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Abstract 
 
The population of earth is projected to increase the coming decades. This can pose problems 
of food security and demands a more productive food sector as well as methods of assessing 
food productivity in relation to demand. Crop monitoring with remote sensing can guide 
precision farming used for sustainable intensification of agriculture, as well as contribute to 
yield forecasting models useful for food security assessments. Developing low cost methods 
for crop monitoring can support sustainable intensification of agriculture and provide useful 
yield information in advance. A relatively recent development in remote sensing technology 
is the possibility of modelling crops in 3D through Structure-from-Motion (SfM) technology 
using imagery gathered from Unmanned Aerial Vehicles (UAVs). This study therefore aimed 
to explore the use of SfM technology to determine maize plant density, a parameter related to 
plant yield. The study explored two methods based on point clouds generated from UAV 
imagery to determine the density of maize plants. The first method employed a simple linear 
regression to explore a potential relation between a metric of variations in maize canopy 
elevation and maize plant density. A relation between the variables was indicated, motivating 
further testing of this method. However, the method proved to be vulnerable to heterogeneous 
plant distributions within the sample areas. This outlined the importance of the sample area 
size in relation to the spatial distribution of the plants modelled. A danger of misidentifying 
bare areas as areas of high plant density was also discovered, indicating that large areas 
without plants should be excluded before applying the method. The second method aimed at 
delineating individual maize plants through generating elevation contours on a triangulation 
of a point cloud. By querying the contours on height and length, contours would ideally be 
placed at the location of maize plants. The results showed low accuracy in relation to 
available validation data, possibly due to the complex geometry of the plants. Furthermore, 
the presence of blur in the imagery as well as the use of suboptimal UAV flight planning for 
3D modelling purposes might have influenced results of both methods.  
 
Keywords: Geography, Ecosystem Analysis, Maize plant density, Structure-from-Motion, 
Unmanned Aerial Vehicles (UAV) 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Sammanfattning 
 
Jordens befolkning förväntas öka de kommande årtiondena. Detta kan skapa osäkerhet kring 
livsmedelsförsörjning och kräver en mer produktiv livsmedelssektor samt metoder för att 
bedöma tillgång på livsmedel i förhållande till efterfrågan. Utvecklandet av 
lågkostnadsmetoder för övervakning av grödor kan stödja en hållbar intensifiering av 
jordbruket och tillhandahålla användbar information kring skörd i förväg. En relativt ny 
utveckling inom fjärranalystekniken är möjligheten att modellera en grödas krontak i 3D 
genom Structure-from-Motion (SfM) teknologi. Denna teknik använder överlappande bilder 
för att skapa ett tredimensionellt punktmoln genom fotogrammetriska principer. Denna studie 
syftade därför till att undersöka användningen av SfM-teknik för att bestämma majsens 
planttäthet, en skörd-relaterad plantparameter. Studien undersökte två metoder baserade på 
punktmoln som genererades från drönarbilder för att bestämma tätheten av majsplantor. I den 
första metoden användes en enkel linjär regression för att utforska en potentiell relation 
mellan ett mått på variationer i höjd på punkter i punkmolnet och majsens planttäthet. Ett 
svagt samband hittades, men metoden visade sig vara sårbar för heterogena plantfördelningar 
inom provområdena. Detta påvisade vikten av provområdets storlek i förhållande till den 
spatiala fördelningen av de modellerade plantorna. En risk för felidentifiering av större 
områden utan plantor som områden med hög växtdensitet upptäcktes också, vilket tyder på 
att stora ytor utan plantor bör uteslutas innan man tillämpar metoden.  Den andra metoden 
syftade till att avgränsa enskilda majsplantor genom att generera höjdkonturer på 
kontinuerliga ytmodeller baserade på punktmoln. Genom att sortera ut konturerna på höjd 
och längd, skulle konturerna placeras på majsplantornas position. Resultaten hade låg 
exakthet i förhållande till valideringsdata, potentiellt på grund av svårigheten att applicera 
metoden på objekt med så komplex geometri som majsplantor. Oskarpa drönarbilder och 
suboptimal UAV-flygplanering för 3D-modelleringsändamål kan också ha påverkat 
resultaten från båda metoder. 
 
Nyckelord: Geografi, Ekosystemvetenskap, Planttäthet, Majs, Structure-from-Motion, 
Unmanned Aerial Vehicles (UAV) 
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1 Introduction 
The population of Earth is growing and is projected to become home to around 9.8 billion 
people by 2050, with the highest population increase expected on the African continent 
(United Nations 2017). A growing population means higher pressure on Earth’s resources, 
not least when it comes to food production. At the same time there is increased competition 
for land that can be used for food production due to anthropogenic processes such as 
urbanization and biofuel production (Molony and Smith 2017; van Vliet et al. 2017) and land 
degradation processes (Bai et al. 2008; Webb et al. 2017). This means that efforts need to be 
focused on making the most of the cultivated land that is currently available by improving the 
use of inputs such as fertilizer, irrigation and pesticides in a resource sustainable manner 
(Nellemann and MacDevette 2009; Pretty and Bharucha 2014; van Ittersum et al. 2016). By 
measuring the spatial and temporal variability in cropland with regards to for example crop 
stress, soil moisture, soil nitrogen content, incidence of weeds and microclimate, agricultural 
inputs can be added where most needed. This method of micromanaging agriculture is known 
as precision agriculture, and can reduce excessive use of agricultural inputs, leading to 
increased profitability for farmers and a decrease in environmental consequences such as the 
pollution of water sources and greenhouse gas emissions due to nitrogen leakage (Daughtry 
et al. 2000; Mensah et al. 2018). In addition to improving farm productivity, the ability of 
making yield forecasts is also of importance to assess food productivity in relation to food 
demand. 

Satellite remote sensing is a well-established method for measuring plant biophysical 
parameters of interest in agriculture, and is therefore an important tool for precision 
agriculture and yield forecasting. For example, the relationship between spectral reflectance 
and the chlorophyll content of the plant (Yoder and Pettigrew-Crosby 1995) is used to detect 
spatial variations in crop stress and ultimately where to focus agricultural inputs (Mulla 
2013). In more recent years, Unmanned Aerial Vehicles (UAV) with mounted cameras has 
proven valuable as a platform for gathering information on plant health status. UAVs can be 
advantageous in comparison to satellites for precision agriculture purposes, since they 
provide the possibility of gathering very high resolution data at almost any desired time, 
while being less restricted by atmospheric disturbances such as cloud cover (Hunt and 
Daughtry 2018).  

In addition to measuring spectral properties of a field, UAVs also offer a new low-
cost platform for photogrammetric measurements of objects at close range. This allows for 
capturing the geometry of plants in three dimensions, enabling the farmer to get information 
such as plant height variations within a field. Using photogrammetry to estimate heights of 
complex surfaces, such as cropland, requires a very high resolution and a large overlap 
between images. While high-resolution data is increasingly available from satellite imagery, 
the financial cost and low temporal resolution make it less suitable for photogrammetric 
reconstructions of farmer’s fields (Li et al. 2016). The geometry of the field can be 
reconstructed from a set of overlapping images using the Structure-from-Motion (SfM) 
technique. The technique draws on the principles of photogrammetry to derive the 3D 
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coordinates of features in the images as points, resulting in a three dimensional (3D) point 
cloud (Westoby et al. 2012). This point cloud models the structure of the crop canopy, and 
the distribution of points in the point cloud can then be used to derive important yield-related 
information about the plants. 

The use of such SfM point clouds in crop remote sensing has thus far been centered 
on creating crop height models (Bendig et al. 2013; De Souza et al. 2017; Han et al. 2018), 
often to investigate correlations between plant height and grain yield or biomass (Michez et 
al. 2018; Näsi et al. 2018). Many of these studies have also been conducted on experimental 
plots, and have therefore not taken into account complexities often associated with remote 
sensing of smallholder farms, such as small and fragmented fields and greater heterogeneity 
of topography and management practices (Delrue et al. 2013; Lambert et al. 2018). 

Although plant height is of great interest in precision agriculture, other plant 
components of interest might also be derived from SfM point clouds, such as plant density. 
Maize plant density is an important factor influencing yield as it is related to the plants 
nutrient uptake (Ciampitti and Vyn 2011; Assefa et al. 2018), as well as water use efficiency 
(Ogola et al. 2005; Lamm et al. 2009). If the optimal plant density of a farmer’s field is 
known, knowledge on the actual plant density can then potentially be used to informer better 
farm management. Furthermore, since plant density is considered a key factor influencing 
yield, the knowledge of plant density can contribute to models used for yield forecasting 
(Van Ittersum et al. 2013). Yield forecasting can in turn provide knowledge in advance of an 
emerging food crisis, giving households and government much needed time for taking 
decisions (Delincé 2017). Knowledge on maize plant density might therefore be beneficial 
for both yield forecasting and precision agriculture purposes. While the Structure-from-
Motion technology has potential as a new low-cost method to monitor crops (Zhang and 
Kovacs 2012), the detection of maize plant density with methods based on SfM point clouds 
is scarcely researched, and has not knowingly been studied in the context of smallholder 
maize fields in Sub-Saharan Africa. This motivates exploratory research in this field, and also 
means the study cannot draw heavily on previously researched methods used for the same 
purpose. This study should therefore be considered highly exploratory, and its results 
considered indicative of the methods potential rather than conclusive. 

