
Adaptive Reference Images
for Blood Cells using

Variational Autoencoders and
Self-Organizing Maps

Generering av adaptiva referensbilder till vita
blodkroppar med variativ auto-kodare och

självorganiserade avbildningar

Anna Palmqvist Sjövall
Oscar Odestål
April 2, 2020

Supervisors
Martin Almers, CellaVision
Sven Hedlund, CellaVision

Ida Arvidsson, Lund University
Niels Christian Overgaard, Lund University

Examinator
Magnus Oskarsson, Lund University

ii

Abstract

CellaVision develops automated microscopy for blood analysis. Their
products can pre-classify 19 different types of white blood cells and sup-
port the medical technologist performing the final classification. CellaV-
ision provides reference cells. The reference cells are a fixed set of cells
handpicked by a technologist, chosen to be typical for that specific class.
The reference cells are static, i.e. the same for each cell image currently
being classified and could be improved. We propose adaptive reference
cells.

Using a combination of machine learning techniques, we develop a
pipeline consisting of an Xception classifier, a Variational Autoencoder
(VAE) and a Self-Organizing Map (SOM). This pipeline is used to produce
the adaptive reference cells which are specific for each cell image. The
medical technologist classifying an image is thus presented with cells that
are the most visually similar to that image. The adaptive reference cells
are of particular use for cells that are hard to classify.

The result consists of adaptive reference cells using both the output
from the VAE and the SOM. The adaptive reference cells using the VAE
are found superior. Also, cluster visualization using SOMs is presented
together with proposed measurements for the robustness of the classifier
and accuracy of the SOM.

iii

iv

Acknowledgements
We would like to give CellaVision credit for providing us with an innovative and
friendly atmosphere which gave us multiple interesting conversations throughout
our time there. Specifically, thank you to the employees who made us feel at
home. A big thank you to Martin Almers for his guidance, enthusiasm and ideas
during our time at CellaVision. Also, to Sven Hedlund for his vast knowledge,
insightful reflections and feedback on the report. Jesper Jönsson, thank you
for helping with both the work and the report throughout. And thank you Ida
Wagnström for taking the time to perform the SVOMEN test.

Also, thank you to our supervisors Ida Arvidsson and Niels Christian Over-
gaard at the Department of Mathematics. They both had insightful feedback
and ideas concerning both the report and thesis in general.

Finally, we would like to thank Oskar Klang, Martin Carlberg, Hugo Seller-
berg and Nellie Carleke - the other master thesis students during our time at
CellaVision. Oskar and Martin have given us countless of valuable discussions
about our thesis, and the cool experiments overlapping both projects. They, as
well as Hugo and Nellie, have contributed to making our time at CellaVision a
pure joy.

v

vi

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Aim . 2

2 Background 3
2.1 White Blood Cells . 3
2.2 CellaVision . 3
2.3 Artificial Neural Networks . 5

3 Theory 9
3.1 Convolutional Neural Networks 9
3.2 Xception Model . 13
3.3 Principal component analysis . 14
3.4 Autoencoder . 15
3.5 Variational Autoencoder . 16
3.6 Self-Organizing Maps . 18
3.7 Average Image Hashing . 23

4 Methodology 25
4.1 System Overview . 25
4.2 Data . 25
4.3 Classification . 27
4.4 Variational Autoencoder . 29
4.5 Self-Organizing Maps . 30
4.6 Reference Cells . 31
4.7 Evaluation . 32

5 Results 37
5.1 Classification . 37
5.2 Dimensionality reduction . 37
5.3 SOM . 38
5.4 Reference cells . 41

6 Discussion 45
6.1 Classification . 45
6.2 Dimensionality Reduction . 46
6.3 SOM . 47
6.4 Reference cells . 48
6.5 Evaluation . 49

7 Final Thoughts 51

vii

viii

Abbreviations
• ANN: Artificial Neural Network.

• Adam: Adaptive Moment Estimation.

• CNN: Convolutional Neural Network.

• DSOM: Deep Self-Organizing Map.

• DW: Depthwise Convolution.

• DWS: Depthwise Separable Convolution.

• KL: Kullback-Liebler.

• MSE: Mean Squared Error.

• NN: Neural Network.

• Outlier: Outlying Observation.

• PCA: Principal Component Analysis.

• PW: Pointwise Convolution.

• RBC: Red Blood Cell.

• RGB: Red, Green and Blue.

• RI: Middle Image in the SVOMEN test.

• ROTMES: Rotation Measurement created in this paper.

• ReLU: Rectified Linear Unit.

• SOM: Self-Organizing Map.

• SVD: Singular Value Decomposition.

• SVOMEN: Evaluation metric created in this paper.

• TLU: Threshold Logical Unit.

• U-matrix: Unified Distance Matrix.

• VAE: Variational Autoencoder.

• WBC: White Blood Cell.

• Xception: Extreme Inception.

ix

x

1 Introduction

1.1 Motivation

White blood cells (WBCs) circulate the human body and act as our defense
mechanism against diseases. An abnormal blood sample can indicate that the
patient might suffer from a disease such as leukemia or lymphoma. Such an
example can be seen in Figure 2 and 3, where the left smear is from a healthy
person and the right from a person suffering from leukemia. To correctly identify
these diseases, the WBCs need to be classified consistently. The WBCs are
typically classified into 19 classes unequally divided into five categories (one
category is nucleated red blood cells). Within these, one cell starts as one class
and continuously develops into others. Figure 1 shows one of these categories
and the different developing stages. The rest of the categories can be found in
the Appendix in Figure 49-52. In Figure 1, we see that a Band could develop
into a Neutrophil. During this development, the cell class will be ambiguous
and the classification differs depending on the technician classifying the cell.

Figure 1: Myeloblast transformation to Neutrophil, Basophil and Eosinophil,
within the category Myelopoiesis.

1

Figure 2: Blood smear from a
healthy person.

Figure 3: Blood smear from a per-
son with leukemia.

The medical technologist tasked with classifying and finding abnormalities
in WBCs is assisted by CellaVision’s systems. The output from CellaVision’s
microscope is an image of a WBC. The systems can pre-classify the cell image,
i.e. give a suggestion of which class a WBC image belongs to. Also, CellaVision
shows six example cells in each class, static reference cells, handpicked to be
typical for that class by a technician. The technician can use both the pre-
classification and its results graphically presented, as well as static reference
cells before making the final classification themselves. These static reference
cells do not account for the specific image or system at hand. So, the reference
cells are not the most visually similar and can be from systems with different
optics.

1.2 Aim
This thesis aims to produce adaptive reference cells, i.e. reference cells that
are different depending on the cell image being classified. Possibly these adap-
tive reference cells can also be based on cells previously collected by the same
lab/system. These reference cells should be the cells that are the most visually
similar to the cell image being classified. Also, visualization methods will assist
the technicians in finding patterns in the data. These patterns could distin-
guish a cutoff between the classes for consistent classification. These aims can
be concretized into two subtasks:

• A cell that is of interest to an expert should be shown together with
visually similar images (adaptive reference cells) to make a more nuanced
classification.

• Use visualization techniques to find cell similarity.

2

2 Background

2.1 White Blood Cells
White blood cells are a part of the human immune system and unlike a red blood
cell (RBC), they contain a nucleus. A typical cell image consists of one WBC
and none or multiple RBCs. Every WBC derives from stem cells in the bone
marrow. Once developed into a WBC, they are often categorized into 10-20
classes depending on who makes the classification. The classes and proportions
in Table 1 are not all WBCs but they are found in human blood. These statistics
are obtained by counting all the nucleated elements, both mature and immature
present in cellular bone marrow films [1]. A large shift in this distribution could
be a sign of a serious disease such as Adult Acute Myeloid Leukemia (AML)
in which the number of Blast cells (Myeloblasts) increases rapidly. Myeloblasts
in AML are abnormal and will not develop into healthy blood cells as they are
intended to do [2].

Table 1: Blood cell classes proposed by d’Onofrio and Zini in Morphology of the
blood [1].

Cell class Percentage of total cells
Blasts (myeloblasts) 1-3%
Promyelocytes 1-7%
Neutrophil myelocytes 5-20%
Neutrophil metamyelocytes 10-30%
Segmented and band neutrophils 5-25%
Eosinophil series 1-4%
Proerythroblasts 1-5%
Basophilic erythroblasts 2-8%
Polychromatic erythroblasts 2-20%
Orthochromatic erythroblasts 2-10%
Monocytes 0-3%
Lymphocytes 3-15%
Plasma cells 0-3%
Macrophages, reticulum cells <2%

2.2 CellaVision
CellaVision addresses the global shortage of qualified staff and the increasing
pressure to reduce costs in hematology laboratories by delivering automated
processes with a more reliable result. During the 18 years in the business,
CellaVision has claimed a market-leading position with an 18% share of their
target market [3]. Their newest product, which is the machine that has captured
the images used in this report, is called DC-1 and is found in Figure 4.

When studying the blood, microscopy is an important part to identify and
count WBCs. This is a labor-intensive job and dependent on medical technol-
ogists. However, this task is necessary in order to identify and, in extension,
prevent and cure diseases. CellaVision provides systems that automatically ana-
lyze blood smears and present its result to a technician for further investigation.

3

Figure 4: The DC-1 machine and its software interface from CellaVision.

The result from a CellaVision system can be seen in Figure 5, with the collected
cells to the left and the reference cells to the right.

Figure 5: From CellaVisions interface: Collected lymphocyte cells to the left
and lymphocyte reference cells to the right.

The system works in the following way. First, a blood smear is fed to the
machine which starts to analyze the sample. Secondly, a microscope hovers over
a certain part of the smear and captures a picture of each WBC. Finally, the
images are classified by the machine and the result is presented as in Figure 5.
The classes used by CellaVision are shown in Figure 6. Classes like Artefact
and Smudge Cell are created by CellaVision to describe objects unrelated to
blood and broken cells respectively.

4

(0) SegmNeu-
trophil

(1) BandNeu-
trophil

(2) Eosinphil (3) Basophil (4) Lympho-
cyte

(5) Monocyte (6) Reactive-
Lymphocyte

(7) Abnormal-
Lymphocyte

(8) Promyelo-
cyte

(9) Myelocyte

(10) Metamye-
locyte

(11) Blast (12) Plasma-
Cell

(13) Erythrob-
last

(14) LargeTh-
rombocyte

(15) Giant-
Thrombocyte

(16) Smudge-
Cell

(17) Artefact (18) Thrombo-
cyteAggrega-
tion

Figure 6: The cell classes used by CellaVision, with their given class number.

2.3 Artificial Neural Networks

The human brain has biological neurons that are connected in a vast network.
It is also called a biological neural network. This is the inspiration of the
machine learning models known as neural networks (NN) [4]. An artificial neural
network (ANN), in turn, is called so when a neural network is implemented in
software as the neurons are not physical objects (such as in the brain) [5]. The
first ANN architecture was created in 1943 by Warren McCulloch and Walter
Pitts [6]. After decades of varying waves of interest, ANNs have gained traction
steadily since the 1990s. Amongst other things, this is due to the increase
in computational power which allows for both greater data sets and models
together with faster computations [4].

