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Preface

What you are about to read is the report of my master thesis, the final project of

the chemical engineering program at Lund University’s Faculty of Engineering.

In this thesis work I have worked towards automatizing the downstream processing

of proteins for pharmaceutical use by applying an iterative learning controller to the

chromatographic purification step. Two controller configurations were tested, the

first with the resolution between two peaks as the parameter to be controlled, and

the other with an objective function constructed to yield an optimal separation. The

controller was applied to a simulated chromatography process. The construction of

the simulated process and the design of the controllers are detailed in the upcoming

pages.

This thesis project has allowed me to apply much of the knowledge I have acquired

during my specialization in process design within the program. Most notably, pro-

cess simulation and process control were the core of this project. The simulations

were run in Python, and thus I have also gotten to apply programming which I

learned during my exchange semester at Delft University of Technology. I also

learned about bioprocess design in Delft, which is closely related to the production

of pharmaceutical proteins.

I have enjoyed the time I have spent producing this report, and it is my sincere wish

that you enjoy reading it as well.

Best regards,

Daniel Espinoza

March 25th, 2020
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been fantastic in helping me familiarize myself with the laboratory. Anton Löfgren
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Abstract

There is a desire for a fully automated downstream process in pharmaceutical pro-

tein production. One part of the downstreaming process is preparative chromatog-

raphy. A good separation between the product and other proteins, as well as good

productivity, are desired. Due to the batch nature of chromatographic separation,

an iterative learning controller (ILC) could be a suitable choice for achieving these

goals. ILC based on time-varying perturbation models have been successfully ap-

plied to control batch reactors in the past. The purpose of this master thesis was to

test the application of time-varying perturbation model-based ILC for automation

of preparative chromatography.

The application of an ILC was performed using simulations of an ion-exchange chro-

matographic purification process. Since protein purification by chromatography is

commonly performed with gradient elution, the slope of the gradient was chosen as

the input parameter for the controller. The slope was controlled via the gradient

time, i.e. the time it takes for the elution buffer to go from its initial to its final

concentration. First, the resolution between two peaks was used as the output pa-

rameter of the controller. The controller was able to successfully reach the desired

resolution, however using only the gradient time resulted in a non-linear process

trajectory, which resulted in difficulties in process control. Secondly, an objective

function was constructed using the resolution and the productivity of the process.

The objective function had a local extrema, which was considered the process opti-

mum and thus the derivative of the objective function was used as output parameter.

This configuration showed promise, although the estimation of the derivative during

live runs was a limiting factor.

ILC shows promise for use in preparative chromatography. Multiple-input-multiple-

output configurations should be considered for future applications, as such configu-

rations could circumvent the problems caused by the non-linear process trajectory.

Alternatively, a different objective function could possibly be applied. A natural

next step is to apply the ILC to a real process, thus coming closer to full automa-

tion of preparative chromatography.
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Sammanfattning

Det fins en önskan om fullständigt automatiserade nedströmsprocesser i framställan-

det av proteiner för läkemedelsbruk. En del av nedströmsprocessen är preparativ

kromatografi. En god separation mellan produkt och andra proteiner, samt god pro-

duktivitet, är av intresse. P̊a grund att kromatografisk separation ofta körs satsvis s̊a

skulle en iterative learning controller (ILC) vara ett bra val för att åstadkomma dessa

mål. ILC baserad p̊a tidsvarierande perturbationsmodeller har tidigare tillämpats

för att reglera satsvisa reaktorer med goda resultat. Syftet med detta projekt var att

testa tillämpningen av en s̊adan ILC för att automatisera preparativ kromatografi.

Tillämpningen av en ILC utfördes genom simuleringar av en kromatografisk ren-

ingsprocess i en jonbytarkolonn. Eftersom proteinupprening med kromatografi ofta

utförs med gradienteluering s̊a valdes lutningen av gradienten som in-parameter för

styrning. Lutningen kontrollerades via gradienttiden, dvs tiden det tar för eluer-

ingsbufferten att g̊a fr̊an sin start- till slutkoncentration. Först användes upplösnin-

gen mellan tv̊a toppar i kromatogrammet som ut-parameter. Regulatorn lyckades

n̊a den önskade upplösningen, men att enbart använda gradientlutningen som in-

parameter visade sig leda till en icke-linjär processbana, vilket ledde till sv̊arigheter i

regleringen. Därefter konstruerades en målfunktion med hjälp av upplösningen och

processens produktivitet. Målfunktionen hade en lokal extrempunkt som ans̊ags

vara processoptimat och därav valdes m̊alfunktionens derivata som ut-parameter.

Denna konfiguration var lovande, men begränsades av derivataberäkningen under

körningens g̊ang.

ILC uppvisar potential för användning i preparativ kromatografi. Konfigurationer

med flera in- och ut-parametrar bör övervägas för framtida tillämpning, d̊a s̊adana

konfigurationer skulle kunna kringg̊a problemen som orsakades av den icke-linjära

processbanan. Alternativt s̊a kan en annan objektivfunktion konstrueras. Ett

naturligt nästa steg är att tillämpa ILC p̊a en verklig process, och s̊aledes komma

närmare fullständig automatisering av preparativ kromatografi.
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Popular science summary

Proteins are molecules that can possess many different qualities, some of which are

beneficial to humans. An example of such a protein is insulin, which is used to

treat diabetes. Proteins for use in pharmaceuticals are produced in living organ-

isms along with other, less beneficial or even harmful proteins, and thus need to be

properly purified before use. One part of the purification process is called prepar-

ative chromatography. Ion-exchange chromatography is commonly used for protein

purification, and involves the use of a column to which the different proteins stick,

while other molecules flow through. Salt is then flushed through the column to

remove the stuck proteins. The strength with which the proteins stick to the col-

umn varies from protein to protein, so higher concentrations of salt are needed for

proteins that are more strongly stuck. Thus, it is possible to separate one protein

from the other by gradually increasing the salt concentration while the column is

being flushed. Choosing how this salt concentration should increase requires many

experiments and work hours.