The data for this study is collected from maize fields in Ghana, and comprises a 
number of small-sized, rain-fed maize fields. This is a common agricultural scenario in many 
parts of Sub-Saharan Africa, and successful remote sensing of plant characteristics in this 
context might provide useful insights for precision agriculture and yield forecasting 
applications in similar environments. The UAV imagery for this research was gathered with a 
consumer grade Red-Green-Blue (RGB) camera and the results of the study might therefore 
also provide valuable insights into the viability of using SfM point clouds created with 
affordable consumer grade equipment.  
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1.1 Aim and research questions 
  
Maize plant density is a plant parameter related to maize yield. However, the use of SfM 
point clouds to determine maize plant density is thus far scarcely researched. The aim of this 
study is therefore to explore whether maize plant density can be estimated using SfM point 
clouds produced from consumer grade UAV imagery taken at an altitude of approximately 
100 m above ground level. Two methods are explored, where the first method attempts to 
provide a measure of maize plant density using spatial variations in point heights in a SfM 
point cloud. The second method aims to estimate maize plant density using elevation 
contours of the SfM point cloud to locate individual maize plants. The following research 
questions (RQ) have been formulated to meet the aim: 
  
RQ1:  Is it possible to estimate maize plant density using spatial variations in point heights 

in a maize canopy modelled by Structure-from-Motion technology? 
o Is there an optimal cell size to capture point height variations for estimating 

maize plant density? 
 
RQ2:  Is it possible to identify individual maize plants using elevation contours created from 

SfM point clouds? 
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2 Background 
2.1 Crop monitoring with remote sensing 
 
Remote sensing of crops is a broad field that can encompass many techniques and spatial and 
temporal scales. On a coarse spatio-temporal scale, remote sensing of crops can involve 
measuring phenological stages of the crops from bud break to senescence from the spectral 
response of vegetation measured by multispectral satellite sensors. The spectral reflectance 
for some wavelengths varies largely in relation to the chlorophyll content of the vegetation. 
Monitoring of vegetation  is often done with radiometric indices optimized for this purpose, 
where the most commonly used is the Normalized Difference Vegetation Index (NDVI)  
(Rouse et al. 1973). The NDVI and other similar vegetation indices (VIs) utilize the large 
difference in spectral reflectance between the red visible light and the near infrared (NIR) 
wavelengths for vegetation. This allows for the discrimination as well as vigor estimation of 
vegetation and can be used to provide information on the length and magnitude of crop 
growth in that season (Dominique et al. 2016; Madigan et al. 2018).   

Furthermore, satellite imagery can also be used to monitor crops on a higher spatio-
temporal scale, allowing the gathering of information used within a growing season and for 
local yield forecasting. However, current free-to-use satellite imagery has too low image cell 
size for distinguishing intra-field crop stress variabilities on a detailed level, especially in 
contexts characterized by high fragmentation of fields and patchy, small clusters of 
vegetation (Vaccari et al. 2015) as in the case of this study. While commercial satellite data 
with high temporal and spatial resolution and multi-spectral sensors exists, the data can be 
relatively expensive for large scale use. Conversely, UAVs can produce high resolution aerial 
imagery continuously throughout a growing season for a relatively low cost in comparison to 
commercially available high resolution satellite imagery (Xue and Su 2017).  

Applications of UAVs for crop monitoring include the use of VIs derived from UAV 
imagery for yield estimations. A study by Wahab et al. (2018) used a vegetation index similar 
to NDVI from UAV imagery for estimating variabilities in maize vigor and yield in 
smallholder maize plots. The study compared the final yield with visual estimations of crop 
vigor as well as in-field leaf-chlorophyll measurements during the growing season and 
concluded that the UAV derived vegetation index did comparatively better in predicting 
yields than the two in-field methods. Other studies explored UAV derived VIs for yield 
predictions in for example rice (Zhou et al. 2017; Duan et al. 2019) and wheat (Du and 
Noguchi 2017; Marino and Alvino 2019). Previous studies have also created crop height 
models with SfM from UAV imagery or used UAV borne LiDAR for crop monitoring 
purposes (Bendig et al. 2013; De Souza et al. 2017). A combination of UAV derived VIs and 
crop height models for yield prediction have also been previously explored (Geipel et al. 
2014; Bendig et al. 2015; Maresma et al. 2016). While plant density is another important 
plant parameter related to yield, considerably fewer studies have been focused on the 
determination of plant density through UAV remote sensing. 
 



 

5 
 
 

2.2 Maize plant density and crop yield 
 
One of the important yield related factors in maize is the distance at which the maize plants 
are growing. A study by Magaia et al. (2017) set in Mozambique investigated the relationship 
between fertilizer needs and maize plant density under both rain-fed and irrigated scenarios 
and came to the conclusion that grain yield varied with different maize densities. Plots with 
different plant densities responded differently to increases in fertilizer and the amount of 
water the plants received throughout the season. Low density maize plots showed a lower 
response to the application of fertilizer than high density maize plots. The study also 
indicated that rain-fed maize is more sensitive to planting patterns than irrigated maize. 
Another study that investigated the relationship between plant density, nitrogen uptake and 
plant biomass showed that higher densities of maize plants had positive effects on the plants 
efficiency in utilizing the added nitrogen (Ciampitti and Vyn 2011). In addition, a study by 
Yan et al. (2017) found that too high maize plant densities can result in reduced yields due to 
increased competition for resources between plants.  

While many studies show that maize plant density is an important yield related factor, 
the optimal density of the maize plant varies. This is due to the fact that the optimal density is 
highly dependent on the plant breed and local environment of the crop, as outlined by Sangoi  
(2001). Variables such as the local soil conditions can for example influence the ability of the 
plant to make use of added nitrogen (Kihara et al. 2016; Solomon et al. 2017). However, if 
the appropriate plant density for a region is known, information on actual plant density used 
by farmers can help improve general management practices among farmers in the region.  

While fertilizer is recommended to be added 4-6 weeks after planting (WAP) in Ghana 
(Adu et al. 2014), the methods explored in this study attempts to determine the maize density 
of plants 8 WAP. However, some studies have indicated that application of fertilizer in later 
stages of maize growth can also benefit yields (Silva et al. 2006; Zheng et al. 2018), meaning 
knowledge of maize density in later stages can potentially also be used to influence 
management practices within a growing season. Furthermore, as plant density is one of the 
key attributes of crop yield models, knowledge on plant density can potentially be used to 
improve local yield forecasts (Delincé 2017).  
 

2.3 UAVs for maize plant density detection 
 
The number and density of maize plants can be determined by walking through the field and 
manually counting the plants. Similar to the estimation of crop vigor visually or with 
handheld instruments, this is a strenuous and time-consuming task (Wahab et al. 2018) and 
calls for more efficient methods for determining plant density. UAV based methods of 
remote sensing have the potential of determining maize plant density in a more time and cost-
efficient manner by gathering timely, high resolution data and through the possibility of 
adjusting flight height and sensor type for different aims (Gnädinger and Schmidhalter 2017; 
Varela et al. 2018).  
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Existing research aimed at determining maize plants density from UAV imagery have 
utilized image-based classification methods as well as two dimensional geometric 
descriptors. A study by Hall et al. (2018) on the same maize fields used in this study utilized 
object oriented image classification based on spectral values and texture to isolate single 
maize plant objects. Within these objects the centroid was determined to represent the 
location of the maize plant. The method overestimated the plant count by approximately 
15%. Another recent study successfully detected individual maize plants in an early growth 
stage from ultra-high resolution UAV imagery (2.4mm ground sample distance) by training a 
decision tree classifier with a set of geometric descriptors of maize plants and weeds 
respectively (Varela et al. 2018).  

However, since methods based on spectral values are two dimensional, overlapping 
plants can be hard to distinguish from each other. Similarly, distinguishing weeds from crops 
spectrally also pose a problem, given their often similar spectral signatures  (Gnädinger and 
Schmidhalter 2017; Varela et al. 2018). Point cloud based methods have the possible 
advantage of distinguishing crops from low growing weeds, as well as from other 
overlapping crop plants by considering also the height difference between the plants.  

UAVs can be used to create 3D point clouds of crops using either mounted Light 
Detection And Ranging (LIDAR) equipment or the SfM technique based on overlapping 
RGB imagery. SfM technology and LIDAR both produces 3D point clouds, but since the 
underlying technologies are different, the point clouds differ in their characteristics. LIDAR 
measures the time it takes for an emitted laser pulse to be reflected back to determine a point 
position, and can give several returns from one pulse since the laser beam can penetrate the 
canopy. These measurements results in a highly accurate 3D point cloud, where many layers 
below the canopy as well as the ground below it can be modelled. A SfM point cloud is 
however created from overlapping imagery, and so can only model the upper canopy as 
visible in the images from above (Wallace et al. 2016).  

