulnerabilities that have not been patched or made public)
and signatures need to be updated continuously to keep up with new upcoming
threats.

Anomaly-based Detection

Anomaly-based methods take another approach to detect threats and they find
malicious traffic through discrepancies from normal behavior instead. Conversely,
from a signature-based method, an anomaly-based IDS tries to detect previously
unknown attacks and enables protection against future attack vectors. Although,
there are negative aspects of anomaly-based detection methods. One is the ten-
dency for higher false positive rates [58].

For statistical approaches, the goal is to find a baseline for the characteristics
of communications over the network such as type of packets sent, frequency of
packets, changes in payload size or data content and sequences of packets. After



24 Background

reaching a baseline, the IDS then classifies traffic as normal or abnormal, send-
ing out an alert if the system receives any suspicious packets. For example, an
anomaly-based system can detect if a flooding or replay attack is being performed
if it keeps track of how often a message type is usually sent through the network.
It may also detect whether packets are being dropped based on the same frequency
check.

As mentioned, anomaly-based approaches try to categorize a baseline and find
outliers that are new unknown threats, such challenges can also be addressed with
the use of machine learning. Yihunie et al. [59] presented an analysis using the
NSL-KDD dataset, evaluating the performance of several machine learning models
including stochastic gradient descent, random forests and support vector machine.
Their work highlights valuable comparisons between these models where random
forests outperformed the other classifiers. A random forests classifier works by
training many decision trees on random subsets of the features, then averaging
out their predictions.

Specification-based Detection

Another method for detection in an IDS is a specification-based approach, where
deviations from set specification requirements are used to detect malicious packets.
Usually, this is achieved by setting up explicit rules for each protocol’s specification
and thereby finding deviations from normal behavior. Properties such as source
and destination correspondence, data volume, message times or header values are
all examples of metrics that could be taken into consideration. Another more
general example could be not allowing processes certain sequences of system calls
[60]. Differing from a pure anomaly-based method, it does not tend to suffer from
high false positive rates. In part since its rule-based principles yield deterministic
performance similar to that of signature-based methods.

Figure 2.11: A snippet of V2G communication from the ISO 15118
specification.

For example, the ISO 15118 standard specifies a flow chart where one can
follow the exact types of messages that should be following each other. Therefore,
a specification-based IDS might include some sort of a decision tree ensuring that



Background 25

the V2G communication is following its specification. See Figure 2.11 for a small
snippet of a V2G session flowchart.

SNORT

SNORT is an open source NIDS solution, which can perform real-time traffic anal-
ysis and logging of packets on IP-based networks [61]. SNORT uses a signature-
database to match rules in the detection engine, where a signature is defined as
distinctive marks or characteristics being present in an exploit [62]. These rules are
continuously updated by its community to stay on top of current vulnerabilities.

2.4.4 Deep Packet Inspection: DPI

With the increase of data being sent over the internet, depending on the application
there is a need to screen packets for security threats. DPI enables inspection of
packets in the higher layers of the OSI stack, effectively inspecting beyond protocol
headers – allowing for greater control over which packets can flow through the
network [63]. Deep inspection is carried out with a DPI engine in real-time, which
classifies packets either as normal or attack packets. Internet service providers
commonly deploy DPI for filtering content, targeted advertising and blocking of
undesired web traffic. Furthermore, DPI enables prioritizing of packets that are
of interest to the automotive domain. This further complements the real-time
requirements present in a car network.

Another related use of DPI is shallow packet inspection, which inspects headers
up to the transport layer. As mentioned in Section 2.4.2 about firewalls, this type
of inspection is used to perform stateful packet inspection. A comparison between
each inspection method is illustrated in Figure 2.12.

Figure 2.12: Visual comparison of inspection range between shallow
and deep packet inspection.

Firewalls and IDSs are heavily reliant on inspecting packets to various degrees,
to match packet information against entries or signatures.



26 Background

There exist two types of DPI: hardware and software solutions. Under normal
circumstances, regular switches or processors have limited capabilities to host a
DPI system due to a lacking performance under heavy loads of traffic. Hardware
DPI uses specialized hardware to accelerate the inspection engine’s processing
time, which enables wire-speed inspection of packets. Since hardware-based so-
lutions have a higher price tag, larger corporations often use these. The nDPI
library [64] and Solarwinds NPM [65] are, on the other hand, practical examples
of software-based DPI. Instead of relying on hardware, these products apply a
software-based DPI engine for inspecting packets on an application level.



Chapter3
Method

This chapter describes the methodology, which has been used in order to receive
the results in Chapter 6 and helped us draw our conclusions. The chapter in-
cludes a description of hardware and software used in order to implement our IDS.
Furthermore, test and performance evaluation methods are also described.

3.1 General Research

In the beginning, we did not quite know what to anticipate or expect of this
project with no previous experience in embedded security. Upon meeting Bosch
and ESCRYPT a couple of times the master’s thesis took form. We then started
to outline the scope and conduct general research. There had been a student
completing his master’s thesis at ESCRYPT the previous semester [13] and our
project was meant to be a continuation of that. We used the resulting report
as our base in the beginning. Thereafter, trying to collect as much information
about implementations of IDSs, network systems for in-vehicle communication
and automotive security. The essential research papers used as basis for e.g.,
establishing requirements, choosing the different components and selecting features
for the IDS are presented in Section 1.6.

After some general research, we realized the sizable challenge of continuing
the previous work and implementing a complete firewall and IDPS solution. Our
supervisors recommended that we narrow our scope down to only focus on one
protocol, namely ISO 15118. With access to the specification for ISO 15118, we
strove to understand how the different actors in a V2G communication session
operate, what the different message types were and which functionalities they
provide. Thereby, we were able to gain a more in-depth view of how an in-vehicle
IDS would operate and which features were of importance.

3.2 Establish Requirements and Select a Concept

After we had gained insight into how an IDS works and what requirements are
associated with automotive networks, we established the requirements for an in-
vehicle IDS from our research. We settled on implementing two detection methods
for our IDS: specification-based and anomaly-based detection. The requirements,
motivations, and decisions related to the IDS are discussed in Chapter 4. Through

27



28 Method

this process, we answer the question of Which requirements are associated with
IDS in the context of automotive Ethernet? Also, we further address the matter
of DPI in in-vehicle networks, and try to answer the question Which requirements
are associated with DPI for automotive Ethernet?

Furthermore, we explain and motivate a proposed design concept for a V2G
IDS in Section 4.4. By motivating our design choice, we reach the goal to Analyse
which IDS features would fit the automotive domain from security and resource
constraint point of view, as well as the goal to Propose a concept on how some of
those features would be designed and implemented.

To select the specific feature set for the IDS, a security analysis of the V2G
protocol in the ISO 15118 specification was conducted in Section 4.3. Additionally,
outlining which security practices were already in place in the protocol. Following
this, we defined potential security threats and weaknesses in the protocol which
became inspiration for some of the features implemented.

3.3 Implementation

To achieve the defined goal Implement a Proof of Concept for at least one attack
vector, we developed a V2G IDS presented in Chapter 5.

The previous research on how to design an IDS served as the basis for the
architecture and features to be implemented. The IDS was exclusively written in
C since it is generally the preferred programming language for MCUs in vehicles.

3.3.1 Hardware Setup

Figure 3.1: Hardware setup for the project development environ-
ment.

Two Raspberry Pi 3 Model B with Raspbian OS (version 4.19) was used to simulate
the traffic, one acting as the SECC server, the other as the EVCC client. The model
B has a Quad Core 1.2GHz Broadcom BCM2837 64-bit CPU with 1GB RAM and
support for 100 BASE Ethernet [66]. The reason for choosing this setup was partly
due to the lack of dedicated V2G hardware, but mainly it allowed us to develop on
a Linux-based system. Consequently, giving us great flexibility to port the project



Method 29

to any Linux-based environment of our choice and test the software continuously
on the virtual machines used for development.

The switch used was D-Link’s 8-port fast Ethernet easy desktop switch (model
GO-SW-8E). This was used to set up the local network between the Raspberry
Pis, allowing the two of them to act as a server and a client for V2G sessions. See
Figure 3.1 for an illustration of the setup.

3.3.2 Software

In the developing stages, there was a need for data examples that could be used
for training and testing. Without either the time or knowledge to implement the
protocol ourselves, the two open source projects RISEV2G and OpenV2G were
utilized to quickly progress in the development stage of the project. Wireshark
was used to collect examples of V2G sessions in pcap format.

Wireshark

Wireshark is a free software for taking captures of network traffic [67]. Wireshark
can be used to sniff, inspect, filter and analyze network protocols in real-time along
with support for offline screening of packet captures. When developing network
applications (such as an IDS) Wireshark is a powerful tool for inspecting inputs
and outputs of the application, not to mention the ability to capture generated
traffic scenarios. Wireshark was important to us namely because it allowed us to
inspect the V2G packets being sent between the Raspberry Pis. Which made it
possible to decide the order, size, and frequency of the messages. We also used
Wireshark in order to capture and store entire V2G sessions as pcap files, which
could be used as examples of both normal and attack data traffic.

RISEV2G

To inspect and analyze V2G sessions, the open source V2G software RISEV2G li-
brary is a promising option with comprehensive examples written in Java [68]. The
setup was fairly easy and it was even possible to enable authentic TLS communi-
cation with generated dummy certificates on the EVCC and the SECC. RISEV2G
lets one start a client and server application that exchanges messages over TCP
or TLS according to the ISO 15118 specification, also their website offers tutorials
and other valuable information for anyone interested in learning more about ISO
15118.

We used RISEV2G in the beginning to get a better understanding of the
protocol. The library also allowed us to collect normal data examples in pcap
format through Wireshark.

OpenV2G

OpenV2G is another example of an open source adaptation of ISO 15118 [69].
Different from RISEV2G the OpenV2G software includes dedicated codec func-
tionality for efficient conversion between XML documents and EXI compressed
format and it is written in C. With the codec API one can integrate parsing of
V2G data in virtually any setting which makes it a valuable tool for the purposes
of this project.



30 Method

libpcap

Another important C library used in the project is libpcap (full name of the pack-
age is libpcap0.8-dev), specifically we used version 1.8.1 to achieve compatibility
with the corresponding Debian 10 distribution deployed on the Raspberry Pi. Its
API provides function calls for reading of pcap files as well as live capturing of
packets with filtering capabilities.

Virtualbox

For development, we used Virtualbox to run VMs on our PCs. To test our software
we used a virtual machine with Ubuntu 18.04.3 LTS (Bionic).

3.4 Evaluation Framework

To test and evaluate our implementation, a series of metrics were collected during
a real-time session, where different attack scenarios were deployed on top of the
session. The attack client generates data for which packets contain threats and
will be compared against detections made by the IDS. After conducting the tests
we were able to answer the question What functions of IDS are valuable from the
perspective of automotive Ethernet?

3.4.1 Performance Evaluation

An IDS can be seen as a binary classification method and therefore it is suitable
to evaluate it accordingly. To evaluate the performance of the V2G IDS we based
our evaluation metrics on the recent work of Stachowski et al. [15]. In their work,
they present an assessment approach where quantitative and qualitative metrics
are recorded by rendering the IDS as a binary classifier. The metrics chosen for
evaluating and testing the IDS can be seen in Table 3.1 and are based on their
report. The detection speed defined in [15] was redefined as classification speed
and further include normal packet classifications. Our motivation for this is that
only measuring how long time it takes to detect attacks does not capture the
performance for the majority of packets – which are normal packets (negatives).
We further expanded the classification speed to also include best, worst and av-
erage speeds, which allows for further insight into the speed dynamics observed
in the IDS. Finally, we switched out accuracy for balanced accuracy to evaluate
the overall accuracy of our model, weighing both correct true positive and true
negative classifications rates equally. The balanced accuracy metric is better than
the normal accuracy for imbalanced data sets. We had imbalanced data sets in
our implementation, as there was a significantly larger amount of normal packets
compared to malicious packets [70].

As previously mentioned, the IDS can be seen as a binary classification sys-
tem where packets are either classified as a positive (a detection) or a negative.
A positive classification implies an attack is ongoing in the system while a neg-
ative represents all other possible events (including normal traffic and erroneous
messages).



Method 31

Table 3.1: Table of metrics taken for evaluation.

Metric Description
False Negative Rate Rate of incorrectly identified attacks

when attacks were ongoing.
False Positive Rate Rate of falsely identified attacks

when no attacks were present (false
alarms).

True Positive Rate (Recall) Fraction of actual attacks alerted by
the IDS.

Precision What portion of identified attacks
were true attacks.

Balanced Accuracy Balanced accuracy metric determin-
ing fraction of correctly classified
packets.

F -score Metric accounting for precision/re-
call. Varies depending on β selected.

Classification speed How long time it takes to classify a
packet as normal or issue an alert
after an attack has started.

The confusion matrix shown in Figure 3.2 depicts the four outcomes of a binary
classification system, which can be used to calculate the metrics in Table 3.1 above.
These four outcomes are true negatives, false negatives, true positives, and false
positives.

Figure 3.2: The confusion matrix for binary classification in an IDS
[71].



32 Method

Negative and Positive Rates

True positive rate (TPR) or recall is defined as the correctly identified attacks
against the system. This metric is used to calculate the balanced accuracy and
F -score. Therefore, a classifier that produces no false negatives will attain a recall
of 1.0.

TPR (Recall) =
TP

TP + FN

Moreover, the false positive rate (FPR) defines the incorrectly identified at-
tacks against the system; normal packets being classified as attacks. The optimal
FPR would be a rate of 0 with no false positives.

FPR =
FP

FP + TN

The false negative rate (FNR) shows the rate of incorrectly rejected attacks
against the system; attacks being identified as normal packets. Similar to the
FPR, the FNR best case performance has a rate of 0 with no false negatives.

FNR =
FN

FN + TP

Precision

Precision is defined as the proportion of positive identifications (attacks) that were
correctly detected. Hence, deciding how many positives were actually correct. A
perfect precision score is 1.0 with no false positives. An important observation
is that the precision does only account for positive classifications and does not
consider negatives.

Precision =
TP

TP + FP

Precision together with recall (TPR) are both important metrics to measure
the effectiveness of a classifier. The performance of a classifier considering preci-
sion and recall typically shows a trade-off between these two metrics. Where the
increase of one will dampen the other.

F -score

The F -score is a measurement of a test’s accuracy, moreover, its the harmonic
mean of precision and recall. As mentioned before, models normally experience
a trade-off between precision and recall, and F -score tries to combine both these
metrics into one score. The F -score is also a weighted metric that can be tuned
by changing the β variable. A β value of 1 (called f1-score) balances the score
evenly between precision and recall, while a value of 0.5 (known as f0.5-score)
would weigh precision higher than recall. As a result, depending on if a supplier
or OEM prefers higher recall or precision, the F -score can be weighted towards



Method 33

their preferred configuration of an IDS. The perfect F -score that can be attained
is 1.0.

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall

Balanced Accuracy

Balanced accuracy can be defined as the fraction of predictions the IDS got right. It
can further be seen as a more conclusive metric displaying how accurate the overall
performance of a classifier is – considering both true positive and true negative
classification rates. This is important since the balanced accuracy compensates for
imbalanced data sets (which normal accuracy does not) and yields more reflective
results as to how the model is actually performing. A score of 1.0 is a perfect
result for this accuracy metric.

BalancedAccuracy =
TPR+ (1− FPR)

2

3.4.2 Testing Different Configurations

When implementing the anomaly-based detection we had a lot of issues figur-
ing out which statistical approach we should use. After some trials and errors,
we settled on using the minimum and maximum value from expected data. The
frequency, payload length and timeout for request-response pairs were checked
by comparing them to expected normal V2G session data. All values from the
V2G session examples were considered to be normal, and we could use the low-
est possible values for minimum and the highest possible values for maximum.
For example, in the session examples, a ChargeParameterDiscovery request oc-
curred once or twice per session. Therefore, the anomaly-based part would detect
if the request occurred five times during a session. It is not expected for the
ChargeParameterDiscovery request to be sent that many times, and it would be
classified as abnormal behavior. The same logic was applied for payload length
and timeout detection.