In this master thesis, a method for making the separation of proteins as good as

possible automatically is tested. The method used is called iterative learning control

(ILC), which means that information from previous chromatography runs is used to

predict how the salt concentration needs to change to give the desired separation.

Several simulations of a chromatography process were run to develop the controller.

In the end, the ILC was able to control the processes and thus shows promise for the

automation of preparative chromatography processes, although more work needs to

be performed before it can function optimally. In the future, an ILC for preparative

chromatography could be combined with the other purification steps to create a

fully automated protein purification process.
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Populärvetenskaplig sammanfattning

Proteiner är molekyler som kan ha många olika egenskaper, varav vissa är förmånliga

för människor. Ett exempel p̊a ett s̊adant protein är insulin, som används för att be-

handla diabetes. Proteiner för läkemedelsbruk produceras ofta i levande organismer

tillsammans med andra, mindre gynnsamma eller till och med skadliga proteiner,

och behöver s̊aledes renas ordentligt före användning. En del av reningsprocessen

kallas för preparativ kromatografi. Jonbytarkromatografi är vanligt för upprening

av proteiner, och involverar användandet av en kolonn som de olika proteinerna fast-

nar p̊a, medan andra molekyler flödar igenom. Salt spolas sedan genom kolonnen

för att ta bort proteinerna som fastnat. Proteiner binder olika h̊art till kolonnen,

vilket innebär att högre koncentrationer av salt krävs för proteinerna som sitter fast

h̊ardare. Därför g̊ar det att separera ett protein fr̊an ett annat genom att gradvis

öka koncentrationen salt medan kolonnen spolas. Att välja hur denna ökning av

koncentration ska g̊a till kräver många experiment och arbetstimmar.

I detta examensarbete har en metod för att göra separation av proteiner s̊a bra som

möjligt automatiskt testats. Metoden som använts kallas för reglering med itera-

tiv inlärning (iterative learning controller, eller ILC), som innebär att information

fr̊an tidigare kromatografikörningar används för att förutsäga hur saltkoncentratio-

nen behöver ändras för att ge den önskade separationen. Flera simuleringar av en

kromatografiprocess kördes för att utveckla regulatorn. I slutändan s̊a var ILC:n ka-

pabel till att reglera processerna och s̊aledes visar metoden potential för automatis-

ering av preparativ kromatografi, men mer arbete behöver utföras innan det fungerar

optimalt. I framtiden kan ILC för preparativ kromatografi kombineras med andra

reningssteg för att skapa en fullständigt automatisk proteinuppreningsprocess.
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1 Introduction

Automatically finding and applying settings for optimal separation and productiv-

ity in downstream processing of biopharmaceutical proteins is a prospect of great

interest. A method to achieve this could reduce the time spent experimentally de-

riving these settings for every new protein mixture, for example in separation by

chromatography. In the long term, this could become another step in the creation

of fully automated bioprocess downstreaming.

The research group at the Department of Chemical Engineering at Lund University

led by Bernt Nilsson is devoted to development and optimization of downstream

processing systems for production of biopharmaceuticals, with full automation as

the end goal. One part of the automation process is the derivation and applica-

tion of settings for optimal chromatographic purificaiton. Two parameters are of

particular interest. Firstly, good separation between product and other compounds

in the process stream is desired. Secondly, a short process is desired to maximize

productivity. In addition, automatic adjustments to disturbances that may occur

in the process are also desired. One proposed method to achieve these three condi-

tions is the use of an iterative learning controller, which is a method of controlling

parameters of interest to keep a desired value in processes that repeat over time,

such as batch processes.

The purpose of this thesis is to evaluate the use of iterative learning in controlling

preparative chromatography processes, as well as its use in finding optimal separa-

tion parameters.
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Background

2 Background

2.1 Chromatography

Chromatography is a separation technique that is based on a fluid mobile phase

flowing through a stationary phase. The former is a mixture of molecules of interest,

whereas the latter is a material to which the molecules in the mobile phase (Schulte

& Epping, 2005) adsorb. The components in the mobile phase are separated based

on their interactions with the stationary phase (Jandera & Henze, 2011).

Ion-exchange chromatography is commonly used for separation of proteins, the

mechanisms for which are illustrated by Figure 2.1. The stationary phase in an

ion-exchange chromatography column consists of a packing material with high sur-

face area, on which positively or negatively charged groups are immobilized. Ions

in the mobile phase with the opposite charge are in equilibrium with these charged

sites. Once the column is loaded with proteins, the proteins switch places with these

counter-ions and bind to the sites via charged groups on the protein surface. The
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Figure 2.1: Illustration of ion-exchange chromatography, where at first counter-ions
are adsorbed to the charged sites in the column packing. Proteins are then loaded,
and eluted with salt solution before the column is equilibrated and may be loaded
with protein once more (Roos, 2000).
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Chromatography

adsorbed proteins are then eluted by increasing the concentration of ions in the mo-

bile phase, for example by injecting a solution of salt such as NaCl (Roos, 2000). To

facilitate the separation in cases where there is a difference in adsorption strength

between components in the mobile phase, linear gradient elution may be applied.

This is done by gradually increasing the elution strength during the elution process.

This may improve the separation of the proteins compared to having a constant

gradient strength during the elution (Schulte, Wekenborg, & Wewers, 2005).

The quality of a chromatographic separation can be quantified in several ways. One

way is by looking at the retention time of the process. A short retention time is

beneficial in batch chromatography, since it allows for a larger number of batches

to be run in a fixed amount of time than a longer retention time does. However, a

short retention time is only useful if there is good resolution between the peaks in

the chromatogram. Defined according to Equation 2.1 and demonstrated in Figure

2.2, the resolution of two peaks is a function of the base width of the peaks (wb), as

well as of the retention time (tr) of the top of each peak, and is a measure of how

well the peaks are separated (Schulte & Epping, 2005).

res = 2
tr2 − tr1
wb1 + wb2

(2.1)

tr,1 tr,2

w1 w2
Time

C
on
ce
n
tr
at
io
n

Figure 2.2: Illustration of the calculation of the resolution between two peaks in a
chromatogram. The retention time tr is defined as the time at which the top of a
peak is eluted. The width w of a peak is the width of the baseline of a peak (Schulte
& Epping, 2005).
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2.2 Iterative Learning Control

Bajpai (2018) describes process control as a means to maintain a desired process pa-

rameter at a desired value. For example, maintaining a certain indoor temperature

by stoking the flames in a fireplace can be considered a type of manual process con-

trol. If, instead, one uses electrical heating and a thermostat to maintain an indoor

temperature, it could be considered a form of automatic process control. For control

to be possible in this latter example, the process needs a thermometer (a sensor), a

thermostat (the controller) and a heater (an actuator). The thermostat calculates

the difference between the current and the desired temperature (also known as the

error). It then sends instructions to the heater to either turn on or off depending on

what direction the temperature needs to be changed in to achieve the desired value.

