
Implementation of a traffic interceptor for
Anybus® CompactCom™

FRANCISCO JAVIER MACOTELA LÓPEZ
JAVIER GAZTELUMENDI ARRIAGA
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

FR
A

N
C

ISC
O

 JA
V

IER
 M

A
C

O
TELA

 LÓ
PEZ &

 JA
V

IER
 G

A
ZTELU

M
EN

D
I A

R
R

IA
G

A
Im

plem
entation of a traffi

c interceptor for A
nybus® C

om
pactC

om
™

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-752
http://www.eit.lth.se

Implementation of a traffic interceptor for
Anybus R© CompactCom TM

Francisco Javier Macotela López
fr6577ma-s@student.lu.se

Javier Gaztelumendi Arriaga
ja8602ga-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Erik Larsson

Company supervisors: Mattias Bornhager & Jonas Alowerson
(HMS Industrial Networks)

Examiner: Christian Nyberg

January 2, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The aim of this project is to design and develop a traffic interceptor for the Any-
bus protocol. This protocol is owned by HMS Industrial networks and its use is
intended to enable industrial devices to communicate with any fieldbus or indus-
trial Ethernet network. The traffic interceptor developed in this master thesis was
introduced so the host can observe the data flow before it is translated inside the
Anybus products and more specifically the CompactCom product. It receives the
signals from the communication between the Anybus and its host application,
then these signals are formatted in an FPGA and processed in a microprocessor
to finally be displayed using a protocol package analyzer called Wireshark.

i

ii

Popular Science Summary

Modern industrial systems rely on real-time communications between machines,
sensors, actuators, human control interfaces, etc. Traditionally, these devices are
connected to each other using a fieldbus, an industrial communications network
whose characteristics can vary depending on the requirements of the specific in-
dustrial process that is being controlled. Examples of requirements include band-
width, latency, communication distance, fault tolerance, and many others. This
has led to the existence of many different communication protocols, often spon-
sored by different vendors or groups of vendors, that are incompatible between
them.

To add to this, the requirement for higher capacity and lower costs makes
Ethernet an attractive value proposition for this communications, since the users
could leverage existing hardware and software tools for TCP/IP communication
at a much lower cost than the niche industrial protocols. However, Ethernet by
itself has some drawbacks when it comes to industrial environments, such as lack
of time accuracy, electrical noise sensitivity and diffculties to run for a very long
distance.

To bridge the gap between Ethernet and the industrial communication re-
quirements, several Industrial Ethernet variants have been created by adding ex-
tra functionality such as real-time control and determinism. This has resulted
in an increase in the amount of industrial communication standards that exist,
which are mostly incompatible between them. This increases the cost of setting
up an industrial plant, since all the devices need to be compatible with each other,
meaning that, once a protocol has been chosen, the user will be limited to those
manufactured or compatible with the ones from the same company.

In order to solve this issue, HMS created the Anybus communication proto-
col. The goal of this protocol is to be an intermediate bridge between networks
and devices that use different protocols. To do so, the traffic from each side is
"translated" to the Anybus protocol, and from this common language, it is trans-
lated back to the corresponding network protocol. This allows for great flexibil-
ity in different scenarios: for example, direct protocol converters can be used to
communicate a device with an uncompatible network. Another possibility is for
a company to design a device that uses the Anybus protocol, so that the customer
can connect it to different networks by changing the adapter.

While the Anybus protocol provides great flexibility, it is currently a blackbox

iii

for the user. This means that the user has no way of monitoring the data that goes
through the Anybus connection, so when an occasional error happens in any of
the stages of the communication, or a wrong configuration is applied, it is difficult
to troubleshoot and debug.

The goal of this project is to solve this problem by building an Anybus traf-
fic interceptor that can be implemented with hardware that is already in use by
HMS, allowing users to analyze the traffic through the Anybus by using standard
tools such as an Ethernet card and Wireshark, an open source network auditing
software widely used in the industry. The cost of implementation is greatly re-
duced by using existing hardware, avoiding the cost of a new electronic design
and the reusability of existing FPGA modules.

iv

Contents

1 Introduction 1

2 Related Work 5
2.1 Methods comparison . 6
2.2 Software and hardware implementation comparison 8

3 Understanding Anybus CompactCom 11
3.1 Anybus CompactCom operation modes 11
3.2 Physical Connectors . 12
3.3 SPI Pins . 13
3.4 SPI Interface Signals . 14

4 SPI Frame 19
4.1 SPI MOSI Frame . 21
4.2 SPI MISO Frame . 21

5 Traffic Interceptor Overview 23
5.1 General Overview . 23
5.2 PCB Description . 24
5.3 FPGA . 26

6 Traffic Interceptor Design 29
6.1 FPGA Logic . 30
6.2 AHB Bus . 30
6.3 Microcontroller Sub System (MSS) . 33
6.4 Ethernet . 33
6.5 Network Traffic Analyzer . 34
6.6 Software Oriented design . 34
6.7 Network Packet Analyzer Oriented design 35
6.8 Logic Oriented design . 35

7 Traffic Interceptor Implementation 37
7.1 Traffic interceptor wrapper with MSS 38
7.2 AHB Bridge . 38

v

7.3 Traffic interceptor top . 39
7.4 Connector . 39
7.5 General info . 41
7.6 AHB Slave . 41
7.7 SPI Top . 42
7.8 MSS Routine . 46
7.9 Wireshark Dissectors . 48

8 Results 51
8.1 Hardware Test . 55
8.2 Usage results . 59
8.3 Timing results . 60
8.4 Power results . 60

9 Conclusions and Future work 61

A SmartFusion2 SoC FPGA Architecture 63

Bibliography 65

vi

List of Figures

1.1 Integration of Anybus CompactCom with a host.[1] 3

2.1 Methods around the system . 6
2.2 Method 1 evaluation . 7
2.3 Method 2 evaluation . 7
2.4 Method 3 evaluation . 8

3.1 Anybus connector.[1] . 13
3.2 SPI Mode Anybus connection[2] . 15
3.3 3 Wire mode timing diagram.[2] . 16
3.4 4 Wire mode transfer example.[1] . 17

4.1 SPI Frame.[2] . 19

5.1 Anybus CompactCom with traffic interceptor connected. 23
5.2 Anybus CompactCom Expansion Board 023070-B. 24
5.3 Anybus CompactCom M4 ETN. 25
5.4 Expansion Boards where one is cut. 25
5.5 Anybus CompactCom traffic interceptor. 26

6.1 Traffic interceptor detailed diagram. 29
6.2 AMBA AHB 3 masters and 4 slaves. [3] 31
6.3 AMBA AHB Simple transfer [3] . 33

7.1 Traffic interceptor block diagram. 37
7.2 Traffic interceptor wrapper. 38
7.3 Traffic interceptor top. 39
7.4 Anybus power up [1] . 41
7.5 SPI Top block diagram . 42
7.6 Micro controller Subsystem Flowchart 47
7.7 Graphical representation of how a Dissector displays data 49

8.1 Test traffic example used in prototype. 51
8.2 MISO Frame reconstructed from a single frame. 53

vii

8.3 MOSI Message reconstructed from a single frame. 54
8.4 MISO Frame reconstructed from a stream of frames. 55
8.5 Traffic interceptor test hardware . 56
8.6 Traffic interceptor test hardware . 57

A.1 Microsemi SmartFusion2 FPGA General Architecture.[4] 64

viii

List of Tables

3.1 Pin type of CompactFlashTM connector.[1] 13
3.2 Pin assignation for SPI mode.[1] . 14
3.3 SPI interface signals.[5]. 16
3.4 Timing parameters for 3-Wire mode [1] 17
3.5 Timing parameters for 4-Wire mode [1] 18

4.1 SPI Frame MOSI [2] . 20
4.2 SPI Frame MISO [2] . 20

5.1 Smart Fusion2 M2S025 Overall specifications [4] 27
5.2 M2S025 MicroController Sub System Overall specifications [4] 27

6.1 AHB Bus HRESP commands [3] . 32

7.1 Signals intercepted in the connector block 40
7.2 Signals from figure 7.4 [1] . 41
7.3 MOSI Frame division in FPGA Logic block. 43
7.4 MISO Frame division in FPGA Logic block. 44
7.5 Anybus CompactCom MOSI Memory Map 45
7.6 Anybus CompactCom Memory Map 45
7.7 Message Header [6] . 50

8.1 Test frame parameters. Lengths given in 16 bit words 58
8.2 Hardware test results . 59
8.3 Anybus Traffic Interceptor Usage . 60
8.4 Timing results . 60
8.5 Power results . 60

ix

x

Chapter1
Introduction

Automated industrial systems often use a distributed topology, where a hierarchy
of interconnected systems is used to control a process. Several devices can coexist
in this hierarchy, such as Human Machine Interfaces (HMI), Programmable Logic
Controllers (PLC), sensors, actuators, motor controllers etc. For such a hierarchy
to work, some kind of communication needs to happen between these devices.

A fieldbus is an industrial network system that allows real-time control by
connecting different instruments in a plant. Communication requirements, such
as bandwidth or determinism, can vary wildly between different processes and
even between different parts of the same process (e.g the communication between
an HMI and a PLC doesn’t have to be time-critical but if a sensor detects an
anomaly, a process must stop immediately for safety). Examples of fieldbus net-
works include Profibus, Modbus and CAN.

With Ethernet being a de facto standard for networking, it seems natural to
replace fieldbus networks with Ethernet based systems. However, standard Eth-
ernet has some drawbacks when used in industrial environments, such as lack of
determinism and real time control, sensitivity to electrical noise, difficulty to run
for long distances, and cost. Nevertheless, its greater bandwidth, and the ability
to communicate over routers and servers that work with TCP/IP, as well as the
lower cost for the equipment, still make Ethernet desirable for some applications.