McCulloch and Pitts’ model was later developed into a perceptron in 1957 by
Frank Rosenblatt. The perceptron is an ANN architecture and is based on the
artificial neuron called a threshold logical unit (TLU) shown in Figure 7. The
neuron receives multiple inputs and if they together exceed a given threshold,
the neuron is excited and sends the signal forward. The TLUs inputs, xi, are
each associated with a weight, wi. The linear combination of the inputs and the
weights are summed, z =

∑
i wixi, and sent through a step/activation function

5

hw(x) = f(z) that outputs the result. The step function could, for example, be
chosen to be the Heaviside step function, θ(z) [4].

Figure 7: A threshold logical unit (TLU), the base of a perceptron/multilayer
perceptron.

By then creating a network of TLUs, we have a neural network (more specif-
ically a perceptron/multilayer perceptron). An example of such a network is
shown in Figure 8. The nodes are neurons and the edges are the flow of in-
formation. The information is fed into the input layer, flows through one or
more hidden layers of neurons and finally into the output layer. This output
could be binary, categorical, numbers, etc. As described by Gérard Dreyfus
book Neural Networks, a neural network without hidden layers and with a lin-
ear activation function is a linear system, but ANNs are particularly useful for
non-linear relations in the data [5].

Figure 8: A simple fully-connected neural network with two hidden layers.

The ANN needs to be trained to provide sensible and relevant output. This
training can either be supervised or unsupervised. Supervised training is when
the input has known corresponding outputs. Unsupervised training is without
known outputs and is often the case in visualization techniques such as clustering
or self-organizing maps [5].

To train an ANN means to optimize the weights (parameters) of the network.
This optimization is usually done with gradient descent which will minimize

6

Figure 9: An example of underfitting and overfitting compared to the optimal
one in the middle. The yellow and blue dots are different classes and the line is
how the classifier divides them.

a cost function (also known as loss function). The cost function is a scalar
defined specifically for the task at hand and describes the performance of the
network. In supervised tasks, this cost function could, for example, be the
mean squared error (MSE) between expected output and actual output [4].
Gradient descent gives us a way to minimize the cost function f(x) by moving
x in small steps using derivatives. How big the steps are is determined by the
learning rate, α. To calculate these derivatives, means to calculate the gradient,
a multi-variable derivative of f . Computing the gradient in an ANN is done with
the back-propagation algorithm. The algorithm propagates backward the cost
information through the network. Backpropagation turns a computationally
expensive operation, calculating the gradient numerically, into an inexpensive
task [7].

The data set is first divided into a train, validation and test set before train-
ing. The training data is used to train the model as described. The validation
data is used to measure the performance of the model while training. Finally,
the test set is used after training to evaluate the model.

When designing the ANN model, i.e. deciding how many and which layers
to include, there are two key aspects to consider. The first one is when the
network has too many parameters so it can very accurately fit both the training
data and noise/outliers but cannot generalize and do well on new data. This
is also known as overfitting, see the example in Figure 9. During training,
a high training accuracy but low validation/test accuracy is a typical sign of
overfitting. The other aspect is when we have too few parameters. This means
we will underfit the data and not be able to accurately learn the training data [5].
An example of underfitting is also shown in Figure 9.

The training can either be done by batch (nonadaptive) or online (adaptive)
learning. Batch learning means that training is done on all the data at once.
It requires a lot of computational resources which can make it impossible for
huge data sets. Online learning, on the other hand, means that the learning
is performed incrementally by feeding the network mini-batches (or individual)
instances of data. It is useful when the data set cannot fit in the computer’s
main memory as it will run training on some data and then discard it before
loading more [4].

7

Parameters

There are four key parameters to set when training a neural network. They are
the batch size, learning rate, number of iterations and choice of optimizer.

For online training, we can set the size of the mini-batches (batch size). Set-
ting it as high as the GPU can manage could increase performance. However,
a large batch size will make the training unstable and could lead to less gener-
alization [4]. Dominic Masters and Carlo Luschi’s paper from 2018 claims that
the batch size should be between 2 and 32 [8]. While a paper from Elad Hoffer
et al. in 2017 showed that very large batch sizes can perform well, but then
other adjustments need to be made to the learning rate [9].

An important part of online learning is setting the learning rate. The learn-
ing rate decides how fast the system should adjust to changes in data. Too high
of a learning rate results in a system not being influenced enough by previous
data. A learning rate that is too small will conversely result in a system learning
much slower, but also being less sensitive to outliers [4].

Manually setting the number of iterations can be replaced by adding early
stopping as a callback in Keras which is a deep learning library for Python.
Keras implements machine learning programs faster and easier. Without using
early stopping, the number of iterations must be chosen large enough for the
model to learn. But not too large such that we keep iterating even though the
model is not learning any more information, that will simply waste computa-
tional resources and risk overfitting. Another consideration is that selecting the
number of iterations will also impact the learning rate, a lower learning rate will
need more iterations as it will converge slower [5].

Different optimizers can be used for different problems. One is Adam(adaptive
moment estimation) and was introduced by Diederik P. Kingma and Jimmy Ba
in 2014. It is an adaptive learning rate algorithm, meaning that less tuning of
the learning rate is required. The adaptive learning rate will decrease over time
as the cost function moves closer to a minimum [10]. The default starting value
in Adam (learning rate = 0.001) is often a good choice [4].

8

3 Theory

3.1 Convolutional Neural Networks
Convolutional neural networks (CNN) are a type of ANNs specifically used when
the input is an image or video data. As the book Deep Learning defines it: "Con-
volutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers." [7]. Again, the in-
spiration comes from the human brain, specifically the visual cortex [10]. CNNs
have been highly successful, even outperforming humans on certain tasks [4].
As input, ANNs can, for example, take certain image features that the designer
can choose. For cells, this might mean the color intensity of the nucleus, cell
membrane, background and number of red blood cells [11]. This, however, re-
quires a lot of preprocessing and it is hard to choose the right features. By
instead using a CNN with many hidden layers (deep learning) we can send in
the whole image and the CNN will itself learn the different features.

This input image is represented as Figure 10 in the computer. A square
image is typically represented using a matrix with dimensions M ×M × 3. The
size of the third dimension depends on whether the image is grayscale or in
color. A grayscale image would have dimensions M ×M × 1 but a color image
would haveM×M×3 where the third dimension here represents red, green and
blue (RGB) values. Images can also be represented by more than 3 channels
and a rectangular matrix, but this is not as common. The pixel values can be
represented in different ways, but generally low numbers are darker and higher
are brighter.

Figure 10: An image as represented in the computer’s memory. The different
color channels give the red, blue and green intensities.

Besides convolutional layers, CNNs can consist of different layers combined
in different ways. Commonly, they consist of some combination of convolution,
activation and pooling [12]. The final output after those layers is then flattened
to a one-dimensional array and sent as input through a fully-connected layer(s).
Fully connected layers are known as dense layers and can be connected to an

9

output layer used for example in classification [13]. An example of a CNN
classifier from image to classification is shown in Figure 11.

Figure 11: A CNN classifier that takes an image as input, goes through a
combination of convolution, activation and pooling layer, sends it through a
fully-connected neural network and finally gives the class as output. The image
is taken from [14].

Convolution

The operation Convolution is denoted by an asterisk. The discrete 2D convolu-
tion is defined in Equation (1), with input image , f , and a (2a+ 1)× (2b+ 1)
kernel, w. The feature map (output image) is represented by g.

g(x, y) = (w ∗ f)(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t). (1)

In the convolutional layer, each node is a filter. So, it receives an input,
filters it and sends the filtered image through. Below, the calculations are based
on the input layer. For black and white images M × M × 1, the filter is a
N × N × 1 kernel which convolves (slides) across the image and takes the dot
product of the two matrices. This process is shown in Figure 12 with a 3×3×1
kernel (N = 3). In color images which has 3 channels (RGB), M ×M × 3, this
filter will be N × N × 3, i.e. a 3 dimensional kernel (cubic kernel) [7]. The
output will then be of dimensions (M −N +1)× (M −N +1)× 1. Convolution
with a cubic kernel is seen in Figure 13.

The following is done to compute the output from the convolutional layer
given the neuron. So the output zi,j,k of a neuron in row i, column j in feature
map k in a convolutional layer l with three channels is calculated with this
equation:

zi,j,k = bk +

fh−1∑
u=0

fw−1∑
v=0

f ′
n−1∑
k′=0

xi′,j′,k′ · wu,v,k′,k, with

{
i′ = i× sh + u

j′ = j × sw + v

where xi′,j′,k′ is the output of the neuron in layer l−1, wu,v,k′,k is the connection
weight, sh, sw, fh, fw, fn′ , bk are the vertical and horizontal strides, the height
and width of the receptive field, number of feature maps in layer l − 1 and the
bias term [4].

10

Figure 12: The source is convolved with the kernel to produce the pixel value
of −3 in the destination.

In Figure 14 we see an example of strided convolution and the corresponding
convolution and downsampling. In the left image, the stride is set to two. The
networks will result in the same output but using a strided convolution instead
of a combination of convolution and downsampling will decrease the number
of computations. Hence, using strided convolution will decrease memory usage
and computational power requirements [7].

An advantage of using CNN is the network’s sparse interactions, not all
nodes are connected to all other nodes (as a fully-connected layer). We achieve
this by selecting a kernel that is smaller than the input which reduces the num-
ber of weights. This leads to fewer parameters in the computer’s memory, thus
reducing memory requirements [7]. We see an example of this sparse connec-
tivity in Figure 14. Taking an RGB image of size 100× 100× 3 and using 100
convolution layers with 3 × 3 × 3 filters and the same output size, we would
need 2 800 parameters ((3 · 3 · 3 + 1) · 100 = 2800). If we instead take an
ANN with one fully connected layer, that would be over 3 million parameters
(1002 · 1002 · 3 = 3030000, a layer with 100× 100 neurons) [4].

Activation

Usually, following each convolutional layer in a CNN is a nonlinear activation
layer [16]. The most common one is the Rectified Linear Unit (ReLU), with the
activation function f(x) = max(0, x) [13].

Pooling

Pooling helps the model become robust against smaller translations in the input
image. That is, by shifting the image by a small amount, the output will remain
the same. Pooling can also be combined with down-sampling or as described,
strided convolutions. We then space the pooling units N pixels apart instead of

11

Figure 13: Regular convolution in 3D [15].

one pixel. There are different types of pooling, such as average, max and global
pooling. See max pooling in Figure 15, which outputs the highest value of its
input. Global average pooling will, however, take the average of the input, and
instead of a smaller pooling size, it will do this on the full input.

Besides helping with computational efficiency, max-pooling will also extract
the dominant features [13]. The paper Flexible, High Performance Convolu-
tional Neural Networks for Image Classification by Ciresan et al. found that
"max-pooling can lead to faster convergence, select superior invariant features,
and improve generalization" [12]. The use of convolution and pooling can, how-
ever, cause underfitting if, for example, invariance is not desired for a problem
where an exact position is relevant [7].