Iterative learning control (ILC) is a method used to improve performance in pro-

cesses that repeat over time. The main idea is to use existing operation data to

obtain a control input that gives a desirable process output. This style of control is

commonly applied to robotic production processes or chemical batch reactors (Ahn,

Chen, & Moore, 2007). Figure 2.3 illustrates the general structure of an ILC. A

batch system is subject to an input uk at batch number k, which results in a system

output yk. Both the input and output are added to a memory, where inputs and

their corresponding outputs from previous runs are stored. This memory is then

used by the iterative learning controller, together with the desired output value yd,

to compute the next batch input uk+1. This new input is fed to the system, and the

process repeats (Ahn et al., 2007).

uk+1 yd

ykuk

ILC

Memory

System

Figure 2.3: General ILC structure (Ahn, Chen, & Moore, 2007).
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Batchwise Perturbation Model-Based ILC

2.3 Batchwise Perturbation Model-Based ILC

Xiong and Zhang (2003) describe the application of an optimal iterative learning

control algorithm based on time-varying perturbation models. The algorithm acts

as the ILC-block in the schematic shown in Figure 2.3. Xiong and Zhang (2003)

successfully applied this ILC algorithm to a simulated chemical batch reactor, using

the algorithm to maximize the concentration of a reaction product by controlling

the reactor temperature. The study was based on a batch process with fixed run-

length and a certain number of sampling intervals, N . The goal of the algorithm

was to steer a process variable towards following a given trajectory, meaning that

at each sampling time during the process, the process variable had a set point that

the ILC would steer towards. As an example, in a process with a run-length of 20

minutes and with N = 10 sampling intervals, the ILC was given 10 set points and

would control the system inputs so that the set point was reached at each sampling

interval.

The sampling is the equivalent to gathering data on the input and output parameters

at each sampling point and add them to the ILC history. If the process had I input

variables and O output variables, then at each sampling point I values would be

added to the input history and O values would be added to the output history.

Together, these points of input and output values, u and y, form the trajectory of

the process. At batch k, if I = O = 1, these trajectories can be represented as the

vectors defined by Equations 2.2 and 2.3.

Uk = [uTk (1), uTk (2), ..., uTk (N − 1), uTk (N)]T (2.2)

Yk = [yTk (1), yTk (2), ..., yTk (N − 1), yTk (N)]T (2.3)

The desired process output trajectory would then be defined as Equation 2.4.

Yd = [yTd (1), yTd (2), ..., yTd (N − 1), yTd (N)]T (2.4)

5
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Xiong and Zhang (2003) then represent the causal relation between Yk and Uk with

a system of static, non-linear functions F (·) as Equation 2.5,

Yk = F (Uk) + vk (2.5)

where vk is a vector of measurement noise. By then linearizing the system around

a nominal trajectory Ys and Us, i.e. a supposed trajectory that the system would

follow in theory, the model described by Equation 2.6 is obtained,

Y k = GsU k + dk (2.6)

where Yk and Uk are the perturbation variables of the process and are defined

according to Equation 2.7.

Y k = Yk − Ys U k = Uk −Us (2.7)

dk in Equation 2.6 represents a combination of measurement noise and the model

errors that follow the linearization. Gs then represents the linear time-varying model

operator, which transforms the input variables into the process output. Xiong and

Zhang (2003) eventually reach the ILC law in Equation 2.8.

Uk+1 = K̂kek + Uk (2.8)

6



Batchwise Perturbation Model-Based ILC

Here, ek denotes the difference between the desired process output, Yd, and the

actual output Yk, at batch k. This is the tracking error of the process. K̂k is the

learning rate of the controller and is derived as described in Equation 2.9.

K̂k = [ĜT
sQĜs + R]−1ĜT

sQ (2.9)

Q and R are positive-definite matrices that act as weighting of the error and the

input change, respectively. They stem from the derivation of the ILC law, in which

the quadratic objective function in Equation 2.10 is applied.

Jk+1 = min
∆Ūk+1

1

2
[ẽTk+1Qẽk+1 + ∆ŪT

k+1R∆Ūk+1] (2.10)

ẽ denotes the modified prediction error of the perturbation model. Thus, Q penalizes

large errors ẽ by increasing the control action, whereas R has a dampening effect by

penalizing large changes in the control action ∆Uk+1. Ĝs describes the prediction

of the linear time-varying model. In the model constructed by Xiong and Zhang

(2003), this prediction was updated at every batch according to Equation 2.11.

Ĝs = Ĝk = [ĝTk,1, ĝ
T
k,2, . . . , ĝ

T
k,N ] (2.11)

ĝk at time i is defined as Equation 2.12.

ĝk,i = (H iT
k H i

k)
−1H iT

k Zi
k (2.12)

Hk and Zk are the previous batch history matrices described by Equation 2.13.

7
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Zi
k =



βL+k−1y0
1(i)

...

βky0
L(i)

βk−1y1(i)

...

β1yk−1(i)

0



H i
k =



βL+k−1h
0

1(i)

...

βkh
0

L(i)

βk−1h1(i)

...