In order to bridge the gap between fieldbus networks and Ethernet, differ-
ent Industrial Ethernet protocols were created. These allow Ethernet to be used
in industrial environments by adding determinism and real time control capa-
bilities. Some examples of Industrial Ethernet protocols include EtherNet/IPTM,
PROFINET and EtherCAT.

The different requirements and lack of a global standard have resulted in mul-
tiple non compatible networks being used in the industry, which makes it impos-
sible for a manufacturer to support all existing protocols and ties customers to
hardware compatible with the standard that they are already using, often result-
ing in impossibility to buy equipment from different manufacturers in order to
save costs.

1

2 Introduction

To solve these issues, HMS Industrial Networks over the years has proposed
plenty of solutions to interconnect different industrial equipment or machinery
in multiple ways, such as functional safety, remote access, remote management,
and multi-network connectivity among others, however, in this thesis we will be
focusing in Anybus, a solution that allows the host equipment to have instant
connectivity to all major industrial networks on the market.

Anybus is used nowadays mostly in the factory automation market, but as
communication is becoming increasingly important in other areas such as build-
ings, vehicles, process plants and infrastructure, Anybus is venturing into new
markets. Its products consist of electronic hardware and software which enable
industrial devices to communicate. The focus for them is to be used as a gateway
which provides a translation of different protocols to an internal one, and then, it
provides the host access to different industrial network standards.

One way to do this is by embedding a hardware communicator into the host
to enable the industrial network connection, this is called Anybus CompactCom.

Anybus CompactCom has different presentations, such as chip, brick and
module, each one of them adapts to different needs in a system such as, flexibil-
ity or expertise on industrial networks, to mention some.[1]

However, regardless of its presentation and network module, the integration
of the CompactCom with a host is implemented in the same way and can be ob-
served in Figure 1.1. One can notice that the signals are connected from the host
CPU to interfaces that are later integrated to the Anybus CPU, from there, the
converted data is sent to a communication controller that passes it to a physical
interface and lastly it is sent to the network. The flow can go both directions, i.e.
from the network to the Anybus CPU as well. It is important to mention that, the
data that exits the host CPU is handled by software intended to be compatible
with Anybus.

Because of the wide variety of industries that the CompactCom can be used,
the software to set it up can be very different from case to case, and for that reason
errors might occur during its implementation. As mentioned before, the integra-
tion of the Anybus CompactCom with a system is done directly with the host
CPU and as shown in Figure 1.1. This means that the only output it has is the
network, leaving many areas where a problem might occur. One could say that
when debugging the system, the CompactCom acts as a black box, due to the fact
that the inner process is unreachable at the moment.

Introduction 3

Figure 1.1: Integration of Anybus CompactCom with a host.[1]

4 Introduction

Chapter2
Related Work

Because of the wide variety of industries that the CompactCom can be used, the
software to set it up can be very different from case to case, and for that reason
errors might occur during its implementation. As mentioned before, the integra-
tion of the Anybus CompactCom with a system is done directly with the host
CPU and as shown in Figure 1.1. This means that the only output it has is the
network, leaving many areas where a problem might occur. One could say that
when debugging the system, the CompactCom acts as a black box, due to the fact
that the inner process is unreachable at the moment.

The purpose of this thesis is to analize and compare possible solutions that
could solve this problem. In order to do that, the comparison to start with will be
the actual method and two more, furthermore out of these methods a general to
particular analysis will guide to the solution sugessted in this text, a traffic inter-
ceptor.

The debugging method at this moment is to send a field engineer to debug the
customer’s software, that from now on will be considered method 1. What will be
considered as method 2 will be a traffic interceptor with an existing known pro-
tocol (Ethernet) which will be placed at the output of the CompactCom. Method
3 is proposed to ba a traffic interceptor that can be plugged between the Host and
the Anybus CompactCom. Figure 2.1 illustrates the difference between methods
in the system, i.e, where is the application of them and in future sections in this
chapter why is the place in the system affecting their behaviours.

In order to start this comparison the parameters established were the follow-
ing:

• Time-consumption: The grading of this parameter will be based in the time
needed to generate a final working solution.

• Difficulty: This parameter will be graded according to the complexity that
the method demands.

• Effectivity: The grade will be established according to the time that takes
to find a solution.

• Reliability: The last parameter will be the accuracy of detecting broken/incorrect
packages in the traffic.

5

6 Related Work

Figure 2.1: Methods around the system

The scale will be set from 1 to 5 and the criteria will be based on the experience
of field engineers who have actually worked with host issues before and have
experience on them and with the help of the company supervisors feedback.

2.1 Methods comparison

2.1.1 Method 1

As seen in Figure 2.1, method 1 is implemented in the beginning of the system,
the way it is working now is very subjective from problem to problem and from
one engineer to another. However there is no extra funcionality implemented,
for that reason this method is the one with the highest grade in terms of difficulty
and in time consumption. When it comes to Effectivity, the grade is the lowest
since the time that is not spent in a solution to debug issues in this method, each
issue represents a different challenge where the field engineer has to read the
lines in the code implemented by the customer, for this reason it is considered
very uneffective and has the lowest grade. Finally when it comes to reliability it
might work for the tests realized by the field engineer during the the debugging,
since they do not cover all the tests, new issues might appear in the future and
for this reason the reliability grade is medium. Figure 2.2 shows the plot for the
parameters mentioned above.

Related Work 7

Time consumption 5

Difficulty 5

Effectivity 1

Reliability 1

0 1 2 3 4 5

Figure 2.2: Method 1 evaluation

2.1.2 Method 2
When it comes to Method 2, the advantage in other scenarios would be the fact
that there are already traffic interceptors that have the Ethernet protocol imple-
mented. However, when it comes to this specific product, this situation is not
quite helpful. The reason is that the Ethernet protocol in this system does not
provide useful information for debugging since the ethernet protocol is just a
way of sending information translated from anybus to Ethernet. Moreover, the
Ethernet solution is just one of the protocols the Anybus can translate to. Figure
2.3 shows the grades given to this method.

Time consumption 3

Difficulty 3

Effectivity 1

Reliability 1

0 1 2 3 4 5

Figure 2.3: Method 2 evaluation

2.1.3 Method 3
Finally, Method 3 is a solution suggested that could shine where the previous 2
would fail. Its first drawback would be the time spent into implementing this,
since it requires to modify the existing board to take the internal wires that so far
are closed between the host and the Anybus. For this reason this solution has the

8 Related Work

lowest grade when it comes to difficulty and time consumption. However, when
it comes to realiability and effectivity it is the strongest it is expected to work in
regular and in corner case situations. As well in this method, the reliability is the
highest since the Anybus protocol checking can be automatized.

Time consumption 1

Difficulty 0

Effectivity 5

Reliability 5

0 1 2 3 4 5

Figure 2.4: Method 3 evaluation

In conclusion, after comparing the three methods with their respective grades,
Method 3 offers the best solution since it is a one time work that can offer a much
more effective and reliable. However,there are many ways of implementing a
traffic interceptor which will be studied next.

2.2 Software and hardware implementation compar-
ison

A traffic interceptor is a device that captures the traffic circulating through a net-
work, allowing the interactions between the connected machines to be stored and
analyzed for several purposes, such as troubleshooting, testing, or auditing. In
order to do so, the interceptor has access to the physical layer of the network,
either the communication wires or the air in the case of wireless networks, and
can sense their state to decode the information that is being transmitted. In that
sense, a traffic interceptor can be thought of as a network device that only receives
data through its connection, unlike a typical network node, which can usually
send and receive data using dedicated physical and logical channels. Typically,
a traffic interceptor does not interact directly with the network, so the rest of the
devices can communicate as usual while the sniffer is "listening".

From an implementation point of view, the traffic interceptor can be seen as
having only inputs in its network interface, and another separate interface that
allows for the captured data to be transmitted or analyzed. There are two main
ways of building a network traffic interceptor or sniffer: a software approach and
a hardware approach. In a software approach, the data is decoded by a CPU or

Related Work 9

microcontroller, tipically in a computer. This kind of solution is common in Ether-
net sniffers, because it has several advantages: first of all, standard PC hardware
can be used, making it a simple and inexpensive solution. Existing computers are
often used for this, meaning that the cost is basically nil. Another benefit of this
method is that the software allows for great flexibility, which makes it possible to
decode many different protocols and perform advanced analysis by leveraging
existing traffic analyzer tools. For example, Wireshark is a free open source traf-
fic analysis tool, which provides the means for analyzing several communication
protocols, and allows for new ones to be added via plug-ins. This tool is often
considered the industry standard for traffic sniffing.

Because of the previously mentioned reasons, software-based traffic analyz-
ers are the most commonly used varieties, as they can be used for free by using
existing hardware and free software. However, pure software solutions are not
suitable for all network analysis needs, due to some of their limitations. The first
one is that for networks different than Ethernet, specific hardware will always be
needed to interface with the computer: this can be either commercially available
hardware for other standard networks (which can amount to a significant cost),
or custom hardware solutions. Another limitation is that software based systems
usually have a low time accuracy, usually in the order of 1us resolution and un-
certainty in the order of miliseconds. For some kinds of networks, specially real
time networks with cycle times in the order of miliseconds, this kinds of solutions
become unsuitable [7].