Depthwise Separable Convolution

Depthwise Separable Convolution (DWS) was first used in network design 2014
and has gained more popularity since it was included in machine learning li-
brary TensorFlow [17]. DWS is a method used in models to significantly reduce
the number of parameters in the model while achieving the same results as a
convolution layer [18]. DWC is used in multiple model architectures for image
processing, such as Xception, GoogleLeNet and MobileNets [19]. Given an image
with three channels, the ordinary convolution kernel will be a three-dimensional
cube as seen in Figure 13. The kernel convolves over all three channels at once
and produces a single value in the final output. DWS, on the other hand, splits
this method into two steps: a depthwise convolution (DW) and a pointwise
convolution (PW). These steps are visualized in Figure 16. First, the depthwise
convolution is performed by separating the channels and doing the convolu-
tion separately with a N ×N × 1 kernel. Secondly, the result from the DW is
stacked and we do a pointwise 1 × 1 × 1 convolution across the channels. The
DW focuses on spatial relationship modeling and PW is for the cross-channel
relationships [20]. By splitting the convolution into these two steps, we can
drastically decrease the memory and computation usage (fewer parameters and
operations) [18]. Possible drawbacks of using DWCs instead of convolutions is
when the model is too small as the decrease in parameters will then underfit
the data.

12

Figure 14: Strided convolution vs convolution and down sampling. Both meth-
ods lead to the same output.

Figure 15: Max pooling the input with stride 2 resulting in output.

3.2 Xception Model

A classifier proposed by Google inc. in 2016 is Xception which stands for Ex-
treme Inception. The Xception model has been superior to other current state
of the art classification models such as Inception V3, ResNet-152 and VGG-16.
It modifies the depthwise separable convolution operation by shifting the order
of the convolutions, i.e. first the pointwise convolution and then the depthwise
convolution. The creator of Xception, François Chollet, claims this change will
not make a difference as the steps are stacked. In Xception, unlike Inception,
this operation is not followed by an intermediate ReLU non-linearity [17].

The architecture of Xception can be seen in Figure 17. It consists of 36
convolutional layers. The layers called separable sonvolution are the modified
depthwise separable convolution. The input data goes through the entry flow,
repeats the middle flow eight times before exiting through the exit flow. All
Convolution and separable sonvolution layers are followed by batch normaliza-
tion [17]. Batch normalization layers are a way to make normalization a part
of the model architecture and will thus normalize each mini-batch. The layers
also allows higher learning rates [21].

13

Figure 16: Depthwise convolution followed by pointwise convolution over three
channels with filters sized 3 × 3. Together they form depthwise separable con-
volution [15].

3.3 Principal component analysis

Handling large data sets requires a lot of computational power combined with
large memory usage. Several methods aim to reduce data dimensionality with
the goal to keep as much information as possible. Dimensionality reduction is
often used in image analysis when the image needs to be compressed but still
retain as much of the information contained in the full-size image as possible.
There are different ways to perform dimensionality reduction. Some common
techniques are principal component analysis (PCA), autoencoders and varia-
tional autoencoders (VAE).

PCA is one of the simplest, yet effective, dimensionality reduction methods.
This reduction is done by finding the correlation between features in the data.
Features that highly correlate can be removed to reduce the overall dimension-
ality of the data [22].

PCA is performed by first normalizing the data, i.e. by transforming each
data point to 0 mean and unit variance. Secondly, the covariance matrix is
computed using singular value decomposition (SVD). Given an arbitrary matrix
X with dimensions m× n, X can be expressed using SVD as:

Xm×n = Um×mSm×nV
T
n×n, (2)

14

Figure 17: Xception architecture. Image taken from [17].

where

1. U , V are orthogonal, i.e UTU = Im×m and V TV = In×n.

2. S is a diagonal matrix.

The result of this factorization is the matrix U containing the left-singular
vectors, S containing the corresponding eigenvalues and V T containing the right-
singular vectors. Here, S is a bi-linear operator between the two space spanned
by U and V T . This means that S can map a vector in U to V T by vT = uTS
and a vector in V T to U by u = Sv.

From Equation (2) we get the covariance matrix:

C = XTX = V STUTUSV T = V S2V T .

We can then find the eigenvalues in S and the corresponding eigenvectors in V .
Since the goal of this method is to reduce the dimensionality, we can reconstruct
X using the most important data in S and V , by multiplying X with the L first
columns in V . This results in the lower dimension matrix P .

Pm×L = Xm×LVn×L. (3)

Choosing a higher L will result in a P which becomes more similar to X but the
trade-off is that P also becomes bigger with a bigger L. Sometimes L is chosen
for P with a specific size. It could also be selected to get a P which contains a
specific percentage of the information contained in X [23].

3.4 Autoencoder
An autoencoder can be divided into two parts; an encoder and a decoder. Both
the encoder and the decoder are set up as ANNs, see an example of this structure

15

in Figure 18. Each time data is fed to the encoder-decoder model, the output
is compared to the original input and the error is computed using MSE and
the gradients are computed using backpropagation. Then the weights of both
the encoder and decoder are updated to provide better reconstructions of future
data [7].

Figure 18: A possible architecture of an autoencoder with latent dimension = 2.
The inputs xi are encoded to the latent representation z1,z2 and then decoded
to the reconstruction x̂i.

The input data X = {xi}Ni=1 is compressed into an L-dimensional latent
vector z = {zi}Li=1 by the encoder. This is done by either dense layers or
convolution layers which reduces the dimensionality of the data. The vector z
is then fed to the decoder which will try to reconstruct X with its estimate X̂.
The goal is to minimize the difference between X and X̂, i.e. to minimize the
function:

loss = ‖X − X̂‖2. (4)

With a larger sized latent vector z, more information about the input is
passed to the decoder which makes it easier to reconstruct the original input.
Several factors affect the loss, but the two key ones are the architecture of the
network with the size, L, of the latent vector z. A bigger and better network is
more likely to produce a better latent vector and thus a smaller loss.

3.5 Variational Autoencoder

The main difference between a variational autoencoder (VAE) compared to an
ordinary autoencoder is that instead of the input being mapped to a latent
vector z, it is being mapped to a set of distributions. The architecture of a
VAE is illustrated in Figure 19. VAE is often used as a generative model, i.e. to
create new, unseen data. The model can capture dependencies in any input data
following some distribution and create output data which approximates the same

16

distribution as the input. This also makes VAEs suitable for dimensionality
reduction since the lower dimension data will approximately follow the same
distribution as the original data.

Figure 19: A possible architecture of a variational autoencoder. The inputs xi
are encoded to a mean µi and a variance σi. Then, the vector zi is sampled
using zi = µi + σi · ε and is decoded to the reconstruction x̂i.

Given inputs x = {xi}Ni=1, where xi is from the distribution xi ∼ d(X|z) and
a random variable z, X is encoded through several layers. The encoding is a
function that maps the input to a lower-dimensional representation. In a VAE,
the data is encoded into distributions approximating the input data’s features.
The encoder and decoder can be described in the following way:

• Encoder: qφ(z|x), the distribution of z, given x as input.

• Decoder: pθ(x|z), the distribution of x, given the encoded z as input.

φ and θ are parameters for the encoder and decoder respectively. The parameter
φ contains the so called variational parameters which are parameters learned
by the encoder [24].

It is difficult to calculate the true posterior pθ(z|x) when using a VAE, i.e.
given x, what is the probability of a particular z? This can be expressed using
Bayes Theorem [25]:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
=

pθ(x, z)∫
pθ(x|u)pθ(u)du

. (5)

The problem is that calculating the posterior will involve the intractable denom-
inator p(x). Instead, we try to approximate pθ(z|x) using the tractable (often
Gaussian) distribution qφ(z|x). The VAE works by tuning the parameters of
qφ(z|x) to make it as similar to pθ(z|x) as possible. The two distributions are
compared to each other using the Kullback-Liebler divergence term.

17

Kullback-Liebler divergence term

Given two probability distributions q and p, the Kullback-Leibler (KL) diver-
gence measures how well q approximates p. The KL divergence is defined as [26]:

DKL(p(x)||q(x)) =
N∑
i=1

p(xi) · log
p(xi)

q(xi)
.

This is a term used to measure how much information is lost when approxi-
mating the distribution p(z|x) with the approximation qφ(z|x). We also use the
KL divergence to approximate the variational parameters φ∗, i.e. by minimiz-
ing [27]:

φ∗ = argmin
φ

DKL[qφ(z|x)||pθ(z|x)].

Loss

The loss function of a VAE depends on two parts:

1. Reconstruction term: Ez∼qφ(z|x) [log pθ(x|z)]

2. Regularization term: DKL[qφ(z|x)||pθ(z|x)]

The idea of the reconstruction term is to make the reconstruction as good as
possible, i.e to make x = x̂. The regularization term is there to regularize the
latent space in order to make the approximated qφ(z|x) as close to the true
posterior pθ(z|x) as possible [27].

The VAE tries to learn one distribution for each feature. A latent dimension
L = 50 requires the VAE to fit 50 feature distributions inside pθ(z|x). A high
KL divergence will lead to a non-continuous latent space which increases the risk
of sampling data outside a latent distribution resulting in ambiguous decoding.
However, by only use the KL loss, the distributions would become overlapping
and result in a high reconstruction loss. This process is visualized in Figure 20.

3.6 Self-Organizing Maps
The Self-Organizing Map (SOM) was created in 1982 by Teuvo Kohonen and
is a way to visualize multidimensional data in lower dimensions, usually two
dimensions. This provides a way to classify and cluster data in an unsupervised
manner. The SOM both compresses data whilst also producing abstractions
based on the key topological and metric relationships in the original input.
Kohonen describes the SOM formally as a: "nonlinear, ordered, smooth mapping
of high-dimensional input data manifolds onto the elements of a regular, low-
dimensional array" (p.106) [28].

An example of a SOM is shown in Figure 21. It was built with the MNIST
handwritten digit database which contains images of handwritten digits as
seen in Figure 22 [29]. There are 720 images of numbers between 0 and 3.
We can then see how digits 0, 1, 2 and 3 are assigned a coordinate and some
coordinates contain multiple different digits in Figure 21.

The SOM is an ANN with a feed-forward structure where the input layer
is fully-connected to the grid of nodes (the SOM), as seen in Figure 23. The

18

Figure 20: Tradeoff when training the VAE. The reconstruction term tries to
separate the feature distributions, x(i), resulting in less overlapping and easier
reconstruction. The KL term tries to regularize qφ(z|x) to be closer to the true
posterior pθ(z|x). This could create more overlapping distributions and a more
difficult reconstruction.

SOM uses competitive learning where different neurons in the network specialize
in different input types. That means, for each input x, only one neuron will
win. There is also an ordering between the neurons, they are placed on a
discrete lattice, the SOM, which allows the winning neuron to also affect its
neighboring neurons. Thus, neighborhoods will eventually learn to specialize in
different types of input which will lead to the representations being ordered on
the map [30].