There were three reasons why we chose the minimum and maximum approach.
Firstly, we saw that Salman and Bresch [9] successfully used this approach when
implementing their IDS for the CAN bus. Secondly, when we asked the research
team for IDS at Bosch they also utilized the static bound approach. Lastly, to
use normal data as acceptable data seemed logical. There is no data from the
V2G session examples that can be seen as attack data. Because we had captures
of normal data sessions, it seemed logical to use this data in order to set lower-
and upper bound (LnUB) thresholds. This LnUB threshold is synonymous with
a classification threshold, which determines the boundary for when a message is
considered an attack or threat. We collected data for each message type, and it
was not too complex to give each message type its own LnUB.

ESCRYPT also suggested the idea of adding a tolerance threshold. They
argued that a few errors could go undetected without affecting the detection per-
formance too negatively. The tolerance threshold turned out to be effective, and



34 Method

in Chapter 6 there are several attack scenarios when the IDS performs better when
applying a higher tolerance threshold.

An illustration of the effect from the threshold and tolerance can be seen in
Figure 3.3, this could represent the detection output from any of the message
types for either frequency, payload or timeout predictions. As can be seen, the
classification threshold sets the boundary for when the IDS starts detecting threats.
To the right, there are classified detections and to the left is the classified normal
traffic. If the IDS makes detections right of the threshold, they are either true or
false positives. All packets left of the threshold are either true or false negatives.

Here the effects of the tolerance are apparent, as it will only affect the right
side of the threshold. Figure 3.3 displays that two false positives will be correctly
classified as non-malicious, but one actual malicious packet will be neglected and
incorrectly classified.

Figure 3.3: An illustration of anomaly-based detection outputs with
an upper bound threshold and a tolerance of three. The x-axis
represent an arbitrary class value ranging from zero to higher
values.

The combination of the tolerance and the LnUB thresholds decides which
values are seen as abnormal and will trigger the detection logging. For testing
the performance those were the two thresholds we modified in order to see which
combination was most effective for each attack scenario. In Table 3.2 below, one
can see the different configurations that were tested.

Table 3.2: The different configurations used when testing the IDS.

LnUB Tolerance Configuration ID
0 0 Conf1
0 3 Conf2
0.1 0 Conf3
0.1 3 Conf4
0.25 3 Conf5
0.4 3 Conf6



Method 35

3.4.3 Attack Scenarios

The goal was to implement at least one attack vector to test the IDS. The final
result was a total of five different attacks; one attack over UDP and four attacks
over TCP. Since there was one message type sent over UDP, we settled on only
implementing one attack over UDP.We have outlined all of the attacks in Table 3.3.
All of the attacks were launched in separate sessions to evaluate the performance
of a single attack vector. The tests were separated for the two selected detection
methods to evaluate each method in isolation from the other.

In our test environment, we assumed simple behavior from the server, where
requests are always answered with responses. However, in reality, OEMs would
more likely implement proper response behavior from the server-side, for example,
by not answering spontaneous messages injected into the stream.

Table 3.3: Implemented attack scenarios for testing of the IDS.

Attack Description
SDP Flooding Floods the server with more than

50 SECCDiscovery requests.
Message delay attack Delays messages from the server-

side, signifying either a congested
network or dropping of packets.

Injection attack Injects random V2G packets, try-
ing to fuzz or prompt certain re-
sponses from the server.

Exhaust server attack Floods the server with ChargePa-
rameterDiscovery requests,

Charging session flood Floods the server with additional
ChargingStatus and CurrentDe-
mand requests while in a AC or
DC charging session.

Our tests were randomized for the delay attack to an extent. The attacks were
performed on a random 5% of all the messages sent during a session, and of those
5% the message types with the timeout of two seconds allowed were the ones which
triggered a detection (see Table A.2 in Appendix A).

For packet injection, it was also a 5% chance of an attack being launched.
This percentage was randomly divided into three message types: SessionSetup,
ServiceDiscovery, and CableCheck. Resulting in a varied amount of attacks per
the three message types. The reason why we chose these three different groups
was to expand our coverage for the test. Performing attacks with several different
message types, the more secure we knew our solution was if it could detect well.

The exhaustion attack only performed the attack using one message type,
ChargeParameterDiscovery, and the amount of those attacks being sent was
randomized ranging between 80-200.

Both the SDP and charging flooding attack scenarios had a static number of
attacks launched.





Chapter4
Design Concept

In this chapter, we outline requirements for an IDS and DPI, followed by a security
analysis. Based on these requirements, the security analysis, and general research
we motivate the design choices for the implemented IDS concept.

4.1 IDS Requirements

When establishing requirements for a security-related product the underlying tech-
nology will impose limitations on any new component. In modern vehicle networks,
we have mentioned that the real-time requirements are essential. For instance, the
control domain requires speeds around 15 microseconds for prioritized traffic [72].
It is therefore essential that the IDS does not introduce further bottlenecks or
degrade performance through added latency.

The responsibility of an IDS is to detect all threats against the system within
its scope. Many of these vulnerabilities or attack signatures are known and can
successfully be mitigated by extending the IDS static rule set. However, the IDS
should also have the capability to detect previously unseen attack vectors in the
form of zero-day attacks. Therefore, detection features monitoring deviations from
normal session behavior are desired as well. Salman and Bresch (see Section 1.5.1)
further confirm that the combination of these two principals allows for better
detection capabilities in their hybrid implementation [9].

In any IDS, you strive for perfect performance, but in reality, it is almost
impossible to achieve due to the complexity of vehicular systems. Nonetheless,
the absence of a detection could have severe consequences for the driver if the
attack would be successful [50]. Additionally, false positives also need to be kept
low in quantity, since if combined with prevention mechanisms, the IDS could
remove legitimate traffic. Therefore, it can be concluded that it is desirable to
keep false positive and negative rates at a minimal level.

There is a wide variety of policies, standards, and practices employed at differ-
ent automakers and OEMs. Not only does this mean every implementation in each
car model is unique, but it also demands that the internal devices integrated in the
vehicle must be uniquely configured. For this reason, an IDS component deployed
in these vehicles should be configurable to adapt to any type of car. Hence, devel-
opers working for OEMs should be able to extend the logic or customize detection
thresholds as they please to fit their specific requirements.

37



38 Design Concept

Finally, the resources available for a hosting ECU (e.g., number of cores, avail-
able RAM, etc.) are limited. CPU requirements are one of these factors where
CPU usage, CPU time and power usage need to be optimized in order for the
IDS software to run on an ECU properly. If the hardware is stressed too severely,
it could reduce the lifetime of these micro-controllers and introduce unexpected
errors or shutdowns.

In conclusion, the requirements for an in-vehicle IDS in modern vehicles can
be summarized as seen in the bullet points below. This list further answers the
academic question: Which requirements are associated with IDS in the context of
automotive Ethernet?

1. Low latency – respects high real-time requirements in vehicle communica-
tions.

2. The IDS shall be able to detect known and unknown attack patterns.

3. Low false positive and negative ratio.

4. Configurable – can easily be extended or configured to adjust to a new host
network.

5. The CPU requirements should be kept as low as possible.

4.2 DPI Requirements

The DPI is a core component for many systems plugged in the network including
proxies, packet filters, sniffers, IDS, and intrusion prevention systems. Network
components use DPI as an essential inspector where it is applied in different layers
of the OSI model [12]. As mentioned in Section 2.4.4, DPI makes it possible to
inspect and analyze all layers in the OSI model.

The ability to examine the packets at the respective depth, at wire speed is
not an easy task, and such a process decreases the throughput of the system and
introduces latency. When designing an effective DPI system one has to consider
two main implementation features: the design of an efficient data structure with
an optimized memory access rate, and the design of a high throughput algorithm
to process intruder signature [12]. Inspection of packets on application level is
a demanding task, especially considering the number of packets that need to be
processed. Not to mention the importance of addressing the hard real-time re-
quirements in-vehicle communications. Careful consideration needs to be taken
not to introduce bottlenecks. Hence, the performance of the DPI engine is of
utmost importance.

There are two approaches of performing DPI for any case of application. One
can either choose to perform the inspection simultaneously but separately as the
data traffic enters the system. There is no bottleneck for the real traffic this way,
the traffic is handled completely separately by the DPI. However, this also means
that the system might work retroactively and the attack can be long foregone
before the DPI raises a red flag. This type of DPI solution cannot perform actions
at wire speed. The other approach is to capture and analyze the data directly at
wire speed as it enters the system. This means attacks will be detected right away,



Design Concept 39

but it is harder to avoid the bottleneck when all packets have to be screened. This
is the type of approach used for most in-vehicle security solutions [13].

One of the most significant aspects is to choose a search algorithm with an
appropriate level of complexity, which can properly compare signatures against
intruder signatures without decreasing the throughput of the system. Furthermore,
the data structure has to operate and process data traffic regardless of the state
of the network. The goal is for the DPI to perform at the same level at all times
and under all circumstances.

Memory access time is one of the biggest causes of latency and bottlenecks
within a system. Naturally, a high memory-efficient design is preferable, how-
ever, this is one of the hardest criteria to fulfill. What we have gathered from
ESCRYPT, is that the process of developing a concept includes both hardware
and software solutions. A team sets out to develop the concept and completes the
software, while the hardware is most commonly outsourced to other manufactur-
ers. When presenting the complete solution, the cost is often the most important
thing for the client. Money and time have already been spent developing the code,
and the only cutback that can be done is on the part that has not been developed
yet: the hardware. Therefore, this requirement is the hardest to achieve in the
real world. With less money spent on hardware, there will be more pressure on
developing memory-efficient software. The optimal solution would be the signa-
ture analysis divided in between software and hardware; with hardware handling
shallow inspection and software handling deep inspection [13].

There is also the matter of the signatures the DPI system should handle.
Preferably, the system should be able to handle an infinite amount of signatures.
This means there has to be some sort of server storing many signatures, because the
ECU has very limited data storage. This problem of large amounts of signatures
is why anomaly-based detection is such a hot topic. Instead of looking at static
signatures – which could reside in overlapping packets or anywhere in the packet
frame being sent – the system can look for normal frames in terms of size and
content. The abnormal behavior could be reported and evaluated if it should be
stored as a static signature on a backlog server. This leads to an important security
requirement overall; the ability to dynamically update signatures.

DPI enables the system to find a signature wherever it is within a frame, by
looking at the entire frame and not only the data provided by the first couple of
OSI layers. This is one of the biggest advantages of DPI and a cornerstone of
its functionality. Stateful security is one possible solution to avoid overlapping
signatures. If the system saves sessions and packet states it is harder to perform
these types of attacks.

To summarize the requirements for DPI in vehicular systems, we have made
a short list for them in order to answer the question Which requirements are
associated with DPI for automotive Ethernet?

1. Implement an appropriate search and analytical algorithm to acquire high
memory efficiency and low latency.

2. The system should be operational and computational regardless of traffic
circumstances.



40 Design Concept

3. Design system for high memory efficiency. Preferably through the combina-
tion of software and hardware.

4. The system should support a large set of different signatures.

5. Overlapping signatures: the system should be able to detect a signature,
even if it is overlapping several frames.

6. The system should be able to handle a signature being anywhere in a frame.

7. Implement a method to dynamically update currently stored signatures with
new signatures.

Limitations

A liability of DPI engines is the inability to process encrypted traffic on a network.
Hence, communications relying on the use of common security protocols such
as SSL/TLS cannot be inspected by an inline DPI engine. Though there exist
solutions for this today called DPI-SSL (e.g., SonicWall products support DPI-
SSL [73] as well as nDPI [64]), where the hosting DPI device acts as a man-in-
the-middle, decrypting and encrypting communications on the fly as packets are
inspected. However, DPI-SSL needs special support by a firewall (or other hosting
devices) and generally requires better hardware facilities.

Another aspect to consider is that DPI is a resource-intensive task to perform.
Unless deploying specially designed hardware there is a trade-off in time spent on
each packet and how deep you can inspect a packet’s payload, especially if hosted
on a device with limited resources, such as an ECU. There are 8-bit processors used
for small switching tasks, there are also numerous 16-bit processors being used for
ECUs. These are computationally too weak to run cryptographic protocols, so to
secure an ECU, considerable processing power is required [13].

4.3 Security Analysis

In this section, we analyze the security aspects of the ISO 15118 specification
and later identify important conditions to be reflected in a V2G implementation.
An important note is that we do not focus on third party interaction, which is a
significant part of realizing an ISO 15118 deployment. Instead, we mainly address
concerns for security in the context of a PnC V2G session and subjects related to
how a V2G session is set up and performed.

4.3.1 Threat picture

If one considers the intuitive and practical use of PnC in V2G charging, there is no
denying we will see further deployment of PnC in the future. Growth in charging
infrastructure, charging networks, and the establishment of new secondary actors
will open up for new attack surfaces to be exploited by attackers. Hence, securing
this growing ecosystem will become all the more prevalent as the adoption of V2G
charging progresses.



Design Concept 41

There are multiple scenarios to consider when looking at attack surfaces for a
V2G session, but we have identified four main scenarios that are of concern from
a security point of view. The scenarios are depicted in Table 4.1.

Table 4.1: Possible attacker scenarios in V2G communications.

Scenario Description Attack goal
Malicious EVCC Attacker has control

over the EVCC ECU
that runs the V2G
client software and is
able to direct a series
of attacks.

Exhaust server, deny client
charging, commence open
TCP communications, DoS
on SECC.

Malicious SECC Attacker has control
over the SECC server
and is able to direct a
series of attacks.

Deny EVCC service, DoS
of EVCC, zero-cost charg-
ing, affect power quality in
system.

Man-in-the-middle Attacker has control
over an intermediary
node and can modify,
inject, replay or send
messages at will.

DoS on EVCC by modify-
ing packets, sniff informa-
tion, send incorrect meter-
ing information.

Remote attacker Attacker is on the
charging network
and can sniff, replay
or send packets.

DoS on server or client,
sniff information, hijacking
a session.

As connectivity in modern vehicles increases, there is the persistent threat of
hackers being able to breach the internal network of the car remotely. Not only
that, but physical tampering threats are also a reality, where an adversary could
potentially modify the firmware in the ECUs over the OBD port (on-board diag-
nostics) [74]. Physical access threats are also present on the side of the charging
station, where exposed external ports could give an adversary access to config-
uration files or controller firmware etc. With such access possibilities, security
solutions should expect and look for malicious behavior from fake or remotely
controlled devices in a charging session.

During a V2G session the vehicle controller (EVCC) and the charging sta-
tion controller (SECC) mutually exchange information over HomePlugGreenPhy
(physical medium for smart charging). Essentially, they interact as two computers
on a public network and a malicious party could be present in that network. It is
therefore of importance that these networks are properly secured and maintain a
high level of security.



42 Design Concept

4.3.2 Certificate handling

The first major point of concern is the handling of certificates, which were briefly
introduced in Section 2.3.1. If certificates in the PKI system were to be compro-
mised or if an adversary could forge signatures, this would render the whole V2G
communication insecure on several levels. To mention two examples, an adversary
could charge on another person’s behalf (if in possession of the contract certifi-
cate) or the attacker could set up a malicious charging station (with the SECC
certificate). The specification implicitly tries to mitigate this issue by limiting the
lifetime of a contract certificate (maximum of two years expiration), forcing the
client to engage in sending a CertificateUpdate request to be able to continue
using PnC. Furthermore, this is why proper action would have to be taken by CAs
and Sub-CAs to control the issuance of new certificates and responsibly revoke
any known compromised certificates in the system. In addition to this, OEMs
and other involved parties would also have to secure the private keys stored in
the EVCC as well as the SECC. An option would preferably include the use of a
hardware security model (HSM) for efficient cryptographic computation and most
importantly restrict access to the private keys.

4.3.3 UDP in V2G

TLS is the basis for all security properties upheld on the transport layer. Without
TLS, the communication would be open and readable, which opens up for many
attack vectors to be executed. For example, this increases the possibility for remote
TCP hijacking attacks with IP spoofing, making it possible for an adversary to send
messages that appear to originate from the EVCC client. Therefore, concerns for
remote exploits and other similar attacks are effectively mitigated by the security
properties of TLS. With that in mind, the protocol setup phase is of concern since
it negotiates the terms for TLS. If the security parameter in the SDP request is
changed, communication could commence without TLS by downgrading the client
to use a non-TLS setup. It is therefore essential that OEMs require TLS to be
used when deploying their custom build of the ISO 15118 specification.