Hardware based traffic analyzers, specifically FPGA based ones, can help
solve those issues. By using an FPGA, custom digital hardware can be designed
without needing to incur the costs of producing an ASIC or a highly complex
protocol-specific PCB, both in time and money. FPGAs can implement the logic
required to intercept and decode the network traffic, as well as the transmission of
the captured data to a computer for further analysis. At the same time, these chips
can provide a stable and accurate time base, thanks to their highly deterministic
nature. By moving the timestamping to the hardware, time can be measured in
a more precise and stable manner. As an example, in [7], the authors managed
to capture Ethernet traffic with a resolution of around 100ns and a jitter of 0.1 us,
compared to 1us resolution and over 300us of jitter for a software solution.

FPGAs have been widely used to implement interceptors for different proto-
cols thanks to their ability to intercept faster protocols with less dropped pack-
ets, which makes them more accurate overall. Some examples of this include a
PCI bus sniffer developed by [8], where the authors hifhlight the lower cost and
higher flexibility of the FPGA solution. Another example is the network analyzer
based on the NetFPGA 1G platform implemented at [9]. NetFPGA is an open
platform developed at Stanford to allow researchers and students get hands-on
experience with hardware based networking and learn about processing large
volumes of packets on fully-loaded Gigabit Ethernet links [9].

Several other protocols have been analyzed using FPGA based analyzers,
such as CAN [10] and I2C [11]. All of this examples suggest that a FPGA so-
lution could be ideal for analyzing the Anybus protocol: on one hand, the high

10 Related Work

accuracy and speed support would allow it to capture the SPI mode at full speed.
On the other hand, the flexibility of the programmable logic means an easier ex-
pandability to add the other operating modes in the future.

Chapter3
Understanding Anybus CompactCom

In order to understand the traffic interceptor, basic knowledge of the Anybus
CompactCom system is required, since the traffic interceptor is developed as an
aid for the development of compatible products.

In this chapter, the different operating modes and interfaces of Anybus Com-
pactCom will be explored. Although Anybus CompactCom has different ver-
sions, this chapter will focus on the M40. The intention of this is to later be able
to present different concepts that are used for the realization of the projec.

As it can be observed in Figure 1.1, Anybus CompactCom has 5 different
host communication interfaces, corresponding to different operating modes. This
figure illustrates the basic properties of these interfaces, signals and their relation
to the host application. It is important to notice that only one communication
interface is available at a time, which is set up at startup. These communication
interfaces will be referred from now on as operation modes, and they will be
briefly described as mentioned in [2].

3.1 Anybus CompactCom operation modes

3.1.1 Parallel Interface, 8-bit or 16-bit

This mode is a common 8-bit or 16-bit parallel slave port interface. It can be in-
corporated into any microprocessor-based system that has an external address or
data bus. Its implementation is similar to implementing an 8-bit or 16-bit wide
SRAM, including an internal interrupt request line. LED interface signals are not
available in this mode.

3.1.2 SPI

SPI stands for Serial Peripheral Interface, and is a synchronous serial link. It
operates in full duplex mode and devices communicate in master/slave mode,

11

12 Understanding Anybus CompactCom

where the Anybus CompactCom is always the slave. In terms of its performance,
it is slower than the parallel interface, but faster than the serial interface (UART).

3.1.3 Stand-Alone Shift Register Interface

Anybus CompactCom M40 can also work without a host processor, the process
data in this operation mode is communicated to the shift registers on the host.

3.1.4 Serial Interface UART

As mentioned before, Anybus CompactCom has different versions, which im-
plement different features or new operating modes. An example of this is the
serial interface operation mode, which is included in the M40 in order to pro-
vide backward compatibility with the Anybus CompactCom 30. This interface is
event based, and it is not recommended to use with an M40 module since it does
not take advantage of the performance of this version. However, it is mentioned
since it can be used for backwards compatibility.

3.1.5 LED Interface

In almost all the operating modes (excluding 16-bit parallel) it is possible to know
the network status by using LED output signals, which can be driven by software.

3.1.6 Reduced Media-Independent Interface (RMII)

This interface is used for Transparent Ethernet. In this case, Industrial Ether-
net communication is handled by the Anybus CompactCom and other Ethernet
communication is routed to the host applications. LED interface signals are not
available in this mode.

Despite the fact that Anybus CompactCom can operate in all the modes men-
tioned above, the traffic interceptor developed in this thesis only covers the SPI
mode, since it is the most common one. The interceptor has been designed with
expandability in mind, such that other operation modes can easily be added in
the future.

3.2 Physical Connectors

The M40 model uses a 50-pin CompactFlashTM style connector, which can be seen
in Fig 3.1. These pins can be of different types, which are defined in Table 3.1.

Understanding Anybus CompactCom 13

Figure 3.1: Anybus connector.[1]

It is important to acknowledge the pin type since it plays a vital role when
implementing the communication between CPUs from the host and the Anybus
CompactCom.

Pin type Definition

I Input

O Output

I/O Input/Output (bidirectional)

OD Open Drain

Power Pin connected directly to the power supply, GND or 3.3 Volts

Table 3.1: Pin type of CompactFlashTM connector.[1]

3.3 SPI Pins

The relevant pins vary in different operating modes, but as mentioned before,
this project focuses only on the SPI operating mode. For that reason, Table 3.2
shows only the name in which pins will be referred in such mode. Moreover, a
description is added in order to clarify the used abbreviations.

14 Understanding Anybus CompactCom

Pin Signal Name Type Description

49 DIP1_0 I

DIP switch. Usage defined by
application. Connect to GND if not
used

24 DIP1_1 I
48 DIP1_2 I
23 DIP1_3 I
47 DIP1_4 I
22 DIP1_5 I
46 DIP1_6 I
21 DIP1_7 I

45 SS I Slave select. Active low

20 SCLK I Serial Clock Input

44 MISO O Master input, slave output. Input to the master’s shift register, and out-
put from the slave’s shift register.

19 MOSI I Master output, slave input. Output from the master’s shift register, and
input from the slave’s shift register.

43 (not used) I Connected to 3.3 V.
18 O, I

14 DIP2_0 I

DIP switch. Usage defined by
application. Connect to GND if not
used

39 DIP2_1 I
15 DIP2_2 I
40 DIP2_3 I
16 DIP2_4 I
41 DIP2_5 I
17 DIP2_6 I
42 DIP2_7 I

4 LED1B O

LED interface. Give access to LED
indications.

29 LED1A O
5 LED2B O

30 LED2A O
6 LED3B OD

31 LED3A OD
7 LED4B O

32 LED4A O

34 (not used) I Connected to 3.3 V.
33
10

9 IRQ O Active low Interrupt Request signal. Asserted by the Anybus Compact-
Com module.

36 OM0 I Operating mode for SPI operating mode.
11 OM1
35 OM2

3 OM3/ASI TX O, Strap Black channel output. During startup the pin is used to define the oper-
ating mode of the module.

28 ASI RX I Black channel input. Connect to 3.3 V if not used.

27 MIO/SYNC O
2 MI1

26 MD0 O
25 MD1

8 RESET I

Table 3.2: Pin assignation for SPI mode.[1]

3.4 SPI Interface Signals
In the previous section, the usage and type of pins involved in the SPI operating
mode were shown. In this section, the interface signals and the way this mode

Understanding Anybus CompactCom 15

behaves will be explained.

Figure 3.2 shows the connection between Host and Anybus in this Operation
mode.

Figure 3.2: SPI Mode Anybus connection[2]

During an SPI transmission, the data is transmitted and received simultane-
ously. The serial clock synchronizes shifting and sampling of the information on
two serial data lines. In the SPI Protocol, transmissions can be made in different
combinations of the SPI clock depending on its phase and polarity. Anybus Com-
pactCom works with the clock phase (CPHA) = 0. Clock polarity (CPOL) is also
0. This is known as SPI Mode 0.

A usual transfer with CPHA = 0 is described by Motorola [5] in the following
way:

The first edge of the clock line is used to clock the first data bit of slave into
the master and the first data bit of master into the slave. The clock output from
the master remains in the inactive state for half a period before the first edge ap-
pears. Half a cycle later the second edge appears on the clock line. When this sec-
ond edge occurs the value previously latched from the serial data input is shifted
in LSB order. After the second edge, the next bit of the SPI master is transmitted
out of the serial data output of the master to the serial input on the slave. This

16 Understanding Anybus CompactCom

process continues for a total of 16 edges.

The SPI operating mode uses 3 or 4 signals, depending on the whether the
optional SS signal is used or not. The signals are presented in Table 3.3, descrip-
tions were obtained from the SPI Block User Guide by Motorola.[5]. When the SS
signal is in use, the SPI interface is said to be in 4-Wire mode, and in 3-Wire mode
when this signal is not used.

Signal Description

SCLK Signal used to output the clock with respect to which
the SPI transfers data or receive clock in case of slave.

MOSI Signal used to transmit data out of the SPI module
when it is configured as a Master and receive data
when it is configured as slave.

MISO Signal used to transmit data out of the SPI module
when it is configured as a Slave and receive data
when it is configured as Master.

SS (Optional). Signal used to output the select sig-
nal from the SPI module to another peripheral with
which a data transfer is to take place.

Table 3.3: SPI interface signals.[5].

3.4.1 3-Wire Mode

This mode uses the SCLK, MOSI and MISO signals. The SS signal must be tied
low permanently. The SCLK signal must be idle high. The modules detect start
and stop of a transfer by monitoring the SCLK activity. The downside of this
mode is that it is not possible to detect multiple SPI slaves.

Additionally, there must be an idle period of at least 10 microseconds be-
tween 2 transfers and the SCLK signal must never remain high for more than 5
microseconds during a transfer. In Figure 3.3 one can observe an example of a
transaction realized by using this mode, as well, Table 3.4 shows the minimum
and maximum values for the timing during this mode.