Several studies using LIDAR technology for estimating maize plant density exists. 
However, these studies have mostly used high-end ground-based LIDAR equipment (Höfle 
2014), and often aimed to make highly detailed models of maize for phenotyping purposes 
(Shi et al. 2015; Qiu et al. 2019). UAV-borne LIDAR based methods for the detection maize 
plant density is on the other hand not knowingly researched. Several studies using UAV-
borne LIDAR for detecting individual plants exist, but have mainly focused on the detection 
of individual trees for purposes of forestry inventory. These methods have for example 
utilized density-based clustering algorithms that are based on the Euclidean distance between 
points, such as the Mean Shift algorithm. This algorithm iteratively moves points into local 
clusters, where every point moves towards the local densest cluster of points until a number 
of points are left that represent the centers of each cluster (Yizong Cheng 2002). Studies that 
have utilized this type of clustering algorithms for segmentation of individual trees have 
achieved high accuracies (Hu et al. 2017; Chen et al. 2018). However, while measuring plant 
density is possible from LIDAR point clouds, the LIDAR equipment can be expensive in 
comparison to SfM technology that requires only a consumer grade RGB camera for 3D 
model creation. 
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Thus far, many studies modelling crops with SfM technology have been focused on 
modelling plant height and detecting height variabilities within cropland. A common aim has 
been to explore relations between height and above ground biomass to make yield 
predictions, often by combining crop height data with vegetation indices such as NDVI 
(Bendig et al. 2015; Li et al. 2016; Han et al. 2018; Michez et al. 2018). The measuring of 
plant density directly from SfM point clouds are on the other hand scarcely researched.  

However, apart from providing information on the canopy height, SfM point clouds 
can also be used to derive information about the structure of a canopy. Simple metrics of 
canopy structure, such as the standard deviation of point height in an area, can then be used to 
derive information related to the plants geometry and spatial distribution. Studies have for 
example found correlations between metrics of canopy structure and Leaf Area Index for 
maize plots (Li et al. 2017) and vineyards (Mathews and Jensen 2013). Since the spatial 
distribution of plants influences the canopy structure, such metrics could potentially also be 
used to estimate plant density as attempted in the first method explored in this study. 
Furthermore, if the maize plants can be distinguished from each other through their height, 
plant density might be estimated by delineating individual maize plants as attempted in the 
second method explored in this study.  
 Since methods for detecting plant density for maize or similar crops directly from a 
SfM point cloud is not knowingly researched, this study cannot be put into relation to earlier 
research using similar methods. Rather than building on previous research and providing 
conclusive results, the study instead aims to explore two new methods based on SfM 
technology in the hope to provide new ideas for measuring maize plant density. 
 

2.4 Structure-from-Motion and point cloud quality 
 
The SfM procedure from UAV imagery to point cloud can be split into three major steps. The 
initial step is the detection of individual image features that can be identified in several 
images. This feature identification is often achieved with a version of the Scale Invariant 
Feature Transform (SIFT) algorithm (Schonberger and Frahm 2016). The SIFT algorithm 
identifies distinct features in an image at different spatial scales and creates descriptive 
information about each of these features, or “keypoints” (Lowe 2004).  

The second step is the bundle adjustment which computes a sparse 3D point cloud of 
the scene, by solving for the images orientation with the help of the SIFT derived keypoints 
in every image. The common keypoints are identified in different images.  Lastly, the density 
of the point cloud is then commonly increased through Multi View Stereo techniques, 
resulting in a 3D product that can be used for subsequent analysis (Westoby et al. 2012).  

Some commercial photogrammetry software such as Agisoft PhotoScan (Agisoft LLC 
2018) incorporates all the steps from image feature identification to point cloud creation, 
using a workflow similar to that described above (Semyonov 2011). This makes it easy for 
the user to process their data without the need to combine different software. Simultaneously, 
the commercial nature of the software inhibits a thorough understanding of the underlying 
algorithms. This can prevent a user from fully grasping the nature of the results and potential 
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error sources. He et al. (2018) argue for the need of a transparent, open-source SfM method, 
especially for precision agriculture purposes, since the repetitive texture of crops makes the 
keypoint creation and feature matching between images highly error prone. Nevertheless, 
several empirical studies exist that examine the effect of various factors on the quality of a 
final SfM point cloud through experimental approaches.  

Dandoi et al. (2015), for example, investigated the influence that different observation 
conditions had on the quality of a point cloud modelling a forest canopy structure. The 
observed parameters included point positioning accuracy, point cloud density and canopy 
penetration. These are all important parameters when modelling vegetation canopy structure, 
since they influence the horizontal and vertical accuracy of points as well as how well fine 
details are captured in the final point cloud. The observational conditions investigated 
included different light conditions and image overlap. Forward overlap was considered one of 
the most important factors influencing point cloud quality. The study showed that large 
forward overlap had a strong positive correlation to both point cloud density and to what 
extent the point cloud penetrated the canopy to the ground level. A 90% forward overlap 
penetrated all the way to the ground in vegetation gaps, while a 60% forward overlap reached 
approximately half way to the ground from the canopy. Furthermore, gathering imagery on 
cloudy days would produce images of lower contrast, while sunny days would produce 
shadows that obscured parts of the canopy. A specific light condition could therefore not be 
recommended. 

De Souza et al. (2017) estimated the heights of sugar cane fields and simultaneously 
investigated the influence of flight directions on the generation of the point cloud. They 
concluded that height estimations within the same field varied with flight direction due to 
differences in radiometric properties of features at different camera angles. These effects, 
often caused by shading, could subsequently be mitigated by using cross-directional flights. 
Using cross directional flights made for a better crop height estimation, both due to larger 
overlap and less sensitivity to shading effects. 

Furthermore, Sieberth et al. (2014) investigated the impact of blur on imagery through 
a controlled experiment, simulating camera displacement common on UAV flights. The study 
used the Speeded Up Robust Features (SURF) algorithm for feature detection, which is 
comparable to SIFT. The study found that blur caused from even a small camera 
displacement had a large impact on the total amount of image feature points detected in the 
photos, as well as the amount and correctness of matches found between blurry and sharp 
images. Consequences of blurry imagery was also reported by Han et al. (2018), who 
emphasized the negative impact of blurriness in a study of plant-height estimations of 
Sorghum. Many different factors and circumstances, such as image blur, differing weather 
conditions, flying patterns and the magnitude of image overlap can therefore affect the end 
result of the SfM process.  
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3 Methods 
3.1 Study area  
 
The flight imagery used in this study was of maize fields located in the village of Akatawia in 
the Manya Krobo District in south-eastern Ghana (Fig. 1). The climate in Ghana is largely 
determined by the seasonal domination of the moist southwesterly winds and the dry 
northeasterly harmattan winds respectively. Mean annual temperatures are around 26 degrees 
Celsius and mean annual rainfall is estimated at 1187 mm. Rainfall in the country is 
unreliable, and the northern parts of the country experience complete crop failures due to low 
rainfall once in every five years. Annual rainfall can reach 1500 mm per year in the study 
area and rainfall distribution is bimodal where the larger rainy season occurs between April 
and early August, while the smaller occurs between September and early November (FAO 
2007). In 2016, the growing season was particularly dry in Ghana and a large part of the 
crops were infested by fall army worm during that year (FAO 2017). Although the specific 
maize fields modelled in this study were not known to be subject to fall army worm, dry 
weather conditions might have affected the growth stages of the plants and consequently their 
geometry in comparison to maize in normal growing conditions. Both maize fields had spot 
wise incidences of weeds. 

Figure 1. The map shows the location of the two maize fields (Flight1, Flight2) within Manya Crobo district. 
The smaller map frame (upper left) show the location of the Manya Crobo district within Ghana. Based on data 
from OpenStreetMap. 
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3.2 Data and data gathering equipment 
 
The UAV imagery was taken of several maize fields between April and July 2016 during the 
primary maize growing season. The data was gathered by another group of researchers for the 
purposes of estimating maize vigor and maize yield using the NDVI. Due to a forward 
overlap of 80% and a side overlap of 60%, the imagery could also be used to create 3D 
models by photogrammetric methods as attempted in this study. Two to three flights were 
done for each maize field, 4-5 weeks after planting (WAP), 8 WAP and 12 WAP. The drone 
platform was an Enduro Quadcopter from Agribotix (Agribotix 2018) with a Pixhawk flight 
control system. The RGB imagery was taken by a GoPro Hero 4 camera that was mounted on 
the drone. The camera was tilted 10 degrees from nadir towards the flight direction, and 
photos were taken with 1 second intervals on an altitude of 100 m above ground level with a 
resulting resolution of approximately 3 cm (Wahab et al. 2018). As opposed to De Souza et 
al.’s (2017) recommendation of using cross directional flights, the flight pattern chosen by 
the researchers gathering the data was only made in one direction (i.e. NE/SW), possibly 
because the initial study’s intention was not the creation of SfM point clouds.  

Flights of two different maize fields are used in this study. Both flights were made 
after 8-9 WAP when the plants had started their tasseling stage, however the exact planting 
date might have varied between the two flights. During the tasseling stage, the maize is close 
to its full height. The flowers, or tassels, developed in this stage might enable the detection of 
a center point in the maize plant and benefit the explored methods.  

Validation data was gathered at one 4 x 4 m subplot in each field by the researchers 
gathering the data for previously outlined purposes. The field work conducted obtained 
information of the average maize height, terrain slope, plant density and other measures of 
the maize in each subplot. Photographs from the subplots of both flights were also taken at 
the ground at the time of flying (Fig. 3, Fig. 4) (Wahab et al. 2018). Unfortunately, the UAV 
images were blurry at the location of the subplots in both selected flight cases, meaning the 
SfM point cloud at those locations might not be reliable. The accuracy of the height 
estimations of the point clouds as well as the correct amount of maize plants could therefore 
not be validated from the field data. However, as the subplots are in the vicinity of the areas 
being analyzed in this study, the field data provided a basis for estimation of the maize height 
to be used in the data analysis. 

