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Abstract
In this thesis we aim to improve classification performance on blood cell images
by using deep learning techniques to augment data. The thesis was conducted
at CellaVision, a company providing digital solutions for medical microscopy in
the field of hematology. The goal of CellaVision’s technology is to replace man-
ual microscopes used for cell differentials in blood tests with digital microscopes
that perform cell differentials automatically. Classyfying white blood cells is an
important part of this technology and is achieved by using an artificial neural
network. This classifier network requires a great amount of training data in
order to perform well.

With the objective to improve the performance of the classifier, we augment
training data consisting of blood cell images by generating synthetic data using
a Generative Adversarial Network (GAN). Our goal is to generate images with
close to equal quality of the real images and to use the generated images for
classifier improvement. The results show that the GAN is able to generate im-
ages that, apart from some small artefacts, very much resemble the real images,
so much that a medical technologist struggled to differentiate them from real
images.

In order to generate class specific blood cell images, we implement a version
of the Auxiliary Classifier GAN (AC-GAN), where we use a pre-trained gener-
ator and discriminator from a GAN able to produce high quality images. The
generator and discriminator are freezed and connected to fully connected lay-
ers to be trained. By augmenting the training data with the generated images
from this AC-GAN, classifier performance improved for the majority of classes
resulting in an increased F1-score. This leads us to believe that augmenting
blood cell image data by using synthetic images is a viable method for classifier
performance improvement.
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1 Introduction

1.1 Motivation
Blood tests are widely used in health care in order to detect diseases or other
health state anomalies. Performing cell differentials by analyzing blood cell
morphology, i.e. the structure, shape and size of a cell, is crucial in detecting
anomalies in a test. This analysis has traditionally been performed by using
manual microscopes, a time-consuming procedure requiring access to experi-
enced personnel and taking them away from more important tasks.

CellaVision’s technology aims to replace manual microscopes by providing digi-
tal hematology systems performing cell differentials automatically by using im-
age analysis technology and artificial neural networks. One task of the digital
imaging system provided by CellaVision is to pre-classify white blood cells into
biologically defined classes. These will then be displayed to a medical tech-
nologist for review and verification, making this otherwise tedious and time
consuming work much easier and faster. The classification is performed by an
artificial neural network that necessitates a great amount of training data in or-
der to yield good results. Specifically, there is a shortage of data for some blood
cell classes, making the performance of the classifier weaker on these particular
classes. Furthermore, lack of data increases overfitting of the model, i.e. the
model fits too close to the training data and fails to generalize and predict new
data. Shortage of training data can often be compensated for by using different
methods of augmentation to increase the size of the dataset at hand. Common
augmentation methods for image data are translation, rotation, flipping and
scaling. However, the variability introduced by these augmentation methods is
limited and an alternative to these classical augmentation methods would be
to generate synthetic data and add this to the given dataset in an attempt to
increase diversity and variability.

A method for generating synthetic data is to use a deep generative model such
as the Generative Adversarial Network (GAN) introduced by Goodfellow et al.
in 2014 [1]. The principal idea of this method is the following: Given a dataset,
the GAN learns to produce data with similar statistical properties as the source
data by pitting a generative network and a discriminative network against each
other. The generator tries to fool the discriminator by producing data as simi-
lar as possible to the source while the task of the discriminator is to determine
whether data is synthetic or real, i.e. produced by the generator or given by
the original dataset. Both the generator and the discriminator improve in the
training stage by giving each other cues. If the discriminator is able to discrimi-
nate between real and synthetic data, the generator will change its method in an
attempt to decrease the discriminator’s performance. This tug-of-war contin-
ues until the discriminator can no longer distinguish between real and synthetic
data. The trained generator can then be used to generate synthetic data which
can be used for augmentation.
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1.2 Aim of the Thesis
The aim of this thesis is to evaluate how well GANs and variants of these can be
used to generate blood cell images and if classifier performance can be improved
by training on datasets augmented with generated images.

Questions we aim to answer are:

• Starting from noise, is it possible to generate blood cell images such that
an expert in the field cannot differentiate them from real images?

• Is it possible to improve the performance of a classifier by training it on
data augmented with generated images?

5



2 Related work
Previous work has been done where GANs have been used to generate data for
data augmentation in order to improve classifier performance. Described below
are two such examples.

2.1 Synthetic Data Augmentation using GAN for Improved
Liver Lesion Classification

An example of related work is the 2018 paper by Maayan Frid-Adar et al. on
data augmentation using GAN for improved liver lesion classification [2]. In
their work, they augmented a limited dataset of computed tomography (CT)
images of 182 liver lesions consisting of three classes: Cysts, metastases and
hemangiomas. They managed to increase classification sensitivity from 78.6%
using classical data augmentation to 85.7% by adding synthetic (generated) data
while the corresponding specificity increased from 88.4% to 92.4%. Furthermore,
they let two radiologists examine and classify some generated liver lesion images
together with real liver lesion images to see whether they could discriminate
between the two. Expert 1 had a classification accuracy of 78% and 77.5% on the
real and the generated images respectively, while the corresponding results for
Expert 2 were 69.2% and 69.2%. These results imply that they were successful
in generating synthetic data having the appearance of real data.

2.2 Augmenting Training Data using GAN to Improve
Segmentation of Brain Images

Another example of related work is the 2018 paper by Christopher Bowles et
al. on data augmentation using GAN for segmentation of two datasets of brain
images: CT Cerebrospinal Fluid (CSF) and Fluid-attenuated inversion recov-
ery (FLAIR) Magnetic Resonance (MR) [3]. The CT brain images consist of
three different classes: Cortical CSF, brain stem CSF and ventricular CSF. The
FLAIR brain images belong to a single class. They performed and evaluated
the segmentation both with a UNet and a UResNet. Their results show a sig-
nificant improvement of segmentation when augmenting their datasets with a
combination of GAN generated data and rotated data. This implies that a com-
bination of classical augmentation methods and synthetic augmentation may be
a reasonable approach when augmenting data for segmentation and classification
improvement.
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3 Background

3.1 Blood Cells
Blood consists of red blood cells (RBCs), white blood cells (WBCs), plasma
and platelets [4]. One of the main goals of this thesis is to improve classification
of WBCs. There are three types of WBCs: Lymphocytes, monocytes, and
granulocytes, where granulocytes can be divided into neutrophils, eosinophils,
and basophils. The WBCs consist of a nucleus and cytoplasm surrounding
this nucleus while the red blood cells lack nuclei, see Figure 1. The data from
CellaVision is further divided into 19 different classes of WBCs.

Figure 1: Image of a WBC with surrounding RBCs. The WBC consists of a
nucleus located in cytoplasm while the RBCs lack nuclei.

3.2 Machine Learning
The discipline of machine learning aims to make computer programs learn to per-
form tasks without explicit instructions on how this learning should be achieved.
The idea is that a machine learning algorithm should be able to improve its per-
formance based on experience, instead of explicit instructions. Machine learn-
ing algorithms learn from data using statistical models and optimization, more
specifically given a dataset, x, it aims to learn the probability distribution, p(x),
which generated the dataset of interest. Some examples of tasks that machine
learning is able to solve are:

• Classification: Assigning a category to some given input, i.e. predicting
which category the data belongs to with respect to a number of categories.

• Regression: Predicting a numerical value given some input.

• Synthesis: Generating new examples with features similar to the training
data.

Machine learning algorithms can be divided into two main categories, unsu-
pervised learning algorithms and supervised learning algorithms. Unsupervised
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learning algorithms attempt to learn the structure of the data of interest, x,
observing its features in order to find the underlying probability distribution,
p(x). Examples of tasks where unsupervised learning is normally applied are
clustering, density estimation and synthesis. In supervised learning, the input,
x, is associated with a label or a target, y, and the objective is to predict y
given x, e.g. by estimating p(y|x). Classification and regression are typically
considered to be supervised learning problems [5].