β1hk−1(i)

0



(2.13)

The superscript 0 denotes the L number of batches in the history, i.e. before the

current k batches were run. β is a forgetting factor with the purpose of diminishing

the weight of older batches in the estimation of K̂k. h and y are historical input

and output values, respectively, that have been modified by subtracting the values

of the input and output at batch k.
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3 Materials and Methods

The application of a learning controller was done on a simulated ion-exchange chro-

matography column separating two proteins in an ion-exchange chromatography

column. Once a working model was established, two different ILC configurations

were applied: one simple controller where one parameter was chosen to be controlled

with a desired set point, and one controller where an objective function was con-

structed and its optimum was chosen as control parameter. The methods and tools

used to perform this application are detailed in the following sections.

3.1 Model and Simulation

Three mass transport phenomena were taken into consideration when modelling the

behavior of the column: axial dispersion, convection, and adsorption to the column

packing. The change in concentration c of component i at time t in the mobile phase

is described by the partial differential Equation 3.1 (Arkell, 2017):

∂ci
∂t

= − F

Aε

∂ci
∂z

+Dapp
∂2ci
∂z2

− (1 − εc)

ε

∂qi
∂t

(3.1)

The parameter Dapp describes the apparent axial dispersion in the column (Arkell,

2017). Column dimensions such as bed height, inner diameter and bed volume are

displayed in table 3.1 (“HiTrap Capto S cation exchange chromatography column”,

2020), as are the experimentally derived total porosity ε, void fraction εc and ap-

parent dispersion coefficient Dapp (Al-Kaisy, 2015).

Al-Kaisy (2015) performed model calibration on a HiTrap® Capto™ S ion-exchange

column from GE Healthcare using a ternary mixture of proteins (lysozyme, cy-

tochrome C and ribonuclease A). Four different models for adsorption were tested.

Out of those four models, the Langmuir model with mobile phase modulators

(MPM), where proteins compete for available adsorption space in the column,

9



Materials and Methods

Table 3.1: Void fractions, apparent dispersion coefficient (Al-Kaisy, 2015) and di-
mensional parameters of a HiTrap® Capto™ S ion-exchange column (“HiTrap Capto
S cation exchange chromatography column”, 2020).

εc 0.3123 -

ε 0.8468 -

Dapp 4.6026 · 10−8 m2 s-1

Bed height 25 mm

Inner diameter 7 mm

Bed volume 1 ml

worked particularly well for low protein loads. The Langmuir MPM model that

describes the concentration q of adsorbed component i at time t is shown in Equa-

tion 3.2 (Jakobsson, 2006):

∂qi
∂t

= kkin,i

(
Bicic

−βi
s

(
1 −

N∑
j=1

qj
qmax,j

)
− qi

)
(3.2)

The adsorbed concentration qi is dependent on the concentration of the same compo-

nent, ci, as well as the concentration of salt, cs, in the mobile phase. The parameter

βi describes the ion-exchange characteristics of the compound (Jakobsson, 2006).

The qmax,j parameter describes the maximum concentration of adsorbed compound

j. Finally, Bi and kkin,i describe various properties such as adsorption-desorption

kinetics, lumped together to simplify model calibration (Al-Kaisy, 2015).

To reduce the complexity of the problem, the simulated experiments were performed

on a binary separation. Lysozyme and cytochrome C were chosen as proteins, using

NaH2PO4 as buffer and NaCl as salt for elution. The simulation was based on

separation in a HiTrap® Capto™ S chromatography column. Equation 3.1 was set

up for three compounds: each of the proteins, as well as salt. NaCl and NaH2PO4

were regarded as the same salt and were lumped into the same equation in this

application. The parameters used for the adsorption kinetics in the Langmuir MPM

model are presented in table 3.2 (Al-Kaisy, 2015).
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Table 3.2: Adsorption kinetic parameters for lysozyme and cytochrome C in the
Langmuir MPM model (Al-Kaisy, 2015).

Lysozyme Cytochrome C

β 6.1698 5.8758 -

kkin 2.3286 · 10−2 5.36785 · 10−2 s-1

B 9.50824 · 1016 6.48485 · 1015 -

qmax 8.3875 11.1946 mol m-3

The partial derivatives in Equation 3.1 were discretized along the axial (z) dimension

to reduce the problem into a system of ordinary differential equations (ODEs) by

means of the method of lines (Davis, 1984). The column was discretized to 100

points. The finite volume method was used to approximate the derivatives in the

differential equations, using two-point backward and three-point central differences

for first- and second-order derivatives, respectively (LeVeque, 2002).

The simulations were performed using Python’s SciPy library and its numerical

methods for solving of initial value problems. The system of differential equations

was solved using a backward differentiation formula (BDF) implemented via SciPy’s

solve ivp function.

3.2 Chromatography Process

A simulation of a basic batch chromatography process was set up to study the

separation of the two proteins. The controller was to be applied to this system. The

process consisted of five phases: load, wash, elution, regeneration and equilibration.

During the loading phase, the chromatography column is loaded with 1 column

volumes (CV) of the protein sample, a mix of 1 g/l each of lysozyme and cytochrome

C in a solution of 20 mM NaH2PO4 (henceforth referred to as Buffer A). The loading

phase is followed by a washing phase, during which the system is flushed with pure

Buffer A for 5 CV with the purpose of washing out any non-adsorbed protein in

the column. During the elution phase, a linear gradient is applied by pumping a

mixture of Buffer A and a 750 mM solution of NaCl (henceforth referred to as Buffer

11
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B) through the column, successively increasing the amount of Buffer B in relation

to Buffer A. Three parameters are of importance in this phase: the initial fraction

of Buffer B (xB,i), the final fraction of Buffer B (xB,f ), and the elution time (or

gradient time, tgrad). For example, if the initial fraction of Buffer B is set to 0, the

final fraction to 1 and the elution time is set to 20 minutes, then the elution will

begin by pumping pure Buffer A through the system. The flow of Buffer B will

increase linearly with a slope such that the fraction of Buffer B reaches 1 after 20

minutes. Together, these three parameters determine the slope of the linear gradient

which in turn controls the retention time and resolution of the peaks.

The elution phase is followed by a regeneration phase, during which the column is

flushed with pure Buffer B for 5 CV. This elutes any protein that remains adsorbed

on the column.

Finally, the column is flushed with pure Buffer A during the equilibration phase.

This returns the column to a state where a new protein sample injection can be

performed and allows the process to be repeated.