The eventual visualization of the 2D SOM is a grid with nodes, m (also
known as neurons and units). When training the SOM, the nodes that are
(topographically) close to each other (up to a certain distance) will learn from
the same input x by activating each other. The learning process can be described
by the following equation:

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)], (6)

where t is the coordinate (t = 0, 1, 2...) and h stands for the neighborhood
function and acts as a smoothing kernel. One example of a simple rectangu-
lar topological neighborhood is given in Figure 24. We denote the nodes in
the neighborhood of node c as Nc. We then have the following neighborhood
function, where 0 < α < 1 is a learning rate factor.:

hci(t) =

{
α(t), if i ∈ Nc
0, if i 6∈ Nc.

(7)

19

Figure 21: A 20×20 SOM built using 720 images from the MNIST data set. The
numbers represent the original label of the digit image.

Figure 22: Four different handwritten digits from MNIST.

Both α and the radius of Nc, σ, decrease as time progresses [28]. σ starts
larger to ensure a global ordering of the map [30].

The basic SOM algorithm has two steps, described by [32], which are re-
peated for each input in the training phase.

1. Assign a winning node to the input. The index of the winning node mc is
given by c = argmin

i
{d(x,mi)}, where d(x,mi) is usually the Euclidean

distance between input x and node mi, i.e. d(x,mi) = ‖x−mi‖2.

2. Modify the nodes according to Equation (6), such that only neighbors are
affected.

This stochastic version differs slightly from the batch algorithm. The batch
algorithm instead processes all data in step 1 and then updates in step 2 based
on a generalized mean [33]. The batch algorithm can converge faster than the
stochastic one, but it is also critical to select the correct initial values. Therefore
it is not certain that the batch algorithm is faster, due to the need for repeating
experiments to find these parameters [32]. The stochastic algorithm will result
in a better topology preservation [33].

20

Figure 23: The structure of a SOM, with the input layer being fully connected
to the lattice of neurons and each connection is given a trainable weight. Image
taken from [31].

Figure 24: A rectangular neighborhood function on the SOM lattice. If a neuron
is within Nmx , it will be impacted when Cmx is the winning neuron.

MiniSom

The package MiniSom is available on GitHub and created by Giuseppe Vettigli.
Included is both an implementation of a self-organizing map in Python 3.6.2
using NumPy and some visualization functions. Vettigli describes it as a mini-
malistic implementation of a SOM [34]. MiniSom does not contain optimization
that suits larger data sets and as such it is quite slow compared to other imple-
mentations.

Parameters

The parameters to select when building a SOM with MiniSom is the size, number
of iterations, radius of the neighborhood function (σ) and learning rate (α).

The size of the MiniSom is the side length of its visualization grid. Selecting
100 will result in a 100 × 100 map. If the size is too large, the map will take
more time, computational power and memory to train. Too small of a map will
generalize too broadly and each coordinate will contain many images. A 3 × 3
map for 10 000 images will have about 1000 images at each coordinate. Samuel
Kaski describes in Data Exploration using Self-Organizing Maps that the size of
the SOM should be as large as the computational resources will allow, given that

21

there is an unlimited number of training data. If the training data is limited,
a rule of thumb proposed is to set the number of nodes to the size of the input
data [30].

A general rule for setting the number of iterations is that it should be at
least 500 times the number of units [28]. So, the least number of iterations for
a 3 × 3 map is 500 · 3 · 3 = 4500. Again, it is also a question of computational
resources.

Another parameter to set is the radius of the neighborhood function, σ. To
produce a map that is globally ordered, σ needs to be very wide initially before
it decreases. Kohonen writes that "[t]he initial radius of Nc can even be more
than half the diameter of the network!", where the referred radius is the value
of σ (p.112) [28].

For randomly initialized values for the SOM, Kohonen claims the learning
rate should initially be reasonably high. He, however, continues to note that to
minimize the learning time, the learning rate value is crucial [28].

U-matrix

The U-matrix (unified distance matrix) is a way to visualize clusters in the
SOM. It shows the average distance of a neighboring mi, large distances are
lighter (white) and small ones are darker (black) [28]. The white parts thus
represent the borders of the clusters. The black parts, on the other hand,
represent low distances and is thus a part of a cluster. These darker parts thus
reflect the density of the input space. Looking at the U-matrix in Figure 25, we
see some clearly defined clusters like 1 and 2. On the other hand, 3 and 4 have
a weaker line between them. This gives a good measurement of where we have
the best-separated clusters. It also differs from traditional clustering methods
like K-means where a shape needs to be assumed. As Samuel Kaski points out,
the SOM is equivalent to a regular clustering technique if the neighborhood
function is always zero [30].

Figure 25: A U-matrix, which shows the average distance of a neighboring unit.
Light colors mean large distances.

22

Outlier

Outliers (outlying observations) are so-called because they seem to differ signif-
icantly from the other samples in the data set. They can occur due to errors
in data collection in which case they are outliers that should be removed. Out-
liers can also occur as an extreme value caused by the data’s inherently random
nature. This type of outlier should, however, be retained in the data set [35].

With the SOM, outliers only affect one node and its neighborhood. Hence,
the outliers will not affect the global ordering of the map and therefore not
affect the integrity of the other data. Also, the outliers can be detected with
the U-matrix as there will be few representations in those neighborhoods due
to outliers differing nature [30].

3.7 Average Image Hashing
Average image hashing is a method to hash an image to, for example, com-
pare images to each other. Dr.Neal Krawetz describes the algorithm of average
hashing as the following [36]:

1. Downscale the image to 8× 8. Using Figure 26a as the original image will
result in Figure 26b.

2. Convert the image to grayscale using the ITU-R 601-2 luma transform
(PIL.Image.Image.convert(’L’)) [37], see Figure 26c.

3. Calculate the mean intensity of the image.

4. Binarize the image, one if the pixel value is higher than the mean, zero if
it is lower. See Figure 26d.

5. Calculate the 64-bit hash based on these 8× 8 binary numbers.

These steps are also shown graphically in Figure 26a-26d from original
image to bit image. The resulting average hash from the original image is
fbfd040627ecfc7a. If we rotate the original image with one degree, we get the
average hash dbfd040627acfc7a. This hash differs by two bits (see the colored
ones), so they have a hamming difference of 2.

(a) Original image. (b) Step 1. (c) Step 2. (d) Step 4.

Figure 26: Step 1,2 and 4 from the average image hashing algorithm performed
on the original image.

23

24

4 Methodology

The method consists of building and evaluating three parts of a pipeline. These
are shown visually in Figure 27. Before entering the pipeline, the image is
transformed and resized. First, that image is sent through the classifier. The
classifier outputs the probability of the cell image being one of 19 classes. By
breaking the classifying model earlier, we can instead get a feature vector for
each image. Secondly, that feature vector of size 12544 × 1 will be the input
for the VAE. By sampling from the latent space, we get a smaller vector of size
L × 1 (L < 12544). Finally, that vector is assigned a neuron by the SOM and
placed on the map in two dimensions. To verify the results, different evaluation
techniques are used. A further description of these parts will follow later in this
section.

Figure 27: A summary of the techniques used in this papers pipeline.

4.1 System Overview

We had access to two stationary computers with NVIDIA GeForce GTX 1660 Ti
having 6 GB memory each. Also, another computer having two NVIDIA 2080 Ti
was sometimes available. This computer was used for the more computational
heavy training, whereas the two stationary computers were used for day to
day work. The GPU’s used CUDA toolkit 10.0 which is a GPU acceleration
application together with NVIDIA Deep Neural Network library 7.6 (cuDNN).
As a deep learning library, Keras together with TensorFlow 2.0 and Python
version 3.7 was used on all computers.

4.2 Data

CellaVision has assigned each WBC class the index shown in Figure 6. The im-
ages used to train the various networks are cell images captured by CellaVision’s
products. The images have been normalized to have the same background inten-
sity. The original size of an image is 640×480×3, but is cropped to 256×256×3
pixels centered around the nucleus. Each image is captured with a lens with
100× magnification resulting in each pixel being 0.1µm. Some of the cell images
appear multiple times in the data set as CellaVision’s machines have slightly
different optics. Different machines of the same model can produce slightly dif-
ferent images and some cells are captured more than once by the same machine.
This means that the same cell image can reoccur with only some small differ-
ence (e.g. in color and translation) compared to the other samples of the same
image. These are so similar that they are viewed as duplicates. See Figure 28
for two duplicate cells.

25

Figure 28: Example of an image and its duplicate.

For the adaptive reference cells, it is important to remove these duplicates
from the data set. As these duplicates have some translation and color differ-
ences, it is not enough to compare them pixel by pixel. Thus, the average image
hashing from the package imagehash [38] was used. The images in the same
class are then compared by taking the average hash of both images and compar-
ing the Hamming difference (bit-wise difference). If this difference is lower than
two, they are believed to be duplicates. If the difference is three, the images
were manually controlled.

The graph in Figure 29 shows the number of cells per class and the data
sets’ division into a test, train and validation (val) set. Duplicates were not
removed from the train set as it does not directly impact the adaptive reference
cells. Thus creating five different subcategories of images: test, test without
duplicates, val, val without duplicates and train. The distribution can be found
in Table 2. There are duplicates between the test and validation set. Therefore,
the images in the test set that had a duplicate in the validation were removed
from the validation set. The validation set is hence smaller than the test set.
We will refer to the test set without duplicates as the trainSOM set and the
validation set without duplicates as the testSOM set.

Table 2: Data distribution of the cell images provided by CellaVision.

Percentage (%) # images # images without duplicates
Train 60 242 109 -
Test 20 80 744 61 995 (trainSOM)
Val 20 80 764 35 533 (testSOM)
Total: 100 403 617 97 535

Normalization

The system should weigh all features equally. A non-scaled feature vector can
have some feature values consistently much higher than others. This will cause
the machine learning algorithms to weigh greater values higher and smaller

26

Figure 29: The distribution of the data set in each class. The graph also shows
the distribution when the data is split into test, train and validation.

values lower. Also, as the data consists of images where each pixel value is a
number ranging from 0 to 255, each image also needs to be scaled. The images
are scaled such that each pixel instead ranges from 0 to 1.

4.3 Classification

Data Augmentation

An important part of the system is the classification. Before sending the data
through the classifier, Keras is used to augment some of the data. The augmen-
tation is performed to train the classifier on a more diverse data set. Several
types of augmentation were relevant for the training. Three different types of
augmentation applied to the same model were evaluated: A, B and C. They will
be referred to as model A, model B and model C. The augmentations used for
each model is seen in Table 3.

Table 3: Augmentations for model A, B and C.