There could be a possibility to perform DoS with the UDP multicast feature
utilized during the startup phase of the protocol. This can be done through a
malicious EVCC client or a remote attacker, who floods the SECC with large
SDP requests over UDP. As a result, the attacker could drain the bandwidth of
the SECC – making the charging station unable to properly continue its services.
To prevent this, the SECC server should apply the basic protection of only expect
requests with a length of two bytes and not respond to more than 50 SDP requests
from a single IP (as it is defined in the protocol).

Dudek et al. [75] studied the HomePlugGreenPhy standard used for V2G
communications. They found that it was possible for an attacker to fake a SDP
response by sending crafted arbitrary IPv6 address and port pairs. It was only
possible to establish the physical presence (to send UDP packets) by quickly ob-
taining the network membership key used to create or join a HomePlug network.
As the attacker has been accepted as the SECC, the attacker could act as a man-in-
middle or as a malicious charging station; capable of editing, injecting or dropping
packets as desired. This would however not adventure the security of the vital



Design Concept 43

private keys sent in CertificateInstallation or CertificateUpdate message
pairs. Since these message types demand the use of TLS (according to the ISO).
Moreover, this attack presumes that the session can be downgraded from TLS to
use open communication (otherwise, the attacker will fail to be authenticated by
the EVCC since he does not have a signed SECC certificate).

4.3.4 TCP in V2G

The V2G protocol defined in the ISO 15118 specification is a deterministic protocol
in which messages are sent only at certain stages in the protocol. From a security
standpoint, this deterministic behavior can be considered an advantage, since an
attacker needs to abide by the next expected message structure if an attack is to
go undetected. A practical example would be e.g., after sending a SessionSetup
request, the server should not answer such requests again. This narrows the attack
surface and prevents malicious behavior such as fuzzing, bogus messaging and
flooding attacks. With this in mind, the OEMs deploying the protocol should
strictly enforce these states and message sequences in their implementations of
ISO 15118.

A DCU that hosts the V2G application can have multiple purposes and would
realistically operate several applications simultaneously. It is therefore important
that the number of associated addresses and open ports are restricted, and does
not reveal any information on port scans or accept random connection attempts.

4.3.5 XML and EXI security

The V2G protocol uses XML-based messages in compressed EXI format with XML
security properties for signatures and encryption. Signatures are applied to ac-
tions where authentication, authorization and integrity requirements are needed
(i.e., when authorizing a vehicle for charging or signing of metering informa-
tion). Encryption on the other hand is only used to obscure the private keys
delivered through CertificateInstallation and CertificateUpdate messages.
Note that this encryption sits on the application layer and still implicitly benefits
from the encryption properties of TLS. Together, this hybrid scheme serves to
secure critical points of information exchanges and safeguards sensitive data sent
during a session.

Regarding how encryption keys are established; the key used for signing is
already present in the vehicle from the contract certificate. A shared key is derived
for encryption through ephemeral-static ECDH using the private key associated
with the contract certificate. If the private key were to be compromised by an
adversary the shared key could be recreated from the EVCC private key. This
shared key can then be used to reveal all data of past and future sessions sent
with this key. Again, we see the further need to safely secure the keys stored in
the vehicle.

When signing documents with the contract certificate using the ECDSA algo-
rithm, it is important to maintain high entropy in the scheme. The IV, nonces and
challenges should all be created using a source of proper randomness. Otherwise,
an adversary could reveal parts or obtain the full private key if the same IV is



44 Design Concept

used for all signatures. This is further mentioned in the specification [16].
XML standard has its advantages and is currently used through widespread

adoption as a way to structure, decode and encode data. However, security re-
searchers have criticised XML for its unnecessary complexity and performance
flaws [76], and OWASP has an extensive record of its vulnerabilities [77]. W3C
describes in their definition of EXI format 1.0 [44] that EXI shares the same secu-
rity issues as XML, defined in RFC3023 [78]. As an example, EXI is compatible
with user-defined datatype representations, which can be processed incorrectly if
not careful. This may introduce new vulnerabilities that can be exploited. Thus,
the ISO 15118 implementations utilizing XML/EXI should be deliberately ana-
lyzed not to introduce security weaknesses.

4.3.6 Vehicle Charging

Another aspect of V2G sessions is how charging progress in exchanged between the
server and the client. When a vehicle is charging, using either AC or DC transfer,
there exists a field that represents the current charging progress of the vehicle.
The parameter is called chargeProgress and is present in the PowerDelivery
request. An attacker who is able to modify this value could effectively deny the
client service by modifying the parameter and setting it to "Stop". Another variant
of this malicious act would be to trigger constant renegotiations between the EVCC
and the SECC by continuously modifying the value to "Renegotiation". In a best
case scenario, the operator receiving EV reports from the SECC could perhaps
pick-up on this anomalous activity, and report the vehicle’s status to responsible
agencies. To perform the described attack, the adversary would have to be in
control over the ECU or be established as a man-in-the-middle.

In V2G the charging station needs to employ proper power management not
to overload the grid. Hauck et al. [17] (mentioned in Section 1.6) also made a
security analysis of the ISO 15118 specification. In their quite extensive analy-
sis, they highlight the danger of gaining physical access to a charging station and
what implications it could have for the grid infrastructure. For example, a mali-
cious actor could change the PowerDelivery or CurrentDemand messages (which
deliver information about charging configurations, power and voltage demands,
etc.) to affect the power quality of the local grid, or delay or even exit charg-
ing sessions on command. Even more beneficial for the adversary controlling the
EVCC, they could change the metering information sent from the charging station
and subsequently charge for zero cost. To lower the exposure to physical access
threats, Hauck et al. [17] suggest mitigation techniques using tampering alarms
and encrypting the flash memory used in the charging station, among others.

4.3.7 Error Handling

Another topic to consider is how errors are handled during a session. In the
ISO 15118 specification, there are explicitly specified ways to handle errors on an
application level, e.g., specifying when certain error codes should be sent from
the server or client. An aspect not covered by the specification is how the EVCC
and SECC should behave in such instances, and it is mostly up to the OEMs and



Design Concept 45

suppliers to define this on their own. For instance, the client could be configured to
exit a session after a certain error has occurred a set number of times, this could
be leveraged to effectively stop a session by prompting a series of such errors.
Another example could be a configuration where sending a certain error from the
server-side will prompt the client to send a new request. This could be exploited in
order to try to force the client to be stuck in an endless loop, without any means
to exit or progress in the session. In conclusion, it can be stated that defined
behaviors for error handling must be carefully analyzed to not enable exploits as
mentioned above.

4.3.8 Recommendations

Based on the findings presented in this section, we here summarize the key take-
aways into a list of recommendations for realizing a secure deployment of ISO
15118 PnC solutions.

• TLS should always be the default for ensuring secure communications. OEMs
should, to whatever extent possible, avoid open data exchange since it opens
up several attack vectors.

• The SECC server should be stateful and not respond to messages outside
its state progression path during communications.

• The storage of private keys in the EVCC as well as SECC should be cryp-
tographically secured.

• Proper random number generators should be used for ECDSA nonce, chal-
lenge and IV to prevent an adversary from guessing the secret key.

• The charging station should have tamper-proof mechanisms (tampering
alarms, encrypted flash memory, removal of external input ports, etc.)

• Error handling should be carefully configured not to introduce exploitable
behaviors/actions in the EVCC/SECC.

In conclusion, the V2G communication protocol in the ISO 15118 specification
can be considered mostly secure and employs proper security practices to safeguard
user data and mitigate several potential exploits and vulnerabilities. The main
security flaws are dependent on the party implementing the protocol, and whether
this implementation is done properly.

4.4 V2G IDS Proof of Concept

This section presents the reader with our motivations for the design choices of the
implemented IDS.



46 Design Concept

4.4.1 HIDS

The progress of E/E-architectures moving towards domain-centralized topologies
and the fact that the ISO 15118 protocol most likely will be concerning only one
domain (the domain controlling charging of the vehicle), it made sense for us to
design and implement a HIDS for this type of protocol. In practice, this would
mean that the detection system would be hosted on a single dedicated ECU or a
multipurpose DCU. By developing a security solution for one host it is easier to
focus on one specific protocol, as we did for this master’s thesis. Moreover, the
design principles proposed for this IDS could be applied on more general concepts,
such as an in-vehicle NIDS or central gateway.

4.4.2 Detection Methods

There were several reasons why we chose to implement two methods of detection,
namely specification-based and anomaly-based detection. First of all, the previous
master’s thesis completed at ESCRYPT by Yilmaz (see Section 1.6.3) resulted in
a security concept for a central gateway, where Yilmaz stated that the combina-
tion of an anomaly-based and signature-based detection could perform the DPI.
We considered using SNORT, but they did not ship rules for the ISO 15118 spec-
ification, which only left the option of writing our own rules and signatures for
detection. This would require a deeper knowledge regarding possible threats and
attacks enabled by the ISO 15118 specification, which we did not have time to
investigate further in this project. After further research, we found a few promis-
ing articles using specification-based methods as an alternative to signature-based
detection. Both Larson et al. (see Section 1.6.4) and Salman and Bresch (see
Section 1.5.1) used a specification-based method with restrictions on e.g., mes-
sage type and frequencies. Overall, the specification-based approach seemed as a
promising option, which could potentially allow for similar detection coverage as
signatures. We found the approach to be quite intuitive to implement, by basically
reapplying a selected number of conditions defined in the specification.

In Anomaly Detection for SOME/IP using Complex Event Processing (see
Section 1.5.2) the authors list the anomalies they have considered for their imple-
mentation of an anomaly-based IDS for the protocol SOME/IP, which is a protocol
used for service-oriented communication in vehicles. Herold et al. considered mal-
formed packets, protocol violations, system-specific violations and timing issues
[10]. We would argue malformed packets and timing issues would go under both
categories of detection methods, while protocol violations goes under specification-
based detection. Malformed packets are packets whose structure does not comply
with the protocol, they are either not expected by the specification or they behave
abnormally in some other way. Malformed packets may be used to trigger bugs in
the protocol implementation or covert the channel to exchange undetected infor-
mation. Protocol violations occur when a packet deviates from the standard. As
the name might indicate, timing issues has to do with violations of time-related
conditions.

Another master’s thesis, which influenced our choice of implementing the com-
bination of specification-based and anomaly-based detection was Design and im-
plementation of an intrusion detection system (IDS) for in-vehicle networks by



Design Concept 47

Salman and Bresch (see Section 1.5.1). They implemented an IDS for the CAN
bus, incorporating both of the detection methods [9].

Overall, the recent reports we found in our research about IDSs in vehicles
seem to lean towards this kind of two method approach, and therefore we decided
to implement an IDS with specification-based and anomaly-based detection.

4.4.3 DPI

We wanted to incorporate DPI into our solution as well, the IDS covers detection
from the IP layer and up all the way to the application layer of the OSI model.
The packets sent through a V2G session are analyzed through all the layers, since
OpenV2G uses codec functionality that parses EXI/XML data. If the data were
incorrect, the parser would generate an error, discard the packet and continue.
Therefore, some of the specification-based detection is already covered by the
OpenV2G library, packets are required to be well-formed or the parser will not
decode or encode the EXI/XML data. By using open source libraries, we chose to
focus on implementing the IDS, rather than implementing the ISO 15118 standard
from scratch.

4.4.4 Specification-based Detection

When implementing the specification-based detection we were required to read the
ISO 15118 protocol to some extent. As one could see Figure 2.9 in Section 2.3.1
there are eight different parts of the ISO 15118 family, which adds up to over
700 pages, and frankly, we found that amount of pages a little overwhelming.
We discussed our concerns with our supervisors and came to the conclusion that
we could not cover all parts of the specification, and they recommended that we
should only focus on the message types and sequence of messages. This was covered
in ISO 15118-2, which we started to read rather thoroughly. The standard was
straightforward and easy to understand, there were flow charts of both AC and DC
sessions using both external payment and PnC, which helped us to understand the
allowed message sequences. After getting the background knowledge, we tried to
come up with possible attack scenarios and flaws within the protocol, see Table 4.1
in Section 4.3.1 for our threat picture of the standard.

As mentioned, the ISO 15118 specification included some flowcharts describing
the exact message sequence allowed, and we decided to start out with implementing
stateful logic for our IDS. We defined states for all message types, both requests and
responses. Then when a message entered the system its type was compared with
the waiting state of the IDS, to check whether the message was indeed expected
based on the current state of the IDS. The specification-based detection moved the
states along, confirming that the incoming message followed the allowed sequence
order. This prevents the attacker from performing replay attacks to some extent,
dropping packets, sending bogus packets and exhausting the server.

The protocol also included a table stating all the allowed timeouts between
a request and its respective response, in other words the time allowed to elapse
between a request being sent and the response to arrive, see Table A.2. We decided
to implement a check for these timeouts as well, this could detect a possible drop



48 Design Concept

of packet or that an attacker tried to sniff and modify a packet.
We also saw it as important to make sure that AC and DC specific messages

were not allowed in the other respective session. Even if a packet is well-formed
and well-structured it should not be allowed if it is not the right energy transfer
mode. Therefore, the energy transfer mode was also stored in the IDS, to ensure
that only messages with the valid energy transfer mode was allowed.

It was the same with method of payment; PnC requires that a TLS session
is set up between the EVCC and SECC. In order to set up a TLS session one
is required to exchange certificates and certificate messages requires that TLS is
used. The method of payment and a TLS flag are stored in the IDS for us to check
that these types of messages are allowed to be sent. There were no frequency
limitations except for SDP messages, and we used the frequency limitation on
these SDP messages to implement protection against SDP flooding. The protocol
offered no real protection against replay, flooding or DoS attacks for other message
types. The payload length limitation for all messages except SDP messages is set
to 4294967295 bytes in the protocol, which is a quite substantial size. For SDP
messages, there were a static size for the request and response, and we implemented
a check for the payload length for these types of messages. Again, for general
messages there is no protection against exhaustion or DoS attacks.

There is a need for storing the V2G session ID, it is not allowed to change
through the entire session when it has been set and it is sent in every header.
Therefore, the IDS stores the session ID to ensure that it has not been modified.
This prevents some impostor attacks, where the attacker spoofs the session and
tries to send his or her own messages.

4.4.5 Anomaly-based Detection

Anomaly-based detection is one of the more effective approaches to detect future
attacks. It analyzes packets to decide whether they are deviating from expected
behavior. With the anomaly-based part, we wanted to fill some of the security
loopholes that the specification-based detection did not cover. One of the major
ones being DoS attacks, for the frequency, payload length and timeout of a message
type.

The protocol had a clear definition of which order the messages were supposed
to arrive, but had poor protection against flooding attacks. There were some
messages that were allowed to be sent repeatedly, which opens up for flooding
and replay attacks for those types of messages. There was no real payload length
limit for the messages either; the fact that they had to be well-formed and well-
structured helped a bit. However, an attacker could still exhaust the server with
large messages.

The protocol actually had strict timeouts for all message types, but some of
them had up to five seconds. A potential attack could be to resend these types of
messages in order to deny charging for others.

Timeout and payload length checks prevent an attacker from sending sniffed
and to some extent modified packets, the modification may result in an abnormal
delay or payload length, which will be detected by the IDS.

We decided to separate the anomaly-based detection based on the energy trans-



Design Concept 49

fer mode, AC or DC. The ISO 15118 specification differentiates the two energy
transfer modes and we came to the conclusion that it would be beneficial to imple-
ment this as well. Not only for the specification-based part, but for the anomaly-
based part as well.

4.4.6 Prevention through IP Address and Port Number Storage

We decided to store the IP address and port number of the SECC and EVCC for
the TCP or TLS session. This way, if another party tried to spoof the charging
session the IDS would detect if they used another IP address or port number.
This also prevents port scanning, which means that someone is trying to send
client requests to a range of server port addresses on a host, with the goal of
finding an active port and exploiting a known vulnerability of that service. For
example, the IDS will detect if a rouge charging station is trying to set up another
session during an ongoing one.

One major exploit of the ISO 15118 standard is when the sender is not yet
authenticated, which is before the handshake. There is a limit of 50 on the amount
of SDP requests, a client can send before the server terminates the session. This is
opens up the system for potential DoS attacks. We chose to store the IP addresses
which were unsuccessful with setting up a V2G session and the respective amount
of times an SDP request had been sent from that IP address. If an IP address sent
more than 50 requests the IDS detected this. We chose to store five IP addresses,
so no more than five different IP addresses were allowed to try to connect to the
same SECC. They were stored for two hours before they were flushed. These
security measures helps the IDS to detect SDP flooding and SDP flooding from
multiple addresses.