3.3 Controller Design

Two controller configurations were designed for ILC implementation. Both configu-

rations were applied to the simulated chromatography process in a Python program.

The main difference between these was the choice of output parameter, denoted as

y, which is the parameter to be controlled. This parameter was different for the

two configurations. However the general structure of the controllers was the same:

the controllers took a set point value, yd, and controlled the process by adjusting

an input parameter, u, to steer y towards yd by applying the control algorithm to

minimize the error, e. The input parameter chosen for both configurations was the

gradient time, tgrad. Indirectly, the gradient time controls the slope of the gradient

by setting the time required for the buffer composition to go from xB,i to xB,f , if

these are set to fixed values.

The ILC algorithm needed some existing operating points to run, a memory of past

inputs and their respective outputs. For both configurations, the same four initial
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points were given to the algorithm. Additionally, both y and u were scaled by some

factor with the intention of keeping them in the same order of magnitude. The

selection of the initial points in the memory and the scaling factors is detailed in

section 3.5. Once applied, the ILC algorithm would use the initial memory points

to suggest a new input value to apply to the next batch.

In Configuration 1 , the chromatography peak resolution, res, was chosen as

output parameter. To find an achievable resolution to use as set point, a series

of simulations of the chromatography process were run. Each simulation was run

with a different input value, ranging from the lowest possible to as high a value

as was acceptable. The lower bound of this interval was set to a tgrad as short as

possible while still resulting in two separate peaks. The upper bound, on the other

hand, was set to 500 minutes. This gradient time was chosen as a safeguard against

unreasonably long gradient times. While a gradient time of this length would be

still impractical due to the long batch cycle times it would result in, it was deemed

acceptable in the evaluation of a controller. Once the simulations were run, the

resulting data was plotted. From this data, the achievable span of resolution in

the gradient time interval was identified and a suitable set point was chosen. The

structure of Configuration 1 is demonstrated in Figure 3.1.

System
res

ILC

Memory

resdtgrad,k+1

tgrad,k

Figure 3.1: The overall structure of Configuration 1.

Configuration 2 was constructed using an objective function. The resolution

and the productivity of the process were used to construct a function with a local

extreme value that could be used as set point. The assumption was made that the

productivity is more or less equal to the inverse of the retention time of the second

peak in the chromatogram, according to Equation 3.3. This way, the productivity
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decreased as the retention time increased, which was deemed reasonable as a longer

retention time results in a longer process cycle time. An offset time t0 was added to

the denominator to avoid division by zero. This offset time was set to 5 minutes.

Prod ≈ 1

tr2 + t0
(3.3)

Assuming that the resolution of two peaks increased with a lower gradient slope, the

definition of productivity in Equation 3.3 combined with the resolution would result

in a function, shown in Equation 3.4, that had a local extreme value with regards

to gradient time.

Obj = res · Prod ≈ res · (
1

tr2 + t0
) (3.4)

The main motivation of using an objective function such as Equation 3.4 was that

the extreme point of the function could serve as a compromise between a good

separation and a high productivity. The extreme point of the objective function

could be found by studying its derivative: the derivative is 0 at the extreme point.

This was also deemed advantageous, as compared to Configuration 1, one would

not need to know what resolution was possible in order to find a suitable set point

value. The set point value could simply be set to 0, and the controller would steer

the process towards that value. The idea was that an optimal separation could be

found automatically by applying this configuration.

Furthermore, a weighting of resolution versus productivity was introduced via ex-

ponents on the resolution and productivity as presented in Equation 3.5. The idea

behind this was that the exponents n and m could be set to values < 1 to decrease

or values > 1 to increase the weight of each parameter.

Obj = resn · Prodm ≈ resn · (
1

tr2 + t0
)m (3.5)

Several series of simulations were performed in a similar fashion to what was done
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for Configuration 1, the difference being that instead of finding the resolution, the

objective function value was calculated for each gradient time. Each series had a

different exponent n, while the exponent m was kept at a constant value of 1 in

order to reduce the number of combinations tested. The values tested were 3
2
, 4

3
, 1,

1
2

and 1
3
.

Since the derivative of the objective function was chosen as set point, it needed to be

calculated in some way. The decision was made to use a two-point linear derivative.

The derivative of the objective at batch k being calculated using the point closest

to it, denoted with the index c, along the u-axis according to Equation 3.6.

dObjk
du

=
Objk −Objc
uk − uc

(3.6)

There was a risk of numerical errors as the distance between uk and uc approached

0. To avoid this, all points within a distance δ along the u-axis surrounding the

point uk were removed. This also served the purpose of introducing an intentional

error as the controller steered the derivative dObjk
du

towards the set point, which could

avoid oscillatory behaviour. This is illustrated in Figure 3.2. The value of δ was set

to 1 · 10−2.

uk

δ δ

u

Obj

Figure 3.2: An illustration of the removal of points surrounding the current point
k. All points within a distance δ from the current point in the u-axis direction are
removed to avoid numerical problems when calculating the derivative of the objective
function.
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The controller was constructed using two memories. Gradient times and objective

function values were stored in Memory 1, which was used to calculate the derivative

of the objective function at batch k. The derivative calculated using Memory 1 was

then stored in Memory 2, along with the gradient time. Memory 2 was then used

by the ILC algorithm to compute the gradient time for the next batch, k + 1. The

overall structure of Configuration 2 is illustrated in Figure 3.3.

System

ILC
tgrad,k+1

tgrad,k res, tret

Memory 1

Objective function

Obj

Derivative

dObjd
du

Memory 2

dObj
du

Figure 3.3: The overall structure of Configuration 2

3.4 Adapted ILC Algorithm

The ILC algorithm used by Xiong and Zhang (2003) was modified to function on a

single-input-single-output (SISO) system with only one sample point, being the end

of a batch run. This reduced the ILC law to Equation 3.7

Uk+1 = K̂kek + Uk (3.7)

where K̂k is calculated by modifying the definition of the learning rate in Equation

2.9, changing the amplifying and damping matrices Q and R to scalar values q and

r since there was only one sample point. The modified learning rate is described by

Equation 3.8.