Model A Model B Model C
rescale 1./255 1./255 1./255
zoom_range 0.1 0.1
rotation_range 90 90
fill_mode constant constant
hotizontal_flip True
vertical_flip True
width_shift_range 0.1
height_shift_range 0.1

The rotation_range setting will rotate the image a random number of
degrees between -rotation_range and rotation_range. This will make the
model more invariant to a smaller rotation of the cell image. The zoom_range

27

will zoom the image a factor between [1− zoom_range, 1+ zoom_range]. When
rotating the image, blank areas occur. The blank areas are filled with black
pixels when fill_mode is set to "constant" [39]. These areas could be filled
with any color since the idea is that the classifier should learn that these areas
do not affect the final classification and therefore ignore them. An example of an
image from CellaVision’s data set with those random transformations applied
is shown in Figure 30.

Figure 30: A cell image with 9 random combinations of transformations from
Table 3 applied.

Model Architecture

The model used in this paper is a modified version of the Xception model de-
scribed in Section 3.2 and seen in Figure 17. The middle flow is repeated three
times instead of eight. The adjustment is due to previous successful work within
CellaVision and our training time restrictions. The network is trained using the
training set containing 242 109 images and the augmentations described. Other
settings being used are listed in Table 4.

The goal is to break this model at an appropriate layer to send a feature
vector through that is not only dependent on the technologists’ classification nor
the information surrounding the WBC. That is, we want feature vectors that
contain information about visual similarity and not just class information. Also,
we want feature vectors that focus on the WBC and thus ignores the RBCs and
miscellaneous artefacts.

Table 4: Settings used when training the modified Xception network. Note
that the target size rescales and does not crop the image from 256 × 256 to
224× 224.

Settings Value
optimizer Adam(default learning_rate=0.001)
batch size 32
epochs 50
target size (224,224)

The classification focuses on the WBCs, but the cell images also contain
RBCs, other cells and sometimes different artifacts. This surrounding informa-
tion is supposed to be marginalized out by the classifier. Towards the end of

28

the classifier, the model hones in on the specific features of the WBC (RBCs
e.g. does not impact a WBCs classification). But selecting a layer that is
close to the output resulted in a feature vector highly weighted against the final
classification.

The breakpoint seen by the red line in Figure 31 was chosen, which is the
sixth last layer. It is a Batch Normalization layer with an output size of 256×
7×7. This layer’s output for a given cell image can be seen in Figure 32. These
feature vectors will primarily contain information about how the input image
looks visually and not rely heavily on the final classification. After breaking the
model and extracting features from this Batch Normalization layer, the features
are flattened such that an image becomes a vector of length 1 × 12544. Going
further up (closer to the input) in the model and extracting feature vectors would
produce feature vectors containing more general information such as borders,
size, color and rotation. However, this information does not address internal
structures in the WBC, which makes it irrelevant for finding visually similar
WBCs. Figure 33 shows an example of the output from such an early layer in
the model. Additionally, a layer earlier in the model resulted in vectors too big
for the computers working memory to handle.

Figure 31: The modified Xception model. The red line shows the break point.
Created with the tool Net2Vis [40].

This results in an output set with dimensions 242109× 12544. Hence, each
image is reduced from 256 × 256 × 3 to 1 × 12544. This is still quite a large
representation and is hard to cluster and compute with. Therefore, the next
step is to reduce the size of each feature vector but still keep as much of its
information as possible. For this purpose, a VAE is used.

4.4 Variational Autoencoder
To select which method to use for dimensionality reduction, both PCA and
a VAE were tested. Performing a PCA on the 1 × 12544 feature vectors and
keeping just the 50 most relevant components, i.e. L = 50 in Equation (3),
resulted in a data loss of 44%. This number indicates that PCA does not work
well on our data as almost half of the information will be lost.

The VAE architecture proposed by Brian Keng, Adjunct Professor of Data
Science at the Rotman School of Management, University of Toronto, was
used [41]. The architecture contains multiple layers and given the large, rather
complex data set, this was preferred. First, the VAE is trained using the feature
vectors derived from the train data set. Secondly, it is used to produce new and
smaller feature vectors using its encoder-decoder structure. The VAE’s archi-
tecture can be seen in Figure 56 and 57 in the Appendix. Different output sizes
of the VAE were tested and evaluated by the SVOMEN measurement (described

29

Figure 32: Output from the 6th last layer for a given cell image.

in Section 4.7). Since the VAE is not used in a generative matter, the mean of
each input’s feature distribution is used as the resulting feature vector.

Having smaller feature vectors allows for faster computations and less re-
quired memory. Feature vectors can thus be compared to each other, an integral
part of how the adaptive reference cells are computed. In order to visualize how
the feature vectors are related to each other, they are passed to the SOM.

4.5 Self-Organizing Maps

A new implementation of the SOM was not written as Kohonen recommends
using a previously implemented SOM in practical applications due to the many
pitfalls in building it without expert knowledge [28]. It is possible to select how
to initialize the SOM weights. The SOMs weight initialization can be selected
randomly, or by spanning the first two principal components. By selecting the
second method, the weights should converge faster on linear data. Random ini-
tialization is preferred on non-linear data. We thus chose random initialization.

The input to the SOM is 61710 × 50. The first dimension is the number of
feature vectors deriving from the trainSOM, as presented in Table 2. The size
of a feature vector is dependent on the latent space size of the VAE. Each input
vector is normalized by subtracting the mean and dividing by the standard
deviation. It is not crucial to normalize the data, but according to Kohonen,
it may improve the numerical accuracy [28]. Batch learning, i.e. all data is

30

Figure 33: The first activation layer for a given cell image in the trained model
for class 4.

read at once sequentially, is selected for performance reasons. After the SOM is
trained, the testSOM is plotted on the SOM for visualization of the input. The
map is also made interactive such that the user can press a coordinate and a
folder containing the images placed at that coordinate are shown. This enables
exploration and visualization of the data.

Parameters

To set the parameters of the SOM, the parameters recommended by Kohonen
were considered. The input data (trainSOM) is ∼62 000 vectors, thus the map
should be about 248 × 248. The number of iterations should then be 500 ·
248 · 248 = 30752000, i.e. over 30 million. Next, the initial value of σ can be
more than half the networks diameter, hence σ = 124 should be reasonable. The
learning rate should be high, but no specific value is recommended as it depends
on the other values. Using MiniSom, training a SOM with the recommended
parameters would take over 22 days. Therefore, the first maps were built with
significantly fewer iterations which in turn required σ and the learning rate to
have an initial smaller value.

4.6 Reference Cells

To obtain reference cells that are adaptive to any given cell image, the whole
pipeline is used. See the grid in Figure 34 for an example of the adaptive
reference cells chosen for one cell image, each reference image has its class label
in bold. The cell image is from the testSOM set, and its possible neighbours
are selected from the trainSOM set. If a reference cell has a duplicate it is
redundant to classify. This is a scenario that will not occur at the laboratories
using CellaVision’s system.

The neighbouring cells are either selected based on the VAE or SOM. For the
VAE, the feature vectors that are sampled from the latent space are compared
to the feature vector of the cell image. The eight cells with the smallest MSE
are selected and chosen to be the reference cells. For the SOM, the neighbouring
cells are instead based on the closest images based on the coordinates on the
SOM. The images in the same coordinate are primarily selected, but if there are
more than eight neighbours in the same coordinate, the ones with the smallest
quantization error to the node are selected. If there are less than eight neigh-
bours in that coordinate, neighbours from the coordinates closest, by Euclidean
distance, are sampled for additional neighbours.

As an evaluation method, adaptive reference cells were produced using both
the SOM and the VAE. Both correctly classified and misclassified images by the

31

modified Xception network were tested. The correctly classified images deter-
mined which method, using the output from the SOM or the VAE, produced
the best output. This best method was then used with the misclassified images
to show an expert.

There were 2362 cells that the modified Xception model misclassified from
the testSOM set. These images are interesting since they are hard to automat-
ically classify. Therefore the misclassified images are those primarily helped by
using the adaptive reference cells. By selecting an even distribution of 10 images
of each cell class, a set of 186 images were obtained. Class 13 only had six im-
ages misclassified which are why the set is not complete with 190 images. Two
test people, Anna and Oscar, without knowledge of blood morphology classified
the cell image using only its adaptive reference cells. Also, a medical technolo-
gist classified the same cells with adaptive reference cells to get a more accurate
classification as the ground truth. Some cells in the data set can be misclassified
by the expert which would lead to some of our current labels being wrong. Hav-
ing a medical technologist at CellaVision performing a thorough classification
will verify the images and it will be classified with only one expert. The test
persons’ classification is then compared to the technologist’s and the classifier’s
prediction.

4.7 Evaluation

ROTMES

The rotation measurement (ROTMES) is created to make sure the VAE is invariant
to different transformations in the data. An image X is read and sent through
parts of the pipeline from Figure 27 together with three transformed versions of
itself xrot, xhor_flip, xvert_flip. The first augmentation xrot, comes from a rotated
version of the input image, the second one xhor_flip from a horizontally flipped
and the third xvert_flip from a vertically flipped version. The augmented images’
feature vectors f1, f2, f3 are compared to the feature vector of the original image
fX using MSE resulting in the errors e1 = mse(f1, fX), e2 = mse(f2, fX) and
e3 = mse(f3, fX). Finally, ROTMES is computed by taking the mean of these 3
errors, i.e.

ROTMES = mean(e1, e2, e3),

which tells us how well the system performs on augmented data. ROTMES is
performed on 100 images from each class and is used to evaluate how robust the
models are.

SVOMEN

To evaluate the performance of the pipeline and to be able to hyper-tune pa-
rameters, a measurement was created to measure the similarity of two cells. It
was primarily developed to evaluate the SOM and called SVOMEN.

The test was performed on ten people that went through images manually,
such as those in Figures 35-37. Two images were given, alternative 1 and 2, to
compare the middle image (RI) with. If alternative 1 was the most similar, the
key 1 was pressed. The same goes for key 2. There was also a third option,
key 0 when no cell was deemed particularly similar. An even distribution of
100 images of each of the 19 classes was selected and picked at random for the

32

Figure 34: The cells surrounding the middle image is its adaptive reference cells.
The number in bold represent the cell class. The middle image is classified as
11. The reference cells are found using the VAE’s output data.

RI, totalling 1900 images. The first alternative was always selected by finding
the eight nearest neighbours (smallest MSE) and selecting one at random. The
other image, however, was chosen from three methods, selected at random.

• close-to-close: Selecting another image from the 8 as described, see Fig-
ure 35.

• close-to-class: A random image from the same class, see Figure 36.

• close-to-random: A completely random image, see Figure 37.

As can be seen in Figure 35, the choice is especially difficult when both
alternatives are very similar. Besides presenting the options and to select 0 when
they are unsure, no further instructions were specified. Ten people participated.
Master thesis students with limited cell knowledge: Anna, Oscar, Oskar, Martin
C, Hugo and Nellie. And employees at CellaVision: Martin, Sven, Jesper and
Ida. The employees have more knowledge in the field but are not specialized

33

Evaluation test, 3 example images

Figure 35: close-to-close: Both alternative 1 and 2 are in the RI eight nearest
neighbours (smallest MSE).

Figure 36: close-to-class: All images are in class 13, Alternative 1 is one of the
RI neighbours.