From inspecting the UAV images, the light conditions during the flights likely varied 
and blurry areas were apparent in the images (Fig. 2). Flight 2 had seemingly more variable 
light conditions between images than Flight 1, and Flight 1 had somewhat less blurry imagery 
(see appendix A, B and C). 

Figure 2. A view of the orthophoto for Flight 2. The incidence of blur can be seen in the mid-right, in 
comparison to sharper areas on the left. 
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Figure 3. Maize field of Flight 1, with plants estimated to be approximately 1.7 m tall from field work in 
subplots. Most of the maize plants have started the tasseling phase.  

Figure 4. Maize field of Flight 2, with plants estimated to be approximately 1.8 m tall in the subplots. Most of 
the maize plants have started to tassel. 
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3.3 Analysis  
3.3.1 Disposition and overview  

Two methods were employed in this study and tested on the points clouds created from 
imagery taken during two different flights. The first method aimed at finding a measure of 
maize plant density using spatial variations in point heights in a SfM point cloud. The 
underlying assumption was that an area of dense growing maize will have a canopy that 
varies less in elevation than an area of sparse growing maize (Fig. 5). The relationship 
between spatial variation in point heights and maize plant density in an area was tested by 
using a measure of variance between points in the Z dimension as the independent variable 
and the number of maize plants as the dependent variable.  
 

 
Figure 5. An illustration of the assumption of varying canopy elevation with different maize plant densities in a 
maize field. Four maize plants are shown, where the two on the left side grow further apart than the two on the 
right side of the illustration. The red line illustrates potential differences in the magnitude of canopy elevation 
with differing maize plant density. 
 
The second method attempted to measure maize plant density through distinguishing 
individual maize plants. This was attempted through creating height contours from a 
Triangulated Irregular Network (TIN) based on the point cloud, and then querying the 
resulting contours on elevation and length to extract the ones that represent maize plants.  

Before the two methods could be explored, the imagery had to be geotagged, 
processed into a point cloud and outlying points removed. Different settings used for filtering 
out outlying points during the dense point cloud creation process were also compared using 
open source software CloudCompare (CloudCompare 2019). This was to test whether the 
settings had a significant impact on the resulting point clouds. 

3.3.2 Photogrammetric point cloud creation 

No ground control points were used for geo-referencing imagery in the study. Instead, the 
images were geotagged using the open-source ExifTool (Harvey 2019). This software geo-
references the imagery by matching the timestamp of the images from the camera clock to the 
GPS timestamps from the UAV flight logs. The geotagging of imagery likely makes the SfM 
processing more efficient, and allows the use of a geographic coordinate system throughout 
the data analysis. 
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The geotagged images were then imported to PhotoScan (Agisoft LLC 2018) where 
an automatic image quality estimation was made as a first step to identify photos of low 
quality. The automatic image quality estimation in PhotoScan finds information on the 
sharpest border detected in the image, giving an indication of the blurriness of an image 
(Pasumansky 2014). The photos of the lowest estimated quality were then manually inspected 
to filter imagery that was deemed inadequate due to being completely blurry. Photos taken at 
very low altitudes during the start and landing phase of the UAV flight were filtered out. 
Some higher altitude photos during start and landing, as well as photos taken during the 
transport stretch to the planned mission starting point were kept. This as they might aid the 
bundle adjustment step (Frey et al. 2018).  

The alignment of the photos was then performed in PhotoScan using the standard 
upper limits of 40 000 keypoints and 4000 tie points. The concept of keypoints is explained 
in section 2.4, and the limit determines how many keypoints the software can potentially use 
to align the imagery. The tie points are those keypoints that have been found in multiple 
images. The “highest” quality setting was chosen for the photo alignment for maximum 
accuracy.  

Dense point clouds were then generated with the “Ultra high” quality setting, utilizing 
the full resolution of the imagery on the expense of longer processing time. For the dense 
point cloud processing, PhotoScan provides the option of choosing between three different 
depth filtering options: mild, moderate and aggressive. This functionality is aimed at sorting 
out point outliers and might affect the resulting 3D construction. Point clouds were therefore 
exported with different settings and compared in CloudCompare using the Cloud-To-Cloud 
Distance tool to explore possible differences. The tool computes the distance from every 
point in one point cloud to the nearest neighboring point in the second point cloud. However, 
a comparison of two point clouds of the same area with different depth filtering settings (mild 
and aggressive) showed that differences between the point clouds were minimal (Fig. 6), with 
the mean difference between the point clouds being 0.000312m. The different depth filtering 
settings were therefore not deemed influential on the analysis, and all point clouds used in 
this study were consequently created with the “moderate” depth filtering setting.  

Lastly, orthomosaics with 3 cm resolution was created for both flights with 
PhotoScan, based on the image orientation and 3D information generated from the bundle 
adjustment step (See appendix A, B and C). 
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Figure 6. Slightly tilted view from above of the point cloud for Flight 1. The scale denotes the difference in 
meters between points in the two compared point clouds of different depth filtering settings. Red means large 
difference and blue means low difference. The differences are seen to be small as few points fall outside the 
blue spectrum.  

3.3.3 Data preparation and point cloud noise removal 

The original point clouds from PhotoScan contained a considerable amount of outlying points 
that needed to be filtered out before analyzing the data. This was done with the partly open-
source software LAStools (Isenburg 2019) for the processing of 3D point clouds, as well as 
with CloudCompare (CloudCompare 2019). 

The unlicensed version of LAStools limits the amount of points that can be processed 
freely, and point clouds containing points above certain limits are automatically slightly 
distorted. This distortion is in the magnitude of a few millimeters or centimeters but not 
exactly quantified (Isenburg, M, pers. comm.). Since the data used here were of high 
resolution and the point cloud was dense, smaller Areas of Interest (AOI) were cut out from 
the original point clouds to make sure distortions from LAStools were minimized. The AOI’s 
were cut out in areas where the imagery was of highest quality and that contained areas of 
varying plant densities (Fig. 7).  

The AOI point cloud was partitioned in smaller tiles to make processing more efficient. 
Outlier points were then identified with a LAStools algorithm that uses a 3D grid of cells of a 
predefined size and a defined maximum number of points. If the number of points within the 
cell is below the defined maximum, the points are classified as noise. A cell size of 0.8 x 0.8 
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by 0.5 m was defined, with a maximum of 200 points. These settings identified the most 
obvious outliers while infringing minimally on points that were correctly placed. Lastly, the 
tiles were merged, while excluding points classified as noise. 

Five training and two validation areas of 4 x 4 m were then chosen within the AOI for 
each of the two flights, totaling 14 sample areas for both flights combined. These were 
purposefully sampled using the orthomosaics of the respective flights. Attempts were made to 
ensure different maize densities within the five training areas (T1-T5), and to create 
validation areas of both sparsely growing maize (SVA) and dense growing maize (DVA). 
The number of samples was to some extent limited due to the occurrence of blur in the 
orthomosaics (Fig. 7). The sample area size of 4 x 4 m was chosen with the intention of 
including a large enough area to sample a representative plant density while still capturing 
local variations. The sample areas were aligned along the maize rows in order to ensure as 
few partly cut off maize plants as possible. The sample areas for Flight 2 can be seen in 
Appendix D.  

 
Figure 7. The area of interest (AOI) of Flight 1 (red rectangle), containing five training areas (T11-T51) (black 
squares) and the dense (DVA1) and sparse (SVA1) validation areas (yellow squares) of varying maize plant 
densities.  
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The sample areas were then clipped out from the AOI point clouds, resulting in seven point 
clouds for each flight. According to the previously conducted field survey (Wahab et al. 
2018), the height of the maize was approximately 1.7 to 1.8 m high in the chosen maize 
fields. However, the elevation span between the highest and the lowest located point in the 
point clouds of the areas were considerably larger than that, meaning outliers likely remained 
in the point clouds. In addition to the initial noise removal using LAStools, a statistical outlier 
removal (SOR) filter was therefore applied to all the areas using CloudCompare. This filter 
computes the average distance from one point to K nearest neighbors, and removes points at 
a distance larger than the average distance plus N times the standard deviation of the point 
cloud. In this case, K and N were set to 6 and 4 respectively, as these settings removed 
outliers without generally thinning out the point clouds.  

An elevation threshold (Z threshold) of 2 m below the highest located point was then 
defined for all training and validation areas and all points below this threshold were removed 
to increase the likelihood that remaining points were located between the maize plant canopy 
and the ground level.  

An overview of the described point cloud creation process as well as the removal of 
outlying points can be seen in figure 8. 

 
Figure 8.  The workflow from UAV imagery to fully processed sample areas, with colors corresponding to 
different softwares used for the processing steps. Images were geotagged with ExifTool and then imported to 
PhotoScan to be processed into a point cloud. Areas of Interest (AOI) were clipped out from the point cloud. 
Outliers were removed from the AOIs and sample areas were clipped out using LAStools. A statistical outlier 
removal (SOR) filter was applied in CloudCompare to all sample areas. Finally, all points below a certain 
elevation (Z-threshold) were removed in each sample area. 
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The number of individual maize plants were lastly visually estimated within the training and 
validation areas using the orthomosaics of the respective flights (Fig. 9). Since the maize 
plants number and location could not be validated on the ground, the estimated and true 
maize plant count as well as their location can differ. 
 