Figure 3.3: 3 Wire mode timing diagram.[2]

Understanding Anybus CompactCom 17

Constraint Min Value Max Value

MOSI setup before SCLK rising edge 10ns -

MOSI hold after SCLK rising edge 10ns -

MISO change after SCLK falling edge 0ns 20 ns

SCLK low period 20ns -

SCLK high period 20ns -

SCLK period 50ns -

Table 3.4: Timing parameters for 3-Wire mode [1]

3.4.2 4-Wire Mode

In 4-wire mode the transfer of data works in a similar way as in 3-wire mode:
MOSI data is sent on SCLK rising edge and MISO is sent on the SCLK falling
edge. However, here a new signal, SS (Slave Select), is implemented. It acts as
an indicator for the start and stop of a transfer. In this mode the SCLK signal can
be either idle high or idle low. This mode also allows multiple SPI slaves on the
same bus. It is worth mentioning that the MISO signal is tristated when SS is
high, in order to avoid collision with other slaves.

Figure 3.4: 4 Wire mode transfer example.[1]

In Figure 3.4 data transfer in SPI 4 wire mode can be observed. As long as
the SS signal remains low, the data sent will belong to the same transfer as seen
in this Figure. In addition to this, Table 3.5 shows the time constraints that this
mode demands.

18 Understanding Anybus CompactCom

Constraint Min Value Max Value

MOSI setup before SCLK rising edge 10ns -

MOSI hold after SCLK rising edge 10ns -

MISO change after SCLK falling edge 0ns 20 ns

SCLK low period 20ns -

SCLK high period 20ns -

SCLK period 50ns -

SS setup before first SCLK rising edge 20ns -

SS hold after last SCLK rising edge 20ns -

MISO valid after falling edge of SS - 20 ns

Miso high-z after rising edge of SS - 20 ns

Table 3.5: Timing parameters for 4-Wire mode [1]

Overall, this is a brief description of how Anybus CompactCom works in SPI
Mode, which is the most commonly used operating mode. However, in order to
describe the implementation of the Traffic interceptor in this thesis, more concepts
need to be introduced. Future chapters will discuss how these operating mode
is used to trasmit data, and how this data can be processed and analyzed. A
tool that allows the user to interpret the data that will be produced by the traffic
interceptor will be introduced as well.

Chapter4
SPI Frame

In the previous chapter, the SPI protocol was introduced and briefly described,
as well as the way it is implemented inside of the Anybus CompactCom. How-
ever, the CompactCom module shapes the data received in any operation mode
as Anybus frames and, for that reason, the SPI operation mode frame will be
described in this chapter. This will help the reader understand how the traffic
interceptor stories data, and the architecture of the traffic interceptor, which will
be discussed in later chapters.

Figure 4.1: SPI Frame.[2]

During SPI operation, most bytes are transmitted with the most significant
bit first, but the byte order is little endian, [2] meaning that the least significant
byte is transmitted first. The only exception is the CRC32 checksum field, which
is transmitted in big endian order. Figure 4.1 shows how frames are sent. Here,
it can be noticed that both MOSI (Master Output Slave Input) and MISO (Master
Input Slave Output) lines have a frame of their own, similar in structure, but not
identical. Table 4.1 presents the MOSI Frame components, and Table 4.2 intro-
duces the ones that belong to the MISO.

19

20 SPI Frame

Byte Name Description

0 SPI Control Described in Section 4.1.1.

1 Reserved Confidential to HMS.

2-3 MSGLEN Indicates the size of the mes-
sage field in words.

4-5 PDLEN Indicates the size of the write
process data field in words.

6 APP STATUS Described in Section 4.1.2.

7 INT MASK Described in Section 4.1.3.

MSGLEN words MSGFIELD Message field.

PDLEN words WRPDFIELD Write process data field.

2 word CRC Error checker.

1 word PADDING Dummy data. Ignored by
anybus

Table 4.1: SPI Frame MOSI [2]

Byte Name Description

0 Reserved Confidential to HMS Indus-
trial Networks.

1 Reserved Confidential to HMS Indus-
trial Networks.

2-3 LED STATUS Described in Section 4.2.1.

4-5 ANB STATUS Described in Section 4.2.2.

6 SPI STATUS Described in Section 4.2.3.

7 NET TIME Lower 32-bits of the network
time.

MSGLEN words MSGFIELD Message field.

PDLEN words RDPDFIELD Read process data field.

2 word CRC Error checker.

Table 4.2: SPI Frame MISO [2]

SPI Frame 21

4.1 SPI MOSI Frame
In this section, the relevant components of the SPI MOSI frame will be described
briefly. Some of them will be further expanded when the traffic interceptor is
introduced.

4.1.1 SPI Control
This section of the MOSI frame contains vital information to control the contents
inside of the frame, such as message and data. A more detailed explanation of
the bits in this byte will be given later in this document.

4.1.2 Application Status (APP STATUS)
This byte is used for to indicate the status of the host application. The application
sets the code and the Anybus accepts it and handles the situation. Most of the
codes denote errors between the host and the Anybus.

4.1.3 Interrupt Mask (INT MASK)
This byte allows the application to enable or disable individual interrupts inside
the Anybus. Each bit inside of it acts as a mask to different interrupts inside the
Anybus.

4.2 SPI MISO Frame

4.2.1 LED Status
Used as a register, it reflects the current LED status, i.e. represents the value of
the LED in the Anybus object.

4.2.2 Anybus Status (ANB STATUS)
This register shows the current Anybus state and supervised bit indicated by
the Anybus model. This is a 16-bit register, however, only the lower 4 bits are
implemented, and the rest are hardwired to zero.

4.2.3 SPI Status
Similar to SPI Control, this byte is used to denote SPI signals status. It is used as
a register and will be described more in detail in further chapters.

After an introduction was given to the SPI frames that the traffic interceptor
will work with, this concepts will be described more in detail in further chapters.

22 SPI Frame

Chapter5
Traffic Interceptor Overview

After describing the Anybus CompactCom and the Anybus protocol, the traffic
interceptor can be introduced. In this chapter, the general description of the traffic
interceptor and the modules needed for it to be implemented will be discussed.

5.1 General Overview

The Anybus traffic interceptor is a debugging tool that intercepts the traffic from
the host’s output and input, as shown in Figure 5.1. This device is connected
in parallel to the bus that communicates the host and the CompactCom module,
allowing the user to see traffic in real time.

Figure 5.1: Anybus CompactCom with traffic interceptor connected.

Note that the traffic interceptor’s purpose, as it’s name implies, is only to ob-
serve the traffic itself, and it is not intended to fix errors (if there is any) in the
process. The goal is to point traffic errors and show the raw traffic, so the user
can debug the communication between the CompactCom and the host applica-
tion.

23

24 Traffic Interceptor Overview

5.2 PCB Description
Figure 5.1 shows the ideal way to connect the traffic interceptor so it can capture
the traffic between both CPUs. In order for this to happen, a special connector is
needed.

This connector was provided by HMS Industrial Networks, and it will be
briefly described.

Figure 5.2: Anybus CompactCom Expansion Board 023070-B.

In order to build an Anybus CompactCom Traffic Interceptor, 2 Anybus Com-
pactCom 023070-B Expansion Boards were used (see Figure 5.2). One of the
boards was used as a connection expander between the CompactCom module
and the host, from which all the bus signals could be tapped. In the other Expan-
sion Board, the left part was removed as seen in Figure 5.4, and the right socket
was used to connect the Anybus CompactCom M4 ETN (Figure 5.3), where the
traffic interceptor was implemented.

Before connecting them, some modifications need to be done. These modifi-
cations are:

On the cut-off board:

• R1, R14 and R44 were removed.

• From R2 to R13 and R15 to R43 the values were replaced to 120R 0603 1/10
W.

• Jumper moved to VCC_EXT.

On the whole board:

• Remove the external power conector JP13.

• Jumper moved to CVV_INT.

On the ABCC M40 board:

• One entry in the list

Traffic Interceptor Overview 25

Figure 5.3: Anybus CompactCom M4 ETN.

Figure 5.4: Expansion Boards where one is cut.

26 Traffic Interceptor Overview

• Another entry in the list

6 DW-08-14-T-D-1000 Samtec connectors are also needed to join the boards.

Moreover, a standing 120Ω resistor was added to R14 on the cut-off board.
The top of the resistor was connected with a wire to the ABCC M40 ETN module
TP2. Enabling the traffic interceptor to operate on the DUT reset signal.

Also, SW_PUSHBUTTON was added on the cut-off board with one side con-
nected to pin 2 (GND) and to R14.

Lastly, a standing 2200Ω resistor was soldered to R14 and to VCC (3.3V). The
result, can be observed in Figure 5.5, by using this hardware the Traffic interceptor
can be added into the regular traffic flow.

Figure 5.5: Anybus CompactCom traffic interceptor.

5.3 FPGA
In section 5.2 the device where the traffic interceptor will be implemented was
described. This section will describe the FPGA contained in the ABCC M40 ETN
module, since this will be relevant for the implementation of the traffic intercep-
tor, as well as the results in terms of area, speed and power.

The FPGA that was used in this project was the Smartfusion 2 M2S025. It
is manufactured by MicroSemi and it is ideal for general purpose functions. The
general architecture of the family can be observed in Appendix A, where it can be
seen that if includes a MicroController Sub System, which will be referred to from
now on as MSS. Some functionality was implemented in this microcontroller, but
this section will focus on the FPGA, where the main logic of the traffic interceptor
will be implemented.