Figure 37: close-to-random: The RI and Alternative 2 are both class seven.
Alternative 1, however, is class 2.

in cell classification. Table 5 shows each participants number of selections of
alternative 0, 1 and 2. We see that alternative 0 is commonly used by Ida with
12.5% versus Hugo with 3.0%.

An entry was valid if eight participants selected either alternative 1 or 2.
Some participants described how they on accident selected the wrong one, which
is why not all ten had to pick the same alternative. Of the 1900 RI, 1262
remained. Figure 38 shows the remaining number of RI in each class.

When applying the SVOMEN to a SOM, each RI and its alternatives are placed
on the map. One point is awarded if the image that is closest by Euclidean
distance is also closest according to SVOMEN. The perfect score is thus the number

34

Table 5: Each participant in creating the gold standard for SVOMEN and their
selections for the total 1900 images.

Name Alternative 0 Alternative 1 Alternative 2
Anna 170 860 870
Oscar 149 871 880
Oskar 105 923 872
Martin C 204 828 868
Hugo 58 919 923
Nellie 79 885 936
Martin 106 871 923
Jesper 197 874 829
Ida 238 800 862
Sven 92 884 924

Figure 38: The number of valid images in each class for the SVOMEN measure-
ment. There were originally 100 images in each class.

of valid RI, i.e. 1262. In the same way, applying SVOMEN to the VAE means to
award a point if the image that is the most visually similar also has the smallest
MSE.

35

36

5 Results

5.1 Classification

Confusion matrices from the models in Table 3 are found in Figure 53, 54 and 55
in the Appendix respectively. The ROTMES result of the models are found in Ta-
ble 6. By evaluating the models with ROTMES and the confusion matrix, model B
is chosen as the superior model. It has a ROTMES score which is higher than model
A but smaller than model C. However, model A’s confusion matrix shows that
the model has lower accuracy on some classes than model B. The compromise
of performing well on rotation invariance and achieving a good accuracy across
the classes is thus model B. Therefore, all references to a modified Xception
model from here on refers to model B.

Table 6: ROTMES for the models: A, B and C

Model A Model B Model C
0.424 0.808 1.197

The results achieved by the modified Xception classifier can be found in
Table 7, and the training and validation loss in Figure 39 and 40 respectively.
The high accuracy shows that the model has been trained to the extent that it
can correctly classify a never before seen CellaVision cell image more than nine
out of ten times.

Table 7: Xception model training results.

Accuracy Loss
Train 0.950 0.139
Validation 0.937 0.193

Figure 39: Xception train accuracy
and loss.

Figure 40: Xception validation ac-
curacy and loss.

5.2 Dimensionality reduction

Shown in Table 8 are the different sizes of latent space L in the VAE and its
respective loss and SVOMEN score. The lowest loss is when L is the largest (100).
The highest SVOMEN score, on the other hand, occurs when L = 50. Since L = 50

37

also gave a low loss, this was selected as the best L and is here on referred to
as the output size of the VAE. A visualization of the latent space for the VAE
using a 2-dimensional latent space is found in Figure 41.

Latent space size (L) Test loss SVOMEN(%)
2 3097 44.4
10 2337 79.0
25 2378 80.4
50 2279 82.4
75 2299 81.2
100 2278 81.2

Table 8: The loss and SVOMEN score based on the size of the VAEs latent space
size, L.

Figure 41: Two dimensional latent space of the VAE using the test data as
input. Each cell class is represented by its index and color.

Training the VAE given a latent space size of 50 resulted in the loss plot
shown in Figure 42. Notice that in the plot, the validation loss is lower than the
training loss. It is caused by the dropout layers that are inactivated during the
validation of the VAE. This was confirmed by experimentation. The number of
iterations/epochs was 20 and batch size 32.

5.3 SOM
Different settings of the SOM were evaluated to find the parameters resulting
in the best SOM considering the SVOMEN score. These settings and scores are
shown in Table 9. The best SVOMEN score was given settings size 244× 244, one
million iterations, learning rate (α) 0.5 and neighbourhood radius (σ) 20. The

38

Figure 42: VAE loss as a function of the number of epochs. The blue line is the
loss on the training data and the orange is on the validation data.

SVOMEN score was 75.0%, which is 946 correct ones. This will be referred to as
the SOM.

Table 9: The settings of the SOM and its SVOMEN score.

Size Iterations α σ SVOMEN(%)
100 1000000 0.5 30 68.1
244 1000000 0.25 20 74.9
244 1000000 0.5 70 67.6
244 1000000 0.5 50 69.5
244 2000000 0.5 50 71.1
244 1000000 0.5 10 73.0
244 1000000 0.5 20 75.0
244 1000000 0.5 30 72.7
244 1000000 1 20 71.9

The SOM that was the best is shown in Figure 43. Each cell from the
testSOM set is plotted at the winning SOM coordinate. The image is placed
as a number, representing its class number labeled by the technologists, and a
different color. Class 0 and 1 are in the same category, so they should be close
in the SOM, which they are. Also, we can see that class 16 and 17 are close,
which makes sense as they are both ’non-cells’ (artifact and smudge). We also
see clusters that are well defined and separated. However, there are areas with
a large mix of different classes which is probably due to the cell images being an
outliers and cannot be clustered with the other cells from that class. Cells that
are out of focus could also be in these areas. The resulting U-matrix is shown
in Figure 44.

Accompanying the SOM is a built visualization tool that allows the user to
click a coordinate and see the cells placed there. This visualization is shown
as an overlay of the SOM digits over the U-matrix. See the SOM overlay in
Figure 58 in the Appendix. Figures 59-77 in the Appendix show the overlay of
SOM digits on the U-matrix for each cell class. Also, the overlays show which
cells were misclassified by the modified Xception network as these are in red.

39

Figure 43: The SOM with the highest SVOMEN score. Each cell class has its own
number and its own color.

40

Figure 44: U-matrix for the SOM with the highest SVOMEN score. White areas
indicate a large distance between the nodes.

5.4 Reference cells

Figure 45 and 46 show the adaptive reference cells for the same image using
the output from the SOM and the VAE respectively. The middle image was
correctly classified by the modified Xception network. In Figure 47 and 48
the middle image was incorrectly classified by the Xception model. Looking
through the generated images, the VAE had consistently more visually similar
reference cells. This is confirmed by the result in Table 10, which shows that
both Anna and Oscar were better at classifying cells when using the VAEs
adaptive reference cells. Out of 100 cells, Anna and Oscar correctly classified
about 50% of the 19 possible options using the VAEs reference cells.

Table 10: Results from the classification performed on, by the Xception, cor-
rectly classified images. The test was performed by Oscar(O) and Anna(A)
using 100 adaptive reference cells.

A SOM O SOM A VAE O VAE
Current Labels 35 39 48 51

Besides looking at the adaptive reference cells that were correctly classified
by Xception, those that were misclassified were also tested. Table 11 shows
the result of Anna, Oscar and a technologist classifying 186 of the misclassified
images. Again, the VAE was slightly better than the SOM for the adaptive ref-
erence cells. The table also shows that classifying these cells was more difficult,

41

Figure 45: The reference cells for the
middle image from class 1. All the
reference cells are also class 1. The
cell was correctly classified by the
Xception network and used the out-
put from the SOM.

Figure 46: The reference cells for the
middle image from class 1. All the
reference cells are also class 1. The
cell was correctly classified by the
Xception network and used the out-
put from the VAE.

which is also confirmed by the technologist asked from CellaVision. The tech-
nologist only classified 80 out of the 186 images in the same way as the current
label of the cell image. The current label is determined by up to five medical
technologists’ classification and only those with a majority are in the data set.

Table 11: Results from the classification performed by Oscar(O), Anna(A) and
a technologist using the adaptive reference cells. For example, the cell value of
95 means that Anna, using adaptive reference cells from the SOM, classified 95
out of the 186 images the same as CellaVision’s technologist.

A SOM O SOM A VAE O VAE Technologist
Technologist 95 94 104 88 -
Xception’s Predictions 75 84 88 90 80
Current Labels 65 57 75 67 80

42

Figure 47: The reference cells for the
middle image from class 1. Seven
reference cells are classed as 0 and
one as class 1. The cell was incor-
rectly classified by the Xception net-
work and used the output from the
SOM.

Figure 48: The reference cells for
the middle image from class 1. Four
reference cells are classed as 0 and
four as class 1. The cell was incor-
rectly classified by the Xception net-
work and used the output from the
VAE.

43

44

6 Discussion

Classifying cell images can be a critical part when diagnosing a patient. CellaV-
ision’s products try to improve this work through different technical solutions.
As a tool for the medical technologists classifying cell images, we propose adap-
tive reference cells. They are obtained by finding visually similar cells to the
cell being classified and presenting them to the analyst as support for the final
decision. Also, we propose a self-organizing map mainly as a tool for further
research. The class separation done by the SOM could be used by a medical
technologist as a method to distinguish one class from another, better than they
can today.

6.1 Classification

The classifier achieved a satisfactory result. The classification experiments were
primarily based around different data augmentations. The overall accuracies of
the models were similar, but the less populated classes’ accuracies fluctuated
between the models. Resizing is done on all models’ input as there are memory
issues when the input is too large. The models are trained on the two stationary
computers, so the images could probably be bigger if it was trained on the larger
system. The other important augmentation is the rotation range. Without
this augmentation, the model is not invariant to rotations. Thus the classifier
could predict one image and its rotation differently. The resulting 1 × 12544
feature vector for two visually similar, but rotated, images would not have
similar feature vectors. That means the following reference cells and placement
on the SOM would also be variant to rotations. For future work, we propose
even further augmentation of the data. Rotation augmentation from -180 to
180 degrees instead of from -90 to 90 is recommended. This would make the
feature vectors even more invariant to rotations of the input images.

Feature vectors are extracted from the sixth last layer and are of size 1 ×
12544. Breaking the model too late results in features highly weighted against
the medical technologists’ classification. This means we cannot find new pat-
terns and from those, evaluate the existing classes. However, breaking the model
too early results in features not focusing enough on the WBC in the image.
WBC images are visually similar when the WBC, not the surrounding RBCs,
are similar. Looking at the produced adaptive reference cells, the choice of layer
works as intended. The reference cells focus on the WBC. This is confirmed by
the fact that the reference cells with similar WBC but with very different RBC
still end up close to each other in the SOM and are paired as reference cells by
the VAE. Larger feature vectors were not investigated as it was not computa-
tionally possible. Having more computational power and more memory would
enable us to test another layer than the one used.

To deal with the uneven data distribution, either upsampling, downsampling
or increase of data is suggested. However, these methods may result in unwanted
side effects where the classifier gains unwanted information. Also, downsampling
and upsampling lead to a decrease in data available and overfitting. These could
be further experimented with.

The data used to test the final bits of the pipeline (SOM and SVOMEN)
comes from a subset of the validation set. As the validation set was used for
validating both the classifier and the VAE, the data set is tainted. It was used

45

to select the hyperparameters of the model. Thus, a subset of the validation set
is not appropriate for testing the outcome from the pipeline. For future work,
the testSOM should be from completely unseen data.