Chapter5
Implementation

This chapter will describe the implementation of the IDS concept. It will outline
the different detection methods within the IDS and how we managed to set up
attack sessions between an SECC server and an EVCC client.

5.1 IDS

Since the ISO 15118 specification is expected to be deployed on a single ECU
or DCU, we decided that the IDS would be designed as a HIDS, which in turn
adopted a hybrid approach with two main parts: specification- and anomaly-based
detection. We further decided that the IDS was to be implemented as a passive
packet sniffer that generates reports, and not have any prevention mechanisms in
place. Furthermore, the IDS was designed to have awareness of the higher protocol
layers in the OSI model, starting from the IP layer. Figure 5.1 below illustrates
the implemented IDS and its different components.

The specification-based detection is implemented based on the ISO 15118 spec-
ification and its main detection feature is to inform the IDS if an incoming package
is out of order based on the specification standard. There are also some messages
that are AC or DC specific, in addition to messages that depend on the selected
method of payment. This is described in the specification and therefore, this type
of detection is handled by the specification-based part.

A data collector was implemented in order to collect data from the example
pcap files for the anomaly-based detection methods. The data is stored in binary
data files and categorized based on if the transfer mode of the example file was
AC or DC. The anomaly-based part detects whether a message has been sent
too few or too many times during a session (frequency). It also detects if the
payload length of the package is seen as larger or smaller than usual. Finally, both
the specification- and anomaly-based detection detects whether the time elapsed
between a request-response pair is out of bounds. From these data categories, the
collector separates the data into distinct data files for frequency, payload length
and time elapsed for each respective request-response pair.

The anomaly-based detection was implemented to use the data files to extract
the message-specific data, compute individual thresholds for each category and use
these thresholds as a reference for classifying packets. These thresholds are then
compared to the actual values for incoming packets in real-time. The anomaly-

51



52 Implementation

Figure 5.1: Illustration of the implemented IDS.

based detection uses the energy transfer mode, which the IDS stores, in order to
get the normal minimum and maximum values for that specific type of message.
The anomaly-based part also persistently stores the frequencies of all the message
types for the current session. With this information, it is possible for the anomaly-
based part to check whether the incoming message type has exceeded its expected
frequency, and thus should be ruled as a positive detection. This is realized by
continuously comparing against the upper bound frequency, whereas the lower
bound frequency needs to be reported at the end of a session.

A V2G session starts with UDP for the SDP request-response pair, after that
the protocol has stated that either TCP or TLS may be used for the remaining
communication of the session. During the implementation of this IDS only TCP
has been used.

The IDS handles incoming packets either from a pcap file (offline) or a live
capture from an ongoing V2G session. Following this, the packet handler forwards
the incoming packet to the detection engine based on three different message cat-
egories: SDP, Supported Application Protocol or other EXI messages. OpenV2G
was used to encode and decode the incoming packets, and this open source library
was designed to differentiate the three different message categories and that is why
our implemented IDS solution also differentiates them. The IDS then identifies
every message according to its message type defined in the ISO 15118 specifica-
tion, they can be found in Appendix A. The IDS is stateful and keeps track of the
session state, which is changed based on the message type. In Figure 5.2, one can
observe the different characteristics of the V2G session and the incoming message.



Implementation 53

typedef struct v2g_session_t {
uint8_t session_status; //Session status: IDS state
uint8_t msg_type; //Current message type used
uint8_t resp_code; //Current response code
uint64_t msg_timestamp_elapsed; /*Elapsed message time

from start*/
uint32_t evcc_ip_address[4];
uint16_t evcc_port;
uint32_t secc_ip_address[4];
uint16_t secc_port;
uint8_t tls_security; /*0x10 if TLS is not used,

otherwise 0*/
uint8_t session_id[8]; /*Session ID for current

session*/
uint8_t payment_method; //Contract or ExternalPayment
uint8_t energy_transfer_mode; //0 for DC and 1 for AC
uint32_t payload_length; /*Payload length of current

packet*/
} v2g_session_t;

Figure 5.2: The V2G session object (struct) which the IDS updates
depending on the incoming message.

5.1.1 SDP Messages

First of all, the SDP request is the only message type that has a limit on the
number of times it can be sent before one should terminate the communication
between the SECC and EVCC. According to the ISO 15118 specification an SDP
request may only be sent 50 times, therefore, there is a method to control the
amount of times an IP address has sent such a request.

Additionally, only five different IP addresses may fail to connect within the
span of two hours. The IDS stores the different IP addresses and when two hours
has passed, the storage is flushed. The storage is also flushed when an SDP
request-response pair has been accepted as valid messages by the IDS.

The SDP response carries information whether TLS is used for the communi-
cation or not. If TLS is not used this is detected and reported.

Another check, which is specification-based, is that the current message type is
checked against the session status of the IDS. This is controlled to decide whether
the current incoming message is expected or if it is out of order based on the
ISO 15118 specification. This is done for all incoming messages during the V2G
session, not only for SDP messages.

Finally, a specification-based method tells the IDS whether the payload length
of the incoming packet is seen as normal; two bytes for request and twenty bytes
for response.



54 Implementation

5.1.2 Supported App Protocol Handshake Messages

The purpose of this request-response pair is to establish which protocols are sup-
ported by both the SECC and EVCC.

As with the SDP messages the current message type is checked against the
session status of the IDS. The specification-based detection also covers timeouts
for every message type’s request-response pair, except for SDP messages according
to the ISO 15118 specification. In Appendix A, one can see all the timeouts for the
respective message types. This timeout is the time elapsed between the request
and response. For example, the timestamp for the SupportedAppProtocol request
is stored upon arrival to the anomaly-based detector and when the corresponding
response arrives, the elapsed time in between the pair is calculated. If the time
exceeds two seconds a detection is reported, see Table A.2 in Appendix A. As
previously mentioned, this control is performed for all messages except for SDP
messages.

As there is a specification-based check performed, similarly there is an anomaly-
based check performed. The anomaly-based part detects on frequency, payload
length and time elapsed. This is done for all the remaining message types, except
for SDP messages.

There is also an IP address and port number control from now on for all
the remaining messages during the session. As can be seen in Figure 5.2, port
and address pairs are stored for EVCC as well as SECC. This is to make sure
that a V2G session has the same receiver and sender throughout the complete
communication. If an incoming message has a different IP address or port number
this is detected.

5.1.3 Other EXI Messages

As mentioned previously, the categorization is due to how the encoding and decod-
ing of OpenV2G is performed. This makes it possible to handle all the remaining
EXI messages in the same manner.

Firstly, there is an IP address and port number control for every other EXI
message. Moreover, during the session setup the SECC decides a random and
unique session ID for the established connection and informs the EVCC of the
session ID through the SessionSetup response. Similarly to IP address and port
number control, this is also checked for every remaining incoming message to
make sure the session ID has not been modified. The SECC is not allowed to
send another SessionSetup response with a new session ID during the rest of
the session, and other incoming messages are not allowed to modify the attached
session ID.

The method of payment is set by the EVCC through a message type called
PaymentServiceSelection request, as can be seen in Table A.1 in Appendix A
certificates are only allowed to be handled if the payment method contract is chosen
by the EVCC. The contract payment method is used when PnC is deployed for
charging the vehicle. Naturally, the specification-based detector controls whether
the correct payment is chosen before handling certificates.

There is also the matter of energy transfer mode, which has been mentioned
to play a part in the detection for both the specification-based and anomaly-



Implementation 55

based parts. The transfer mode is set by the EVCC through a message type
called ChargeParameterDiscovery request. The messages that are dependent on
a specific transfer mode are controlled by the specification-based detector.

Similarly as for the handshake messages, other EXI messages have specification-
based detection controlling the message sequence order and request-response pair
timeout table. While the anomaly-based detector checks the frequency, payload
length and request-response pair timeout.

The upper frequency bound is checked for every message type during the ses-
sion, and when the SessionStop response has arrived, the lower frequency bound
is checked. The SessionStop response is sent from the SECC – signaling the
termination of the V2G session.

5.1.4 Detection Handling

Whenever an anomaly is detected, whether it is by the specification-based or
anomaly-based detector, a detection is generated and forwarded to an incident
response manager. The manager logs the detection based on a detection code, all
detection codes can be found in the Table A.3 in Appendix A. The manager also
has a set tolerance threshold for the anomaly-based detections. The effect of this
tolerance threshold will be reviewed further in Chapter 7.

5.1.5 Statistical Data Tracker

When evaluating the IDS we used the binary classification metrics as mentioned
in Section 3.4.1. The IDS uses a utility we call the statistical data tracker to
gather data for which detection codes were generated for a given packet. This
can seamlessly be switched on or off by adding an ending flag for tracking in
the command line. Together with expected detection codes generated from the
attacker client, the final performance metrics are then calculated at the close of
the IDS client (by e.g., exiting with Ctrl-C).

The tracker also registers classification speed – the time it takes for a packet
entering the IDS until it has been ruled as a negative or positive – and calculates
average, worst and best case classification times. The classification speed mea-
surements can be started by changing the tracker flag to 2 as the last parameter
of the IDS terminal command.

5.2 V2G Session

To establish a V2G session we have based the client and server software on the test
examples available in the OpenV2G source code (present in the file main_example.c).
The examples accessible in OpenV2G use byte streams exclusively to simulate a
session between client and server, there is no differentiating between the server
and client. Since we wanted to simulate real communications according to the
ISO 15118 specification, the server- and client-specific calls were divided into sep-
arate c files (evcc_client and secc_server). Depending on the command line
input upon starting the executable main file; either an EVCC or SECC is started.
To run a V2G session one starts the SECC first and then the EVCC, as they are



56 Implementation

started as separate processes. With the additional integration of UDP and TCP
using IPv6, we could successfully execute V2G sessions.

5.2.1 The EVCC Client

The client simulates an EVCC and was implemented as the initiating party during
a V2G session according to the ISO 15118 specification. During the session, the
client dictates what messages will be sent next, unless there is a server error. Then
the server never initiates correspondence. An example of such errors could be TCP
or TLS errors (e.g., socket timeouts).

The client is started through a terminal window as seen in Figure 5.3. It takes
the following parameters: network interface, server IPv6 address, energy transfer
mode (either AC or DC), a flag with an attack pattern (a sum indicating which
attacks should be performed, explained further in Section 5.2.3) and finally a flag
informing the client which statistical data tracking mode should be used.

There are two different static example sessions that can be executed, using
either AC or DC charging. Which one of these sessions are launched depend on
the input parameter given to the client application.

Figure 5.3: A terminal window running the EVCC application.

5.2.2 The SECC Server

The SECC server was implemented as a passive listener with limited capabilities
for error handling and V2G aware decision making. It always answers a client’s
request with a response regardless of that message’s context in the V2G communi-
cation, e.g., if a SessionStop request is received the server will end the session by
responding with a SessionStop response regardless of it being a finished session
or not. The server would not behave in such a way in a real-world implementation
of the ISO 15118 specification. But since we had a rather short deadline for the
thesis, implementing a fully-featured server application was not within our time
scope. The server is started similarly to the client as seen in Figure 5.4.



Implementation 57

Figure 5.4: A terminal window running the SECC server application
with a successful connection made to EVCC client.

5.2.3 Attack Integration

As indicated in Section 3.4.3, we needed to integrate attack scenarios into our
implementation to be able to test the security of our IDS. Consider these two
examples: we want to perform an attack by dropping responses from the server,
effectively denying the client its service; or we want to flood the server with an
abundance of messages from the client. In the light of such examples, it is clear
that both parties need to deviate from normal session behavior, thus, we decided
on having the EVCC client and SECC server adapt a particular behavior for
certain attacks. In other words, we integrated attack functionality directly into the
server and client respectively. The attacks are exclusively directed from the EVCC
client (for example, flooding the server with multiple requests) and the client also
prompts attack procedures on the server-side for certain attack scenarios (e.g.,
when delaying response messages).

A single or several attacks can be performed by using the flag -a
<attack_pattern> informing both the client and the server which attack pattern
to execute, where an attack pattern is a number parsed as two bytes with each bit
representing an individual attack. See Figure 5.5, where number one triggers an
SDP flooding attack and number two triggers a message delay attack, the attack
pattern three would then trigger both SDP flooding and the message delay attack.
This is due to that the number three is the sum of the attack patterns for the
respective attacks. If several attacks are launched, a separate session instance will
be executed for each attack.

If an attack pattern is entered for a session, the detection codes for every
packet are stored in a binary file using the aforementioned statistical data tracker
(see Section 5.1.5). These are the expected detection codes and are later compared
to the detection codes generated by the IDS to decide how well the IDS performed
for the specific attack pattern. The EVCC client solely performs the process of
writing correct detection codes as attacks are executed.



58 Implementation

Figure 5.5: A terminal window running the EVCC client application
with attacks. The initiated attack is SDP flooding from a single
source address (indicated by the number one following -a flag).



Chapter6
Result

In this chapter, we present the result from running the attack scenarios described
in Section 3.4.3. Only relevant results for later discussion are showcased in this
chapter, and we refer to Appendix A for all the measurements recorded during the
tests.

6.1 Specification-based Results

The specification-based tests were evaluated separately from the anomaly-based
part for both AC and DC sessions and showed great results overall. In all the
attacks we set up we found that the specification-based anomaly detector had
100% coverage for SDP flooding, delay, injection as well as exhaust attacks. This
can be seen in Table 6.1. In contrast, the attack when flooding a session with
additional ChargingStatus and CurrentDemand showed results of 0% detection
(if excluding detections where TLS is not used). The last result in Table 6.1 was to
be expected since these are allowed sequences in the specification-based detection
and should only be reported by the anomaly-based detection method. To be more
specific, request-response pairs in the charging phase are allowed to be looped,
therefore this is a way to perform a flooding attack without the specification-based
method detecting it.

Table 6.1: The specification-based results for both AC and DC tests.

Attack Detection rate
SDP Flooding 100%
Delay attack 100%

Injection attack 100%
Exhaust attack 100%

Charging session flood 0%

6.2 Anomaly-based Results

For the anomaly-based detection, there were two configuration metrics to evaluate:
the tolerance threshold and LnUB threshold.

59



60 Result

As mentioned in Section 3.4.2, the tolerance threshold is the threshold we
have decided is an acceptable number of anomaly-based detection codes to go
unnoticed. The different tolerance values we have tested are 0 and 3, meaning 0 or
3 unreported detection codes for each type of anomaly-based detection: frequency,
payload length, and request-response pair timeout. No more than the chosen
tolerance threshold of each anomaly-based detection type may go unreported by
the IDS.

The LnUB threshold decides how much above the minimum or maximum value
the IDS will allow an incoming packet value to go unreported. We have tested four
numbers of LnUB thresholds: 0, 0.1, 0.25 and 0.4. For example, if a SessionSetup
request has been sent during a DC session and the IDS is checking the payload
length, the length cannot be lower than 36 or higher than 68 if the LnUB threshold
zero has been chosen. In the case of the threshold being 0.25, the LnUB would be
27 respective 85.

The tables below are showing the different configurations used when testing
attack scenarios, which resulted in the best case scenario for balanced accuracy,
f1-score and f0.5-score for each type of attack scenario. The best metric value has
a colored background. There are tables that contain merely one row because using
the same configuration aligns the three values. There are also tables were different
configurations lead to separate rows because the values do not align.

Each attack is either in AC or DC energy mode, therefore the results are
presented in separate sections for each energy mode type. Furthermore, the AC
sessions recorded between 850–1300 packets while the DC sessions registered be-
tween 1200–1700 packets per session.

Lastly, the classification speed is obtained in microseconds for both AC and
DC charging sessions. The classification speed is the time it takes from the entry
of a packet until the IDS has either let the packet through or classified it as
a detection. Best, worst and average speeds are calculated continuously as the
session progresses. For one of the measurements, we run the IDS under a normal
session to evaluate speeds during normal circumstances. In the other case, we run
the IDS with attacks that trigger multiple detections.

6.2.1 AC Results

Delay Attack

When we performed the attack that delayed a random number of packets there
were two best case scenarios. First, there was the configuration that had the
tolerance threshold of 0 and the LnUB threshold of 0.1, which resulted in the best
balanced accuracy score. And the tolerance threshold 3 and the LnUB of 0.25
resulted in the best f1-score and f0.5-score. See Table 6.2 below for all metrics for
the two best configurations.