K̂k =
Gsq

G2
sq + r

(3.8)
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The prediction of the linear time-varying model at batch k also became a scalar

value and could be calculated according to Equation 3.9

Gs = Gk =
HT ·Z
HT ·H

(3.9)

Finally, the memory matrices Z and H were reduced to the vectors described by

Equation 3.10

Zk =



βL+k−1y0
1

...

βky0
L

βk−1y1

...

β1yk−1

0



Hk =



βL+k−1u0
1

...

βku0
L

βk−1u1

...

β1uk−1

0



(3.10)

where every element y and u in position i in the vectors was defined as described

by Equation 3.11

y = yi − yk u = ui − uk (3.11)

The forgetting factor β was set to 0.98. At every new batch k that was run, the

input and the corresponding output were appended to the vectors Hk and Zk, and

the new learning rate Kk was computed. The error was calculated and the corrected

input for the upcoming batch was calculated using Equation 3.7. The current batch
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number was updated to k = k+1 and the cycle was repeated for the desired number

of batches.

3.5 Experimental Design

The experiments performed could be divided into two parts, the first of which took

place before applying the controller algorithm. These experiments were to identify

the behavior the resolution and the objective as functions of gradient time with fixed

xB,i and xB,f . First, a few manual simulations were run with different combinations

of xB,i and xB,f values, starting with 0 and 1, respectively. The gradient time

was fixed at 100 minutes. The aim of these simulations was to find values that

resulted in a short residence time and separation of peaks to set up for the following

experiments.

Following this, more manual simulations were run with different gradient times until

the lowest gradient time that still resulted in two distinct peaks was found. Then,

as previously detailed, simulations of the chromatography process were run with

gradient times between this value and 500 minutes. The resolution was calculated

by using the data points generated by the solve ivp function to find the top of

the peaks and their widths. The tops of the peaks were found using the first and

second derivatives of the chromatogram. A point was deemed a peak when the

chromatogram’s derivative at that point was zero, while the second derivative was

negative. The base width of a peak was determined by finding the point between the

beginning (the point where the concentration of compound rose above zero) of the

peak and the top of the peak where the derivative was the highest, and extrapolating

a straight line with that derivative as its slope. The point where the straight line

crossed the baseline of the chromatogram was determined to be the beginning of the

chromatogram. The same operation was done to find the end of the chromatogram,

using instead the lowest value of the derivative between the top of the peak and its

end. The advantage of this method was that a resolution could be calculated even

when the peaks were not well resolved, as shown in Figure 3.4.
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Figure 3.4: A chromatogram with poor resolution between two peaks, and the
straight lines used to calculate the peak widths. The dotted lines show the calculation
of the first peak’s width, while the dashed lines show that of the second peak.

It is apparent from Figure 3.4 that this method is not always reliable: when the

resolution is very poor, the width of the lower peak could be computed to be larger

than it actually is and thus result in low resolutions being evaluated to even lower

values. However, for the purposes of this project, this issue was considered accept-

able. Suggestions on other methods for calculation of the resolution are detailed in

Section 5.1.

In conjunction with this, the behavior of the objective function was mapped through

several simulations with different exponents on the resolution in the objective func-

tion defined in Equation 3.5. The results from these simulations were plotted to

show a u− y-graph, that is, a graph showing the output signal’s dependence on the

input signal. From these graphs, the initial memory points for the upcoming studies

were chosen.

A scaling of both the input and output values was performed. The gradient time

was scaled using a reference gradient time, tret,ref , which was chosen to 200 minutes.

The scaling value of Configurations 1 and 2 were set to the maximum value found

in the four initial points of their respective memory.

Following the completion of these primary studies, the actual ILC application was

performed. First, a basic application was run with arbitrarily chosen parameters.

Then, different parameters were tested based on the behavior of the controller. The

parameters to be studied were the damping action of the controller, r, and the
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amplifying action, q. A simulation of 30 batches with a set pair of q and r values

was run, and the found operating points were plotted in graphs showing the y values

for each batch in relation to the set point, yd. If the controller was found to be ”too

cautious”, i.e. it took steps too small to come close to the set point, the damping

was decreased. If the controller was ”too aggressive” and displayed an overshoot of

the set point, the damping was increased. Generally, only the value of r was changed

while q was kept at a constant value of 1.

To evaluate the choice of parameters for a controller in a real application, two

conditions are of particular interest: the number of batches it takes for the controller

to reach yd, and the stability of the controller once yd is reached. Stability here is

defined as the ability of the controller to maintain a steady output when the error,

e, becomes so small that it is essentially only caused by noise in the data. The

number of batches to reach yd is of interest as having fewer batches results in a

more efficient use of resources in a practical application, since each run consumes

buffers and protein solution. Stability, on the other hand, is interesting as it applies

a constraint on the aggressiveness of the controller: having a very low value of r

in relation to q could result in a controller that amplifies the control action in an

exaggerated manner due to noise in the data. However, as the 30-batch tests were

performed by simulation and thus there was no measurement noise to speak of, only

the number of batches to reach yd was evaluated.
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4 Result and Discussion

4.1 Primary study

Manual simulations led to the values xB,i = 0.4 and xB,f = 0.9 being found as a good

span for short retention times and high resolutions when the gradient time was fixed

to 100 minutes. Figure 4.1 displays the chromatogram resulting from these settings

compared to a run based on the same gradient time, but with xB,i = 0 and xB,f =

1.
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Figure 4.1: Chromatography simulation results with a gradient time of 100 minutes.
The dashed line represents the salt buffer concentration. A fraction of Buffer B going
from 0 to 1 resulted in a resolution of 0.39 and a retention time of around 68 minutes
(4.1a). A fraction going from 0.4 to 0.9 resulted in a resolution of 0.57 and a retention
time of around 38 minutes (4.1b)

As seen in Figure 4.1b, the values xB,i = 0.4 and xB,f = 0.9 resulted in a resolution

of 0.57 and a retention time of 38 minutes, which out-performed the base case which

yielded res = 0.39 and tr = 68 minutes. Thus, xB,i = 0.4 and xB,f = 0.9 were chosen

as a foundation for all future experiments with variable gradient time.