In general, a machine learning algorithm combines a model, a cost function
and an optimization procedure and applies them on a dataset. A model could
be p(y|x,θ), where θ are parameters representing a range of distributions. The
goal is then to find the θ corresponding to the best representation of the true
distribution of the data, pdata. Finding the best representation is an optimiza-
tion problem which can be solved by defining and minimizing a cost function.
Typically, cost functions are based on the principles of maximum likelihood or
mean squared error. One commonly used cost function is the cross-entropy
between the training data and the model distribution, defined as

J(θ) = −Ex,y∼p̂data
log pmodel(y|x), (1)

where p̂data is the empirical distribution of the dataset, i.e. the distribution
observed in the dataset (and is in general not equivalent to the true data gen-
erating distribution, pdata) and pmodel is the distribution approximated by the
model. The minimizing can be performed by an optimization algorithm such as
stochastic gradient descent.

3.3 Stochastic Gradient Descent
Optimization algorithms aim to minimize or maximize an objective function,
which in the case of a minimizing problem corresponds to a cost function. If
we denote the cost function as J(θ), then the goal of the minimizing procedure
is to make changes in the parameter θ such that the value of J reduces and to
ultimately find the θ for which J reaches its minimum value. Gradient descent
methods make use of the fact that changes of θ in the direction of the opposite
sign of the gradient leads to a decrease in the cost function. The cost function
can be decomposed as a sum of loss functions, each corresponding to the loss
function for a given example in the training examples. Hence, Equation (1) can
be formulated as

J(θ) = Ex,y∼p̂data
L(x,y,θ) =

1

m

m∑
i=1

L(x(i),y(i),θ), (2)

where m is the number of data points and L is the loss for each example, i.e.
L(x,y,θ) = − log p(y|x;θ). Since the cost function is a function mapping
multiple inputs to a scalar, i.e. J : Rn → R, deciding which direction to move
in corresponds to computing the gradient, g, of the cost function with respect
to the parameters θ:

∇θJ(θ) =
1

m

m∑
i=1

∇θL(x(i),y(i),θ). (3)
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Equation (3) implies that the gradient is an expectation and as such it can be
approximated by using a small set of samples of the training set. This is the
main idea of stochastic gradient descent. By sampling a minibatch, uniformly
drawing m′ examples from the training set and computing the expectation for
these examples, we get an estimate of the expectation for the entire training set
consisting of m examples, i.e. the estimated gradient becomes

ĝ =
1

m′
∇θ

m′∑
i=1

L(x(i),y(i),θ). (4)

Moving in the direction of the opposite sign of the gradient then corresponds to

θ ← θ − αĝ, (5)

where α is the learning rate, representing the step size of the algorithm.

3.4 Deep Learning
Deep learning models are a subset of machine learning models and are based
on artificial neural networks. The aim of an artificial neural network is to ap-
proximate some function, f , given input, x. The goal could for example be to
classify data, assigning it some label, y.

For some functions this approximation could be done using linear models such as
linear and logistic regression. However, due to their linearity, these models have
the limitation that they cannot model the interaction between input variables.
To overcome this limitation the linear model can be applied to a non-linear trans-
formation of the input, x, instead of being applied directly to the input itself.
The aim of the deep learning model will then be to learn the non-linear trans-
formation, φ(x). The model can be represented as y = f(x;θ,w) = φ(x;θ)Tw
where θ are parameters associated with a range of function classes and w are
parameters mapping the transformed input, φ(x), to the output, y. The deep
learning model learns φ through the parameters θ in order to find the best
approximation of f [5].

Multilayer Perceptron

The most fundamental artificial neural network is the feed-forward network,
also known as the multilayer perceptron. The name multilayer perceptron refers
to its similarities to the perceptron algorithm [6]. The simple perceptron is a
model applying a non-linear activation function, H, to a linear combination
of weight parameters, w, mapping the input to the output, and a non-linear
transformation of the input, φ(x), i.e.

y(x) = H(φ(x)Tw), (6)

where the function H is the Heaviside step function, defined as

H(a) =

{
+1, a ≥ 0,

−1, a < 0.
(7)

A visualization of the perceptron can be seen in Figure 2 below.
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Figure 2: Visualization of a perceptron. Input, xi, are linearly combined with
weights, wi, and then passed through an activation function, H.

Now, in the case of the multilayer perceptron (or feed-forward network) the idea
is to perform a series of transformations on the input, resulting in a network
containing several "layers", with each layer corresponding to some transforma-
tion(s). The most elemental such network consists of an input layer, a hidden
layer and an output layer. Each input variable is represented by a node in
the input layer. The hidden layer is then composed by constructing an affine
transformation of the input x1, ..., xD as

aj =

D∑
i

w
(1)
ji xi + w

(1)
j0 , (8)

where i = 1, ..., D, j = 1, ...,M is the number of activations, aj , in the current
layer of the network and wj0 are biases. These activations are then transformed
by an activation function, h1, as

zj = h1(aj), (9)

where zj are called hidden units and the function, h1, is non-linear. Some
commonly used activation functions in deep learning are

• the rectified linear unit (ReLU), defined as h(a) = max(0, a),

• the leaky ReLU, defined as h(a) =

{
a, if a > 0

0.01a otherwise
,

• the logistic sigmoid, defined as h(a) = 1
1+exp(−a) , often denoted as σ(a) =

h(a),

• the hyperbolic tangent (tanh) function, defined as h(a) = exp(2a)−1
exp(2a)+1 .

Visualizations of the aforementioned activation functions can be seen in Figure
3 below.
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(a) ReLU activation function. (b) Leaky ReLU activation function. Note
the very slight slope for a < 0.

(c) Logistic sigmoid activation function. (d) Hyperbolic tangent activation function.

Figure 3: Commonly used activation functions include the ReLU function, the
leaky ReLU function, the logistic sigmoid function and the hyperbolic tangent
function (tanh).

In order to compute the output unit activations, an affine transformation of the
hidden units, zj , is performed to yield the second layer of the network as

ak =

M∑
j

w
(2)
kj zj + w

(2)
k0 , (10)

where k = 1, ...,K and K is the number of outputs. Transforming these ac-
tivations with an output unit activation function, h2, results in outputs, yk,
corresponding to the final layer of the network. The transformations performed
in the network can then be summarized as

yk(x,w) = h2(

M∑
j

w
(2)
kj h1(

D∑
i

w
(1)
ji xi + w

(1)
j0 ) + w

(2)
k0 ). (11)

The multilayer perceptron resembles the perceptron in that it consists of two
transformations which are very similar to the transformation performed by the
perceptron. The term deep in deep learning refers to the network having a
great number of hidden layers as the ones in the multilayer perceptron. A visu-
alization of the described network can be seen in Figure 4 below, where nodes
correspond to units and edges correspond to weight parameters. For simplicity,
the biases have been excluded in the illustration.
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Figure 4: Visualization of a feed-forward network with one hidden layer. The
nodes correspond to units and the edges correspond to weight parameters. The
biases have been excluded for simplicity.

3.5 Backpropagation in Neural Networks
In order for the feed-forward network to learn how to approximate the func-
tion of interest, f , a cost function is to be minimized as described in Section
3.2. In Section 3.3 we saw that minimization of cost functions can be performed
using an optimization method such as stochastic gradient descent. However, nu-
merically evaluating the necessary gradients is computationally expensive. The
method of backpropagation supplies an efficient way of computing the gradient
of the cost function with respect to the weights [6]. The name backpropagation
alludes to the fact that information is flowing backwards through the network
in order to compute the gradient. In this section backpropagation is described
in the context of a general feed-forward network.

The goal is to minimize a cost function, J . As seen in Section 3.3, the cost
function can be decomposed as a sum of cost functions, one for each input-
output pair, i.e.