The Smartfusion 2 also includes on-chip RAM, which will be important for
the implementation of the project, as it will be where the information will be
stored. Note that the MSS communicates with the FPGA is by using an AHB bus,

Traffic Interceptor Overview 27

which is a communication protocol that will be described in section 6.2.

Feature Description

Maximum logic elements 27 696

Math-blocks (18x18) 34

Fabric interface controllers 1

PLLs and CCCs 6

LSRAM 18 K blocks 31

uSRAM 1K blocks 34

Total RAM (Kb) 592

Table 5.1: Smart Fusion2 M2S025 Overall specifications [4]

Table 5.1 shows a few technical specifications that are of interest to the project,
regarding area and memory storage. Table 5.2 focuses in the important MSS fea-
tures that were used for this thesis. This data will be used once again in Chapter
8 to discuss the results in terms of resource utilization apart from the functional
results.//

Feature Description

eNVM(KB) 256

eSRAM (KB) 64

10/100/1000 Ethernet 1

Timer 2

Table 5.2: M2S025 MicroController Sub System Overall specifica-
tions [4]

After describing the physical part of the system, the following chapters will
discuss different design possibilities and the implementation of the chosen solu-
tion.

28 Traffic Interceptor Overview

Chapter6
Traffic Interceptor Design

One of the most common questions when designing embedded systems, and one
of the most complex as well, is related to the partitioning of different tasks across
the system. How much of a "Hardware" or "Software" solution will the system
be? In reality there is no clear answer for that, since the definition of embedded
systems is so wide that the answer in most of the cases is "it depends".

Figure 6.1: Traffic interceptor detailed diagram.

In this case, the complete system used to implement the traffic interceptor
can be observed in Figure 6.1. Each part of the system will be described in the
following sections.

29

30 Traffic Interceptor Design

6.1 FPGA Logic
As mentioned in Chapter 7.1 a big part of the system is the logic that implemented
in the FPGA fabric. This allows low level handling of data by using logic gate
arrays. In this part, there are RAM memory blocks available as well.

6.2 AHB Bus
The system bus to communicate with other devices, will be described in this sec-
tion, based upon its specification [3].

The AHB protocol belongs to the AMBA family of communication protocols,
which are intended to address the requirements of high-performance synthesiz-
able designs. It has the following features:

• Burst transfers.

• Split transactions.

• Single cycle bus master handover.

• Single clock edge operation.

• Wider data bus configurations (64/128 bits).

A typical AHB bus is designed to be used with a central multiplexer inter-
connection scheme. Using this scheme, all bus masters drive out the address and
control signals indicating the transfer they wish to perform and the arbiter deter-
mines which master has its address and control signals routed to all the slaves.
A central decoder is also required to control the read data and response signal
multiplexer, which selects the appropriate signals from the slave that is involved
in the transfer. Figure 6.2 illustrates the structure needed to implement an AMBA
AHB design with 3 masters and 4 slaves.

An overview of the AHB operation would be as following:
In order for the AHB transfer to start, the bus master must be granted access

to the bus. This process is started by the master asserting a request signal to the
arbiter. Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AHB transfer by driving the address and con-
trol signals. These signals provide information on the address, direction and
width of the transfer, as well as an indication if the transfer forms part of a burst.
Two different forms of burst transfers are allowed:

• Incrementing bursts, which do not wrap at address boundaries.

• Wrapping bursts, which wrap at particular address boundaries.

A write data bus is used to move data from the master to a slave, while a read
data bus is used to move data from a slave to the master.

Every transfer consists of:

Traffic Interceptor Design 31

Figure 6.2: AMBA AHB 3 masters and 4 slaves. [3]

32 Traffic Interceptor Design

• An address and control cycle.

• One or more cycles for the data.

The address phase cannot be extended and therefore, all slaves must sample
the address during this time. The data phase, however, can be extended using the
HREADY signal. When LOW, this signal causes wait states to be inserted into the
transfer and allows extra time for the slave to provide or sample data. During a
transfer the response signals HRESP[1:0] can have the status shown in Table 6.1.

OKAY Used to indicate that the
transfer is progressing nor-
mally and when HREADY
goes HIGH the transfer has
completed successfully.

ERROR Indicates that a transfer error
has occurred.

RETRY and SPLIT They indicate that the trans-
fer cannot complete immedi-
ately, but the master should
continue to attempt the trans-
fer.

Table 6.1: AHB Bus HRESP commands [3]

In normal operation, a master is allowed to complete all the transfers before
the arbiter grants another master access to the bus. However, it is possible for the
arbiter to break up a burst, and in such cases the master must re-arbitrate for the
bus in order to complete the remaining transfers in the burst. Figure 6.3 shows a
basic transfer that consists of two distinct sections:

Traffic Interceptor Design 33

Figure 6.3: AMBA AHB Simple transfer [3]

• The address phase, which lasts only a single cycle.

• The data phase, which may require several cycles. Achieved using the
HREADY signal.

6.3 Microcontroller Sub System (MSS)

The micro controller subsystem (MSS) contains a high-performance integrated
Cortex-M3 processor, running at up to 166 MHz. The MSS contains an 8 K byte
instruction cache to provide low latency access to internal eNVM and external
SRAM memory. The MSS provides multiple interface options to the FPGA fab-
ric in order to facilitate tight integration between the MSS and user logic in the
fabric.[4]

In this part of the system is where the signals can be converted from pure logic
signals into higher level constructs, as well as, routing the data to the Ethernet
output to continue its flow.

6.4 Ethernet

As seen in Figure 5.3 the data that is sorted by the traffic interceptor is packaged
and sent through Ethernet. This was suggested by HMS Industrial Networks
in order to be able to see the traffic with assistance of a computer and using a
network traffic analyzer software such as Wireshark.

34 Traffic Interceptor Design

6.5 Network Traffic Analyzer

The last component of the traffic interceptor, which is not really part of the system
(physically) but it is where the data can be viewed and analyzed. As mentioned
before, the specific software selected for this task was Wireshark.

After describing each specific component that integrates the traffic intercep-
tor, it is interesting to point out that due to the flexibility that this components
offer, it is possible to find several solutions to the same problem. However, the
pros and cons were evaluated in order to develop the most complete one. During
the first stages of this project 3 different of the proposed solutions were consid-
ered. These solutions will be presented using the internal name that they were
given, as well as, their respective advantages and disadvantages.

6.6 Software Oriented design

The first solution that was proposed was one that was named "Software oriented
design". In this, as its name implies, the focus would be on the software develop-
ment using the MicroController Sub System. The idea of this is that from all the
parts that make up the system, the one that allows an easier maintenance is the
MSS. In this solution, the purpose of the logic FPGA logic was to pass the signals
in a serial way, then, the data would be reconstructed and reorganized in the mi-
crocontroller. Once the data was ready, it would be sent to the Ethernet and then
displayed by the network packet analyzer software so the user could make use
of it.

The main advantage of this solution is that, as mentioned before, the bulk of
its development would be in C code, allowing to simplify its maintenance and
readability (in comparison with the FPGA logic block where a hardware descrip-
tion language is used). However, the main downside of this was also the reason
why it was not the selected option. It is known that purpose-built implementa-
tions in digital logic are usually faster than software ones, and when it comes to
intercepting real time traffic, a software solution can be too slow to handle the
throughput and, as a result, data can be lost.[7]

In this solution, the intention to simplify the logic in the FPGA becomes the
biggest disadvantage for the system, since it would only act as a bridge to the
MSS where the data would be sorted, reconstructed and lastly packaged and sent
through the Ethernet port. However, as mentioned in previous chapters, it is
expected that the SPI operating mode of the Anybus CompactCom sends 1 bit
per cycle, with some specific bits being of vital importance to show the status of
different blocks in the Anybus CompactCom or the Host implementation. The
problem becomes more evident if the only way to communicate the FPGA logic
block with the MSS is through memory copy where the FPGA logic block would
be updating in the same address bit over bit. In case that the software needs more
than one cycle to do any kind of operation with this bit, then data would be lost

Traffic Interceptor Design 35

and the traffic interceptor would not be able to retrieve all traffic between the de-
vices that are being intercepted. It is worth mention that aim of this project is to
get a 0% of packets lost.

6.7 Network Packet Analyzer Oriented design

Another possible design would have been a solution where the main focus would
be on the network packet analyzer. This could be implemented thanks to the pos-
sibility that Wireshark offers of expanding the protocols to analyze in the way of
a plugin. The advantages are similar to the one in Section 6.6, where the devel-
opment focuses in one part of the system and the rest becomes simpler and acts
just as a link for the signals/data to flow through the system.

In this system, the signals would flow directly from the FPGA logic block
and written to the memory where the MSS could take them, concatenate them
and lastly package them and send it through the Ethernet port. Once the data is
in the Ethernet port, Wireshark can capture it and process it.

This in theory could simplify by far the implementation of the traffic intercep-
tor, however this solution is the one that contains the most disadvantages. The
biggest disadvantage comes from the way in which plugins (also known as Dis-
sectors) in Wireshark, dissect the byte streams and present them by section. The
issue is that in order for the dissectors to work properly, the byte streams need
to be of a specific length and correctly organized. In other words, any possible
solution needs to send a pre-organized data stream with everything in its corre-
sponding place.

Because of a lack of data sorting this solution is not the best one, and another
solutions need to be proposed.

6.8 Logic Oriented design

After seeing the downsides of the previous solution, the authors proposed a third
option that is believed to be a better solution. This works by implementing the
traffic interception and decoding into the FPGA logic block. The advantages are
many and the disadvantages are few and all of them will be discussed.