 
Figure 9. The maize plants were counted visually in each sample area (black square) from inspecting the 
orthomosaics of the UAV imagery. The blue points in the image show the location of the counted maize plants. 

3.4 Method 1: Detecting maize plant density from canopy structure 
 

In method 1, a simple linear regression was used to explore a potential relationship 
between standard deviation of point height in the point cloud and the estimated number of 
maize plants in an area. The regression equation was then used to predict maize plants in an 
area using the average standard deviation (SDavg) of point heights in that area. An overview 
of the complete workflow for method 1 can be seen in figure 11. 

Firstly, raster grids were created based on the point clouds of each sample area, where 
each cell in the grids corresponded to the standard deviation of point heights at that location 
(Fig. 10). This step was completed using LAStools. To ensure that the underlying point 
sample for each cell was sufficient to constitute a measure of standard deviation, only cells 
where the centroid fell inside the sample area was kept. To explore the relation between 
standard deviation and cell size, 20 grids with different cell sizes were created for each area. 
These cell sizes ranged between 0.05 m and 1 m with 0.05 m intervals. The SDavg was then 
calculated for every grid in every sample area, to derive a measure of point height variations 
per area. 
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Figure 10. (a) shows a point cloud from a sample area with a fictitious 3 x 3 cell grid above it (pink grid). All 
cells in the grid have values from calculating the standard deviation of elevation variations of the points directly 
below each cell. (b) shows an example of a real grid with standard deviation values within a sample area. The 
grid has cell sizes of 0.4 x 0.4 m and is one of 20 grids with different cell sizes that were calculated for each 
sample area. 
 
To explore the impact of cell size on the average standard deviations in the sample areas, the 
SDavg for each grid of different cell size was plotted for all areas.  
 The number of maize plants and the SDavg calculated from the grids with differing cell 
sizes were then plotted against each other to visualize a potential relationship. Regressions 
were then calculated between the number of plants and SDavg derived using different cell 
sizes in each sample area (Eq.1).  
 
N = SDavg * K + I          (Eq. 1) 
 
Where K is the slope of the line, I is the intercept, N is the number of maize plants and SDavg 
is the average standard deviation of the sample area. 

Since every area had 20 different SDavg values calculated using different cell sizes, 
this resulted in 20 regression equations per area. Furthermore, the 20 regressions were 
calculated using the training areas of Flight 1 and 2 separately, as well as with the training 
areas from both flights combined. These are presented in three separate sections in the result. 
The reason for this was to test for the influence of differing point cloud quality, maize heights 
and spatial distribution of plants between the flights. 

The coefficient of determination (R2) as well as probability-values were used to test 
the strength and significance of a potential linear relationship between the two variables. A 
significance level of 0.05 was set. R2 and probability-values were calculated for all 20 
regressions of each flight to answer RQ2 regarding whether an optimal sampling cell size of 
the standard deviation grids could be found.  

In order to predict the number of maize plants, the SDavg for the validation areas in all 
resolutions was then input to the equations as the independent variable. This resulted in an 
estimated plant density per validation area for each resolution. The reason for this was to see 
how well the model would predict the maize plant density in relation to the plant count in the 
validation areas. 

(a) (b) 
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Lastly, the model was used to predict maize plant density on a field scale. The AOI of Flight 
1 was chosen for this analysis due to its estimated lower blurriness and more even light 
conditions during flight. At first, a grid of 4 x 4 m cells was created from the AOI, where 
every cell corresponded to the standard deviation of point heights at that location. A 
regression equation of high R2 values was then used to predict the maize plant density in 
every cell, by using the standard deviation values as the independent variable. The results 
were compared visually to the orthomosaic of the same area, to answer RQ1 of whether the 
method could give an indication on plant densities within a maize field. 
 

 
Figure 11. Workflow for method 1. Raster grids of different cell sizes were first calculated in each sample area. 
Cell values in these grids corresponded to the standard deviation of the points heights in the sample areas. The 
average standard deviation (SDavg) was then calculated for all grids in each sample area. A regression was then 
made between the estimated plant count, and the SDavg for every grid in each of the training areas. The resulting 
equations were then used for predicting the maize density in the validation areas. Lastly, a regression equation 
was chosen based on the R2 values of the different regressions to predict maize plant density on a field scale. 
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3.5 Method 2: Detecting maize plants from elevation contours 
 
The second method attempted to estimate maize density through delineating individual maize 
plants from a Triangular Irregular Network (TIN). This was done through creating a 
continuous surface through triangulation of the point cloud, and then generating elevation 
contours based on this surface (Fig. 12). 

 Elevation contours based of the point clouds of the dense and sparse validation areas 
in each flight were created using the ‘las2iso’ tool in LAStools. This tool triangulates the 
point cloud to create a temporary TIN, on which it bases the creation of contour lines. In the 
parameters for the tool, the intervals between elevation contours can be set. In this case, 
elevation contours with 0.05, 0.1, 0.15 and 0.2 m intervals were tested to see which elevation 
interval best captured the maize plants with the least amount of noise. The resulting contours 
were then queried on Z values of approximately 1 m below the highest located point in all 
areas, and with restrictions on both minimum and maximum length of contours. The querying 
on height was done in an attempt to exclude points in the point clouds that did not correspond 
to maize plants. The querying on contour length was done in an attempt to exclude very small 
and scattered contours as well as long contours outlining larger areas.  
 

Figure 12. In method 2, the point cloud (a) is turned into a 
continuous surface through triangulation (b), and then 
elevation contours are generated from this surface (c). The 
contours are then filtered on elevation and length in an attempt 
to locate maize plants. 
 
 
 
 
 
 
 
 
 

 
 

(a) (b) 

(c) 
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4 Results 
4.1 Point cloud exploration  
 
Views of the point clouds for Flight 1 and Flight 2 can be seen in figure 13, with points 
having RGB values from the UAV imagery. Upon visual inspection, both point clouds have 
an appearance resembling a maize field, with visibly clear maize rows as well as surface 
variations in every row that resembles maize plants. The red lines in the respective image 
show the location of transect lines of the point clouds created to inspect the elevation profile 
along a maize plant row (Fig. 14 and 15).  
 

 
Figure 13. (a) shows a view of the point cloud for Flight 1 and (b) shows the point cloud for Flight 2. Clear rows 
are visible in both flights, as well as height differences within the rows representing the different maize plants. 
The red line in respective image shows the location of elevation transects along a maize plant row (Fig. 14 and 
15). 
 
Point cloud transects are seen for Flight 1 (Fig. 14) and Flight 2 (Fig. 15), and show the 
differences in point-elevation along a row of maize plants. Peaks and valleys along the 
transect indicate the presence of individual plants. 
 

 
Figure 14. A transect profile of a point cloud for Flight 1 along a maize row. The coloring of points indicates 
their altitude.  Peaks and valleys in point altitude are visible, likely indicating positions of individual plants. 

(a) (b) 
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Figure 15. A transect profile of a point cloud for Flight 2 along a maize row. The coloring of points indicates 
their altitude.  Peaks and valleys in point altitude are visible, likely indicating positions of individual plants. 
 
Information about all training and validation areas, including the number of estimated plants 
in the area (Plant count), the initial elevation span before applying the Z threshold between 
the highest and the lowest located point (Orig. Z span) as well as the total number of points in 
respective sample area (Point count) are seen for Flight 1 (Table 1) and Flight 2 (Table 2). 
For Flight 1, the original Z span varied approximately 0.7 m between the area with the 
highest (T51) and the lowest Z span (SVA1). The DVA1 had the highest point count while the 
SVA1 had the lowest point count.   

For Flight 2, the original Z span varied approximately 1.39 m between the area with 
the highest (T32) and the lowest (T52) Z span. T52 had the lowest and T32 the highest point 
count. 
 
Table 1. Information about all the training (T11-T51) and validation areas for Flight 1, including the number of 
plants counted per area, the total number of points and the original span between the highest and lowest located 
point before applying the 2 m height threshold. 
  T11 T21 T31 T41 T51 DVA1 SVA1 

Plant count 29 24 18 18 22 30 23 
Orig. Z span (m) 3.02 2.64 2.44 3.09 3.21 2.56 2.38 
Point count 26740 26214 21387 22952 27577 29607 18741 
 
Table 2. Information about all the training (T12-T52) and validation areas for Flight 2, including the number of 
plants counted per area, the total number of points and the original span between the highest and lowest located 
point before applying the 2 m height threshold. 
  T12 T22 T32 T42 T52 DVA2 SVA2 
Plant count 22 19 22 13 24 21 17 
Orig. Z span (m) 3.42 3.68 3.83 2.49 2.44 3.27 3.00 
Point count 18030 17979 22580 19798 17853 21379 21054 
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4.1.1 Point cloud histograms of sample areas 

4.1.1.1 Sample areas of Flight 1 
 
The point frequency (Y axis) per elevation value (X axis) for the DVA1, SVA1 and T1 - T5 are 
shown in figure 16. Elevation values in the histograms are expressed in a local coordinate 
system used by CloudCompare; however, the X-axis value range is approximately 2m for all 
areas. Sparser areas such as T31, T41 and the SVA1 show a broader distribution over the 
range of elevations while the denser T11 and T21 areas displays a more concentrated point 
distribution. The DVA1 has a high concentration of points on higher elevations but also 
shows a slightly elevated tail in lower elevations. A long right-hand tail with a low point 
frequency can be noticed for T11, T41 and T51. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. The figure shows histograms of point count (Y-axis) per elevation (X-axis) for the DVA1, SVA1 and 
T1 to T5,  
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4.1.1.2 Sample areas of Flight 2 
 
The point frequency (Y axis) per elevation value (X axis) for DVA2, SVA2 and T12 - T52 are 
shown in figure 17. The sparser areas such as the SVA2, T22 and T42 have a broader point 
distribution over the range of elevations while the denser T52, T32 and T12 areas displays a 
slightly more concentrated distribution. The DVA2 in contrast also displays a relatively broad 
point distribution. The T12, T32 and DVA2 have long right-hand tails with low point 
frequencies. 