J(w) =

N∑
n=1

Jn(w), (12)

where N is the number of data points. Hence, the gradient of the cost function
can be computed for each input-output pair and then we can sum over all the
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terms in order to get the total gradient of the cost function. The cost function
can be in many different forms but to make the backpropagation procedure
easier to understand, we will use the squared error function

Jn(w) =
1

2

∑
k

(ynk − tnk)2, (13)

where k is the index of the unit, ynk are output units and tnk are target variables.

Each activation in the network can be expressed as a linear combination of
its input as

aj =
∑
i

wjizi, (14)

where the biases wj0 have been included in the sum by adding an additional unit,
z0, with value one. The activations are transformed by applying a non-linear
activation function yielding the hidden units, zj , as

zj = h(aj). (15)

Now, the aim is to compute the derivative of the cost function, Jn, with respect
to a weight, wji. The cost function, Jn, depends implicitly on the weight, wji,
through the activation, aj . Hence, applying the chain rule on Jn yields

∂Jn
∂wji

=
∂Jn
∂aj

∂aj
∂wji

. (16)

Computing ∂aj

∂wji
using expression (14) results in

∂aj
∂wji

= zi. (17)

The first term in Equation (16), ∂Jn

∂aj
, is called the error [6] and we denote this

with δj . Equation (16) can then be formulated as

∂Jn
∂wji

= δjzi, (18)

and since the values of the units, zi, are known, computing the derivative of
the cost function with respect to the weights reduces to computing δj for every
output and hidden unit. For the output units, the errors take the form

δk = yk − tk, (19)

and for the hidden units the errors take the form

δj =
∂Jn
∂aj

=
∑
k

∂Jn
∂ak

∂ak
∂aj

, (20)

where the chain rule has been applied. The first factor in the sum is

δk =
∂Jn
∂ak

, (21)
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while the second factor is, making use of Equations (14) and (15),

∂ak
∂aj

= h′(aj)wkj . (22)

Substituting (21) and (22) into (20) gives us the backpropagation formula for
hidden units as

δj = h′(aj)
∑
k

wkjδk. (23)

The formula shows how information flows backwards in the network, due to δk
being higher up in the network than δj for every k. The errors for the output
units are known through Equation (19) which makes it possible to compute the
errors for the hidden units recursively by using (23). These results are then
used in Equation (18) in order to update the weights in the network, using an
optimization method such as stochastic gradient descent.

3.6 Capacity and Generalization
When developing a machine learning model, the model is often trained on a
dataset on which it aims to minimize a training error. It is important that the
model can generalize and perform well on data that is not part of the training
data, therefore the model is evaluated on a test set by computing a test error,
also known as a generalization error [5].

A model’s capacity determines how well the model fits to a broad range of
functions. If a model consists of a great amount of parameters, i.e. having high
capacity, it is likely to fit well to the training data. However, if too many pa-
rameters are involved, the model might fit too well to the training data and fail
to generalize to new data. This phenomenon is known as overfitting [5]. Thus,
it is important to find a balance of the model’s capacity. The model has to be
complex enough to fit to the training data and yield a small training error while
at the same time not being overly complex, such that it overfits. See Figure
5 for an example of this. Techniques that aim to reduce generalization error
are in general called regularization techniques. One such technique is dropout,
described in Section 3.7.
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Figure 5: In the plot to the left, a polynomial with degree 1 is fitted to the
data samples, yielding an example of underfitting. In the center plot a polyno-
mial with degree 4 is fitted to the samples, yielding a good approximation of
the function. The plot to the right shows an example of overfitting, where a
polynomial with degree 15 has been used [7].

3.7 Dropout
One straightforward way to reduce generalization error is to train several differ-
ent models and evaluate each of the models on the test data. Different models
might give errors on different parts of the data so averaging over this model
ensemble will yield a more robust result. However, this procedure is compu-
tationally expensive, therefore dropout is used as an inexpensive alternative to
this method [5].

Dropout removes non-output units and their connections with a certain prob-
ability and trains the remaining network, which can now be seen as a subnet-
work of the original network. This is done for all possible such subnetworks, i.e.
dropout trains the ensemble of all subnetworks. In practice, for each batch of
data, a subnetwork is constructed by multiplying each unit in the network by 1
with a probability p and by zero with a probability 1−p. The resulting network
is then trained on the batch as per the usual procedure: forward propagation,
backpropagation and weight updating. Dropout decreases the generalization
error and the reason why it is computationally feasible is due to the parameter
sharing between the subnetworks. If the original network consists of n units, the
maximum amount of subnetworks will be 2n while the number of parameters
will be O(n2) or less due to the parameter sharing [8]. For an illustration of
dropout, see Figure 6.
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(a) Network without dropout. (b) Network with dropout.

Figure 6: Illustration of (a) a network without dropout, where every node in
one layer is connected to every node in the next layer and (b) a network where
dropout has been applied, resulting in a subnetwork of the original network [8].

3.8 Batch Normalization
Batch Normalization (BN) was introduced by Sergey Ioffe and Christian Szegedy
in 2015 [9] as a way of speeding up and stabilizing the training of neural netr-
works. The idea was to tackle the problem of the activations flowing from one
layer to the next having very different distribution from iteration to iteration
due to the parameters of the first layer having been updated by the optimizing
scheme. The difference in distribution of the activations flowing in to a layer
makes it difficult for the optimizer to find a good parameter-configuration and
creates stability issues.

The BN-algorithm is as following: Given a batch of activations B = {xi}i=1,...,m

of size m, the mean and variance is calculated:

∗ µB =
1

m

m∑
i=1

xi (24)

σ2
B =

1

m

m∑
i=1

(xi − µB)2. (25)

The whole batch is then normalized by subtracting the mean and dividing by
the square root of the variance. A small value ε is added to the variance for
numerical stability. The normalized values are then formed as

x̂i =
xi − µB√
σ2
B + ε

. (26)

To avoid losing the representation of power in the network, the normalized values
are then scaled and shifted using the learnable parameters γ and β to form the
output of the BN-algorithm

yi = γx̂i + β. (27)

Since the activations are usually multidimensional, the normalization is done
component-wise and the model has two trainable parameters γ(k) and β(k) for
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each dimension k in the activations entering the BN-layer. The transformation
entailed by the BN-algorithm is continous and the learnable parameters can
therefore be learned by stochastic gradient descent.

3.9 Convolutional Neural Networks
Convolutional neural networks (CNN) are a form of neural networks that use
the mathematical operation convolution in one or more of their layers. CNNs
are characterized by being invariant to certain transformations such as transla-
tion. This characteristic makes them suitable for processing image data.

In the two-dimensional case, such as for an image, the discrete convolution
operation is defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (28)

where I is the input image and K is a weighting function called a kernel. In
a CNN, the convolutional layer corresponds to a kernel sliding over the input
image and calculating the sum of the products of an elementwise multiplication
of the kernel and the region the kernel is covering (receptive field), see Figure
7. The stride specifies the step size of the kernel, for example a stride of one
traverses every position in the image while a stride of two skips every other
position. The output of these multiplications builds up a feature map. All of
the units belonging to one such feature map share the same weights, which is
one of the benefits of using CNNs, since it reduces the number of parameters
that need to be storaged in memory [5]. The feature map is of a lower dimension
than the input image and holds information about lower level features in the
image, such as edges, curves and colors. The feature map has a depth that
is determined by how many kernels that are used, where one kernel could for
example detect edges while another one detects curves.
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Figure 7: Visualization of how the kernel traverses the image to perform the
elementwise multiplication [10]. Here, the convolution is performed with a stride
of two, i.e. the kernel skips every other element of the image.