CellaVision has machines from different generations with differing specifica-
tions. These all have different optics and the resulting cell images differ quite a
bit. One way to increase the data set would be to include images from the other
systems. Rebuilding the classifier using domain-adversarial training (DANN)
of the ANN, the classifier should become invariant to the specific system the
cell images are from [42]. The increased data set would increase the computa-
tional power needed but should hopefully also make the resulting reference cells
invariant to the varying optics. It is costly for CellaVision to make sure each
system has the same optics, thus the DANN could save the company money
by relaxing this requirement. This would be an intriguing way to improve the
current pipeline.

6.2 Dimensionality Reduction

The loss in the VAE is almost constant for different sizes of the latent space. The
loss consists of both the reconstruction term and the KL term. The VAE tries
to find both a good reconstruction and KL loss. The tradeoff is that too high of
a reconstruction loss will result in a low KL divergence and a low reconstruction
loss results in a high KL divergence. This is further visualized in Figure 20 and is
the reason for the almost constant loss throughout the experiments. The VAE’s
loss function is not an ordinary loss function as in standard ANNs. Instead,
the VAE tries to minimize the KL divergence and to maximize the marginal
likelihood, pθ(z). When increasing the latent space size, the reconstruction
loss will become smaller and the KL divergence will become bigger, leading to
a nearly unchanged total loss. The KL divergence becomes bigger since the
encoder needs to fit more distributions x(i) inside p(z|x) in Figure 20, i.e. one
for each feature.

The PCA did not work well on our data as 44% of the information was
lost during the transformation from the 1 × 12544 feature vector to a 1 × 50
feature vector. The reason for this is probably that PCA only works with linear
transformations. A VAE, on the other hand, is based on ANNs which can use
non-linear activation functions and thus find patterns in the data that the PCA
cannot.

Notice that using the 2-dimensional latent space found in Figure 41 we can
still see some patterns. The VAE can, using only two features, separate some
of the data. That only classes 0, 1, 10 and 11 can be distinguished indicates
that these classes, compared to the rest, are the easiest to represent using only
two features. However, the low SVOMEN score and the fact that the separation of
the other 15 classes is non-existing require us to use a higher dimensional latent
space together with the SOM.

VAEs are often used in a generative matter. However, here it is only used
for data compression. The VAE was used instead of an ordinary autoencoder as
suggested by the supervisors at CellaVision. However, an ordinary autoencoder
might produce a similar result. This was not investigated. Future work would
include trying an ordinary autoencoder and compare that to the VAE. Also,
testing a different architecture of the VAE. For example, the disentangled β-VAE
proposed by [43] would be interesting to further explore. The main advantage

46

would be the ability to generate samples where the individual features can be
modified independently of the others.

One possible modification to the pipeline would be to skip the classifier and
only use the VAE and the SOM, i.e. the input to the VAE would be the full
cell image. This would likely lead to a good compression of the data. Also,
removing the classifier and sending the images directly to the VAE enables its
full potential by taking advantage of the generative process. This means that the
VAE could be used to generate new, fake images to extend the current data set.
However, there are issues with disregarding the classifier. First, the surrounding
information (such as RBCs) would be included in the latent space. Secondly, the
VAE would only be trained on finding visual similarities and disregarding the
medical technologist’s knowledge. This kind of information is what the feature
vector from the classifier contains. As the adaptive reference cells are helping
humans, the human classifications should not be disregarded. Therefore, using
images as input to the VAE would require segmenting the WBC to only include
this information in the latent space. This could potentially show unknown
patterns in the data by completely disregarding today’s classifications.

6.3 SOM

Using the implementation MiniSom of a SOM has its pros and cons. It was used
due to time restrictions and limited knowledge about SOMs when starting the
experiments. Other implementations in Python exist but were not selected as
they did not provide the same visualizations and documentation nor did they
have the same community of contributors and users. MiniSom is a minimalistic
implementation of a SOM which means the implementation is not optimal for
large data sets such as ours. MiniSom does not support GPU training, hence
the training is all done on the CPU. The long training process made it harder to
perform all the experiments desired. There are other implementations of SOMs
which support GPU training, but most were written in a different language than
Python and lead to compatibility issues.

The radius of the neighborhood function and the learning rate were decreased
from the values originally considered. The number of iterations would then need
to be much higher for the ordering to become local enough and not just order the
data globally. Had the SOM implementation supported training on the GPU,
the number of iterations could be higher which should produce a more globally
ordered map than the resulting one.

Training SOMs with size 244 × 244 instead of the suggested 248 × 248 was
due to a rough calculation (based on input size 60 000) when starting the ex-
periments. We did not increase the size of the map afterward as the difference
was small enough not to have a big impact and the time it would take to retrain
the maps was deemed too high.

The SOM can be used by the medical technologist to analyze what separates
one class from another. Today, it is hard for them to specify the difference be-
tween some classes. However, using our SOM, they can visualize similar images
from two classes and from those get a better understanding of the cell classes.
Such visualization can find differences that are meaningful for the classification
but could also find differences that are not. For example, let us say that the
SOM separates the original class 1 into two subclasses and let us call them 1.1
and 1.2. Successful separation is one that results in something meaningful in the

47

sense that it makes it easier for the analysts to classify cell images. However, the
new subclasses could also be irrelevant for the classification. Say the difference
between 1.1 and 1.2 is a slight shift in the color intensity. The separation on
the map is reasonable as it represents the information in the data, however, it
is not meaningful for the final classification.

The idea of separating the cells in different classes is something that can
be further explored with the SOM. By plotting the categories by themselves,
the continuation and cutoff between the classes could be visualized. Also, by
plotting the classes by themselves could provide further information. The tool
that allows the user to see the cells placed at the different coordinates, could
include options for these types of visualization. As the tool stands, the script
is run with Python. The tools at CellaVision are written in C#, so rewriting
the interactive SOM to a web application in this language would make it more
useful for further experimentation.

The classification could also be based on the SOM, by labeling the cells after
the majority of its neighbors. The current classification has a high accuracy, so
this was not tried. This would also provide information about outliers in the
data set. The cells that have a different label than those around them can be
assumed to be misclassified by the technologist. Removing them from the data
set will increase the accuracy of the pipeline.

Our new U-matrix from Figure 44 differs a lot from the original U-matrix
generated from the medical technologist’s current classification. The old one is
based on a manual classification that labeled each cell image into one of the 19
classes from Table 6 which results in the sharp U-matrix in Figure 25. However,
our new U-matrix tries to move away from the predetermined classes and instead
cluster the cell images based on visual similarity. The result of this is the new,
more blurry, U-matrix in Figure 44. It is clear that our clusters do not directly
correlate with the old ones even if looking at the SOM in Figure 43 shows that
some images from the same class have been clustered together.

The SOM was selected to visualize the cell images in two dimensions. Other
techniques, such as density-based clustering [44] and k-means clustering [45]
were considered. For both methods, the data needs to be in two dimensions to
visualize the clusters in two dimensions. Thus, the VAE would need to compress
the data such that the latent space is of size two. Rebuilding a 1× 12544 vector
from only two variables will introduce a lot of data loss. As the data then is
in two dimensions and it is labeled the clustering techniques are not needed for
visualization reasons. There is also no need to use a clustering algorithm on
the SOM as it already shows the data in reasonable clusters. Using SOMs, on
the other hand, will maintain both the spatial and topological data whilst also
visualizing the data in an easy format.

Finally, there are many possible ways to explore the data using the SOM.
Perhaps showing the classes of a person’s blood smear from when they are
healthy and sick. This might show how the cells move during this transition.
Plotting different demographics, diseases and such could also provide further
insight.

6.4 Reference cells

When classifying the cells using the adaptive reference cells it is clear that the
VAE is preferred over the SOM, as shown in Table 10. As seen Table 11, the

48

asked technologist’s answers differed from the current label. This makes it hard
to trust the current classification and creates uncertainties in whether to use
CellaVision’s medical technologist’s classification or the current label as the
ground truth. This is an ongoing problem, the different experts will have differ-
ent opinions. When classifying cells from one blood smear, medical technologists
usually first look at the full sample to get an overview before classifying them
individually. This overview calibrates their classification. Perhaps each image
should thus be shown with an overview of the blood smear as well. Or a step
needs to be added to the pipeline such that the images are adjusted based on
each individual’s blood smear.

The technologist classifying with the adaptive reference cells complained that
the resolution of the images was too poor to make certain crucial distinctions.
The images presented are however of the same resolution as the technologist
is used to see them with CellaVision’s products. The key difference, however,
is in the normalization. The images we show are normalized according to the
background. CellaVision performs multiple other types of image processing
before showing cell images to the technologists. For example, the nucleus is
brightened to show key details that are otherwise drowned by the dark purple
color.

Another way of improving the adaptive reference cells is to also provide
some statistics for each image. Perhaps showing a distribution of the closest
100 reference cells. This distribution could be weighted to account for which
cells are the closest. This would give the technologist yet another tool and a
better overview of its peers’ classifications for such an image.

For the adaptive reference cells to be used in a specific laboratory, some work
is required. Since each CellaVision machine has some varieties in the optics, the
adaptive reference cells first need to be adapted to that laboratory’s setup. This
means that they would need to use our pipeline to produce their reference cells
and use them to find their adaptive reference cells. This is not optimal and could
be solved using, for example, a DANN. It would enable the customers to train
their network using images from multiple systems leading to better adaptive
reference cells, invariant to different laboratory setups.

6.5 Evaluation

The SVOMEN measurement was developed to create some evaluation method for
the SOM. It is meant to quantify cell similarity. The goal of the SOM is to place
visually similar images close to each other and not similar images far apart. The
SVOMEN score tries to capture how well the SOM accomplished this for our cell
data. A disadvantage of SVOMEN is that it is based on the test person’s subjective
opinion. Since it is humans performing the test, it will never be invariant to
rotation or color intensities. Performing the test on more test persons would
reduce these side effects but they will never disappear.

The ROTMES measurement worked as intended but could be further devel-
oped. It was developed since we saw that images in an area of the SOM all had
the same rotation. This was not desired since we want the SOM to be invari-
ant to the rotation angle of the cell images. This measurement made us add
the rotation_range augmentation to the classifier which solved the rotation
problem. However, ROTMES has further potential. It would be useful to evaluate
the pipeline using the duplicates in the original data set. Sending an image and

49

its duplicate through the pipeline should result in their feature vectors ending
up close to each other in the SOM, preferably on the same coordinate. Here,
ROTMES could be used to evaluate how good (similar) feature vectors from the
VAE become when passing duplicates as input to the pipeline. Also, more fields
could be added to ROTMES beyond the current ones, for example zoom_range and
different shift augmentations. However, this kind of augmentation is already
used in the classifier which should result in a low ROTMES score on these fields.