Balanced accuracy prioritizes that the TPR is high and that the FPR is low.
One may note that the FPR actually is lower in Conf5. But due to the FPR being
relatively small for Conf3 and that the TPR is higher, the balanced accuracy is
still better for Conf3.

Both of the F -scores prioritize precision and recall (TPR), and one can observe
that the precision for Conf5 is 1, which is the highest value possible. As mentioned,



Result 61

the TPR is actually higher for Conf3, but since its precision is lower, the F -scores
are not as good for Conf3.

By just looking at the two cases, one can see that Conf3 leads to more normal
packets being incorrectly detected as attacks. On the other hand, all of the actual
malicious packets were detected. Conf5 had a higher precision, which in this
case means there were no normal packets being incorrectly identified as attacks.
However, with more actual normal packets being classified as normal packets, there
were also more attack packets being classified as normal packets.

Table 6.2: The configurations resulting in the best performance for
the anomaly-based detection performing an attack delaying a
random number of message types with timeout 2 seconds, see
Table 3.2

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf3 0 0.0073 1 0.7857 0.9964 0.88 0.8209
Conf5 0.0952 0 0.9048 1 0.9524 0.95 0.9794

Packet Injection Attack

When deploying the packet injection attack, one can note that the resulting table
of the best case scenarios has the two F -scores spread out on two rows, instead
of one, as in the result for the delay attack. Conf3 resulted in the best f0.5-score,
while Conf5 resulted in the best balanced accuracy and f1-score, see Table 6.3
below.

The f1-score is evenly weighted between precision and recall, while the f0.5-
score is weighted more towards precision. If the weight would be 1.5, the F -score
would be weighted more against recall. In other words, the f1-score considers in-
correctly classifying normal packets (false positives) equally as much as incorrectly
classifying malicious packets (false negatives). While the f0.5-score considers false
positives to be worse than false negatives.

One can see that Conf5 has a substantially lower FPR, leading to a better
precision score. Because the f0.5-score is weighted against precision this results
in the better f0.5-score than when using Conf3. The weight also explains why
the f0.5-score is closer to the precision score compared to the f1-score. When the
weight is shifted towards TPR, as for the balanced accuracy score and f1-score,
the relatively low TPR has more effect on those two metrics. That is why Conf3
produced such high balanced accuracy and f1-score, the TPR of 1 is just too high
for the slightly increased FPR to affect them.

Conf5 produced the least amount of false positives and Conf3 leads to the
highest amount of true positives. Conf1 actually had the same TPR, FPR and
FNR as Conf3, which lead to very similar results as for Conf3. Nevertheless, Conf1
lead to the worst f0.5-score for this particular attack, seen in Table B.3, and was
therefore dismissed as one of the better settings.



62 Result

Table 6.3: The configurations resulting in the best performance for
the anomaly-based detection when performing an attack inject-
ing a random number of SessionSetup-, ServiceDiscovery-
and CableCheck request-response pairs.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf3 0 0.007 1 0.8929 0.9965 0.9434 0.9124
Conf5 0.1304 0.0024 0.8696 0.9524 0.9336 0.9091 0.9346

Exhaustion Attack

One of the attack scenarios was an attempt to exhaust the server by replaying
ChargeParameterDiscovery request that returned a large response message. The
best configurations to handle this type of attack was Conf3, which resulted in
the best balanced accuracy, and Conf6, which resulted in the best F -scores, see
Table 6.4 below. Conf6 has the tolerance threshold of 3 and the LnUB threshold
of 0.4. Other than the flooding attack, which was supposed to test the anomaly-
based part only, the anomaly-based detection had the best performance during
this attack.

The TPR was between 0.98-0.99 and the precision score was 1, which is the
highest possible, for a lot of different configurations. The best and worst scores
were dependent on the third decimal for balanced accuracy and f1-score and the
fourth decimal for the f0.5-score. The highest TPR was produced by Conf3, and
therefore resulted in the best balanced accuracy. Among the configurations that
had the precision score of 1, Conf6 had the highest TPR. Even though the best
TPR was determined based on the third decimal, this was enough to produce the
highest F -scores.

If one looks at Table B.4 one can see that the tolerance threshold 3 lowers
the FPR, the amount of normal packages being identified as attacks is zero when
setting the tolerance threshold to 3. This is the reason why the precision is the
highest possible score, leading to the excellent F -scores. Conf3 produces the most
accurate classification of attack packets. This implies that a tolerance of 0 means a
higher TPR score for this type of attack but also a higher amount of false positives.

Table 6.4: The configurations resulting in the best perfor-
mance for the anomaly-based detection when performing
an attack trying to exhaust the server by sending 80-200
ChargeParameterDiscovery requests in a row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf3 0.0078 0.0070 0.9922 0.9883 0.9926 0.9903 0.9891
Conf6 0.0158 0 0.9842 1 0.9921 0.9921 0.9968



Result 63

Flooding Attack

As indicated previously, the flooding attack was the only attack primarily designed
to test the anomaly-based detection. Therefore, the best configuration was Conf1.
Where no thresholds had been applied and no packets were identified incorrectly.
The only detections were for actual attack packets and no normal packets that
deviated from our collected data were sent. Therefore applying no thresholds
resulted in the best performance, see Table 6.5 below.

Table 6.5: The configurations resulting in the best performance for
the anomaly-based detection when performing an attack trying
to flood the server by sending 210 ChargeStatus requests in a
row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0 1 1 1 1 1

6.2.2 Overall Classification Speed

We can clearly see that the performance in speed goes down as more detections
are being made. The results for the AC case is shown in Table 6.6 below.

Table 6.6: Classification speed measurements in microseconds dur-
ing AC charging sessions.

Scenario Best Worst Average Nbr Detections
packets

Normal session 5.0 96.61 23.9 1278 3
Session with
attacks 4.89 209.94 144.64 1290 74

6.2.3 DC Results

Delay Attack

When we performed the attack which delayed a random number of packets, there
were two best case scenarios with the same result, see Table 6.7 below. One can
see that the result worsened when setting the tolerance threshold to 3 in Table B.6.
This was because no normal packets were mistakenly detected for attacks.

For Conf1 and Conf3 no packets were incorrectly classified, only when thresh-
olds were set to larger values the attack packets were incorrectly identified as
normal packets. Therefore, these were the configurations resulting in the best
performance for this type of attack.



64 Result

Table 6.7: The configurations resulting in the best performance for
the anomaly-based detection performing an attack delaying a
random number of message types with timeout 2 seconds, see
Table 3.2

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0 1 1 1 1 1
Conf3 0 0 1 1 1 1 1

Packet Injection Attack

When deploying the packet injection attack one can observe that in the resulting
Table 6.9, the best case scenarios include Conf1 for the best balanced accuracy.
Also, Conf2 is included since it produced the best F -scores. Conf2 had the toler-
ance and LnUB threshold of 3 respective 0.

Conf1 produced the highest TPR resulting in the best balanced accuracy score,
the anomaly-based detection identified all the attack packets correctly and a rela-
tively low amount of normal packets were classified as attacks. However, one may
note that the precision is very low compared to the precision produced by Conf2.
This is because the number of false positives is higher for Conf1 than Conf2, and
as mentioned previously this aspect affects the precision more than it affects the
balanced accuracy. Conf2 was the only configuration producing such a high preci-
sion for this type of attack; decreasing the number of false positives. This resulted
in a better precision score and better F -scores. The precision scores of the other
configurations were too low to produce the best F -scores, see Table B.7.

Table 6.8: The configurations resulting in the best performance for
the anomaly-based detection when performing an attack inject-
ing a random number of SessionSetup-, ServiceDiscovery-
and CableCheck request-response pairs.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0.0110 1 0.7586 0.9945 0.8628 0.7971
Conf2 0.0968 0.0048 0.9032 0.9032 0.9492 0.9032 0.9032

Exhaustion Attack

One of the attack scenarios was an attempt to exhaust the server by replaying
ChargeParameterDiscovery request which returned a large response message.
The best configurations to handle this type of attack was Conf1, which resulted
in both the best balanced accuracy and F -scores, see Table 6.9 below.

For this attack there were no false positives at all, the results produced by
all the configurations were more or less perfect. The anomaly-based detection
performs remarkably well for this attack scenario. But as with the delay attack,



Result 65

the result becomes inferior when choosing the higher thresholds, even if just by a
slight difference.

The reason why this type of attack scenario does not result in a perfect score
is that the collected data allows for some of the attack packets to be classified as
normal packets. This is due to the expected frequency being higher than the first
couple of attacks, which then can go through undetected.

Table 6.9: The configurations resulting in the best perfor-
mance for the anomaly-based detection when performing
an attack trying to exhaust the server by sending 80-200
ChargeParameterDiscovery requests in a row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0.0078 0 0.9922 1 0.9961 0.9961 0.9984

Flooding Attack

The flooding attack is as stated previously a test for only the anomaly-detection
part, and is supposed to perform well. For DC, a few normal packets were identified
as attacks. Therefore the score is not as great as for the AC session. The two
configurations resulting in the best accuracy and F -scores were Conf1 and Conf2,
see Table 6.10 below.

Table 6.10: The configurations resulting in the best performance for
the anomaly-based detection when performing an attack trying
to flood the server by sending 310 ChargeStatus requests in a
row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0.008 1 0.8 0.9960 0.8889 0.8333
Conf2 0.15 0.0032 0.85 0.8947 0.9234 0.8718 0.8854

All the attack packets were classified correctly using Conf1. Even though
the TPR was the highest possible, the higher amount of false positives led to a
slight decrease of the precision score compared to Conf2. Conf2 had the higher
precision, but also the higher amount of false negatives. The high TPR resulted
in the balanced accuracy being better when using Conf1. The higher amount of
false positives was not enough to affect the balanced accuracy. Though, it did
slightly affect the f1-score. One may notice that the f1-score is very similar for
both configurations, but the TPR was still too high using Conf1 and resulted in
the better f1-score.

When moving the weight towards precision one can see why Conf2 produced
the best f0.5-score, the precision is higher and the lower TPR is not low enough
to drag the resulting f0.5-score down.



66 Result

No attacks were being incorrectly classified using Conf1, though there were a
few false positives. The increased tolerance threshold decreased the FPR as well
as the TPR. But overall, Conf2 produced the better precision score out of the two
configurations.

6.2.4 Overall Classification Speed

Precisely as for the AC case, the results for the DC sessions show a clear decline
in the classification speed as more detections are generated. Results are presented
in Table 6.11 below.

Table 6.11: Classification speed measurements in microseconds dur-
ing DC charging sessions.

Scenario Best Worst Average Nbr Detections
packets

Normal session 4.38 151.25 30.65 1878 3
Session with
attacks 7.19 212.92 120.53 1898 80



Chapter7
Discussion

In this chapter, we discuss the result of the tests and evaluate the design of our IDS
implementation. We also present potential improvements for the implementation
and future work based on our master’s thesis.

7.1 Evaluation of the IDS Implementation

Overall, the implemented IDS showed promising results, one can see that the
performance of specification-based detection was at a 100% for all cases except
for the flooding attack. The charging flood attack shows that there are attack
scenarios in which the specification-based part does not cover. This attack scenario
proves that there is a need for another detection method. This is something we
expected when we outlined the possible attack vectors. We did not have the time
to test all the possible vectors on our IDS. The anomaly-based detection engine
performed well during the test of the flooding attack, which shows that anomaly-
based detection could be an appropriate compensating method for specification-
based detection.

The advantage of the anomaly-based detection is that it is not dependent
on a specification, if a specification is modified or the OEM wants an IDS par-
tially covering the standard protocol, the specification-based detection may have
to be updated as well. The disadvantage with the anomaly-based detection is
that it requires a substantial amount of training data to make accurate predic-
tions, preferably on authentic V2G session data. From our results, we could see
that with different configurations, the performance of the anomaly-based detection
varied. We would have preferred more example data for more trustworthy results.
The anomaly-based detection engine performed at its best for the flooding attack
and exhaustion attack. It performed very well overall for attacks dependent on
frequency. However, the results varied for the delay and packet injection attacks.
The reason for this was mainly that it classified several normal packets as attacks,
which is not optimal. We would still argue that the IDS cannot merely depend
on a specification-based detection engine for covering the entire threat picture
of the ISO 15118 specification. Since the anomaly-based detection covers attack
scenarios the other cannot.

67



68 Discussion

The Best Configurations for Anomaly-based Detection

As displayed in the result different configurations affected the performance of the
anomaly-based detection, and we would like to discuss why we prioritized the best
results based on balanced accuracy and the F -scores. One thing we have learned
through this master’s thesis is that the automotive industry is full of customized
solutions and all OEMs operate differently.

Both balanced accuracy and F -scores are metrics for classifier evaluation, that
to some extent handle class imbalance. Depending on which of the two classes
(negative or positive) outnumbers the other, one of the metrics is preferred over
the other. If the data scenario includes more normal packets than attacks, the
F -score is most preferable. On the other hand, if the attacks are more common
than normal packets, the balanced accuracy is most preferable [79]. As explained
earlier, the difference between the two F -scores is the weight put on precision
versus recall. Depending on what the OEM values as most plausible and useful,
they can use either one of the metrics to choose an appropriate configuration. See
Table 7.1 and 7.2 below for the best configurations and their respective detection
performance for AC respective DC sessions.

Table 7.1: Best configurations for anomaly-based detection for each
attack for AC.

Attack type Balanced F1 F0.5

Accuracy
Delay attack Conf3: 0.996 Conf5: 0.95 Conf5: 0.979
Packet injection attack Conf3: 0.997 Conf3: 0.943 Conf5: 0.935
Exhaustion attack Conf3: 0.993 Conf6: 0.992 Conf6: 0.997
Charging flood attack Conf1: 1 Conf1: 1 Conf1: 1

Table 7.2: Best configurations for anomaly-based detection for each
attack for DC.

Attack type Balanced F1 F0.5

Accuracy
Delay attack Conf1 Conf1 Conf1

or Conf3: 1 or Conf3: 1 or Conf3: 1
Packet injection attack Conf1: 0.995 Conf2: 0.903 Conf2: 0.903
Exhaustion attack Conf1: 0.996 Conf1: 0.996 Conf1: 0.998
Charging flood attack Conf1: 0.996 Conf1: 0.889 Conf2: 0.885

Our example data included data that is more varied for AC sessions for all
attack scenarios, in DC sessions there were not that many occurrences of false
positives. The exception being the final attack scenario, charge flooding, where
the DC session included more false positives than the AC session. The low amount
of false positives resulted in a decrease in actual attacks being detected. Since those



Discussion 69

are more affected by the tolerance and LnUB threshold, and the amount of false
negatives increases. Therefore, in data sets where there were no false positives,
the lowest thresholds were the best performer. However, under real circumstances,
sessions with no false positives are very unlikely to occur. Therefore, we decided
to review the attack scenarios with sessions that included false positives.

In Table 7.3 below, we have listed the configurations from best to worst for
each performance metric. These scores are based on the attack scenarios where
sessions included false positives, see Tables in Appendix B for attack scenarios
which sessions resulted in non-zero FPR. The configuration applied during an at-
tack scenario which resulted in the best metric score received a 0. The remaining
inferior configurations received gradually increasing scores, the worst configuration
received a 5. Then we summed up all the configuration scores, the best config-
uration resulted in the lowest total sum and the worst in the highest total sum.
See Tables in Appendix C for the scores of the metrics for each attack scenario.
In Table 7.3 below, we have included all the configurations and their respective
summed up performance score. We ranked them according to their performance
separated by the three metrics: balanced accuracy, f1-score and f0.5-score.

Table 7.3: Scoreboard for balanced accuracy, f1-score and f0.5-score
showcasing which configuration worked best overall.