When the entire image has been traversed by the kernel and the feature map
is complete, the output is run through a non-linear activation function which is
often followed by a pooling layer. In the pooling layer the output of several units
are combined, e.g. by computing the average (average pooling) or choosing the
maximum value (max pooling) of the units, and is replaced by this value, thus
reducing the dimension of the data while also decreasing the sensitivity to small
translations of the input. When referring to a CNN, it is often in the context of
several convolutional layers, pooling layers and non-linear activation functions
applied on top of each other. The term CNN then refers to the entire structure
and not a single convolutional layer. The input to one layer will be the feature
map from the previous layer and the output will now be activations of higher
level features, such as combinations of the lower level features. This way, and
by applying backpropagation to update the weights, the network learns how to
represent increasingly complex features.

In the multilayer perceptron described in Section 3.4 every input unit inter-
acts with every output unit, i.e. it is a fully connected network. CNNs differ
from this approach in that each unit only interacts with inputs corresponding
to a restricted region of the image, meaning they are sparse networks [5]. A
fully connected layer can be applied in the end of the convolutional neural net-
work in order to perform e.g. classification. An illustration of a convolutional
network including convolutional layers, ReLU activations, pooling and a fully
connected layer with softmax activation (which is a multi-class variant of the
logistic sigmoid function) for classification can be seen in Figure 8.
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Figure 8: Illustration of a convolutional network taking an image as input, e.g.
an image of a car, and assigning it a class label (car, truck, van, etc.) [10].

3.10 Transposed Convolutions
In the previous section it is indicated that convolutions can be used to down-
sample data. This raises the question if the convolution operation can be used
to upsample data. The answer is yes and this particular use of the convolution
operation is known as a transposed convolution [11]. The upsampling is done
by sliding the kernel over not the original image, but an enlarged image con-
sisting of the original pixles with zero-padding between them in each direction
(up-down, left-right, diagonals) as well as outside the images. When the kernel
slides over the padded image, the output is larger than the input, i.e an up-
sampling of the input. This upsampling is learned by the network by updating
the kernel weights according to the information supplied by the loss function
through backpropagation.

3.11 Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN) were introduced by Goodfellow et al.
[1] as a way to train generative deep learning models. The idea is to approx-
imate the distribution of the data by using two neural networks and pit them
against each other as adversaries. The first network, called the generator, is
trained to generate new data samples. As originally proposed in the paper by
Goodfellow et al., the generated data samples are created by sampling from a
given probability distribution, called the latent space and feeding the sampled
latent vector through the generating network. The second network, called the
discriminator, is trained to assign a probability to whether a data sample is real
or fake (i.e. generated).

Training a GAN can then be summarised as follows: Draw a number of real
data samples and let the generator generate an equal amount. Both the real
data and the generated data are then fed to the discriminator which outputs
probabilities of each data sample being real. The networks are then updated
according to the output of the discriminator. The generator is updated as to
maximize the amount of generated images being assigned a high probability of
being real. The discriminator is updated as to minimize the amount of gen-
erated samples being assigned high realness probabilities while maximizing the
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amount of real samples given high probabilities, thus discriminating between
real samples and fake samples. The opposite goals of the two networks consti-
tutes the adversarial nature of the method. In mathematical terms, if we let G
be a function corresponding to the transformation performed by the generator
and D be the corresponding for the discriminator, the networks can be said
to compete in a minimax game with value function V . The game can then be
expressed as

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz [log(1−D(G(z)))], (29)

where pdata(x) is the distribution of the real data and pz(z) is the latent space.
In practice, the generator is trained to minimize the loss function

LG = Ez∼pz(z)[log(1−D(G(z)))], (30)

while the discriminator is trained to minimize the loss function

LD = Ex∼pdata(x)[log(1−D(x)] + Ez∼pz(z)[log(D(G(z))]. (31)

The losses of GAN do not form a meaningful performance metric in the same
way as for most other machine learning models, i.e. the losses do not indicate the
quality of the generated data. Instead a GAN can be evaluated by inspection of
the data it generates and, since the training of the GAN aims to reach a balance
between the performance of the generator and the discriminator (an equilibrium
in the minimax game), convergence of the generator and discriminator loss is
sought [12].

3.12 Conditional GAN (CGAN)
The conditional GAN (CGAN), introduced by Mehdi Mirza and Simon Osindero
[13], is an extension of the type of network described in Section 3.11. In order
to generate data that is directed towards a certain mode, the generator and
discriminator are conditioned on some extra information, y, e.g. class labels for
producing class conditional samples. The input to the generator will consist of
a latent vector, z, from a latent space pz(z) and the information, y. The input
to the discriminator will consist of data, x, coming from either the training
data, pdata, or the generative model, G, together with the information, y. The
objective function for a CGAN is

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz [log(1−D(G(z|y)))]. (32)

3.13 Auxiliary Classifier GAN (AC-GAN)
The auxiliary classifier GAN (AC-GAN) is a variant of the CGAN, introduced
by Augustus Odena et al. [14]. Instead of supplying the discriminator with
extra information, as in the CGAN, it is instructed to construct this extra
information. For this purpose, the discriminator in an AC-GAN contains an
auxiliary network. The auxiliary network works as a classifier, i.e. it outputs a
corresponding class label for the input. Hence, the discriminator outputs both
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a label given by the auxiliary network and a probability of realness of the input
(as in the regular GANs).

The generator takes as input a latent vector, z, and a class label, c, and gen-
erates images, Xfake = G(c, z). The discriminator outputs both a probabil-
ity distribution over sources, S = {real, fake}, and over class labels, C, as
P (S|X), P (C|X) = D(X). The objective functions consist of{

LS = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)],

LC = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)],
(33)

where the discriminator aims to maximize LS +LC while the generator aims to
maximize LC − LS . In this sense, the generator and discriminator are actually
helping other as both want to maximize LC to create good class conditioning.

3.14 Metrics
In order to measure the performance of a machine learning model, it is important
to use a metric that suits the problem at hand. Some metrics that are used in
machine learning for classification are accuracy, precision, recall and F1 score
[15]. To define these metrics, we first introduce the notation true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN). For
simplicity, these terms are introduced with the help of a confusion matrix. A
confusion matrix is a table that shows statistics about what class the data points
actually belongs to and what class they were predicted by a classifier to belong
to. In the case of a binary class problem, with classes 1 (true) and 0 (false), the
confusion matrix can be seen in Figure 9. The true positives are data points
that are true (1) and are predicted as true (1) while true negatives are data
points that are false (0) and are predicted as false (0). In the same way, false
positives and false negatives are data points that are false (0) but predicted as
true (1) and vice versa.

TP1

1

FN

0

FP0 TN

A
ct
u
al

Predicted

Figure 9: Confusion matrix for a binary classification problem.

Accuracy

Accuracy is the ratio between correct predictions and all predictions, i.e.
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Accuracy =
TP+ TN

TP+ TN+ FP+ FN
. (34)

Precision

Precision is the ratio between relevant data points that were retrieved and all
the retrieved data points, i.e.

Precision =
TP

TP+ FP
. (35)

Recall

Recall (or sensitivity) is the ratio between the relevant data points that were
retrieved and all the relevant data points, i.e.

Recall =
TP

TP+ FN
. (36)

A similar metric which measures the ratio between actual negative data points
and the predicted negative data points is the specificity, defined as

Specificity =
TN

TN+ FP
. (37)

F1 score

The F1 score is the harmonic mean between precision and recall, i.e.

F1 =
2× Precision× Recall
Precision+ Recall

. (38)

The different metrics have different benefits and weaknesses. The accuracy
is good when all the classes in the data are equally important, the precision
is good to use when false positives can have a very negative impact and the
corresponding relationship holds for recall and false negatives. The F1-score is
a combination of precision and recall and as such a high F1-score means that
the number of both false positives and false negatives is low. Also, the F1-score
is more useful than the accuracy when there is an imbalanced class distribution
in the dataset [15].
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4 Methods
All models were built and trained using the TensorFlow-Keras framework in
Python.