The shortest viable gradient time found from manual simulations was determined to

be 60 minutes, with a resulting resolution of 0.29. The resolution from a run with a

tgrad of 500 minutes was found to be 0.87. The chromatograms from these runs are

presented in Figure 4.2.
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Figure 4.2: Chromatography simulation results for tgrad = 60 min (4.2a) and tgrad
= 500 min (4.2b). The resolutions were found to be 0.29 and 0.87, respectively.

Figure 4.2b highlights a problem with using only the gradient time to control the

gradient slope: it has the demerit of causing long gradient times where the proteins

have already eluted after only a small portion of the gradient time has passed. Such

a problem could be avoided if either the final or initial fractions of Buffer B were used

to control the process along with the gradient time, in a multiple-input configuration.

Alternatively, the controller could be programmed to begin the regeneration phase

once all components have been eluted.

The behavior of the resolution as a function of the gradient time in the interval

60 ≤ tgrad ≤ 500 is displayed in Figure 4.3. The processes were run with gradients

ranging between xB,i = 0.4 and xB,f = 0.9.

It is apparent from Figure 4.3 that, when only the gradient time is used to control

the process, the resolution experiences great diminishing returns as tgrad increases,

or even approaches a value asymptotically. A consequence of this is that the chosen

system - the separation of cytochrome C and lysozyme in a HiTrap® Capto™ S

ion-exchange column - is fairly difficult to control using the gradient time, especially

if a higher resolution is desired. If a resolution of, for example, 1.5 was desired, it

is likely that a controller would increase the gradient time towards infinity if that

resolution is impossible to reach.

The set point value for the Configuration 1 experiments was set to 0.7, so that the

resolution was achievable while still being in a range where a relatively small change

22



Primary study

100 200 300 400 500
Gradient time [min]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
so

lu
tio

n 
[-]

Figure 4.3: Resolution as a function of gradient time for gradient times 60 ≤ tgrad ≤
500, running between xB,i = 0.4 and xB,f = 0.9.

in gradient time yielded a significant change in resolution. The initial tgrad values in

the memory chosen for the Configuration 1 and 2 simulations were 70, 80, 110 and

150.

Similarly, the objective as a function of gradient time for different exponents n on

the resolution is presented in Figure 4.4.

Two decisions were made based on these results: firstly, the exponent of res was set

to 1
2
. This was to ensure precision when calculating the derivative dObj

du
, since the

objective function was ”sharper” around its maximum value when n = 1
2

than when

it was higher. However, since the optimum was also displaced when an exponent

was used, the problem of poor precision remained if a higher weight of the resolution

was desired. The constructed objective function and its behavior, for example when

manipulating the exponent m on the productivity instead, could be investigated

further. A different objective function could also possibly be constructed.

Secondly, the initial memory points for Configuration 2 were set. The values chosen

for tgrad were 70, 80, 110 and 150, identical to those of Configuration 1. This would

result in four values of Obj, and in turn three values of dObj
du

. The reasoning was that

the optimum, and thus the set point, was situated in the middle of this interval.
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Figure 4.4: Objective function as a function of gradient time for 60 ≤ tgrad ≤ 500.
Different exponents n were applied to the resolution. The cross-marked points indicate
the location of the local extrema, that is, the points where the derivative dObj

du = 0.

Another reason was that for Configuration 2 in particular, a good spread of the

points was important since the calculation of the derivative was quite simple. As a

consequence, the calculation of the derivative was heavily reliant on the points being

spread out well enough so that two adjacent points were not far from each other

along the u-axis but close to each other along the y-axis. If such a scenario occurred,

there was a risk that a derivative of 0 could be found without the controller being

anywhere near the optimum.

The constructed objective function may be too complex for straight-forward appli-

cation in an ILC. The different optima shown in Figure 4.4 imply that the optimum

shifts according to some logarithmic function when the exponent n is changed. This

complicates the decision of how a parameter in the objective function should be

weighted.
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4.2 Configuration 1

Figure 4.5 shows the controller output from the 30-batch simulations on Configura-

tion 1 for four different values of the damping r.
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Figure 4.5: Process control output graphs for Configuration 1, where the amplifying
parameter q is fixed to 1, and the damping parameter r is set to 1 (4.5a), 1·10−1 (4.5b),
1 ·10−2 (4.5c) and 1 ·10−3 (4.5d). The circle markers represent the four initial memory
data points, whereas the star-shaped markers show the operating points chosen by the
controller. The dashed line marks the set point value of 0.7.

As Figure 4.5 shows, decreasing the damping in relation to the amplification q

increases the ”aggressiveness” of the controller, allowing it to find the desired set

point more quickly. Fewer batches were needed before the set point was reached.

However, it is important to take into consideration that the experiments that were

run were based on simulations of a chromatography process, and thus were free from

measurement noise. If this configuration was to be applied to a real process, the

damping r could not be recklessly decreased to improve the control speed, as the

controller would possibly be more sensitive to measurement noise and thus unstable.
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4.3 Configuration 2

The 30-batch simulation results from Configuration 2 are presented in Figure 4.6.

The experiments were run with a constant amplification q = 1 and differing damping

parameters r. The values of r shown are 1, 1 · 101, 1 · 102 and 1 · 103.
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Figure 4.6: Process control output graphs for Configuration 2, where the amplifying
parameter q is fixed to 1, and the damping parameter r is set to 1 (4.5a), 1 ·101 (4.6b),
1 · 102 (4.6c) and 1 · 103 (4.6d). The circle markers represent the four initial memory
data points, whereas the star-shaped markers show the operating points chosen by
the controller. The dashed line marks the set point value of 0.