The first advantage is that the FPGA offers more speed than software as men-
tioned before, which minimizes the chances of losing a packet. Also, the possi-
bility of organizing the data in the memory before it reaches the microcontroller
vastly reduces the amount of processing needed on the software side. This means
that the delay introduced by the microcontroller is also minimized, as it just needs
to pass through the pre-organized data. Lastly, as mentioned before, the dissec-
tors developed in Wireshark expect the data to come in a specific way in order

36 Traffic Interceptor Design

to display it correctly. This solution inherently fixes this issue, as the frames get
reconstructed in FPGA memory by design.

The main disadvantage of this alternative is its maintenance, since the imple-
mentation of the main core in this solution is done in VHDL, which is a language
that is usually regarded as less intuitive than C. Apart from that, no other dis-
advantages where found, so this solution was chosen to be implemented as the
Anybus traffic interceptor. The specifics of the implementation, from the FPGA,
MSS and Wireshark point of view, will be discussed in the following chapters.

Chapter7
Traffic Interceptor Implementation

As mentioned in Chapter 6, it was decided to implement the traffic interceptor
combining the FPGA fabric and the MSS, given that it would provide the best tim-
ing performance and it had virtually no disadvantages. The FPGA logic consists
of various blocks that capture and decode the data, which is sent to the microcon-
troller, where it is formatted and sent via Ethernet, where it can be analyzed with
a network analyzer software. This chapter will discuss the detailed implementa-
tion of the different parts of the system, and the performance and implementation
results will be shown in the following chapters.

Figure 7.1 shows the architecture for the traffic interceptor.

Figure 7.1: Traffic interceptor block diagram.

37

38 Traffic Interceptor Implementation

7.1 Traffic interceptor wrapper with MSS

This block can be seen with further detail in Figure 7.2. It acts as a wrapper for
all the blocks in lower levels. Here is where all the signals are interconnected, in-
cluding the micro controller sub-system. This means that this is the highest level
of the design that resides inside of the AnybusCompactCom M40 ETN that was
described before in Chapter .

Figure 7.2: Traffic interceptor wrapper.

This wrapper includes the traffic interceptor top module, where all the hard-
ware logic is contained, and it instantiates the MSS and the AHB bridge required
for communication between them.

7.2 AHB Bridge

This module allows the connectivity to an AHB master. For it to work properly,
it divides the address spaces between the different slaves and, depending on the
address given by the AHB Master it generates the signals needed to communicate
with the desired AHB slave, that way, both master and slave can send and receive
the data from the other part.

Traffic Interceptor Implementation 39

7.3 Traffic interceptor top

This block, showin in Figure 7.3 acts as a wrapper for all the sub-blocks that im-
plement the different parts of the traffic interceptor hardware.

Figure 7.3: Traffic interceptor top.

7.4 Connector

One of the interesting features of a traffic interceptor is that one can capture any
signal that the Anybus or Host have either as an input or output. This allows
to not only intercept network data flowing in its different operating modes, but
also interesting signals that can let the user know the status of different and in-
dependent features inside of the system. That is the case for signals that provide
additional information, such as the ones appearing in Table 7.1. This kind of in-
formation is of great importance for the traffic interceptor, the reason being that
even though one operating mode is currently implemented, the system is de-
signed with the future addition of other modes in the future. This signals would
allow the interceptor to know which mode is active, as well as other information
about the status of the CompactCom module.

40 Traffic Interceptor Implementation

Signals Use

Operating mode Allows the traffic interceptor
to know which module to use
for intercepting data. Allows
the user to be aware of the op-
erating mode in use.

Interrupt Displays when an interrupt is
asserted.

Sync Displays the sync status

Led pins Displays the status of the
LEDs in the CompactCom
module.

Reset Displays the status of the re-
set in the Anybus Compact-
Com. NOTE: the traffic inter-
ceptor has a separate and in-
dipendent reset.

Table 7.1: Signals intercepted in the connector block

This block synchronizes the intercepted signals from the Anybus domain
to the FPGA clock domain, using a double register synchronizer for each bit.
This is done to reduce the chance of signal metastability issues due to the non-
synchronized input signals.

A special case applies for the operating mode signals, which together form an
array named "OM" by the HMS Industrial networks documentation [1]. In this
array, the last signal has a shared purpose, for that reason, it takes its value before
the reset is set high (Reset is active low). After it is set high, Anybus CompactCom
gives another use to this pin. Figure 7.4 gives a graphical representation of how
the reset process is realized. The meaning of the variable presented in this figure
can be observed in Table 7.2.

Traffic Interceptor Implementation 41

Figure 7.4: Anybus power up [1]

Symbol Min. Max. Definition

t A - - Time until the power sup-
ply is stable after power-on;
the duration depends on the
power supply design of the
host application and is thus
beyond the scope of this doc-
ument.

t B 1ms - Safety margin.

Table 7.2: Signals from figure 7.4 [1]

7.5 General info

This block is intended to store the extra signals that are not part of the data being
transmitted in the bus, which come from the Connector block. They are stored
in a register that is updated every time its value changes. The register is then
connected to the microcontroller sub system in this design via the AHB slave, to
be sent only when it is requested, since this information is treated independently
of the rest of the data handled in the operating mode.

7.6 AHB Slave

In order to implement a correct communication with the MSS and, as explained
in Section 6.2, the AHB protocol requires the communication to happen between
a master and a slave.

In this case, the micro controller sub system acts as a master and is the one
that demands data when it is needed in the software routine. This slave is the one

42 Traffic Interceptor Implementation

in charge of delivering the data inside the memories in the other modules to the
MSS.

The AHB Slave implemented in this module is directly connected to a mul-
tiplexer that can be set up to change between modules, as for the moment, this
multiplexer selects between the SPI top and the general information register, it
was designed that way so it can allow further expansion.

7.7 SPI Top

This block containts the SPI operating mode logic. In this module, all the blocks
that cooperate in order to intercept and decode the traffic in the SPI operating
mode are instantiated. The SPI top is only active once the corresponding oper-
ating mode is detected in the connector block. If a different operation mode is
detected, for example when using a hypothetic future expansion, this block does
not get activated.

The block diagram for this block can be seen in Figure 7.5.

Figure 7.5: SPI Top block diagram

Traffic Interceptor Implementation 43

7.7.1 SPI Decoder

The first block that receives intercepted data is the SPI Decoder, which is intended
to decode the serial signals from the SPI interface from bit into bytes and words
that correspond to the structure each frame requires.

As mentioned in Chapter 4, the MISO and MOSI data is captured in different
edges of the SPI clock. The decoder block can be configured to follow the rising
or the falling edge of SCLK, which allows it to be reused twice in this system by
configuring each instance to the desired mode.

This module works by shifting the input bits on the selected clock edge, and
once 1 word (2 bytes) has been saved, it sends it to the next block to be organized
into a frame.

7.7.2 MOSI and MISO frames

These blocks are explained together since they are very similar. Their function
differs just in the parts of each frame. Table 7.3 shows the fields in the MOSI
frame, and Table 7.4 shows the same for the MISO frame.

In the specific case of the MISO frame, it is possible to observe that there are
no message length nor process data length fields. The reason is that they are not
included in the frame, instead, their values are shared from the MOSI frame, as
per the Anybus specification. Because of this, both frames have the same lengths
in the two sections.

MOSI Frame

IDLE

SPICTRL & RESERVED

MSGLEN

PDLEN

APPSTAT & INTMASK

WRMSG

WRPD

CRC1

CRC2

WAIT FOR IDLE

Table 7.3: MOSI Frame division in FPGA Logic block.

Another need for these modules is to reorder the words since each byte is
transmitted with the most significant bit first, but the byte order inside a word
is little endian. For that reason each word is reorganized in the correct order in

44 Traffic Interceptor Implementation

whatever address is required for each part.

The Idle and Wait for Idle states are the only ones not corresponding to frame
fields, and are included as resting states for when there is no data ready.

MISO Frame Block

IDLE

RESERVED

LED STATUS

ANB & SPI STATUS

NET TIME1

NET TIME2

RDMSG

RDPD

CRC1

CRC2

WAIT FOR IDLE

Table 7.4: MISO Frame division in FPGA Logic block.

7.7.3 SPI Control Register

This block acts as a register for SPI status communication with the MSS. This is
where the frame status is stored, and it includes the possibility to be cleared from
both sides.

The MSS reads if there is a new frame and it writes that this specific frame
has been read from this register. The main intention for this module is to let the
microcontroller know when there is an incomplete frame so the user can be aware
of it immediately.

7.7.4 SPI AHB

This block is the biggest one in terms of area, the reason being that this is where
the data previously handled is stored. This block generates two dual port RAM
memories, which are implemented with RAM resources available in the Microsemi
SmartFusion2 FPGA.

Traffic Interceptor Implementation 45

Data Address

Anybas CompactCom General Info 0x00000000

MOSI Frame Starting address 0x00000001

MISO Frame Starting Address 0x00000C09

SPI Control & MOSI Reserved 0x00000001

Message Length 0x00000003

Process Data Length 0x00000004

Application Status & Internal Mask 0x00000005

Write Message Field 0x00000006

Write Process Data Field 0x00000005 + Message Length

CRC 1 0x00000005 + Message Length + Process D
Length

CRC 2 0x00000005 + Message Length + Process D
Length + 1

Table 7.5: Anybus CompactCom MOSI Memory Map

Data Address

MISO Reserved 0x00000009

LED Status 0x0000000A

Anybus Status & SPI Status 0x0000000B

Net time 0x0000000C

Read Message Field 0x0000000D

Read Process Data Field 0x0000000D + Message Length

CRC 1 0x0000000D + Message Length + Read Process
Data Length

CRC 2 0x0000000D + Message Length + Read Process
Data Length + 1

Table 7.6: Anybus CompactCom Memory Map

In Tables 7.5 and 7.6 it is possible to observe the memory maps that were used
for this traffic interceptor. Something that may stand out is the fact that there are a
couple of dynamic addresses. They are expected to be this way since the message

46 Traffic Interceptor Implementation

and process data part of each frame can variate in size and the words are writ-
ten sequentially in order of arriveal. However it is possible to know the specific
address thanks to the message length division in the MOSI frame. To avoid syn-
thesis and place and routing issues, the memory has a maximum size available
that is aimed to the maximum length for each of the dynamic parts (message and
process data).