50

7 Final Thoughts
The major takeaway from this thesis regards the ground truth. For supervised
machine learning techniques to work as intended, there must be a well defined
and trustworthy true label. If this is not the case, it does not matter how well the
system performs since the results consequently become untrustworthy. In the
case of cell image classification, this is a problem since the classification comes
down to one or several medical technologists’ subjective opinions. Methods
that automatically segments the WBC and in an unsupervised matter cluster
the data would be preferable to solve the problem. This approach could lead
to a new standardization of cell classes and has the preconditions to be more
consistent than today’s solution. The problem with the approach, as other
unsupervised methods, is the evaluation. Using new clusters standardized by
a computer requires large parts of the medical field to accept it and to change
their work methods accordingly which is infeasible at this time.

51

52

References
[1] G. d’Onofrio, Morphology of the blood. Oxford Boston: Butterworth-

Heinemann, 1998.

[2] “Adult acute myeloid leukemia treatment (pdq R©)–patient version,” US Na-
tional Cancer Institute, [Accessed: 2020-03-05]. [Online]. Available: https:
//www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq

[3] “About cellavision,” CellaVision, 2020, [Accessed: 2019-12-05]. [Online].
Available: https://www.cellavision.com/en/about-us

[4] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow : concepts, tools, and techniques to build intelligent
systems. O’Reilly Media, Inc., 2019. [Online]. Available: http:
//ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?
direct=true&db=cat07147a&AN=lub.6373158&site=eds-live&scope=site

[5] G. Dreyfus, Neural Networks: Methodology and Applications, 01 2005.

[6] W. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity.” Bulletin of Mathematical
Biophysics, vol. 5, no. 4, p. 115, 1943. [Online]. Available:
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.
aspx?direct=true&db=edb&AN=72219868&site=eds-live&scope=site

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[8] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” CoRR, vol. abs/1804.07612, 2018. [Online]. Available:
http://arxiv.org/abs/1804.07612

[9] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks.”
2017. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.1705.08741&site=eds-live&scope=site

[10] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the
cat’s striate cortex.” The Journal of physiology, vol. 148, pp. 574–91, 1959.

[11] S. Younghak and I. Balasingham, “Comparison of hand-craft feature
based svm and cnn based deep learning framework for automatic
polyp classification.” 2017 39th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC),
Engineering in Medicine and Biology Society (EMBC), 2017 39th
Annual International Conference of the IEEE, pp. 3277 – 3280,
2017. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edseee&AN=edseee.8037556&site=eds-live&scope=site

[12] D. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,
“Flexible, high performance convolutional neural networks for image clas-
sification.” 07 2011, pp. 1237–1242.

53

[13] R. Yamashita, M. Nishio, R. Do, and K. Togashi, “Convolutional neural
networks: an overview and application in radiology,” Insights into Imaging,
vol. 9, 06 2018.

[14] S. Saha, “A comprehensive guide to convolutional neural networks
- the eli5 way,” Towards Data Science, Dec 2018, [Ac-
cessed: 2020-03-05]. [Online]. Available: https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[15] E. Benderskys, “Depthwise separable convolutions for ma-
chine learning,” Apr 2018, [Accessed: 2020-03-
05]. [Online]. Available: https://eli.thegreenplace.net/2018/
depthwise-separable-convolutions-for-machine-learning/

[16] G. Zhao, Z. Zhang, H. Guan, P. Tang, and
J. Wang, “Rethink relu to training better cnns.” 2017.
[Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.1709.06247&site=eds-live&scope=site

[17] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions.” 2016. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.1610.02357&site=eds-live&scope=site

[18] L. Yadan, H. Zhenqi, X. Haoyu, L. Lizhuang, L. Xiaoqiang,
and Z. Keke, “Yolov3-lite: A lightweight crack detection network
for aircraft structure based on depthwise separable convolutions.”
Applied Sciences, no. 18, p. 3781, 2019. [Online]. Avail-
able: http://ludwig.lub.lu.se/login?url=https://search-ebscohost-com.
ludwig.lub.lu.se/login.aspx?direct=true&db=edsdoj&AN=edsdoj.
346b9d957cbb4d6b834d739ae0e8d902&site=eds-live&scope=site

[19] K. Drossos, S. I. Mimilakis, S. Gharib, Y. Li, and T. Virtanen, “Sound
event detection with depthwise separable and dilated convolutions.”
2020. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.2002.00476&site=eds-live&scope=site

[20] J. Guo, Y. Li, W. Lin, Y. Chen, and J. Li, “Network
decoupling: From regular to depthwise separable convolutions.”
2018. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.1808.05517&site=eds-live&scope=site

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.”
2015. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.1502.03167&site=eds-live&scope=site

[22] I. T. Jolliffe, Principal component analysis., ser. Springer series in
statistics. Springer, 2002. [Online]. Available: http://ludwig.lub.lu.

54

se/login?url=https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?
direct=true&db=cat07147a&AN=lub.1683380&site=eds-live&scope=site

[23] A. Datta, S. Ghosh, and A. Ghosh, PCA, Kernel PCA and
Dimensionality Reduction in Hyperspectral Images. Singapore: Springer
Singapore, 2018, pp. 19–46. [Online]. Available: https://doi.org/10.1007/
978-981-10-6704-4_2

[24] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in β-vae,” 2018.

[25] J. Joyce, “Bayes’ theorem,” in The Stanford Encyclopedia of Philosophy,
spring 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford
University, 2019.

[26] G. Wu, H. Zhang, Y. He, X. Bao, L. Li, and X. Hu, “Learning
kullback-leibler divergence-based gaussian model for multivariate time
series classification,” IEEE Access, vol. 7, pp. 139 580–139 591, 2019.
[Online]. Available: https://doi.org/10.1109/access.2019.2943474

[27] K. P. Murphy, Machine learning : a probabilistic perspective., ser.
Adaptive computation and machine learning series. MIT Press,
2012. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
cat07147a&AN=lub.2503144&site=eds-live&scope=site

[28] T. Kohonen, Self-Organizing Maps, Third Edition, ser. Springer
Series in Information Sciences. Springer, 2001. [Online]. Available:
https://doi.org/10.1007/978-3-642-56927-2

[29] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” ATT Labs, vol. 2, 2010. [Online]. Available: http:
//yann.lecun.com/exdb/mnist/

[30] S. Kaski, Data Exploration Using Self-organizing Maps, ser. Acta poly-
technica Scandinavica. Finnish Academy of Technology, 1997. [Online].
Available: https://books.google.se/books?id=_1AEMQAACAAJ

[31] “Self organizing maps.” [Online]. Available: https://miro.medium.com/
max/983/1*QG7afWQKjY3IpezhNQMzBg.png

[32] J. . Fort, M. Cottrell, and P. Letremy, “Stochastic on-line algorithm ver-
sus batch algorithm for quantization and self organizing maps,” in Neural
Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal
Processing Society Workshop (IEEE Cat. No.01TH8584), Sep. 2001, pp.
43–52.

[33] M. Olteanu and N. Vialaneix, “Using SOMbrero for clustering and
visualizing graphs,” Journal de la Societe Française de Statistique,
vol. 156, no. 3, pp. 95–119, Nov. 2015. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01232672

[34] G. Vettigli, “Justglowing/minisom,” GitHub, Jan 2020, [Accessed: 2020-
03-05]. [Online]. Available: https://github.com/JustGlowing/minisom

55

[35] F. E. Grubbs, “Procedures for detecting outlying observations in
samples.” Technometrics, vol. 11, no. 1, p. 1, 1969. [Online]. Avail-
able: http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=bth&AN=5987709&site=eds-live&scope=site

[36] “Looks like it - the hacker factor blog.” [Online]. Available: http://www.
hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html

[37] F. Lundh and A. Clark, “Image module,” [Accessed: 2020-03-18]. [Online].
Available: https://pillow.readthedocs.io/en/3.1.x/reference/Image.html#
PIL.Image.Image

[38] “Johannesbuchner/imagehash.” [Online]. Available: https://github.com/
JohannesBuchner/imagehash/tree/master/imagehash

[39] “Image preprocessing - keras documentation.” [Online]. Available:
https://keras.io/preprocessing/image/

[40] A. Bäuerle and T. Ropinski, “Net2vis: Transforming deep convo-
lutional networks into publication-ready visualizations,” CoRR, vol.
abs/1902.04394, 2019. [Online]. Available: http://arxiv.org/abs/1902.
04394

[41] B. Keng, “Variational autoencoder,” GitHub, [Accessed: 2019-12-05].
[Online]. Available: https://github.com/bjlkeng/sandbox

[42] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain,
H. Larochelle, F. Laviolette, M. Marchand, and V. Lem-
pitsky, “Domain-adversarial training of neural networks.”
2015. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.
1505.07818&site=eds-live&scope=site

[43] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters,
G. Desjardins, and A. Lerchner, “Understanding disentangling in
β-vae.” 2018. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edsarx&AN=edsarx.1804.03599&site=eds-live&scope=site

[44] H. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based
clustering.” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 1, no. 3, p. 231, 2011. [Online]. Available:
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.
aspx?direct=true&db=edo&AN=ejs23541340&site=eds-live&scope=site

[45] J. Wu and s. SpringerLink (Online, Advances in K-means Clustering.
[Elektronisk resurs] A Data Mining Thinking., ser. Springer Theses,
Recognizing Outstanding Ph.D. Research. Springer Berlin Heidelberg,
2012. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
cat07147a&AN=lub.5957597&site=eds-live&scope=site

56

Appendix

Figure 49: The category Erythropoiesis, nucleated RBCs found in some animals
(not mammals) and its cell classes.

57

Figure 50: The WBC category Monopoiesis and its cell classes.

Figure 51: The WBC category Lymphopoiesis and its cell classes.

58

Figure 52: The WBC category Myelopoiesis and its cell classes.

59

Figure 53: Confusion matrix of the accuracy of model A.

60

Figure 54: Confusion matrix of the accuracy of model B.

61

Figure 55: Confusion matrix of the accuracy of model C.

62

Figure 56: Encoder part of the VAE.

63

Figure 57: Decoder part of the VAE.

64

Figure 58: SOM overlay for the SOM with the highest SVOMEN score.

65

Figure 59: The cell images from class 0 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

Figure 60: The cell images from class 1 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

66

Figure 61: The cell images from class 2 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

Figure 62: The cell images from class 3 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

67

Figure 63: The cell images from class 4 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

Figure 64: The cell images from class 5 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

68

Figure 65: The cell images from class 6 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

Figure 66: The cell images from class 7 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

69

Figure 67: The cell images from class 8 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

Figure 68: The cell images from class 9 in the testSOM set are plotted over the
U-matrix. The red numbers are misclassified by the Xception network.

70

Figure 69: The cell images from class 10 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

Figure 70: The cell images from class 11 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

71

Figure 71: The cell images from class 12 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

Figure 72: The cell images from class 13 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

72

Figure 73: The cell images from class 14 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

Figure 74: The cell images from class 15 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

73

Figure 75: The cell images from class 16 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

Figure 76: The cell images from class 17 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

74

Figure 77: The cell images from class 18 in the testSOM set are plotted over
the U-matrix. The red numbers are misclassified by the Xception network.

75