From this first overview, it appears that the experiments indicate a similar behavior

to those from Configuration 1: a lower damping results in faster control action and

the set point is reached rather quickly. However, a closer look of the control graphs,

shown in Figure 4.7, gives a more detailed picture of the control action.
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Figure 4.7: Process control output graphs for Configuration 2, where the amplifying
parameter q is fixed to 1, and the damping parameter r is set to 1 (4.7a), 1 · 101

(4.7b), 1 · 102 (4.7c) and 1 · 103 (4.7d). The graphs are more closely centered around
the controller trajectory, giving a closer look at the input and output values when
they approach the set point

Figure 4.7, indicates that while the controller appears to move aggressively towards

the set point, it oscillates quite heavily around it once nearby. This could be at-

tributed to the roughness of the derivative approximation: since the derivative is

calculated linearly between two adjacent points, it is going to deviate heavily from

its true value when there are very few, very distant points available in memory. Since

the controllers in 4.7a and 4.7b are relatively aggressive, they took larger steps when

correcting the error and thus made the derivative calculation less accurate at the

beginning of the run. In addition, since these past points with unreliably calculated

derivatives remain in the ILC memory, they will continue to affect the controller

until their effect decreases enough due to the forgetting factor β. If the objective

function is not ”sharp enough”, i.e. the local extrema is not well-defined, it could

take several batches before the controller had enough points to accurately estimate

the derivative and find the real optimum. This means that it is more critical to have
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a well-defined optimum in the process if an aggressive controller is desired, especially

if high precision is desired. If a controller that reaches the set point quickly and

accuracy is of no great concern, then these parameters may work well.

The less aggressive controllers, on the other hand, achieved more precise estimates

of the derivative due to the smaller steps taken towards the optimum. The effects of

this are quite visible in Figure 4.7c: the points oscillate less around their trajectories.

However, this has the consequence of the controller being slow in taking action and

reaching the set point, and Figure 4.7d shows that it does not reach the set point at

all during the first 30 batches. Figure 4.7d shows another anomalous behavior: the

controller actually oscillates significantly in the beginning of the run. This could

be explained by the removal of nearby points from the process memory, detailed

in Section 3.3. Since the derivative calculation ignores points that are too close to

the current point along the u-axis, there is a possibility of the derivative calculation

being wrongly estimated. This behavior is especially clear around batch 12 in Figure

4.7d, where the value of the derivative suddenly spikes once the input value has

increased enough. If a higher precision is desired and speed of control (and thus,

also consumption of buffers and protein sample solution) is of no particular interest,

then these less aggressive controllers may work well.

While all the results from Configuration 2 imply that it is possible for an ILC

algorithm to find an optimal separation using an objective function, the fact that

the function chosen in this thesis requires a derivative to be calculated makes it

difficult to apply. The controller is too dependent on already having several points

in memory that are well-spread around the optimum. If such a memory exists, the

objective function may very well be applicable. However, if the point is to be able

to find the optimum in as few batches as possible and without having an extensive

memory of operating points available, then the choice of objective function leaves a

lot to be desired.

Table 4.1 summarizes the results of Configuration 2.
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Table 4.1: The summarized results from Configuration 2.

Behavior of controller Parameters Pros Cons

Aggressive q = 1, r1 = 1,
r2 = 1 · 101

Fast action,
approaches the
set point quickly

Less accurate
for the first
batches,
sensitive to less
well-defined
objective
functions

Cautious q = 1,
r1 = 1 · 102,
r2 = 1 · 103

More accurate
estimate of the
derivative

Slow action,
reaches the set
point very
slowly, risk of
wrongly
estimated
derivative at the
beginning of a
run
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5 Conclusion

This thesis aimed to evaluate the use of iterative learning control to control and

automatize separation in downstream processing of pharmaceutical proteins. ILC

shows promise as both a control and automation method, particularly when di-

rectly controlling a process variable such as the resolution of two peaks. However,

the design of an ILC does require some knowledge about the separation and what

resolution is achievable before applying the controller.

When it comes to finding optimal separation parameters by means of an objective

function, the iterative learning controller does show that it is possible to find an

optimum. However, the objective function chosen in this thesis may not be the

optimal choice if quick and precise control is desired, since improving its speed sac-

rifices its accuracy. A different objective function that does not require a derivative

to be estimated, or a more accurate method to calculate the derivative, may be

preferable.

5.1 Further Work

Applying a new method for calculation of the resolution between peaks would ben-

efit both controller configurations. The method showcased by 3.4 shows a risk of

resulting in lower resolutions for already low-resolved peaks. Several alternatives

are available. For example, instead of using the derivatives on both sides of each

individual peak to compute the width, the derivative of the ”outermost” side of a

peak could be mirrored around the top of the peak. Such a method would rely on

the peaks being somewhat symmetrical to be accurate. Another method would be

to fit Gaussian curves to each peak.

It would be interesting to see the basic ILC configuration applied to a multiple-input-

multiple-output (MIMO) case. For example, it would be possible to control both the

resolution and the retention time by letting the controller change the initial fraction

30



Further Work

of buffer B, xB,i, and the gradient time tgrad. This would increase the dimension

of the damping and amplification and turn them into matrices, Q and R. These

matrices would then act as weighting on the two inputs and the two outputs, in a

similar fashion to what the exponents on the objective function do in configuration

2. There is a possibility that using this MIMO configuration, an optimal control of

the separation could be achieved without applying an objective function.

An alternative would of course be to develop a new objective function. If a linear

objective function, constructed in such a way that no derivative estimation is re-

quired, could be constructed, the issues stemming from the derivative estimations

in this thesis could be circumvented. Another option would be to apply some sort

of regression on the existing data points in the current objective function approach.

If a curve is fitted to the operating points when there are few points available, it

is possible that a better estimate of the derivative could be achieved, thus allowing

for a more aggressive control to be applied without sacrificing precision. Of course,

great care would need to be taken when deciding on such a curve fit.

The configurations tested in this thesis were all based on simulations, meaning that

no measurement noise was present during the experiments. It would be interesting

to apply a small noise to these simulations and see how the controller behaves

with the damping and amplification parameter values tried in this project. Adding

disturbances midway through an experiment, or studying the effect of the initial

history points would also be interesting. An example of how this could be done is

to, at some batch number k, add a disturbance to the previous batch’s control input

to see how the controller adapts to it. One could also set different initial history

points by, for example, having all of them placed closer or further appart from

each other, or having them placed before or after the optimum in configuration 2.

Eventually, applying a controller tuned using simulations on a real chromatography

system would be interesting as well.
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