Ranking Balanced Accuracy F1 F0.5

1 Conf3: 6 Conf2: 7 Conf2: 4
2 Conf1: 7 Conf1: 11 Conf5: 12
3 Conf2: 10 Conf5: 14 Conf6: 14
4 Conf4: 17 Conf3 or Conf6: 16 Conf4: 15
5 Conf5 or Conf6: 19 Conf4: 17 Conf1: 16
6 Conf3: 20

It is quite clear that the tolerance threshold of 3 improves the f0.5-score, the
threshold decreases the FPR and the precision increases. This leads to higher
f0.5-scores. One can also observe that it is the complete opposite for the balanced
accuracy score, adding a tolerance threshold decreases the amount of actual at-
tacks being detected, which leads to a lower TPR. However, it also means a lower
FPR, and even though this affects the balanced accuracy as well as the F -scores,
balanced accuracy is more affected by the decreasing TPR. As one might have
noticed in the result Chapter 6, the f1-score seems to sometimes align with the
balanced accuracy, while sometimes with the f0.5-score. This is the consequence
of the f1-score being weighted equally between precision and TPR, and we would
like to argue that using the f1-score to decide the best configuration can either be
seen as a compromise between the two other metrics or inconclusive based on the
data we have used.

Generally, it seems like a higher LnUB threshold results in a decrease of the
balanced accuracy. However, Conf3 has a higher LnUB threshold than Conf1,
but the scoreboard shows that Conf3 has the better score. If one looks closer at
the balanced accuracy, the metric was quite similar for those two configurations



70 Discussion

for most of the attack scenarios and therefore resulting in similar scores. The
scoreboard shows that Conf3 has the score 6 and Conf1 has the score 7, which are
close values. According to us, if an OEM is prioritizing a high TPR and balanced
accuracy score, Conf1 and Conf3 can be seen as interchangeable. However, we
would like to interpose that more studies should be conducted using data from
real use cases and investigating the effect different tolerance thresholds may have
on the balanced accuracy score.

For the f0.5-score using a higher LnUB does not necessarily lead to a better
score. As we can see Conf2 was the configuration with the best overall performance
for this metric, followed by Conf5 which received the score 12. One may note that
there is a significant jump between the best and second best score (4 vs 12), which
might imply that if the LnUB threshold is to result in a better performance it
is with the combination of a tolerance threshold. What we can say is that by
not setting a tolerance threshold the f0.5-score gets worse. Again, there should
be more studies conducted on the detection performance effects of different LnUB
values. We conducted tests with the two thresholds set at the same time, but if
one might have had the time, one could conduct more tests with different LnUB
and tolerance thresholds both combined and separately.

Classification Speed

The implementation shows promising results based on the classification speeds
recorded in Table 6.6 and Table 6.11. As can be seen, there is a significant con-
trast between the results obtained under normal circumstances versus when attacks
are performed. This is to be expected since additional procedures are triggered
after detection (such as report generation). Best speed detections remained sta-
ble around 4-7 microseconds with minor fluctuations, which shows that a higher
number of detections does not considerably affect the IDS ability to deliver peak
performance in speeds. Different from the best speed, the worst speed increased
by roughly 116% for AC and 40% for DC. Also, the average speed increased by
almost 6x (24 to 144) in the AC case and 4x (30 to 120) for DC. From these
results, we can conclude that overall detection performance of the IDS will suffer
from higher detection rates in a session. On the other hand, the average speed
recorded could be considered sufficient for the automotive use case. As the mea-
sured average speeds are in the order of 20-150 microseconds, while end-to-end
delays in car domains could fluctuate between 20 microseconds and single-digit
milliseconds [72]. This indicates that the IDS would not contribute to any major
performance downgrades in latency or introduce bottlenecks in its current state
from a classification speed perspective – even when detection rates are high. It
is however important to note that these results might not be consistent with an
actual in-vehicle implementation of this IDS. Nonetheless, we remain optimistic
about its performance capabilities.

DPI

Our IDS rely on full DPI, since the EXI/XML messages need to be parsed by
the codec methods. Decoding and encoding does not add any overhead and is a



Discussion 71

fast process, we did not face any issues incorporating DPI into our solution. The
charging station is not a part of the vehicle and the vehicle is probably shut off while
charging, hence, the same time-sensitive requirements for most other protocols
used in vehicles does not apply on the same level for this type of communication.
Therefore, we are certain that DPI is something that one can incorporate in an
IDS for the ISO 15118 specification.

Improvements

The previous master’s thesis done at ESCRYPT by Yilmaz (Section 1.6.3) investi-
gated a concept for a complete security solution, including both a firewall and an
IDS. We would have liked to extend our solution to incorporate a firewall, which
could cooperate with the IDS. With this set up the IDS could trigger dynamic up-
dates in the firewall, based on new signatures that is within a firewall’s domain. As
a result, the firewall could help levitate the responsibilities of the IDS, which could
help in improving system performance. On the contrary, integrating a firewall with
dynamic updates would increase the complexity of the security architecture, and
might be more bothersome than levitating.

Yilmaz also integrated hardware used for shallow inspection, which would have
been an interesting aspect to investigate. Shallow inspection tasks in our solution
included storing and checking IP addresses and port numbers, and we could have
extended the IDS to check for MAC addresses as well. These are examples of
shallow inspection features that could have been added to extend the scope of the
IDS.

Overall, it would have been beneficial to run the IDS solution in an authentic
V2G environment and see how it performs. Our solution is not inline, it is a passive
sniffer and does not affect latency. Nevertheless, if the IDS is to be deployed on
an ECU it would have to be inline. A normal ECU typically only has one core
with limited capacity for multi-threading, and the IDS must be able to operate
simultaneously as the V2G software in the vehicle. By further adapting the IDS
to be inline, we could have evaluated its system performance with metrics such as
latency and bandwidth. These metrics would have better displayed how the IDS
would have performed under real-world circumstances.

In regard of the architecture and design choices, further investigation into the
complete ISO 15118 protocol would have helped to extend the specification-based
detection engine. There was a limit to how much time we had and thus we had to
prioritize which features to select. Furthermore, our lack of knowledge on vehicle
mechanics and manufacturing surely affected the extent to which we could operate.
If we would have known more about what was viewed as normal V2G session data,
in regards to e.g., expected voltage and current limits. For example, how you
could integrate anomaly-based profiling of the vehicle’s charging progress. This
could have been integrated into the IDS and would perhaps improve its detection
capabilities.

Limitations

The biggest limitation was the lack of normal data sessions, which we have men-
tioned being an issue throughout the report. The lack of example data did not



72 Discussion

only affect our training data but also our knowledge of what real data should look
like. The examples from RISEV2G were very different from the ones acquired
from OpenV2G and the ones captured from the live V2G sessions we set up. Fur-
thermore, there were no one from ESCRYPT or Bosch with knowledge in V2G
sessions whom we could ask for advice. Therefore, we are not sure which fre-
quencies, payload lengths or timeouts can be seen as normal. More training data
from real use cases would have helped us get a deeper understanding and it would
probably have affected our results. A statistical study over normal data would
have helped us setting appropriate thresholds and help minimize the amount of
incorrect detections.

Additionally, a security solution can only be objectively judged on the tests
conducted, and we did not have the time to extend the test suite with other attack
scenarios. When we asked about the kind of security evaluation methods they use
at ESCRYPT, they answered that they outsource the final security tests to other
organizations abroad. Where these organizations tries to continuously hack their
security solutions and iterate this process for up to over one and a half years. This
was not an option for us. Nonetheless, we managed to set up five different attack
scenarios which our IDS managed to detect in the majority of cases. Either by
using the specification-based or the anomaly-based method.

7.2 Key Takeaways from Result

To answer our last academic questions What functions of IDS are valuable from
the perspective of automotive Ethernet?, we here summarize our findings with this
master’s thesis project. We do this by highlighting essential performance, design
and feature aspects of our implementation – in the context of our established IDS
requirements (see Section 4.1).

First, the two detection methods chosen seem to be a promising combination
to achieve high correct detection rates. The specification-based detection design
performed extremely well overall, but we have acknowledged scenarios where it is
flawed and the anomaly-based detection could work as a compensating party.

If considering the anomaly-based detection design, we would encourage the
use of a tolerance threshold, which seems to lead to a higher precision. However,
we cannot draw any conclusions as to whether the LnUB threshold is a beneficial
feature.

Incorporating DPI into the software was not difficult for the ISO 15118 speci-
fication, and we would argue that it is conceivable and applicable for the V2G use
case.

Overall, the IDS performed very well during our attack scenarios. There was a
low FPR and FNR. It should be able to detect general abnormal behavior regarding
message sequencing, frequency, payload length and timeout for request-response
pairs. Nevertheless, this can truly only be confirmed through extensive testing, and
we cannot say whether the IDS covers all known and unknown attack scenarios.

The classification speeds measured were relatively good, but as mentioned
before, a V2G session might not be as time-sensitive as other protocols used in
vehicles.



Discussion 73

The IDS is configurable, the specification-based detection engine can be ex-
tended to include more features, until it covers the entire protocol if one chooses
too. Although, then there will most likely be a trade-off in added latency. We have
not explored whether the classification speed is affected by adding more detection
features, though, we think it is safe to say that there would be an increased la-
tency. The anomaly-based detection is mostly dependent on the training data and
the data collector’s properties can be customized as long as the collector includes
the frequency, payload length and the time elapsed between each message type’s
request-response pair. Also, the anomaly-based detection is further configurable to
add additional metrics to evaluate if desired. Finally, the LnUB threshold and tol-
erance can be modified to tune the performance for special detection preferences,
making them configurable as well.

We did not have the opportunity to test our solution on a real ECU or under
real circumstances. It is therefore hard for us to say whether the solution would
satisfy the CPU requirements.

In retrospect we found our method for reaching our goals for this project
quite effective. The established requirements, general research and outlining of
the security for ISO 15118 all contributed in the process of designing the IDS
concept. Furthermore, the combination of the specification- and anomaly-based
methods was successful and holds great promise for deployment. In not only V2G
use cases, but also for other in-vehicle IDS applications.

7.3 Future Work

We have shown that our implementation can achieve high correct detection rates
for the attack scenarios presented in this report. In reality, getting the IDS to run
on available hardware and not affecting other systems negatively (by introducing
e.g., latency) are more desirable before optimizing classification performance. We
therefore encourage others to take the next step and apply the IDS functions we
have presented in an in-vehicle setting (i.e., by either deploying it on a dedicated
ECU or another internal network security device) and further evaluate its qualities.

The anomaly-based detection method applied in this thesis leveraged an intu-
itive approach to configure a decision threshold. With data studies of authentic
V2G sessions, we believe a more statistically sound threshold could be selected
(using e.g., machine learning or confidence intervals) to better fit the detection
boundary for normal session data and thereby excel its performance.

In this thesis we conducted a security analysis and we found that the security
practices used in the ISO 15118 specification were motivated and helped provide
confidentiality, authenticity and integrity, among other properties. The analysis
further inspired some of the features implemented in our proof of concept. How-
ever, there still exist multiple attack surfaces that could be further researched.
Through the discovery of new vulnerabilities and exploits in the protocol, security
devices such as the IDS could be further improved to detect new threats.





Chapter8
Conclusions

In this master’s thesis we attempt to find valuable functions for an IDS over
automotive Ethernet. In this endeavor, we research in-vehicle security and study a
V2G charging specification to establish requirements and features for implementing
an IDS and incorporating deep packet inspection. We then propose and implement
a proof of concept for a V2G IDS with the use of specification- and anomaly-based
methods.

The specification-based detection focuses on deviations from specified behavior
in a session, which are considered as abnormal in regards to the specification
defining a V2G session: ISO 15118. In our implementation, we mainly focus on
message sequencing and timeouts outlined by the protocol.

Anomaly-based detection is also a method for detecting anomalous behavior,
but instead, it relies on a statistical approach. In our IDS, we collect data from
different examples of V2G sessions and based on this data classify the packet either
as a threat or a normal packet. The anomaly-based detection engine evaluates the
expected frequency, payload length and timeout for each message type’s request-
response pair. Furthermore, the detection of a packet depends on two different
thresholds: tolerance and lower/upper bound. Both thresholds affect the number
of packets allowed to go undetected.

To evaluate our implementation, we construct tests for different attack scenar-
ios and launch attacks against the IDS. The results show that the implementation
can successfully detect the attacks and is a promising solution to detect threats in
a V2G charging environment.

When evaluating our IDS, we find that separately the detection methods have
their respective advantages and disadvantages, but together they can operate in
unison as a hybrid method to detect both previously known and unseen threats.
The specification-based approach is intuitive to implement and shows almost per-
fect results for all attacks. In contrast, the anomaly-based approach was found to
be more difficult to configure for optimal performance, but it does detect attacks
in situations where the other cannot. Our tests show that during normal V2G
sessions with few false positives, an increased tolerance threshold will increase the
precision, while slightly decreasing the true positive rate. Further investigation
and evaluation of both of the two thresholds should be done to determine their
importance for the performance of the anomaly-based detection.

A great next step would be to implement the IDS in a real ECU and evaluate
its performance on real use cases as well as testing additional attack scenarios.

75





References

[1] Corbett C et al. Automotive Ethernet: Security opportunity or chal-
lenge? [Online; accessed September 23, 2019]. url: https://subs.
emis.de/LNI/Proceedings/Proceedings256/45.pdf.

[2] Pesé M, Schmidt K, and Zweck H. WCM 17: SAE World Congress
Experience. In: Hardware/Software Co-Design of an Automotive Em-
bedded Firewall. SAE Mobilus. USA, 2017.

[3] Yilmaz E. Firewall and IDPS concept for Automotive Ethernet. Figure
2.2. MA thesis. Uppsala Universitet, 2019.

[4] ESCRYPT. Intrusion detection and prevention for vehicles. [Online
Video; accessed February 4, 2020]. July 2017. url: https://www.
youtube.com/watch?v=QS0Dx70vHz4.

[5] Business Wire. Autonomous and Connected Vehicles Face 300,000 At-
tacks Per Month, According to Karamba Security. [Online; updated
January 8, 2019; accessed February 2, 2020]. 2019. url: https://www.
businesswire.com/news/home/20190108005204/en/Autonomous-
Connected-Vehicles-Face-300000-Attacks-Month.

[6] Wolf M, Weimerskirch A, and Paar C. Security in automotive bus
systems. In: Proceedings of the workshop on embedded security in cars
(ESCAR)’04. 2004.

[7] Huybrechts T et al. Automatic Reverse Engineering of CAN Bus
Data Using Machine Learning Techniques. In: International Confer-
ence on P2P, Parallel, Grid, Cloud and Internet Computing. Jan.
2018, pp. 751–761. isbn: 978-3-319-69834-2. doi: 10.1007/978-3-
319-69835-9_71.

[8] Buttigieg R, Farrugia M, and Meli C. Security Issues in Controller
Area Networks in Automobiles. In: CoRR abs/1711.05824. 2017.

77

https://subs.emis.de/LNI/Proceedings/Proceedings256/45.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings256/45.pdf
https://www.youtube.com/watch?v=QS0Dx70vHz4
https://www.youtube.com/watch?v=QS0Dx70vHz4
https://www.businesswire.com/news/home/20190108005204/en/Autonomous-Connected-Vehicles-Face-300000-Attacks-Month
https://www.businesswire.com/news/home/20190108005204/en/Autonomous-Connected-Vehicles-Face-300000-Attacks-Month
https://www.businesswire.com/news/home/20190108005204/en/Autonomous-Connected-Vehicles-Face-300000-Attacks-Month
https://doi.org/10.1007/978-3-319-69835-9_71
https://doi.org/10.1007/978-3-319-69835-9_71


78 REFERENCES

[9] Salman N and Bresch M. Design and implementation of an intrusion
detection system (IDS) for in-vehicle networks. [Online; accessed Oc-
tober 5, 2019]. MA thesis. Gothenburg, Sweden: Chalmers University
of Technology, 2017. url: https://odr.chalmers.se/bitstream/
20.500.12380/251871/1/251871.pdf.

[10] Nadine Harold et al. Anomaly Detection for SOME/IP using Complex
Event Processing. [Online; accessed January 26, 2020]. url: https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=%5C&arnumber=
7502991%5C&tag=1.

[11] Talic A. Security Analysis of Ethernet in Cars. [Online; accessed Septem-
ber 28, 2019]. MA thesis. Kungliga Tekniska Högskolan, 2017. url:
http : / / kth . diva - portal . org / smash / get / diva2 : 1147703 /
FULLTEXT01.pdf.

[12] Abuhmed T, Mohaisen A, and Nyang D. Deep Packet Inspection
for Intrusion Detection Systems: A Survey. In: Magazine of Korea
Telecommunication Society 24.11. 2007, pp. 24–36.