4.1 Data
The data used for training our GAN networks were provided by CellaVision and
consisted of 249 999 labeled 256×256 RGB pixel images of blood cells belonging
to 19 different classes. See Table 5 in Appendix for the class distribution. In
Figure 10, nine such blood cell images are shown. To train our classifier, we
used another dataset, consisting of 200 072 images with the same properties as
in the aforementioned dataset. The class distribution for this dataset can be
seen in Table 6 in Appendix.

Figure 10: Examples of the data consisting of blood cell images.

4.2 Preprocessing and Data Flow
We used the Python computer vision library openCV to read the images into
Python. OpenCV read the images into 256×256×3-dimensional numpy arrays
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with each pixel being represented by an integer between 0 and 255. Before the
training, we converted the pixel values pi to floats and rescaled to [−1, 1] using
the transformation

p̂i =
pi − 127.5

127.5
. (39)

As the data used in our training sessions consisted of several hundred thousand
images, it was not feasible to keep all of the data in the memory for the whole
training sessions. This problem is solved by using a data generator which loads
a portion of the data into the memory, and keeping it there only when it is
needed. To avoid confusion with the generator network in the GAN model, we
will refer to the data generator as data reader. The data reader provided by
TensorFlow was, in our opinion, too closely reliant on other TensorFlow mod-
ules which we chose not to use when training our models, so we wrote our own
data reader. This data reader reads, shuffles, and batches the data according to
specification by the user as well as performing preprocessing.

4.3 Network Architecture
With very small variations, all of the networks used in our experiments have the
same network architecture. The network architecture we chose was inspired by
the Deep Convolutional GAN (DCGAN) introduced by Radford et al. [16]. In
this architecture, transposed convolutions are used instead of pooling functions,
such that the generator learns its own spatial upsampling and the discriminator
its own spatial downsampling [16]. Another feature of the architecture is that
fully connected layers are only used to connect the input and output with the
highest convolutional features for the generator and discriminator respectively.
In order to stabilize training, batch normalization is applied on all layers in the
generator except for the output layer. In the generator, the leaky ReLU function
is used as non-linear activation function for all layers except the output layer,
where the tanh function is used. In the discriminator, the leaky ReLU function
is used as activation function for the inner layers while the output layer has a
sigmoid activation. Dropout is performed after each layer in the discriminator
except the output layer. The structure of the generator and discriminator can
be seen in Figure 11 and 12 respectively. Figure 11 shows how the generator
upsamples an input latent vector (which has been excluded in the figure) until
it has the size of an image while Figure 12 shows how the discriminator down-
samples an image to a scalar corresponding to a probability. Absent in these
illustrations are the activation functions, batch normalization and dropout lay-
ers. These can instead be seen in the more detailed network visualizations in
Figures 22-26 in the Appendix.
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Figure 11: Illustration of the generator network architecture used in our exper-
iments. The numbers next to the boxes signify width, height, kernel size, and
depth (number of filters). The illustration was drawn using software on the web-
site http://alexlenail.me/NN-SVG/AlexNet.html created by Alex Lenail.

Figure 12: Illustration of the discriminator network architecture used in our ex-
periments. The numbers next to the boxes signify width, height, kernel size, and
depth (number of filters). The illustration was drawn using software on the web-
site http://alexlenail.me/NN-SVG/AlexNet.html created by Alex Lenail).

Hyperparameters

Hyperparameters that need to be set in our GAN models are: buffer size
(amount of data used), batch size, number of epochs (i.e. the number of times
the entire training data flows through the model in the training process), latent
space dimension, learning rates of the optimizers used by the generator and
discriminator respectively, as well as kernel size and stride for the convolutional
layers. Furthermore, the dimensions of the first convolutional layer in the gen-
erator and discriminator must be set, which (together with the kernel size and
stride) also determines the dimensions of the following layers.

In addition to the above stated hyperparameters, the AC-GAN requires that
the number of classes be set. In the AC-GAN additional fully connected layers
are implemented and the amount of these and their dimensions must also be
set.

4.4 Generating Blood Cell Images using GAN
The first problem we aimed to solve was that of generating data following the
same distribution as the training data without conditioning on class labels, i.e.

25

http://alexlenail.me/NN-SVG/AlexNet.html
http://alexlenail.me/NN-SVG/AlexNet.html


we wanted the output to be images resembling real blood cells belonging to
any class. For this purpose, we used a GAN. In the text that follows, we will
refer to this GAN as Vanilla-GAN since it is the most basic GAN used in our
experiments.

The GAN we used consists of a generator and discriminator, as described in
Section 3.11. The network architectures for the generator and discriminator
follow that described in Section 4.3 and can be see in Figures 22 and 23 in the
Appendix. The blood cell images’ pixel values were rescaled and the data was
loaded into the GAN model by using our data reader as described in Section
4.2. The generator takes as input a 100-dimensional noise vector and transforms
this to produce an image of size 256 × 256 × 3. In other words, the generator
can be described as a mapping G : R100 → R256×256×3. The discriminator takes
as input an image of size 256× 256× 3 and maps this down to a probability of
realness, i.e. D : R256×256×3 → R.

The cost function used for the Vanilla-GAN is the cross-entropy defined in
Equation (1) and the optimizer used is the Adam optimizer, introduced by
Kingma and Lei Ba in 2014 [17]. Adam is an adaptive implementation of the
SGD algorithm described in Section 3.3, it is adaptive in the sense that it com-
putes individual adaptive learning rates for different parameters. The choice of
optimizer followed the approach used by Radford et al. in the DCGAN paper
that our architecture is based on as described in Section 4.3.

Testing our Images with an Expert

In order to test the quality of our Vanilla-GAN generated blood cell images, we
let an expert, in the form of a medical technologist, examine a dataset consisting
of 50 real blood cell images and 50 Vanilla-GAN generated images and assess
which were real and which were synthetic. The dataset was shuffled so that
real and fake images appeared in random order. The expert did not beforehand
know the relative frequency of real and fakes.

4.5 Generating Class-specific Blood Cell Images using AC-
GAN

Generating general blood cells using Vanilla-GAN is a good way of ensuring
that the network architecture is sufficient for generating good quality images.
However, its practical use is limited as there is no way of controlling what kind
of blood cell is being created. This, for obvious reasons, renders the images
unusable for augmenting training data for a classifier. The CGAN, as described
in Section 3.12, aims to solve the problem of generating images of a given class.
We did not succeed in implementing a CGAN which yielded satisfactory results.
The images generated often lacked the desired image quality which we had seen
in the ones generated by our Vanilla-GAN. In order to achieve a similiar image
quality as the Vanilla-GAN while at the same time getting a strong condition-
ing on class labels, we tried a variant of the CGAN which not only feeds extra
information into the discriminator, but instead encourages this to construct the
extra information. This is done by adding an auxiliary classifier to the dis-
criminator which is being trained in parallel to the regular discriminator. This
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implementation of a GAN is known as AC-GAN, as described in Section 3.13.

The blood cell images were loaded into the model using our data reader in
the same way as in the previous section. The generator takes as input a 100-
dimensional latent vector together with a one dimensional label and maps these
as G : R100 × [0, 18] ⊂ Z → R256×256×3. The discriminator takes as input
an image and maps this to both a probability of realness and a class label as
D : R256×256×3 → R× [0, 18] ⊂ Z. Note that the AC-GAN does not get feeded
information about what class the input image belongs to (as in the CGAN),
instead this information is constructed by the auxiliary classifier and is part of
the output of the discriminator. The auxiliary classifier is implemented in the
discriminator by adding a fully connected layer with softmax activation, out-
putting probabilities of class association where the index with maximum value
gives the class label. This layer is in addition to the fully connected layer with
sigmoid activation which serves as the discriminator, outputting a probability
of realness, just as in the Vanilla-GAN.