The RAMs have 8192 addresses with a word length of 16 bits. The word size
was chosen to simplify the writing and reading, since the base size of Anybus
fields is 16 bits and this minimizes the required manipulation of data in order to
store data in memory.

This block connects to the AHB Multiplexer and later to the AHB Slave, al-
lowing the signals to finally reach the micro controller SubSystem.

7.8 MSS Routine

Once the data has been stored in the SRAMs, the micro controller Subsystem for-
wards it to the Ethernet output. For this to happen, a constant routine is repeated
in an infinite loop to check whenever there is new data ready to be displayed.
The system also needs the routine to let it know that the SRAM is ready to be
updated from the logic side. The flow diagram that represents the MSS routine
can be observed in Figure 7.6. Here, one can see that the routine is divided into a
few more subroutines.

As a first step, the MSS routine compares the general information obtained
from the traffic interceptor and if any change is detected from the previous data,
it is sent out.

Later, using the control register, the microcontroller finds out if there is new
data from any of the two available frames. These frames can be either complete
or interrupted. Before sending the frame, the MSS reconstructs important parts
of the frames mentioned before, so it can perform another function, which is re-
constructing messages that are split between several frames. This allows the user
to see full messages directly, and it helps when debugging, since it can be used to
see if contiguous frames are being sent properly.

Once the frame data has been obtained and sent out, the control register is
cleared, so the system knows it is ready to handle a new frame.

It is worth mentioning that to reduce time spent in this part of the system, the
routine realizes raw memory copying from a static address that was described in
the memory map, and end in the address that include Static Length of the Frame
+ Message Length + Process Data Length, that way, the routine does not need to
handle the data since it is already pre-handled in the memory by the logic part,
that way the process inside the micro controller subroutine its minimized.

Traffic Interceptor Implementation 47

Figure 7.6: Micro controller Subsystem Flowchart

48 Traffic Interceptor Implementation

7.9 Wireshark Dissectors
As seen in the previous section, different data packets are sent to the Ethernet
network, in order to be presented in a readable way. For that reason, the last
component in the data chain is a network protocol analyzer.

Network analysis is the process of capturing and analyzing network traffic.
It offers an insight into network communications to identify performance prob-
lems, analyze application behaviors and many more features.

At the moment, Wireshark is the world’s most popular network analyzer, one
of the reasons why it was selected is that it is an open source tool, that runs on
a variety of platforms and offers the ideal ’first responder’ tool for IT profession-
als. Another reason is that Wireshark is maintained by an active community of
developers all over the world and it has extensive documentation available.

Due to the fact that Anybus is a protocol developed by HMS Industrial Net-
works and used for their products only, it is not included into the ones that Wire-
shark or any other network protocol analyzer can identify and ,for that reason, a
set of dissectors were implemented by using the Wireshark standards. That way,
the traffic intercepted by the interceptor can be successfully analysed.

For a frame to be recognized, it has to be recognizable by its corresponding
dissector. To solve that, the MSS routine adds a byte in the beginning of the Eth-
ernet stream that corresponds to the value the dissector is looking for. This is
known in the Wireshark documentation as heuristics.

Dissectors work in a simple way. They take the desired byte stream and sep-
arate it in order to display it in a sorted way. A graphical representation of how a
basic dissector works can be seen in Figure 7.7. In this Figure, the byte stream is
divided into pieces and then the sorted the information is displayed in a readable
way. The place where the data is displayed is called a tree. Moreover, Wireshark
can handle bytes in a bit level, which is a useful feature for this implementa-
tion. There are 5 different dissectors available and they dissect the following byte
streams:

• MOSI Raw Frame

• MISO Raw Frame

• MOSI Message reconstructed

• MISO Message reconstructed

• General Anybus information

Regarding the raw frames dissection, the representation of them is very sim-
ilar to the one presented in Chapter 4. However, the MISO frame lacks the data
regarding the message and process data length. To solve this issue, the MSS rou-
tine adds this data in the beginning of the byte stream. Once the byte streams

Traffic Interceptor Implementation 49

Figure 7.7: Graphical representation of how a Dissector displays
data

50 Traffic Interceptor Implementation

have been captured, the dissector reads these values to be aware of the size that
corresponds to that part of the tree, allowing it to be correctly displayed. The rest
of the frame is static and can be always shown in the same way.

Byte Item

0 Data field size - Low byte

1 Data field size - High byte

2 Reserved

3 Reserved

4 Source ID

5 Destination Object

6 Instance Low

7 Instance High

8 E C Command

9 Reserved

10 Comand External 0

11 Command External 1

Table 7.7: Message Header [6]

The reconstructed message dissectors display the message that has been re-
constructed over the frames. However, these messages have a header, one for
each frame, where important data about the message is stored. This data is used
by higher levels of the software in the Anybus communication stack. Table 7.7
shows the data that in this header.

Lastly, the remaining dissector displays information regarding the general
status of the Anybus CompactCom.

Chapter8
Results

After assembling the hardware as described in Chapter 5.2 and implementing the
traffic interceptor as explained in Chapter 7, the prototype was tested by gener-
ating traffic between a host CPU and the Anybus CompactCom. This traffic was
generated by an application developed and provided by HMS Industrial Net-
works that emulated real data traffic.

Figure 8.1 shows a stream of messages sent in both directions. All of the mes-
sages in this figure have a message length of 8 and a pd length of 0. This is a
testcase often used by HMS, since it works as a basic sanity check and it is similar
to some typical messages used in real applications.

Figure 8.1: Test traffic example used in prototype.

51

52 Results

Using this application, two basic features were tested. The first test checking
of that the frames were being correctly rebuilt in the dissector.

Figure 8.2 shows the output generated by reconstructing a single MISO Frame.
Note that the reconstruction of a MISO involves information coming from the
MOSI frame in order to determine its length. Further analyzing this figure, it can
be noticed that when 2 frames are sent, 3 frames are captured. The reason for
this is that each pair of frames includes a message that is also recovered. Further-
more, in the lower part of the Wireshark GUI, the whole Ethernet raw message is
observed.

Here, the first bytes are set by the Ethernet decoder in the hardware pro-
vided. However, starting from the byte with value 0x14, the Anybus frame data
is sent. This byte represents the dissector heuristics mentioned in Chapter 7.9,
and is what differentiates the frame from others. The message length value is
also seen there, 0x08 in this case, which represents the number of words that
form the message. As mentioned before this frame does not include process data,
so the value asigned for it is 0. Finally, a prefix byte is added at the beginning of
the frame, which has a value of 0x01 if the frame is sent incomplete in the traffic
or 0x00 if the frame was sent completely. From this point on, the stream data
represents the Anybus frame. Above the raw data, the reconstructed frame can
be seen. In this part, all the frame is divided and presented in sections, making
it easier for the user to see the information on it. This test show that one single
frame is recovered correctly.

Results 53

Figure 8.2: MISO Frame reconstructed from a single frame.

As mentioned before, the third received frame is a reconstruction of the mes-
sage sent between the Master and Slave, which can be seen in Figure 8.3. In this
picture, the decoded header is shown, which corresponds to Table7.7.

54 Results

Figure 8.3: MOSI Message reconstructed from a single frame.

The second test that can be done by using this application is to sending a
stream of frames, randomly selecting some of them and checking whether they
are correctly reconstructed. This test is important since it allows us to check
whether the traffic interceptor can capture more than one consecutive frame with-
out dropping information. In Figure 8.4, one of the messages was reconstructed.
It is worth mentioning that in this Figure, another feature developed in the dis-
sector is shown: the possibility of refining the byte into bits to visualize what this
byte in specific represents.

Results 55

Figure 8.4: MISO Frame reconstructed from a stream of frames.

As much as this application is useful for basic testing, it is limited in the
amount of different testcases and scenarios that it can emulate, since the frames
have always the same length, which doesn’t allow for proper streess testing of
the traffic interceptor. For that reason, a test environment was developed, where
FPGA logic of the traffic interceptor could be tested in a more flexible way.

8.1 Hardware Test

In order to test the traffic interceptor beyond the typical use case, a test fixture was
implemented in a Xilinx Zynq Z7020 device. The Zynq family devices include
standard FPGA fabric, referred to by Xilinx as Programmable Logic (PL), and a
Dual-Core ARM Cortex-A9 processor, known as the Processing System (PS). Both
parts of the chip are connected by a 32 bit AXI4 bus. This allows to feed frames
from the microcontroller to the FPGA fabric, and format the signals in hardware
as required by the interceptor.

The goal of this test is to emulate real traffic in different scenarios to charac-
terize the traffic interceptor. In order to simplify the design of the testbench and

56 Results

the analysis, only the FPGA side has been tested.

8.1.1 Hardware test architecture

The traffic interceptor test consists of two main parts: a traffic generator that can
interface with the SPI side to emulate real traffic, and an AHB master that can be
used to access the data in the interceptor, as the MSS would do in the full system.
Fig 8.5 shows the different parts of the test hardware, as well as the connections
to the traffic interceptor.