[13] Yilmaz E. Firewall and IDPS concept for Automotive Ethernet. MA
thesis. Uppsala Universitet, 2019.

[14] Larson U. E., Nilsson D. K., and Jonsson E. An approach to specification-
based attack detection for in-vehicle networks. In: 2008 IEEE Intelli-
gent Vehicles Symposium. June 2008, pp. 220–225.

[15] Stachowski S, Gaynier R, and LeBlanc D. J. An Assessment Method
for Automotive Intrusion Detection System Performance (Report No.
DOT HS 812 708). Washington, DC: National Highway Traffic Safety
Administration., Apr. 2019, pp. 1–50. url: https://deepblue.lib.
umich.edu/bitstream/handle/2027.42/151378/UMTRI- 2017-
11.pdf?sequence=1%5C&isAllowed=y.

[16] ISO 15118:2014(E). Road vehicles - Vehicle-to-grid communication In-
terface - Part 2: Network and application protocol requirements (ISO
15118-2:2014). Standard 32000– 1:2008. Geneva, Switzerland: Inter-
national Organization for Standardization, 2008.

[17] Cabell H et al. Vehicle Cybersecurity Threats and Mitigation Ap-
proaches. Golden, CO: National Renewable Energy Laboratory. NREL/TP-
5400-74247, 2019, pp. 1–27. url: https://www.nrel.gov/docs/
fy19osti/74247.pdf.

[18] Kozierok C. The TCP/IP Guide: A Comprehensive, Illustrated Inter-
net Protocols Reference. San Francisco, United States: William Pol-
lock, 2005, pp. 122–123. isbn: 1-59327-047-X.

https://odr.chalmers.se/bitstream/20.500.12380/251871/1/251871.pdf
https://odr.chalmers.se/bitstream/20.500.12380/251871/1/251871.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%5C&arnumber=7502991%5C&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%5C&arnumber=7502991%5C&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%5C&arnumber=7502991%5C&tag=1
http://kth.diva-portal.org/smash/get/diva2:1147703/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:1147703/FULLTEXT01.pdf
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/151378/UMTRI-2017-11.pdf?sequence=1%5C&isAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/151378/UMTRI-2017-11.pdf?sequence=1%5C&isAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/151378/UMTRI-2017-11.pdf?sequence=1%5C&isAllowed=y
https://www.nrel.gov/docs/fy19osti/74247.pdf
https://www.nrel.gov/docs/fy19osti/74247.pdf


REFERENCES 79

[19] Reynders D and Wright E. Practical TCP/IP and Ethernet Network-
ing. Oxford: Newnes an imprint of Elsevier, 2003, pp. 59–73. isbn:
978-0-7506-5806-5.

[20] Network Working Group. The Transport Layer Security (TLS) Pro-
tocol Version 1.2. Introduction; section 1 [Online; accessed December
1, 2019]. Aug. 2008. url: https://tools.ietf.org/html/rfc5246.

[21] Deloitte. Automotive electronics cost as a percentage of total car cost
worldwide from 1950 to 2030. [Online; accessed September 26, 2019].
2019. url: https://www2.deloitte.com/content/dam/Deloitte/
cn/Documents/technology-media-telecommunications/deloitte-
cn-tmt-semiconductors-the-next-wave-en-190422.pdf.

[22] Adelsbach A, Huber U, and Sadeghi A. Secure Software Delivery and
Installation in Embedded Systems. Berlin, Heidelberg: Springer, 2006,
p. 28. isbn: 978-3-540-28384-3. doi: https://doi.org/10.1007/3-
540-28428-1_3.

[23] embitel. ‘ECU’ is a Three Letter Answer for all the Innovative Fea-
tures in Your Car: Know How the Story Unfolded. [Online; accessed
September 25, 2019]. 2017. url: https://www.embitel.com/blog/
embedded-blog/automotive-control-units-development-innovations-
mechanical-to-electronics.

[24] Lawrenz EW. CAN System Engineering. London: Springer London,
2013. isbn: 978-1-4471-5612-3. doi: 10.1007/978-1-4471-5613-0.

[25] Wikipedia. Local Interconnect Network. [Online; accessed September
25, 2019]. 2019. url: https://en.wikipedia.org/wiki/Local_
Interconnect_Network.

[26] ISO. Road vehicles - Local Interconnect Network (LIN) - Part 7: Elec-
trical Physical Layer (EPL) conformance test specification. [Online;
accessed September 25, 2019]. 2016. url: https://www.iso.org/
obp/ui/#iso:std:iso:17987:-7:ed-1:v1:en.

[27] Nouvel F et al. Automotive Network Architecture for ECUs Commu-
nications. [Online; accessed September 24, 2019]. 2015. url: https:
//www.researchgate.net/publication/264234515_Automotive_
Network_Architecture_for_ECUs_Communications.

[28] Vector. FlexRay Consortium. [Online; accessed September 26, 2019].
2018. url: https://elearning.vector.com/mod/page/view.php?
id=378.

[29] Schmid M. Automotive Bus Systems. [Online; accessed September 26,
2019]. url: https : / / user . eng . umd . edu / ~austin / enes489p /
project-resources/SchmidAutoBusSystems.pdf.

https://tools.ietf.org/html/rfc5246
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-the-next-wave-en-190422.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-the-next-wave-en-190422.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-the-next-wave-en-190422.pdf
https://doi.org/https://doi.org/10.1007/3-540-28428-1_3
https://doi.org/https://doi.org/10.1007/3-540-28428-1_3
https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics
https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics
https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics
https://doi.org/10.1007/978-1-4471-5613-0
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://www.iso.org/obp/ui/#iso:std:iso:17987:-7:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:17987:-7:ed-1:v1:en
https://www.researchgate.net/publication/264234515_Automotive_Network_Architecture_for_ECUs_Communications
https://www.researchgate.net/publication/264234515_Automotive_Network_Architecture_for_ECUs_Communications
https://www.researchgate.net/publication/264234515_Automotive_Network_Architecture_for_ECUs_Communications
https://elearning.vector.com/mod/page/view.php?id=378
https://elearning.vector.com/mod/page/view.php?id=378
https://user.eng.umd.edu/~austin/enes489p/project-resources/SchmidAutoBusSystems.pdf
https://user.eng.umd.edu/~austin/enes489p/project-resources/SchmidAutoBusSystems.pdf


80 REFERENCES

[30] Kenji Suzuki ESPEC CORP. Car electronization trend in automo-
tive industry. Increase of Electronics (2); Slide 28 [Online PowerPoint
presentation; accessed October 1, 2019]. 2014. url: https://www.
slideshare.net/kenjisuzuki397/car-electronization-trend-
in-automotive-industry-44007679.

[31] Nelson P. Just one autonomous car will use 4,000 GB of data/day.
[Online; updated December 6, 2016; accessed September 26, 2019].
2016. url: https://www.networkworld.com/article/3147892/
one-autonomous-car-will-use-4000-gb-of-dataday.html.

[32] Nolte T, Hansson H, and Bello LL. Automotive communications-past,
current and future. In: 2005 IEEE Conference on Emerging Technolo-
gies and Factory Automation. Vol. 1. Sept. 2005, 8 pp.-992.

[33] Renesas Electronics Europe Roland Lieder. The evolution of gate-
way processors in the auto market. Figure 2, New car network ar-
chitecture [Online; accessed September 30, 2019]. 2013. url: https:
//automotive.electronicspecifier.com/driver- assistance-
systems/the-evolution-of-gateway-processors-in-the-auto-
market.

[34] ixia. Automotive Ethernet: An Overview. [Online; accessed Septem-
ber 25, 2019]. 2014. url: https://support.ixiacom.com/sites/
default/files/resources/whitepaper/ixia-automotive-ethernet-
primer-whitepaper_1.pdf.

[35] Holle J and Shukla S. Gatekeeper for In-vehicle Network Communica-
tion. In: ATZelektronik worldwide 13.6. Dec. 2018. Figure 3, Automo-
tive firewall (CycurGATE) as ISO layer model (© Bosch | Escrypt);
p. 43, pp. 40–43.

[36] Mash C. How Ethernet Will Change Automotive Networks. [Online;
updated February 1, 2018; accessed October 1, 2019]. 2018. url:
https : / / semiengineering . com / how - ethernet - will - change -
automotive-networks/.

[37] Miao Tan K, Ramachandaramurthy V K, and Ying Yong J. Integra-
tion of electric vehicles in smart grid: A review on vehicle to grid
technologies and optimization techniques. In: Renewable and Sustain-
able Energy Reviews 53.1. 2016, pp. 720–732.

[38] Robledo C. B. et al. Integrating a hydrogen fuel cell electric vehicle
with vehicle-to-grid technology, photovoltaic power and a residential
building. In: Applied Energy 215.4. 2018, pp. 615–629.

https://www.slideshare.net/kenjisuzuki397/car-electronization-trend-in-automotive-industry-44007679
https://www.slideshare.net/kenjisuzuki397/car-electronization-trend-in-automotive-industry-44007679
https://www.slideshare.net/kenjisuzuki397/car-electronization-trend-in-automotive-industry-44007679
https://www.networkworld.com/article/3147892/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://www.networkworld.com/article/3147892/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://automotive.electronicspecifier.com/driver-assistance-systems/the-evolution-of-gateway-processors-in-the-auto-market
https://automotive.electronicspecifier.com/driver-assistance-systems/the-evolution-of-gateway-processors-in-the-auto-market
https://automotive.electronicspecifier.com/driver-assistance-systems/the-evolution-of-gateway-processors-in-the-auto-market
https://automotive.electronicspecifier.com/driver-assistance-systems/the-evolution-of-gateway-processors-in-the-auto-market
https://support.ixiacom.com/sites/default/files/resources/whitepaper/ixia-automotive-ethernet-primer-whitepaper_1.pdf
https://support.ixiacom.com/sites/default/files/resources/whitepaper/ixia-automotive-ethernet-primer-whitepaper_1.pdf
https://support.ixiacom.com/sites/default/files/resources/whitepaper/ixia-automotive-ethernet-primer-whitepaper_1.pdf
https://semiengineering.com/how-ethernet-will-change-automotive-networks/
https://semiengineering.com/how-ethernet-will-change-automotive-networks/


REFERENCES 81

[39] PG&E News Department. Pacific Gas and Electric Company Ener-
gizes Silicon Valley With Vehicle-to-Grid Technology. In: PG&E News
Department 415.4. 2007.

[40] Cenex. EV Charging. [accessed December 4, 2019]. url: https://
www.cleantech.com/ev-charging-software-and-grid-services/.

[41] Uppladning.nu. General statistics over charging stations in the world.
[Online; accessed December 4, 2019]. 2019. url: https://uppladdning.
nu/List.aspx.

[42] V2G Clarity. What Is ISO 15118? [Online; accessed January 9, 2020].
2019. url: https://v2g-clarity.com/knowledgebase/basics-of-
plug-and-charge/#pkis-basis-of-pnc.

[43] Wikipedia. ISO 15118. [Online; accessed February 18, 2020]. May
2018. url: https://en.wikipedia.org/wiki/ISO_15118.

[44] W3C. Efficient XML Interchange (EXI) Format 1.0 (Second Edition).
[Online; accessed January 6, 2020]. 2014. url: https://www.w3.org/
TR/exi/.

[45] V2G Clarity. The Basics of Plug & Charge. [Online; accessed Decem-
ber 4, 2019]. 2019. url: https://v2g-clarity.com/knowledgebase/
what-is-iso-15118/.

[46] Wikipedia. Elliptic-curve Diffie–Hellman. [Online; accessed JAnuary
9, 2020]. 2019. url: https://en.wikipedia.org/wiki/Elliptic-
curve_Diffie%5C%E2%5C%80%5C%93Hellman.

[47] Wikipedia. Public Key Infrastructure. [Online; accessed January 9,
2020]. url: https : / / en . wikipedia . org / wiki / Public _ key _
infrastructure.

[48] Wolf M, Weimerskirch A, and Wollinger T. State of the Art: Embed-
ding Security in Vehicles. In: EURASIP Journal on Embedded Systems
(2007) 2007:074706. Apr. 2017.

[49] Security Magazine. Senators Markey and Blumenthal Reintroduce Leg-
islation to Protect Cybersecurity on Aircrafts and in Cars. [Online; ac-
cessed October 2, 2019]. June 2019. url: https://www.securitymagazine.
com/articles/90584-senators-markey-and-blumenthal-reintroduce-
legislation-to-protect-cybersecurity-on-aircrafts-and-in-
cars.

[50] Miller C and Valasek C. Remote Exploitation of an Unaltered Pas-
senger Vehicle. [Online; accessed October 2, 2019]. Aug. 2015. url:
http://illmatics.com/Remote%5C%20Car%5C%20Hacking.pdf.

https://www.cleantech.com/ev-charging-software-and-grid-services/
https://www.cleantech.com/ev-charging-software-and-grid-services/
https://uppladdning.nu/List.aspx
https://uppladdning.nu/List.aspx
https://v2g-clarity.com/knowledgebase/basics-of-plug-and-charge/#pkis-basis-of-pnc
https://v2g-clarity.com/knowledgebase/basics-of-plug-and-charge/#pkis-basis-of-pnc
https://en.wikipedia.org/wiki/ISO_15118
https://www.w3.org/TR/exi/
https://www.w3.org/TR/exi/
https://v2g-clarity.com/knowledgebase/what-is-iso-15118/
https://v2g-clarity.com/knowledgebase/what-is-iso-15118/
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%5C%E2%5C%80%5C%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%5C%E2%5C%80%5C%93Hellman
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://www.securitymagazine.com/articles/90584-senators-markey-and-blumenthal-reintroduce-legislation-to-protect-cybersecurity-on-aircrafts-and-in-cars
https://www.securitymagazine.com/articles/90584-senators-markey-and-blumenthal-reintroduce-legislation-to-protect-cybersecurity-on-aircrafts-and-in-cars
https://www.securitymagazine.com/articles/90584-senators-markey-and-blumenthal-reintroduce-legislation-to-protect-cybersecurity-on-aircrafts-and-in-cars
https://www.securitymagazine.com/articles/90584-senators-markey-and-blumenthal-reintroduce-legislation-to-protect-cybersecurity-on-aircrafts-and-in-cars
http://illmatics.com/Remote%5C%20Car%5C%20Hacking.pdf


82 REFERENCES

[51] Greenberg A. Hackers Remotely Kill a Jeep on the Highway—With
Me in It. [Online Video; accessed October 1, 2019]. July 2015. url:
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/.

[52] Wolf M, Weimerskirch A, and Paar C. Security in automotive bus
systems. In: IN: Proceedings of the workshop on embedded security in
cars (ESCAR)’04. Table 4, Attackers in the automotive area based
on [Pa03]; p. 6. 2004.

[53] Cisco. What Is a Firewall? [Online; accessed October 3, 2019]. url:
https://www.cisco.com/c/en/us/products/security/firewalls/
what-is-a-firewall.html.

[54] Cuppens F et al. Handling Stateful Firewall Anomalies. IFIP Inter-
national Federation for Information Processing, 2012, pp. 174–185.

[55] Kuang J, Mei L, and Bian J. An innovative implement in organizing
complicated and massive intrusion detection rules of IDS. In: 2012
IEEE 2nd International Conference on Cloud Computing and Intel-
ligence Systems Cloud Computing and Intelligent Systems (CCIS).
Hangzhou, China: IEEE, Oct. 2012, pp. 1328–1332. doi: 10.1109/
CCIS.2012.666460.

[56] Aldwairi M, Abu-Dalo AM, and Jarrah M. Pattern matching of signature-
based IDS using Myers algorithm under MapReduce framework. In:
EURASIP Journal on Information Security. 2017, pp. 1–11.

[57] Mazen Kharbutli, Monther Aldwairi, and Abdullah Mughrabi. Func-
tion and Data Parallelization of Wu-Manber Pattern Matching for
Intrusion Detection Systems. In: Network Protocols and Algorithms
4. Sept. 2012, pp. 46–61.

[58] Han J, Kamber M, and Pei J. 13 - Data Mining Trends and Research
Frontiers: Data Mining (Third Edition). Boston: Morgan Kaufmann,
2012, pp. 585–631. isbn: 978-0-12-381479-1.