To further improve the quality of the generated images, which were of really low
quality for our first implementations of the AC-GAN (while showing promising
conditioning abilities), we used a pre-trained generator and discriminator from
a Vanilla-GAN and freezed all of the layers of the generator and all the lay-
ers of the discriminator except for the fully connected layers corresponding to
the discriminative and classyfying layers, which are both held trainable. Three
fully connected layers were added to the generator, connecting the input to the
first layer of the generator, and three fully connected layers were addded to
the dicriminator, connecting the last convolutional layer to the auxiliary classi-
fier. The principal idea of this was that the freeezed pre-trained generator and
discriminator would contribute with information about how to produce high
quality images of general blood cells while the trainable fully connected layers
would contribute with the conditioning on class labels. In a sense, one can see
the training of these fully connected layers as a way of locating which areas of
the latent space belongs to which class.

The network architectures for the generator and discriminator of our AC-GAN
can be seen in Figure 24 and Figure 25 in the Appendix. The Sequential boxes
in the figures correspond to the pre-trained generator and discriminator model
respectively, which are the same as in the Vanilla-GAN.

4.6 Latent Space Experiments
The work done in this section was prompted by our wish to better understand
the mapping between the latent space and the image space induced by training
a Vanilla-GAN. While not all of it is directly related to the aim of this thesis,
we feel that the results are valuable in evaluating the result of the training.

Interpolation of Sampled Images

With a trained Vanilla-GAN generator it is possible to create random images
by sampling vectors from the latent space. If we sample two vectors from the
latent space and generate images, the two images will most likely be quite
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different, which is to be expected given the relatively heterogeneous nature of
the dataset. Given the two generated images, we can ask ourselves the question
of what images lie between the two in the image space. A partial answer can be
attained by linearly interpolating between the two latent vectors and see which
images in the image space they map to. Denoting the two latent vectors z1 and
z2, an n-step interpolation is given by

ẑk = z1 +
z2 − z1
n

k, (40)

where ẑk is the resulting latent vector at the k:th step of the interpolation.
For example, the midpoint between z1 and z2 is given by setting k = n/2.
By generating the corresponding sequence {G(ẑk)}nk=0 we can examine how the
images generated by points on the line between the two latent vectors look.

Finding the Best Reconstruction of a Real Image

Given a real image, we wanted to examine if there was a vector in the latent
space which could produce an image which is similar. For an individual image I
and a pretrained GAN generator G, this is an optimization problem where the
sought after latent vector z̃ is attained as

z̃ = argmin
z
||I −G(z)||, (41)

where the norm is, for example, L1, and the subtraction is pixelwise. Rather
than solving the optimization for each example, we wanted to see if we could
train a convolutional neural network to map an image to z̃. We refer to this
network as an image-to-latent network. Since the problem is quite similar to
the one solved by the discriminator in the Vanilla-GAN model, we adopted a
similar architecture, changing the output from a scalar to a 100-dimensional
vector. See Figure 26 in the appendix for details. The training process can be
summarised as follows:

1. Draw a batch of real images.

2. Generate latent vectors by passing them to the image-to-latent network.

3. Generate images by passing the latent vectors to the GAN generator.

4. Calculate the loss as the norm between the real and generated images.

5. Let the optimizer update the parameters of the image-to-latent network.

We used the Adam optimizer and L1-norm as loss function.

Generating Data By Perturbing Reconstructed Images

The reconstruction of real images introduced in the previous section has the nice
property that it gives real images a representation in the latent space. This,
for example, enables us to do interpolation between two reconstructed images,
using the method outlined in Section 4.6. We also evaluated a possible method
for generating data using reconstructed images. The idea is as follows: When
generating data, we are looking for samples that are close but not equal to the
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data we already have. Given a reconstructed image, we can create samples that
are slightly different by adding noise to the reconstructing latent vector, thereby
perturbing the reconstructed image. Denoting the reconstructing latent vector
z̃ and the GAN generator G, we can generate any number of new images as

Iperturbed(z̃, ε) = G(z̃ + ε), (42)

with ε ∈ N(0, σ2I) where I is the identity matrix for the latent space dimension.
The choice of σ2 will determine how perturbed the images will be.

4.7 Training A Classifier On Synthetically Augmented Datasets
One of the main goals of this thesis is to improve classification performance by
augmenting a dataset with synthetic data. The classifier we used is the Xception
classifier, introduced by Francois Chollet in 2017 [18]. As this thesis is about
improving the performance of the classifier by means of synthetic augmentation
and not about choosing the optimal classifier, we will not go into details about
the classifier or why we chose the Xception classifier in particular other than
that it has performed well in experiments at CellaVision. The important aspect
is how the augmentation affects the performance of the given classifier.

To get a baseline, in order to evaluate how the augmentation affects the classi-
fication performance, we first wanted to train the chosen classifier on a dataset
without any augmentation. We trained the classifier on a dataset that did not
have any overlap with the dataset used to train the Vanilla-GAN and AC-GAN.
In addition to this, we also trained the classifier on the dataset augmented with
the classical data augmentation methods rotate and zoom. After we had our
baseline results, we augmented both the original dataset and the classically aug-
mented dataset with synthetic data generated by our AC-GAN and trained the
classifier on these new datasets respectively.
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5 Results

5.1 Generating Blood Cell Images using GAN
The hyperparameters used for training the Vanilla-GAN model can be seen in
Table 1. The learning rates of the generator and discriminator are referred to
as αG and αD respectively while the number of filters in the first convolutional
layer of the generator and discriminator are referred to as DepthG and DepthD
respectively.

Table 1: Hyperparameter settings for training of the Vanilla-GAN model.
Hyperparameters

Buffer size 240 000
Batch size 20
Epochs 75

Latent dimension 100
αG 1 · 10−5
αD 1 · 10−5

Kernel size 5× 5
Stride 2
DepthG 1024
DepthD 64

In Figure 13, nine blood cell images generated by the Vanilla-GAN are shown.
The images were generated by inputting nine different 100-dimensional latent
vectors consisting of Gaussian noise into the trained generator. The generator
produces images with a quality not far from the true data, see Figure 10. Some
of the red blood cells are a bit more smudgy than in the original dataset and
the contours of both the red and white blood cells are not quite as sharp as
in the real images. Since the Vanilla-GAN does not condition on classes, we
cannot know what classes these generated blood cells belong to but based on
the images in Figure 13, the generator seems to be able to produce images with
a large variation, i.e. it is not prone to produce duplicates.
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Figure 13: Blood cell images generated after 75 epochs of training by a Vanilla-
GAN.

In Figure 14, the losses of the generator and discriminator are shown as functions
of the number of epochs. From the plot we can see that the generator and
discriminator reach equilibrium around epoch 30 and keep this equilibrium till
around epoch 75 where the losses start to diverge. This, together with the good
image quality, is why we chose to generate images with the generator that had
been trained for 75 epochs.
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Figure 14: The losses of the generator and discriminator as functions of the
number of epochs.

Testing our Images with an Expert

In Table 2, the confusion matrix for the medical technologist’s classification of
real images and Vanilla-GAN generated images can be seen. The results show
a recall (sensitivity) of 0.88 and a specificity of 0.54.

Table 2: Confusion matrix for the medical technologist’s classification of real
images and Vanilla-GAN generated images. The total amount of images were
100: 50 real and 50 fake.

Predicted
Real Fake

Actual Real 44 6
Fake 23 27

5.2 Generating Class-specific Blood Cell Images using AC-
GAN

In Table 3, the hyperparameters used for training the AC-GAN are shown.
Additional hyperparameters are the number of fully connected layers that are
added to connect the input and the output with the highest convolutional fea-
tures for the generator and discriminator respectively. Three fully connected
layers, each consisting of 100 neurons, with ReLU activation functions were
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added to connect the input with the pre-trained layers of the generator and
three fully connected layers on the same form were added to the discriminator
to connect the pre-trained layers with the auxiliary classifier.