Figure 17. The figure shows histograms of point count (Y-axis) per elevation (X-axis) for the DVA2, SVA2 and 
T12 – T52.  
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4.2 Method 1: Detecting maize plant density from canopy structure 
 

4.2.1 Flight 1 

4.2.1.1 Average standard deviation plotted against cell size 
The SDavg calculated using different cell sizes is plotted for all training and validation areas 
in Flight 1 (Fig. 18). There is a trend of increasing SDavg with larger cell sizes. The SDavg also 
fluctuates more with larger cell sizes, from approximately 0.55 m and larger cell sizes. All 
areas except the DVA1 exhibit a lower SDavg with a higher number of maize plants, with T31 
(18 maize plants) showing the highest SDavg using most cell sizes. The DVA1 deviates as it 
has the highest number of plants (30 plants) and still among the highest SDavg across the 
different cell sizes. 
 

 Figure 18. The graph shows average standard deviation of the training areas (T11-T51) and the dense and sparse 
maize validation areas plotted against all cell sizes. The number of maize plants in each area is noted in the 
parenthesis in the legend on the right. 

4.2.1.2 Linear regressions between number of plants and average standard deviation 
Linear regressions between SDavg and the number of maize plants in the training areas was 
calculated using all cell sizes. Regressions for the 0.2, 0.5 and 0.8 m cell sizes are plotted in 
figure 19. The circles represent the five training areas while triangles correspond to the DVA1 
and the SVA1. The trend lines indicate a negative relationship between the number of plants 
and the SDavg. The SVA1 aligns well will the trend, while the DVA1 strongly deviates from 
the model. The goodness-of-fit differed for regressions using different cell sizes for 
calculating SDavg (Fig. 20), where the regression with 0.85 m cells showed the best goodness-
of-fit (R2 = 0.99) and the regression with 0.55 m cells the lowest goodness-of-fit (R2 = 0.74). 
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Figure 19. The average standard deviation (SDavg) of the training areas is plotted against the estimated number 
of maize plants for cell sizes of 0.2, 0.5 and 0.8 m (circles). A negative relationship between the number of 
plants and the SDavg of the training areas is indicated by the trend lines. The number of plants and SDavg of the 
dense and sparse validation areas (triangles) are plotted as reference. 
 

 
Figure 20. Blue circles represent the R2 values of regressions between average standard deviation and the maize 
plant count. Regressions were calculated with different cell sizes and all are presented in the graph. R2 values 
initially increase with cell size, and varies more with larger cell sizes.  

4.2.1.3 Prediction of dense growing maize 
Figure 21 shows predictions of maize plant count from the linear regressions for the DVA1. 
The predictions vary slightly with cell size used for the regression and are consistently lower 
than the estimated number of plants in the validation area. 
 

 
Figure 21. Predictions of the number of maize plants in the validation area of dense growing maize of Flight 1. 
Predictions are derived from the regressions between SDavg and maize plant count calculated using different cell 
sizes. 
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4.2.1.4 Prediction of sparse growing maize 
Figure 22 shows predictions of maize plant count from the linear regressions for the SVA1. 
The predictions vary with cell size used for the regression, and a trend of higher predictions 
can be seen with larger cell sizes. The predictions are within three plants of the estimated 
plant count (23 plants), with regressions using 0.65 – 0.75 m and 1.0 m cell sizes giving the 
most accurate predictions. 
 

 
Figure 22. Predictions of the number of maize plants in an area of sparsely growing maize. Predictions are 
derived from the regressions between SDavg and maize plant count calculated using different cell sizes. 

4.2.2 Flight 2 

4.2.2.1 Average standard deviation plotted against cell size 
The SDavg calculated using different cell sizes is plotted for all training and validation areas 
in flight 2 (Fig. 23). There is a trend of increasing SDavg with larger cell sizes for all areas. 
SDavg also fluctuates more with larger cell sizes, from approximately 0.8 m onwards. T22 and 
the SVA2 have low maize plant densities and display relatively high SDavg. T12 and T42 have 
relatively high maize plant densities and display lower SDavg. In contrast to this, the DVA2 

(21 plants) has the highest SDavg across the areas, while T42 (13 plants) has among the lowest 
SDavg.  
 

 
Figure 23. Average standard deviation plotted for all areas and cell sizes (m) in Flight 2. The number of maize 
plants in each area is noted in parenthesis in the legend on the right.  
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4.2.2.2 Linear regressions between number of plants and average standard deviation 
 
Linear regressions between SDavg and the number of maize plants in the training areas was 
calculated using all cell sizes. Regressions for the 0.2, 0.5 and 0.8 m cell sizes are plotted in 
figure 25 and the trend lines indicate a negative relationship between the two variables. T42 
was omitted from the regressions, as it was deemed an outlying sample area. This is further 
explored in section 4.2.4 (Fig. 35). The circles in the graph represent the four remaining 
training areas while triangles correspond to the DVA2 and the SVA2. The coefficient of 
determination differs between regressions calculated using different cell sizes (Fig. 26), with 
the regression using 0.9 m cell sizes displaying the highest goodness-of-fit (R2 = 0.72).  
 

 
Figure 25. The average standard deviation (SDavg) of the training areas (circles) are plotted against the estimated 
number of maize plants for the resolutions 0.2, 0.5 and 0.8 m. A negative relationship between the number of 
plants and the SDavg of the training areas is indicated by the trend lines. The number of plants and SDavg of the 
dense and sparse validation areas (triangles) are plotted as reference.  
 

 
Figure 26. The blue circles represent the R2 values of regressions between average standard deviation and the 
maize plant count. The regressions were calculated using different cell sizes and all are presented here. The R2 
values are low for the smallest cell sizes and a general trend of increased R2 values with cell size can be seen, 
although variations are large. 
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4.2.2.3 Prediction of dense growing maize 
 
Figure 27 shows predictions of maize plant count from the linear regressions for the DVA2. 
The predictions are consistently lower than the estimated number of plants in the validation 
area, and vary between approximately 19 and 16 maize plants. A trend of lower predictions 
for regressions using the largest cell sizes can be seen. 
 

 
Figure 27. The graph shows the different predictions of the number of maize plants in a validation area of dense 
growing maize. Predictions are derived from the regressions between SDavg and maize plant count calculated 
using different cell sizes. 

4.2.2.4 Prediction of sparse growing maize 
 
Figure 28 shows predictions of maize plant count from the linear regressions for the SVA2. 
The predictions are consistently higher than the estimated number of plants in the validation 
area, and vary between approximately 19 and 21 maize plants. 
 

 
Figure 28. The graph shows the different predictions of the number of maize plants in a validation area of sparse 
growing maize. Predictions are derived from the regressions between SDavg and maize plant count calculated 
using different cell sizes. 

4.2.3 Combined flights 

4.2.3.1 Linear regressions between number of plants and average standard deviation 
 
Linear regressions between SDavg and the number of maize plants in the training areas was 
calculated using all cell sizes. Regressions for the 0.4 and 0.8 m cell sizes are plotted in 
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figure 29. Circles represent training areas, excluding T42 (red square). The DVA and SVA 
areas from both flights are plotted for the 0.8 m cell size (blue triangles). Trend lines are 
fitted for the 0.8 m (R2 = 0.68) and 0.4 m (R2 = 0.54) resolutions, indicating a negative 
relationship between the two variables. An increasing trend of R2 values with cell size can be 
noticed in figure 30, with large deviations from this trend at 0.55 and 0.85 m cell sizes. The 
regression using 0.95 m cell size resulted in the highest R2 value (R2 = 0.78), while using the 
0.1 m cell size resulted in the lowest R2 (R2 = 0.42). Probability values (p values) are below 
the 0.05 significance level for all regressions except for three of the smaller cell sizes (Table 
3), indicating a significant relationship between the number of plants and SDavg for most 
regressions. 
 

 
Figure 29. The estimated number of plants and the average standard deviation (SDavg) is plotted for all training 
areas in both flights (excluding T42), for the 0.4 and 0.8 m cell sizes. The DVAs (triangles) and SVAs (blue 
squares) as well as T42 (red square) are plotted as reference. Trend lines indicate a negative relationship between 
the two variables.  

Figure 30. The blue circles represent the R2 values of regressions between average standard deviation and the 
maize plant count. The regressions were calculated with different sampling cell sizes and all are presented here. 
The R2 values increase slightly with cell size, but fluctuations from this trend can be noticed at 0.55 and at 0.85 
m cell sizes.  
 