[59] Yihunie F, Abdelfattah E, and Regmi A. Applying Machine Learning
to Anomaly-Based Intrusion Detection Systems. In: 2019 IEEE Long
Island Systems, Applications and Technology Conference (LISAT).
May 2019, pp. 1–5. doi: 10.1109/LISAT.2019.8817340.

[60] Uppuluri P and Sekar R. Experiences with Specification-Based Intru-
sion Detection. In: Recent Advances in Intrusion Detection. Ed. by
Lee W, Mé L, and Wespi A. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2001, pp. 172–189.

[61] Snort. What is Snort? [Online; accessed September 12, 2019]. url:
https://www.snort.org.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://doi.org/10.1109/CCIS.2012.666460
https://doi.org/10.1109/CCIS.2012.666460
https://doi.org/10.1109/LISAT.2019.8817340
https://www.snort.org


REFERENCES 83

[62] Snort. What is a signature? [Online; accessed September 27, 2019].
url: https://www.snort.org/faq/what-is-a-signature.

[63] Wilson M. Deep Packet Inspection – A Look at What It Is, Tutorial &
Software/Tools for DPI. [Online; updated March 30, 2019; accessed
September 26, 2019]. 2019. url: https://www.pcwdld.com/deep-
packet-inspection.

[64] ntop. nDPI: Open and Extensible LGPLv3 Deep Packet Inspection
Library. [Online; accessed October 8, 2019]. url: https://www.ntop.
org/products/deep-packet-inspection/ndpi/.

[65] Solarwinds. Deep Packet Inspection and Analysis with Network Per-
formance Monitor. [Online; accessed October 8, 2019]. url: https:
/ / www . solarwinds . com / network - performance - monitor / use -
cases/deep-packet-inspection.

[66] Raspberry PI Foundation. Raspberry Pi 3 Model B. [Online; accessed
December 25, 2019]. url: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

[67] Wireshark Foundation. About Wireshark. [Online; accessed December
25, 2019]. url: https://www.wireshark.org/.

[68] V2G Clarity. RISE V2G. [Online; accessed December 25, 2019]. url:
https://v2g-clarity.com/rise-v2g/.

[69] Käbisch S et al. OpenV2G. [Online; accessed December 25, 2019]. url:
http://openv2g.sourceforge.net/.

[70] scikit-learn developers. sklearn.metrics.balanced_accuracy_score. [On-
line; accessed January 24, 2020]. 2020. url: https://scikit-learn.
org / stable / modules / generated / sklearn . metrics . balanced _
accuracy_score.html.

[71] S McElwee. Probabilistic Clustering Ensemble Evaluation for Intru-
sion Detection. Figure 3, Confusion matrix for binary classification;
p. 29. PhD thesis. Aug. 2018, p.29. doi: 10.13140/RG.2.2.13702.
83525.

[72] Lim H, Völker L, and Herrscher D. Challenges in a future IP/Ethernet-
based in-car network for real-time applications. In: 2011 48th ACM/EDAC/IEEE
Design Automation Conference (DAC). June 2011, pp. 7–12.

[73] SonicWall. Network Security Firewalls. [Online; accessed October 8,
2019]. url: https://www.sonicwall.com/products/firewalls/.

https://www.snort.org/faq/what-is-a-signature
https://www.pcwdld.com/deep-packet-inspection
https://www.pcwdld.com/deep-packet-inspection
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.solarwinds.com/network-performance-monitor/use-cases/deep-packet-inspection
https://www.solarwinds.com/network-performance-monitor/use-cases/deep-packet-inspection
https://www.solarwinds.com/network-performance-monitor/use-cases/deep-packet-inspection
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.wireshark.org/
https://v2g-clarity.com/rise-v2g/
http://openv2g.sourceforge.net/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://doi.org/10.13140/RG.2.2.13702.83525
https://doi.org/10.13140/RG.2.2.13702.83525
https://www.sonicwall.com/products/firewalls/


84 REFERENCES

[74] Klinedinst D and King C. On Board Diagnostics: Risks and Vulnera-
bilities of the Connected Vehicle. [Online; accessed January 24, 2020].
Mar. 2016. url: https://resources.sei.cmu.edu/asset_files/
WhitePaper/2016_019_001_453877.pdf.

[75] Dudek S, Delaunay JC, and Fargues V. V2G Injector: Whispering to
cars and charging units through the Power-Line. In: Synacktiv. 2019,
pp. 1–26.

[76] Peter Gutmann. Why XML Security is Broken. [Online; accessed Jan-
uary 24, 2020]. 2004. url: https://www.cs.auckland.ac.nz/
~pgut001/pubs/xmlsec.txt.

[77] OWASP. XML Security Cheat Sheet. [Online; accessed January 24,
2020]. url: https://owasp.org/www- project- cheat- sheets/
cheatsheets/XML_Security_Cheat_Sheet.html.

[78] Murata M, St.Laurent S, and Kohn D. RFC 3023: XML Media Types.
Security considerations; section 10 [Online; accessed October 3, 2019].
2001. url: https://www.ietf.org/rfc/rfc3023.txt.

[79] Shashwat. Balanced accuracy vs F-1 score. [Online; accessed Jan-
uary 27, 2020]. 2013. url: https://stats.stackexchange.com/
questions/49579/balanced-accuracy-vs-f-1-score.

https://resources.sei.cmu.edu/asset_files/WhitePaper/2016_019_001_453877.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2016_019_001_453877.pdf
https://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt
https://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt
https://owasp.org/www-project-cheat-sheets/cheatsheets/XML_Security_Cheat_Sheet.html
https://owasp.org/www-project-cheat-sheets/cheatsheets/XML_Security_Cheat_Sheet.html
https://www.ietf.org/rfc/rfc3023.txt
https://stats.stackexchange.com/questions/49579/balanced-accuracy-vs-f-1-score
https://stats.stackexchange.com/questions/49579/balanced-accuracy-vs-f-1-score


AppendixA
V2G Related Information

Table A.1: Different message types defined in the ISO 15118 spec-
ification for a V2G session.

Message Types in V2G Session
SDP Request and Response
SupportedAppProtocol Request and Response
SessionSetup Request and Response
ServiceDiscovery Request and Response
ServiceDetail Request and Response
ServicePaymentSelection Request and Response
CertificateInstallation Request and Response
(Only allowed if Contract payment method is used)
CertificateUpdate Request and Response
(Only allowed if Contract payment method is used)
PaymentDetails Request and Response
Authorization Request and Response
ChargeParameterDiscovery Request and Response
CableCheck Request and Response (DC specific)
PreCharge Request and Response (DC specific)
PowerDelivery Request and Response
ChargingStatus Request and Response (AC specific)
CurrentDemand Request and Response (DC specific)
WeldingDetection Request and Response (DC specific)
MeteringReceipt Request and Response
SessionStop Request and Response

85



86 V2G Related Information

Table A.2: Different timeouts for message types defined in the ISO
15118 specification for a V2G session.

Message type Timeout in seconds
SupportedAppProtocolReq 2
SessionSetupReq 2
ServiceDiscoveryReq 2
ServiceDetailReq 5
PaymentServiceSelectionReq 2
PaymentDetailsReq 5
AuthorizationReq 2
ChargeParameterDiscoveryReq 2
ChargingStatusReq 2
MeteringReceiptReq 2
PowerDeliveryReq 5
CableCheckReq 2
PreChargeReq 2
CurrentDemandReq 0,25
WeldingDetectionReq 2
SessionStopReq 2
CertificateInstallationReq 5
CertificateUpdateReq 5



V2G Related Information 87

Table A.3: The different definitions of the detection codes and their
respective hexadecimal representation used by the IDS.

Detection Code Definition Det.
Code

SDP_REQ_COUNTER_VIOLATION 0xB0
SDP_REQ_TOO_MANY_DIFFERENT_IP_ADDRESSES 0xB1
SESSION_ID_ALREADY_SET 0xB2
SESSION_ID_VIOLATION 0xB3
IP_ADDRESS_VIOLATION 0xF0
PORT_VIOLATION 0xF1
TLS_NOT_USED 0xF2
SERVICE_REQUEST_VIOLATION 0xF3
CERTIFICATE_ACCESS_VIOLATION 0xF4
MESSAGE_SEQUENCE_VIOLATION 0xF5
TRANSFER_MODE_VIOLATION 0xF6
TIMESTAMP_VIOLATION 0xF7
PAYLOAD_OUT_OF_BOUNCE_DETECTED 0xA3
TIMEOUT_OUT_OF_BOUNCE_DETECTED 0xA4
COUNTER_OUT_OF_BOUNCE_DETECTED 0xA5





AppendixB
Anomaly-based detection Results

Table B.1: Different configurations used when testing the IDS.

LnUB Tolerance Configuration ID
0 0 Conf1
0 3 Conf2
0.1 0 Conf3
0.1 3 Conf4
0.25 3 Conf5
0.4 3 Conf6

B.1 Anomaly-based Detection Performance for AC V2G Ses-
sions

Table B.2: Performance for the anomaly-based detection when per-
forming an attack delaying random number of message types
with timeout 2 seconds, see Table A.2.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0.0073 1 0.8333 0.9964 0.9091 0.8621
Conf2 0.0741 0.0024 0.9259 0.9259 0.9618 0.9259 0.9259
Conf3 0 0.0072 1 0.7857 0.9964 0.88 0.8209
Conf4 0.0833 0.0024 0.9167 0.9167 0.9571 0.9167 0.9167
Conf5 0.0952 0 0.9048 1 0.9524 0.95 0.9794
Conf6 0.1111 0 0.8889 1 0.9444 0.9412 0.9756

89



90 Anomaly-based detection Results

Table B.3: Performance for the anomaly-based detection when per-
forming an attack injecting random number of SessionSetup-
, ServiceDiscovery- and CableCheck request and response
pairs.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0.0070 1 0.8846 0.9965 0.9388 0.9055
Conf2 0.1429 0.0023 0.8571 0.9474 0.9274 0.9 0.9278
Conf3 0 0.0070 1 0.8929 0.9965 0.9434 0.9124
Conf4 0.1429 0.0024 0.8571 0.9474 0.9274 0.9 0.9278
Conf5 0.1304 0.0024 0.8696 0.8672 0.9336 0.8684 0.8677
Conf6 0.1818 0.0023 0.8182 0.9475 0.9079 0.8781 0.9184

Table B.4: Performance for the anomaly-based detection when per-
forming an attack trying to exhaust the server by sending 80-200
ChargeParameterDiscovery requests in a row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0.0092 0.0516 0.9908 0.9038 0.9696 0.9453 0.9199
Conf2 0.0164 0 0.9836 1 0.9918 0.9917 0.9967
Conf3 0.0078 0.007 0.9922 0.9883 0.9926 0.9903 0.9891
Conf4 0.0165 0 0.9836 1 0.9918 0.9917 0.9967
Conf5 0.0185 0 0.9816 1 0.9908 0.9907 0.9963
Conf6 0.0158 0 0.9842 1 0.9921 0.9921 0.9968

Table B.5: Performance for the anomaly-based detection when per-
forming an attack trying to flood the server by sending 210
ChargeStatus requests in a row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0 1 1 1 1 1
Conf2 0.15 0 0.85 1 0.925 0.9189 0.9659
Conf3 1 0 0 0 0.5 0 0
Conf4 1 0 0 0 0.5 0 0
Conf5 1 0 0 0 0.5 0 0
Conf6 1 0 0 0 0.5 0 0



Anomaly-based detection Results 91

B.2 Anomaly-based Detection Performance for DC V2G Ses-
sions

Table B.6: Performance for the anomaly-based detection when per-
forming an attack delaying random number of message types
with timeout 2 seconds, see Table A.2.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0 1 1 1 1 1
Conf2 0.2 0 0.8 1 0.9 0.8889 0.9524
Conf3 0 0 1 1 1 1 1
Conf4 0.25 0 0.75 1 0.875 0.8571 0.9375
Conf5 0.2222 0 0.7778 1 0.8889 0.875 0.946
Conf6 0.1714 0 0.8286 1 0.9143 0.9063 0.9603

Table B.7: Performance for the anomaly-based detection when per-
forming an attack injecting random number of SessionSetup-
, ServiceDiscovery- and CableCheck request and response
pairs.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0.0110 1 0.7586 0.9944 0.8627 0.7971
Conf2 0.0968 0.0048 0.9032 0.9032 0.9492 0.9032 0.9032
Conf3 0 0.0126 1 0.75 0.9937 0.8571 0.7895
Conf4 0.0962 0.0164 0.9038 0.6912 0.9437 0.7833 0.7253
Conf5 0.1087 0.0179 0.8913 0.6406 0.9366 0.7455 0.6788
Conf6 0.0938 0.0209 0.9063 0.5179 0.9427 0.6591 0.5664



92 Anomaly-based detection Results

Table B.8: Performance for the anomaly-based detection when per-
forming an attack trying to exhaust the server by sending 80-200
ChargeParameterDiscovery requests in a row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0.0078 0 0.9922 1 0.9961 0.9961 0.9984
Conf2 0.01362 0 0.9863 1 0.9932 0.9931 0.9972
Conf3 0.0092 0 0.9908 1 0.9954 0.9954 0.9981
Conf4 0.0209 0 0.9791 1 0.9895 0.9894 0.9957
Conf5 0.0156 0 0.9844 1 0.9922 0.9922 0.9968
Conf6 0.0249 0 0.9751 1 0.9875 0.9874 0.9949

Table B.9: Performance for the anomaly-based detection when per-
forming an attack trying to flood the server by sending 310
ChargeStatus requests in a row.

Conf. FNR FPR TPR Prec- Balanced F1 F0.5

ision Accuracy
Conf1 0 0.0079 1 0.8 0.9960 0.8889 0.8333
Conf2 0.15 0.0031 0.85 0.8947 0.9234 0.8718 0.8854
Conf3 1 0.0079 0 0 0.4960 0 0
Conf4 1 0 0 1 0.5 0 0
Conf5 1 0 0 1 0.5 0 0
Conf6 1 0 0 1 0.5 0 0



AppendixC
Scoreboards for Configurations

Table C.1: Scoreboard for balanced accuracy for each attack sce-
nario with sessions which included false positives.

Attack Conf1 Conf2 Conf3 Conf4 Conf5 Conf6
AC: Delay 1 2 0 3 4 5
AC: Packet
injection 1 3 0 4 2 5
AC: Exhaustion 5 2 0 3 4 1
DC: Packet
injection 0 2 1 3 5 4
DC: Charge
flooding 0 1 5 4 4 4
Total sum 7 10 6 17 19 19

Table C.2: Scoreboard for f1-score for each attack scenario with
sessions which included false positives.

Attack Conf1 Conf2 Conf3 Conf4 Conf5 Conf6
AC: Delay 4 2 5 3 0 1
AC: Packet
injection 1 3 0 4 2 5
AC: Exhaustion 5 1 4 2 3 0
DC: Packet
injection 1 0 2 3 4 5
DC: Charge
flooding 0 1 5 5 5 5
Total sum 11 7 16 17 14 16

93



94 Scoreboards for Configurations

Table C.3: Scoreboard for f0.5-score for each attack scenario with
sessions which included false positives.

Attack Conf1 Conf2 Conf3 Conf4 Conf5 Conf6
AC: Delay 4 2 5 3 0 1
AC: Packet
injection 5 1 4 2 0 3
AC: Exhaustion 5 1 4 2 3 0
DC: Packet
injection 1 0 2 3 4 5
DC: Charge
flooding 1 0 5 5 5 5
Total sum 16 4 20 15 12 14


	Introduction
	Background
	Problem Statement and Goals
	Delimitations
	Contributions
	Related Work
	Literature Study

	Background
	Network Basics
	The Modern Automotive Industry
	Automotive Ethernet
	Security in Vehicles

	Method
	General Research
	Establish Requirements and Select a Concept
	Implementation
	Evaluation Framework

	Design Concept
	IDS Requirements
	DPI Requirements
	Security Analysis
	V2G IDS Proof of Concept

	Implementation
	IDS
	V2G Session

	Result
	Specification-based Results
	Anomaly-based Results

	Discussion
	Evaluation of the IDS Implementation
	Key Takeaways from Result
	Future Work

	Conclusions
	References
	Appendices
	V2G Related Information
	Anomaly-based detection Results
	Anomaly-based Detection Performance for AC V2G Sessions
	Anomaly-based Detection Performance for DC V2G Sessions

	Scoreboards for Configurations