Table 3: Hyperparameter settings for training of the AC-GAN model.
Hyper parameters

Buffer size 238 080
Batch size 32
Epochs 1

Latent dimension 100
Number of classes 19

αG 2 · 10−4
αD 2 · 10−4

In Figure 15, comparisons between AC-GAN generated (fake) blood cell images
and real blood cell images are shown. The images to the left are fake while the
images to the right are real. It should be said that for this comparison we have
chosen cell images from the real data that resembles the generated data as much
as possible and so the comparisons shown here might not be representative over
the entire set of real and fake data. The selection was made to show the class
conditioning abilities of the AC-GAN. The quality of the images are not quite
as high as the Vanilla-GAN generated images in Figure 13. Achieving good
in-class variability using AC-GAN proved difficult as can be seen in Figure 16
which shows nine AC-GAN generated images belonging to class 0. The generator
seems keen on generating images belonging to certain modes, i.e. certain output
types. This is an example of mode collapse, a common problem with GANs. In
the figure, three such modes are shown (one mode for each row).

Fake Class 0 Real Class 0
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Fake Class 1 Real Class 1

Fake Class 2 Real Class 2

Fake Class 3 Real Class 3

Fake Class 4 Real Class 4
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Fake Class 5 Real Class 5

Fake Class 6 Real Class 6

Fake Class 7 Real Class 7

Fake Class 8 Real Class 8
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Fake Class 9 Real Class 9

Fake Class 10 Real Class 10

Fake Class 11 Real Class 11

Fake Class 12 Real Class 12
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Fake Class 13 Real Class 13

Fake Class 14 Real Class 14

Fake Class 15 Real Class 15

Fake Class 16 Real Class 16
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Fake Class 17 Real Class 17

Fake Class 18 Real Class 18

Figure 15: Comparison between images generated by an AC-GAN and real
images, one such pair for each of the 19 classes (0-18).
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Figure 16: Nine AC-GAN generated blood cell images belonging to class 0
exhibiting the mode collapse tendencies of our AC-GAN.
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5.3 Latent Space Experiments
Interpolating Between Generated images

In Figure 17 we see an interpolation between two generated images using the
method outlined in Section 4.6. The blood cells morph into each other quite
smoothly, with the nucleus shape, red blood cell configurations, and cell texture
all approaching the second cell.

(a) Generated image 1 (b) interpolation 1 (c) interpolation 2

(d) interpolation 3 (e) interpolation 4 (f) interpolation 5

(g) interpolation 6 (h) interpolation 7 (i) Generated image 2

Figure 17: An 8-step interpolation between two generated images.

Finding the Best Reconstruction of a Real Image

In Figure 18 we see five images in the dataset and their reconstructions cre-
ated by finding their best reconstructing latent vector using the image-to-latent
network. We used a learning rate of 1 · 10−5 while training the image-to-latent
network.
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Real image GAN reconstruction

Real image GAN reconstruction

Real image GAN reconstruction

Real image GAN reconstruction
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Real Image GAN reconstruction

Figure 18: Comparison between real images and their reconstructions.

Generating Data By Perturbing Reconstructed Images

In Figure 18 we see images generated by adding zero-mean Gaussian noise with
variance σ2 = 0.04 to the best reconstructing latent vectors of the images seen
in Figure 18 and generating images from the thereby perturbed latent vectors.
We see five perturbed images for each original image.
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Figure 19: Images generated by perturbing the best reconstructing latent vector
of the images in Figure 18.

5.4 Training A Classifier On Synthetically Augmented Datasets
In Figure 20 we see the confusion matrix from classifying a test set using an
Xception-classifier trained on non-augmented data. The dataset was divided
into 138 496 training images, 30 787 validation images and 30 789 test images.
The classification made by this classifier will serve as a baseline. The classifica-
tion is overall good with most of the classes having above 90 percent correctly
classified cells. However, in classes 1, 6, 9, 10, 12, 16 and 18 there seem to be
room for improvement.
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Figure 20: Confusion matrix for the baseline classifier, i.e. the classifier trained
on the original dataset without augmentation.

In Figure 21, the confusion matrix from classifying a test set using an Xception-
classifier trained on synthetically augmented data can be seen. Each class in
the training set was increased by 50 % by augmenting with AC-GAN generated
images. The accuracy remains at similar values as for the baseline classifier
with some minor reductions for classes 2 (-2 p.p.), 3 (-1 p.p.), 11 (-2 p.p.), 14
(-1 p.p.) and larger drops for classes 1 (-12 p.p.), 4 (-7 p.p.) and 10 (-7 p.p.).
Increases in accuracy can be seen for classes 0 (+3 p.p.), 6 (+10 p.p.), 7 (+4
p.p.), 8 (+4 p.p.), 9 (+6 p.p.), 12 (+13 p.p.), 13 (+4 p.p.), 15 (+7 p.p.), 16 (+2
p.p.), 17 (+2 p.p.) and 18 (+5 p.p.). For class 5 the accuracy is the same for
the baseline and the synthetically augmentation trained classifier.
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Figure 21: Confusion matrix for the classifier trained on the original dataset
augmented with AC-GAN generated images.

To measure the overall performance of the classifier and not only its performance
on specific classes the weighted average F1-scores were computed for each trained
classifier. In Table 4, the weighted average F1-scores for the baseline and the
synthetic augmentation trained classifiers can be seen. The scores are weighted
in the sense that metrics are calculated for each class and their average weighted
by support is computed to account for class imbalance.

Table 4: Weighted average F1-scores for baseline and synthetic augmentation
trained classifier.

Classifier Weighted F1
Baseline 0.946
Synthetic 0.953

Results from training a classifier on data with classical augmentation schemes as
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well as a combination of classical augmentation and synthetic augmentation were
considerably worse than both the baseline seen in Figure 20 and the synthetic
augmentation results seen in Figure 21. Therefore, we decided to omit these
results from the report and confine ourselves to the comparison between baseline
and synthetic augmentation.
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6 Discussion
Vanilla-GAN

The generator of our Vanilla-GAN seems to have learned the data distribution
of the dataset well in the sense that it is able to generate a large variety of
realistic blood cell images that to our eyes are very similar to the images in the
dataset. However, a closer look at the images reveal some differences. There
is a fine, gridlike texture visible in the background of the images and in the
cytoplasma of some cells, which is not visible in the real images. This makes
differentiating between real and generated images a quite easy task if you know
what to look for. The texture is even more pronounced and of a coarser nature
in images from earlier training stages, indicating that the texture is a feature
of the model which is partially "trained away". Even so, in the later stages
of training, when the model showed clear signs of convergence with regards to
cell quality and loss functions, the texture was not completely gone, implying a
shortcoming of the selected model. We suspect that the texture is a product of
kernel size and/or the number of convolutional filters and that further experi-
mentation might remedy the problem.

These cosmetic concerns aside, the Vanilla-GAN model largely achieved its pur-
pose in our thesis, which was to show that a GAN with the DC-GAN architecture
can learn the distribution of our data set and produce credible images. This was
further confirmed by testing our Vanilla-GAN generated images on an expert
in the form of a medical technologist. The recall of 0.88 shows that the expert
performed well on classifying real images as real while the specificity of 0.54
shows that the expert struggled with classifying the fake images: Almost 50%
of the fake images were classified as being real. This attests to the quality of
our Vanilla-GAN generated images.

AC-GAN

Evaluating the performance of the AC-GAN reduces to two main factors: Does
the AC-GAN succeed in generating blood cell images that resemble the real im-
ages of a given class and can the generated images be used to improve classifier
performance?