Table 3. Probability-values (p values) shown for regressions made using different cell sizes. Probability values 
are seen to be below the 0.05 significance level for all regressions except those made with cell sizes of 0.1, 0.15 
and 0.2 m. 
Cell size  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
p value 0.040 0.060 0.057 0.050 0.034 0.031 0.022 0.023 0.022 0.018 
             
Cell size  0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
p value 0.046 0.018 0.009 0.010 0.006 0.006 0.025 0.007 0.002 0.002 
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4.2.3.2 Prediction of maize in validation areas 
 
Maize plant density was predicted for the dense and sparse validation areas of both flights, 
using the equations from the regression of all training areas. The predictions of the SVAs 
(Fig. 31) were within one or two plants of the counted number of plants, with the predictions 
of SVA1 being the most accurate. The predictions of both DVAs (Fig. 32) underestimated the 
number of plants. The accuracy of the predictions varied depending on the cell size used for 
the regressions, but no optimal cell size can be determined. 

Figure 31. The prediction of maize density in the sparse validation area (SVA) for each flight, in comparison to 
the estimated plant number in each SVA. The predictions in the graph are based on the regression of all training 
areas using different cell sizes. The counted number of plants is seen as a straight line in reference to the 
predictions. The predictions can be seen to be within one or two plants of the counted number of plants. 

Figure 32. The prediction of maize in the dense validation area (DVA) of each flight, in comparison to the 
estimated plant number in each DVA. The predictions in the graph are based on the regression of all training 
areas using different cell sizes. The counted number of plants is seen as a straight line in reference to the 
predictions, with colors corresponding to the ones used for the predictions. The predicted number of plants is 
underestimated for both DVAs. DVA1 was underestimated with between 7 and 11 plants, and DVA2 with 
between 4 and 7 plants.  
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4.2.4 Exploration of outlying data samples 

The DVA1 in Flight 1 as well as T42 in Flight 2 displayed deviating SDavg values in relation 
to plant density in comparison to other areas, and were therefore explored further.  

The DVA1 of Flight 1 displayed high standard deviation values in relation to the T11 
area in the same flight, although both had similar maize plant counts (31, 29 plants). Upon 
closer examination, a large amount of low-lying points was detected in the western and 
northeastern part of this area (Fig. 33, (a)). These low-lying points corresponded with the 
location of areas of high standard deviation in the grids (Fig. 33, (b)). The ground is clearly 
visible between the maize plants in this area upon inspection of the orthomosaic, and the 
plants grow slightly further apart (Fig. 33, (b)).  

Figure 33. The top figure (a) shows the point cloud of the DVA1 viewed horizontally from the south-eastern 
edge of the 4 x 4 m sample area. In (b) the same sample area (black square) is viewed from above, with a 0.4 x 
0.4 m grid of standard deviation viewed on top of the orthomosaic. Brighter cells in the grid equal higher 
standard deviation values, and correspond to the areas of low-lying points in the top figure as well as areas of 
clearly visible ground in (c). (c) shows the DVA1 sample area on top of the orthomosaic, with no grid overlaid.  

(a) 

(b) (c) 
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A similar inspection of T11 also showed that higher standard deviation values corresponded 
to areas where the ground was clearly visible between maize plants (Fig. 34), however the 
standard deviation values are comparatively lower than for the DVA1. 

 
Figure 34. In (a), the estimated location of maize plants is shown on top of the orthomosaic within T11. In (b), a 
grid of standard deviations (0.4 x 0.4 m) is shown on top of the same sample area. The areas where the ground is 
visible between the maize plants in (a) correspond to areas of higher standard deviation (brighter cells) in (b). 
 
T42 in Flight 2 displayed low standard deviation values in comparison to other areas in the 
same flight. As the area only had maize growing on one part of the field, it was omitted as an 
outlier from the regression analysis. Low standard deviation values corresponded to the area 
without maize plants (Fig. 35). 
 

 
Figure 35. In (a), the T42 sample area is seen on top of the orthomosaic, with blue points corresponding to 
estimated maize plant positions. The left side of the area is seen to be almost completely without maize. This 
area corresponds to low standard deviations as seen in (b), where a grid of 0.4 x 0.4 m resolution is fitted on top 
of the orthomosaic. Darker cells indicate lower standard deviation values. 

(a) (b) 

(a) (b) 
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4.2.5 Field scale plant density estimation 

The equation for the regression using 0.75 m cell size was used for estimating maize density 
in the AOI of flight 1, resulting in a plant density map on a field scale (Fig. 36, (a)). The map 
can be seen in relation to the orthophoto (Fig. 36, (b)), and a grid with 4 x 4 m cells is shown 
in the map where brighter cells indicates lower plant density. The dark area in the northern 
part of the grid indicates high plant density, and seems to correspond well with an area of 
densely growing maize as seen in the orthophoto. The brighter cells on the eastern side of the 
grid indicate areas of lower plant density, and correspond with an area of sparse growing 
maize on the orthophoto. The edges of the maize field, such as the north-west corner by the 
road, and the south-east corner, are estimated as areas of low plant density. This is likely 
since height contrasts between maize and bare ground resulted in high standard deviations. 
The same phenomenon can be seen for the south-western area, where a large tree and a group 
of smaller trees likely generated large variations in point heights in the point cloud.  
 

Figure 36. (a) shows a grid of estimated plant density based on standard deviation values within 4 x 4 m cells in 
the AOI of Flight 1. The cell values were calculated using an equation from the regression where the average 
standard deviation of the training areas had been calculated using a grid of 0.75 x 0.75 m cell sizes. The same 
AOI on top of an orthomosaic is shown in (b) without a grid overlaid. Areas of low plant density are represented 
by brighter cells and correspond to an area on the right-hand side of the orthomosaic as well as along the edges 
of the field and the south-western corner where a group of trees are located. An area in the north has darker cells 
that indicate dense growing maize, and this corresponds to an area of densely growing maize in the orthophoto.  
 
 
 
 
 
 
 
 

(a) (b) 
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4.3 Method 2: Detecting maize plants from elevation contours  
 
As the results for Flight 1 and Flight 1 yielded results of similar characteristics with this 
method, only the results for Flight 1 are presented here. Results for Flight 2 can be seen in 
Appendix E. 
 The contour lines were generated with 0.1m Z-value intervals and the contours were 
queried to contain lines of lengths between 0.2 and 3.0 m, on elevations minimum 1.0 m 
below the highest point in the validation area. The contour locations correspond to the 
estimated locations of the maize plants (blue dots) to some extent for both the DVA1 and the 
SVA1 (Fig. 37). However, many contours are found in places that do not contain a maize 
plant according to the estimated maize plant positions. The contour filtering for SVA1 
resulted in a somewhat larger number of estimated maize plant locations with no associated 
contours. 

 
Figure 37. The location of all contour lines (yellow lines) within the DVA1 (black square) is shown in (a). In (b), 
the remaining contours after the filtering on height and length in the DVA1 is shown. Maize plant locations 
estimated from the orthomosaic are shown as blue points as a reference. In (c) and (d), the same information is 
shown for the SVA1. 

(a) (b) 

(c) (d) 
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5 Discussion 
5.1 Data quality 
 
Blurry imagery due to displacement of the UAV camera during flight is known to impact the 
accuracy of plant height estimation (Han et al. 2018), the amount of features detected in the 
image, their correct positioning and the matching of features between photos in the bundle 
adjustment process (Sieberth et al. 2015) and might therefore have influenced the results of 
the two methods. The point clouds of the sampled training and validation areas contained 
differing amounts of points (Table 1 and 2), and the sample areas of Flight 2 had generally 
lower point counts than the sample areas of Flight 1. As the imagery of Flight 2 were deemed 
to be blurrier, this might indeed be attributed to the varying ability of feature identification 
algorithms to identify image features due to differences in blur and light conditions both 
within and between the two flights.  

Furthermore, the data was not gathered with 3D modelling in mind, and consequently 
did not employ an optimal flight planning for this purpose. The one-directional flight pattern 
used in this case might have hindered optimal quality of the produced point clouds in 
comparison to also including data gathered from a flight perpendicular to the first direction 
(De Souza et al. 2017).  
 

5.2 Method 1: Detecting maize plant density from canopy structure 
 
Li et al. and Mathews and Jensen, have previously attempted to estimate LAI through metrics 
of the canopy structure of crops. Similar to this, the first method of this study aimed to 
explore whether a metric of canopy structure could be used to estimate maize plant density. 
The metric of canopy structure used in this study was the SDavg of point heights within an 
area. The second research question of this study regarded finding an optimal sampling unit 
size for this metric. For this reason, the SDavg was calculated for twenty different grids with 
different sampling unit sizes, or cell sizes, in each sample area. In these grids, the cell values 
corresponded to the standard deviation of point height in the sample area point cloud (Fig. 
10). 