Figure 8.5: Traffic interceptor test hardware

AXI BRAM

This block implements a dual port 1 write 1 read RAM with a 32 bit width. This is
used as the main way of communication between the Zynq CPU and the FPGA:
the CPU writes a full frame to the BRAM, and the frame read block reads the
data when necessary. Since an Anybus word is 16 bits wide, the CPU writes two
concatenated words at a time, one each for MISO and MOSI frames.

AXI Registers

These are simple AXI registers which map to the CPU memory space and are used
to control the test from the PS, as well as to send status data from the PL. All the
registers have been configured to be unidirectional depending on their purpose:
control and AHB address can only be written to from the CPU, while the status
register is only written by the frame read block. This simplifies the design and
avoids possible read/write collisions.

Results 57

Frame read

Figure 8.6: Traffic interceptor test hardware

This block is the core of the hardware test: it reads frame data from the BRAM
and sends it to the SPI master blocks, while also generating the control signals for
them.

The process of sending a full frame follows the state machine depicted in
Figure 8.6:when the new frame bit in the status register goes high, the block reads
a word from the BRAM and waits until spi ready is 1. This indicates that the SPI
master is ready and the previous word has been sent. This process is repeated
until all the words have been sent to the SPI, after which the block waits for the
software clear signal. This is used to sync with the software.

SPI Master

This block implements the SPI master in both directions, which includes the
MOSI ans MISO Master blocks shown in Figure 8.5. A counter is used to divide
the FPGA clock signal down to the slower SPI clock. The generated SCLK signal
runs at 25MHz, which is the fastest allowed SPI clock according to the Anybus
specification.

AHB Master

This block interfaces with the AHB slave in the traffic interceptor. Since the reads
in the test are all the time 32 bit, and there is only one slave, it is enough to have a

58 Results

"dummy" block that takes the AHB address from the AXI AHB address register,
and leaves the rest of the signals in the bus as constants.

8.1.2 Hardware test methodology

In the prototyping phase, the whole hardware and software stack was tested as
shown in section 8. However, that test only tested messages with MSGLEN 8 and
PDLEN 0. This is a typical use case for products using Anybus, but it doesn’t
cover other corner cases that could happen in a real implementation and would
be legal according to the Anybus standard. It was therefore necessary to test more
types of frames to gather performance data in different scenarios.

Test frames

In order to test the traffic interceptor in the FPGA, various frames where gen-
erated to be sent by the traffic generator. The main goal was to hit the extreme
cases, which would be more prone to errors than usual scenarios. Because of that,
most frames include combinations of either very large or very small MSGLEN
and PDLEN parameters, which in turn create very long or very short frames, and
some cases in between. The exact parameters are shown in Table 8.1.

Frame number MSGLEN PDLEN Total length
1 0 0 6
2 8 0 14
3 8 2 16
4 1533 0 1539
5 1533 1533 3072
6 768 231 1005

Table 8.1: Test frame parameters. Lengths given in 16 bit words

Test procedure

The goal of the hardware test is to stress the traffic interceptor with traffic that
emulates worst case scenarios that could arise in real applications. In order to
do that, a testcase was created for each frame type, as well as an extra case with
random frames. When running the testcase, the PS in the Zynq writes a frame to
the BRAM and updates the AXI control register for the traffic generator to start
sending traffic. When the frame has been sent, the status registers are updated
by the traffic generator and the processor reads and stores the captured frame by
updating the AHB address register. After sending all the frames, the captured
frames are compared with the sent frames to detect possible errors, and the sent
packet and correct packet numbers are shown via UART.

Results 59

Testcase Frame type Sent frames Received frames Errors
1 1 30000 30000 0
2 2 30000 30000 0
3 3 30000 30000 0
4 4 30000 30000 0
5 5 30000 30000 0
6 6 30000 30000 0
7 Random 30000 30000 0

Table 8.2: Hardware test results

Table 8.2 shows the results for the different tests. No errors were detected for
any size of frame or random frames. This indicates that the traffic interceptor is
processing and storing the frame data as expected, and it remains stable for large
amounts of traffic. The main bottleneck of the system is in the AHB communi-
cation between the FPGA and the CPU: since the FPGA is running faster than
the SPI communication and it contains large enough buffers to store full Any-
bus frames, it shouldn’t have any issue processing the incoming data, as shown
here. The CPU then has to read that data before the next frame data overwrites
the previous frame in memory. The "advantage" for the CPU is that the AHB
bus is several times faster than the Anybus SPI, which gives it enough time to
read, process and compare the data in the hardware test, or send it via Ethernet
in the prototype. Another thing that helps give more time margin is the fact that
the frames are not sent continuously, but with a 10μs space between frames as
required by the Anybus specification explained in section 3.

8.2 Usage results

In terms of usage, the traffic interceptor utilization figures can be observed in
Table 8.3. Here it is possible to notice that the design uses less than 20% of the
available LUTs and 12% of the available Flip-Flops, which shows that the biggest
part of the system relies on the Memories, of which 61% are used. In terms of
I/O, the system usage is high due to the fact that the traffic analyzer has access to
all the signals available. I.E Traffic bus, LEDS, etc.

60 Results

Type Used Total Percentage

4LUT 4514 27696 16.30

DFF 3331 27696 12.03

I/O Register 0 621 0.00

User I/0 134 207 64.73

RAM64K18 2 34 5.88

RAM1K18 19 31 61.29

Table 8.3: Anybus Traffic Interceptor Usage

8.3 Timing results
In terms of timing, Table 8.4 shows the clock frequency used, and the hold and
setup values, proving that the design is timing clean.

Clock Target freq. (MHz) Period (ns) Max. freq. (MHz) Setup (ns) Hold (ns)

HCLK 160 5.994 166.834 7.572 0.282

Table 8.4: Timing results

8.4 Power results
The power consumption that the interceptor requires can be observed in Table 8.5,
where it can be seen that most of it corresponds to dynamic consumption. Total
power consumption is in the order of a typical Anybus CompactCom, which is
expected since the hardware is almost the same, and this means that the impact
when used is negligible.

Power (mW) Percentage

Total Power 308.630 100

Static Power 17.409 5.6
Dynamic Power 291.222 94.4

Table 8.5: Power results

Chapter9
Conclusions and Future work

It has been proved in this report that it is possible to build a traffic interceptor for
the Anybus protocol using existing hardware and software as a base. This has
been shown to be working in real hardware in typical and extreme conditions for
the most common operation mode, the SPI mode.

It has also been shown, thanks to the implementation of a prototype, that this
implementation can be used as a debugging tool for the Anybus traffic in real
conditions, and, thanks to the hardware test, it has also been shown to work in
extreme and worst case scenarios.

Possible improvements in the future could include implementation of the
other operating modes, since there is still a lot of free space in the FPGA. Other
future work includes higher level protocol decoding, such as Anybus objects, and
accurate time-stamping for real time critical scenarios. This last feature could re-
ally benefit from the accurate timing and deterministic nature of the FPGA logic,
allowing it to get better results than a software solution.

61

62 Conclusions and Future work

AppendixA
SmartFusion2 SoC FPGA

Architecture

63

64 SmartFusion2 SoC FPGA Architecture

Figure
A

.1:
M

icrosem
iS

m
artFusion2

FP
G

A
G

eneralA
rchitecture.[4]

Bibliography

[1] HMS Industrial Networks AB. Anybus R©CompactCom TM M40 Hardware
Design Guide, 2017.

[2] HMS Industrial Networks AB. Anybus R©CompactCom TM 40 Software De-
sign Guide, 2017.

[3] Arm Limited. AMBA R©3 AHB-Lite Protocol AMBA 3 AHB-Lite Protocol
Specification.

[4] Microsemi Corporation. DS0115 Datasheet SmartFusion2 Pin Descriptions.

[5] SPI Block Guide V03.06. 2000.

[6] HMS Industrial Networks AB. Case Study: Message Displays, 2015.

[7] João Faria and Arnaldo Oliveira. FPGA-based Ethernet Sniffer for Real-Time
Networks. Electrónica e Telecomunicações, 2006(1):61–68, 2013.

[8] Chee Wei Liang and NNoohul Basheer Zain Miz Ramesh Seth Nair. Design
of Low Cost FPGA Based PCI Bus Sniffer. Technical report.

[9] Sergiy Dorosh, Grzegorz Debita, and Patryk Schauer. Network hardware
analyzer based on NetFPGA 1G. In Proceedings - 2017 IEEE 26th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises,
WETICE 2017, pages 150–154. Institute of Electrical and Electronics Engi-
neers Inc., aug 2017.

[10] N Jayarathne and M K Jayananda. Development of a field programmable
gate array based Controller Area Network sniffer. In 2013 IEEE 8th Interna-
tional Conference on Industrial and Information Systems, pages 610–615, 2013.

[11] N Sriskanthan and Tan Su Lim. I2C bus analyser. IEEE Transactions on Con-
sumer Electronics, 47(4):867–872, nov 2001.

65

Implementation of a traffic interceptor for
Anybus® CompactCom™

FRANCISCO JAVIER MACOTELA LÓPEZ
JAVIER GAZTELUMENDI ARRIAGA
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

FR
A

N
C

ISC
O

 JA
V

IER
 M

A
C

O
TELA

 LÓ
PEZ &

 JA
V

IER
 G

A
ZTELU

M
EN

D
I A

R
R

IA
G

A
Im

plem
entation of a traffi

c interceptor for A
nybus® C

om
pactC

om
™

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-752
http://www.eit.lth.se