We will start by discussing the first question while discussing the latter at the
end of this section. As seen in Figure 15, the AC-GAN seems able to condition
on every class in the dataset and is able to generate rather high quality images
from these classes. Especially the generated images beloning to classes for which
the training set consists of many images, for example class 0, exhibit a detailed
appearance and a high resemblance to the real images. However, the AC-GAN
struggles with some of the classes for which there is a shortage of data, such as
classes 12 and 18, and for classes with a distinct appearance that set them apart
from the other classes, such as classes 14 and 18. The reason why the AC-GAN
struggles with the latter classes could be that they do not share many features
with the other classes, instead having a very distinct appearance. The generator
has not been exposed to these features as much as for the classes which share
more features, hence it is less equipped with generating from them due to lack
of exposition in the training phase. For these classes the generator does not
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benefit from being well trained on the shared characteristics between many of
the classes.

A problem with the AC-GAN is that for some classes, such as class 0, it is
keen on generating images concentrated on certain modes, a sign of mode col-
lapse. This is illustrated in Figure 16 where three such modes are shown. There
are minor differences between the images in a certain mode, but they can almost
be considered as duplicates. This can be a problem when using the AC-GAN
generated images to augment the training set for classifier improvement. If a
large fraction of the augmented images consists of duplicates, the classifier will
be exposed to a less diverse dataset during training. This will decrease the clas-
sifier’s ability to generalize in comparison to if it would have been trained on a
dataset with high variability.

Latent Space Experiments

The interpolation between generated images visible in Figure 17 is quite smooth,
although some parts of the images exhibits "jumps" from one image to the next,
such as a red blood cell disappearing between interpolation 5 and 6. We believe
that the fact that such an interpolation is possible is a sign that the Vanilla-
GAN generator has generalized well from the images it was trained on, and not
just learned to generate images that are very similar to images that are already
in the training set.

The images generated by finding the best reconstructing latent vector gener-
ally capture the shape of the WBCs as well as the configuration of RBCs. They
lack in the finer details and in some cases the colour and texture. The combined
structure of the image-to-latent network and GAN generator can be viewed as
an auto-encoder, with the aforementioned networks playing the part of encoder
and decoder respectively. From this point of view, it is quite remarkable that
an image comprised of 256 × 256 × 3 = 196608 pixels can be reconstructed so
well from 100 floating point numbers. It might be interesting to explore what
this entails in the context of, for example, compression of images.

Having access to the best reconstructing latent vector enables making changes
to a cell in the dataset, which we believe entails many possible experiments that
we have only begun to explore in this thesis. The images in Figure 19 that are
perturbed by adding noise to the best reconstructing latent vector do for the
most part show the desired small changes in cell appearance. However, some
of the perturbations result in changes that very much alter the overall charac-
teristics of the cell. Smaller values for σ2 yielded variation which was barely
visible, implying that the desired small but visible variation comes with the cost
of undesired large changes. This is problematic if the objective is in-class data
augmentation as the perturbed images might be "pushed" out of the class it
belongs to. For this reason, we decided not to attempt to improve a classifier by
augmenting datasets with perturbed images. A possible solution to the problem
would be to identify a set of restrictions for each class, determining directions
in the latent space that the best reconstructing latent vectors can be perturbed
in, with the aim of introducing variance without loosing class-defining features.
Another way might be to interpolate between different reconstructed images of
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the same class.

Classifier Performance Improvement

The confusion matrices in Figure 20 and Figure 21 show that synthetic aug-
mentation is able to significantly increase the accuracy of the classifier for some
classes, such as classes 6, 9, 12, 15, while we see a rather large decrease in
accuracy for classes 1, 4 and 10. Observing the subdiagonal of the confusion
matrix in Figure 21, we see that the large drop in accuracy for class 1 seems
to occur due to the fact that many of the blood cell images belonging to this
class are being classified as class 0. This is not too surprising since the class
1 images generated by our AC-GAN have a high resemblance with the class 0
images, see Figure 15. Furthermore, the class distribution of the dataset used
for training the classifier, see Figure 6 in Appendix, shows that there are only
2565 images belonging to class 1 (in comparison, there are 13126 belonging to
class 0), so the classifier does not have much data to train on for this class.
This in combination with the AC-GAN’s inability to generate class 0 and class
1 images with high discrepancy could explain the large drop in accuracy for
class 1. The same arguments can be used to explain the drop in accuracy for
class 10. The AC-GAN generated images resemble class 9 and in the confusion
matrix in Figure 21 we see that many class 10 images are being classified as
class 9. An interesting note about the misclassification of class 1 as class 0 and
class 10 as class 9 is the biological relation between the classes. Class 0 consists
of segmented neutrophils which are a more mature version of the class 1 band
neutrophils, succeding them in the process of cell evolution [19]. The same is
true for class 9, consisting of myelocytes, which precede the class 10 metamye-
locytes in the cell evolution. Our generative model seems to be able to produce
images that are on the borderline between classes, e.g. between class 0 and class
1, making it difficult for the classifier to discriminate between the two.

Some of the notable increases in accuracy are seen for classes 6, 9, 12 and
15. In particular, the high increases in accuracy for classes 12 and 15 are of
interest since these classes are two of the three classes (class 18 is the third, for
which we also see an increase in accuracy) with the least amount of data in the
original dataset. This implies that synthetic augmentation seems to be a way to
improve classifier performance for classes with a shortage of data. The weighted
F1-scores in Table 4 further implies that training a classifier on synthetically
augmented data improves the classification performance.

6.1 Conclusions
Conclusions to be drawn from our results are:

• The Vanilla-GAN can generate images with quite high resemblance to real
blood cell images, as implied by an expert in the field classifying 46% of
the fake images as real.

• The AC-GAN is able to condition on classes and in parts improve classifier
performance, especially for classes for which there is a shortage of data.
However, the generated images does not quite have the quality of the
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Vanilla-GAN generated images and tendencies of mode collapse can be
observed.

6.2 Further Work
Further work involves solving the problem of mode collapse for the AC-GAN.
On Google’s page on GAN, they suggest that a remedy to mode collapse is
to implement a GAN using the Wasserstein loss [20]. This type of GAN is
called Wasserstein GAN (WGAN), as proposed by Arjovsky et al. in their pa-
per Wasserstein GAN [21]. Such an implementation could be worth a try in
order to avoid mode collapse. However, how it would affect our version of the
AC-GAN is difficult to know.

In order to further improve the quality and diversity of the generated images
the GAN models should be trained on a larger amount of data. More data was
available for us to use at CellaVision, but we decided to limit the dataset we
used in order to achieve faster training of our models.

To improve the classification, different augmentations can be tried. We aug-
mented each class with 50% of the size of the already existing data, it would
be interesting to try augmenting it with for example 100% of the size of the
existing data. Also, a different choice of classifier might help with improving
the classification results. Given a synthetically augmented dataset, there might
be classifiers which perform better than the Xception model we used.
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A Appendix

Table 5: Class distribution of the dataset used for GAN training provided by
CellaVision.

Class #
0 39931
1 10035
2 14962
3 6858
4 30943
5 29404
6 12160
7 10333
8 1698
9 10055
10 5882
11 21153
12 1240
13 11567
14 16994
15 2904
16 13394
17 7833
18 2653
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Table 6: Class distribution of the dataset used for classifier training provided
by CellaVision.

Class #
0 13126
1 2565
2 2791
3 1867
4 26552
5 20021
6 15269
7 22749
8 1370
9 2235
10 1171
11 18232
12 1113
13 1933
14 4175
15 546
16 14109
17 3590
18 557
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Figure 22: Network architecture of the generator in the Vanilla-GAN.

55



Figure 23: Network architecture of the discriminator in the Vanilla-GAN.
56



Figure 24: Network architecture of the generator in the AC-GAN.

Figure 25: Network architecture of the discriminator in the AC-GAN.
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Figure 26: Network architecture of the image-to-latent network
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