By plotting the SDavg versus grid cell size for the sample areas (Fig. 18 and 23), a 
general increase of SDavg with larger cell sizes could be noticed. This was expected, as the 
points are more likely to be of similar elevation the closer they are to each other. 
Furthermore, the SDavg fluctuated slightly after approximately 0.6 m cell sizes, and 
considerably after 0.8 m cell sizes. This was likely due to variations in the positioning of the 
cells within the 4 x 4 m sample areas. Since the training areas were aligned along the row 
direction of the maize field rather than north-south aligned, larger grid cells left triangular 
gaps that differed between cell sizes, meaning different parts of the area was covered 
depending on the cell size. To avoid these edge effects, the sampling cell size should 
therefore not be too large.   
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The coefficient of determination (R2 values) varied with the cell size used to sample standard 
deviation values for the regression equation, and the cell size used for the regression giving 
the best R2 values varied between Flight 1, Flight 2 and the combined flight (Fig. 20, 26 and 
30). No optimal cell size could therefore be determined. However, regressions using grids 
with the smallest cell sizes generally made for lower R2 values. Again, this is likely due the 
fact that points closer to each other have similar elevation values, and the smallest cell sizes 
might therefore be inadequate for capturing point variance. Resolutions of 0.8 m and lower 
showed a somewhat higher fluctuation in R2 values. However, when visually inspecting the 
graphs of R2 values in all three cases, an overarching trend of higher R2 values with lower 
resolutions could be noticed. The regressions using 0.6, 0.7 and 0.8 m cell sizes had relatively 
high R2 values in all cases, pointing to relatively large cell sizes being preferable for the 
method. This might be because larger cell sizes better captured variations in the canopy 
structure. In response to RQ2, no optimal sampling unit size could be concluded, but using 
cell sizes between approximately 0.6 and 0.8 might be suitable for this particular sampling 
method.  

In line with the assumption (Fig. 5), a pattern of lower standard deviations for sample 
areas with higher plant count was noticed. This held true especially for Flight 1, where only 
the DVA1 deviated from this trend (Fig. 18). For the sample areas of Flight 2 (Fig. 23), 
deviations from this trend could be seen for the DVA2 and T42. The histograms of point 
distributions (Fig. 16 and 17) gave clues to two issues related to the trend deviations in these 
areas.  

Firstly, the point distributions could be seen to align with the maize density in the 
respective areas to some extent, with more concentrated point distributions for areas of higher 
density. However, some areas deviated from this. The DVAs in both flights had a slightly 
broader frequency distribution than expected, as well as standard deviations closer to those of 
sparser areas. Further exploring the DVA1 of Flight 1, a high amount of points on low 
elevations were identified in two areas of the point cloud where more ground was seen 
between plants (Fig. 33). This increased SDavg and made for a broader point distribution 
within the area. These results are in line with the assumption outlined in section 3.3.1 (Fig. 
5), but simultaneously points to vulnerability of the method with regards to variations in plant 
density within sample areas.  
 The second issue noticed was the skewed distributions of points at different elevation 
within the areas. The histograms of some sample areas showed a presence of a few points on 
high elevations (See T12, Fig. 16), causing long right-hand tails on the graphs. A Z threshold 
of 2 m from the highest located point was applied to all areas to remove low lying noise, but 
due to the presence of these few highly located points, this threshold might have cut off low 
lying points that were correctly placed. This could have affected the derived standard 
deviations and consequently the accuracy of the regression analysis. However, it is also 
possible that part of the points on the tail belonged to maize tassels stretching above the bulk 
of other features in the canopy. Removing highly located points was therefore considered 
risky, especially since the elevation contour analysis could be assisted by the detection of 
maize plant tassels. A Z threshold based on a georeferenced ground surface would have 
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removed low lying noise points while ensuring that no relevant points were removed. Such an 
improvement should be considered in a future study. 

The T42 of Flight 2 displayed a broad point distribution in accordance with its low 
plant density (Fig. 18). However, the SDavg of this area was considerably lower than other 
areas of sparse density. This was likely due to the fact that the plot had a large area of bare 
ground in one part of the field (Fig. 35) and the low elevation variations of the bare ground 
area lowered the SDavg. Similar to the issues mentioned with the standard deviation of the 
DVAs, this point to vulnerability of this method with regards to varying plant densities within 
sample areas. It can be reasonable to assume that the methods would not work for areas that 
are not covered with maize plants of some density or another, and the T42 area was omitted 
from the regression analysis. 

However, the T42 area pointed to an important issue that arises upon upscaling this 
method for an entire field. If the density of a whole maize field is estimated section by 
section, the resulting standard deviations could be similar for a section with bare ground and 
a section with densely growing maize. Patches of bare ground is a likely scenario for 
smallholder maize farmers, and could result in misleading density-estimations with this 
method.  

Despite potential differences between Flight 1 and 2 regarding point cloud quality, 
maize heights, and plant spatial distribution, the regression from using training areas from 
both flights indicated a negative relationship between plant density and SDavg. This indicated 
that the results from both fields were consistent in the relation between the two variables. 
Predictions based on the regression of all training samples resulted in predictions similar or 
slightly better than the ones from the flights separately (Fig. 31 and 32). The predictions of 
the validation area with the highest accuracy were around 22 to 23 plants where 23 plants had 
been counted (Fig. 31). The predictions of the validation area with the lowest accuracy were 
between 19 and 22 plants where 30 plants had been counted (Fig. 32). This can be put into 
relation to Hall et al., who estimated 663 maize plants where 553 were counted 
(overestimation of 15%) using an object oriented image classification on maize fields in a 
similar environment (2018).  

Method 1 was finally used to predict maize densities on a field scale, using the point 
cloud of the AOI of Flight 1. The regression equation using a 0.75 m cell size was used for 
predicting plant density, since it had high R2 and low p values and was in the range of 
reasonable cell sizes as discussed earlier. The final result was a map of predicted maize plant 
density per 4 x 4 m cell (Fig. 36). When compared to the orthomosaic of the same area, the 
map could be seen to indicate densely growing areas as areas of high plant density, and vice 
versa. The field-level predictions likely did not give the true maize count, but showed that the 
standard deviation of the canopy structure in an area can to some extent indicate plant 
density. In answer to RQ1, the results were likely not accurate enough to indicate plant 
density on a level of detail suitable for precision agriculture purposes, but could possibly be 
used to improve yield forecasting models together with complementary data sets. R2 values 
and p values together indicated a relationship between canopy structure and plant density. 
The significance-level was set at 0.05, and all regressions except the ones using 0.1, 0.15 and 
0.2 sampling cell sizes (table 3) were statistically significant. However, it should be 
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emphasized that the data sample size in this exploratory study was too small to draw a strong 
conclusion of statistical significance between these variables. 
Furthermore, the predictions of maize density in the validation areas were of widely varying 
accuracy. The varying predictions were likely related to the variations in spatial distribution 
of plants inside the 4 x 4 m sample areas. One area can have the same amount of plants as 
another area, but if the spatial distribution of maize plants varies between the areas, the 
canopy structures modelled by the point cloud will differ. Since the SDavg is a metric based on 
the canopy structure, this results in different SDavg values in areas of the same plant count. 
This also means that if the maize plant distribution varies greatly over small distances 
without a clear pattern, the method is less likely to be accurate.   

The success of method 1 is therefore likely impacted by the spatial pattern of plants in 
maize field being modelled. Furthermore, the sample area size utilized is likely to be more or 
less suitable depending on the spatial distribution of maize. Using smaller sample areas could 
possibly lead to a more homogenous maize distribution within a single area, depending on the 
gradient of change at which maize plant density differs within a field. However, larger 
sample areas could also potentially mitigate the effect of varying plant distribution. If the 
canopy structure is averaged in a larger sample area, variations in plant distribution within the 
area might have a smaller impact overall. If the sample area is too small, variations in plant 
distributions risk leading to larger spreads in standard deviations for areas with similar plant 
counts. 

As the sample size of this study was small, a future study should include a larger 
sample to enable greater certainty of the results. Apart from using a larger sample size, a 
future study should also explore the impact of different sample area sizes for using this 
method in a similar growing environment. Furthermore, such a study should also employ 
optimal data gathering practices with regards to flight pattern as well as less blurry imagery. 
A future study can also further evaluate the accuracy of this method by comparing the field 
maize density map (Fig. 36) to validation data on maize plant density in larger areas sampled 
in the field.  

5.3 Method 2: Detecting maize plants from elevation contours  
 
The transects of the maize field point clouds showed peaks and valleys along the transect 
lines that represented maize plants (Fig. 14 and 15), and this indicated the possibility of 
generating elevation contours that would delineate individual plants. An initial assumption 
was that setting a maximum length of the contour would be enough to delineate the smaller 
tops that would represent the center-located maize plant tassels. However, this generated 
many smaller contours in places where likely no maize plants were positioned. The next 
attempt utilized both a minimum Z value and an interval of contour lengths which was 
believed to be long enough not to encompass small and scatter contours, but small enough to 
exclude all contour lines that connected larger areas between the maize plants. This generated 
a collection of contours in the vicinity of every maize plant, but did not generate a result of 
clearly-defined contours on positions close to the maize plants estimated center (Fig. 37).  
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The maize plants tassels constitute the center of the maize plants, but might have been 
too small in relation to the resolution of the imagery used in this study to be identified as 
image features. Instead, a collection of top leaves sticking out in different directions likely 
provided multiple peaks for individual maize plants. Furthermore, if the maize plants are of 
differing heights, contour lines generated on a certain elevation might capture one plant but 
not another. These contours were therefore difficult to trust and use as a reference for the 
location of individual maize plants. However, the locations of maize plants were estimated 
remotely from orthomosaics, and the height was estimated from field data of subplots in the 
vicinity. Therefore, the accuracy of the results could not be precisely determined. Validation 
data on the location and height of the plants would have been greatly beneficial in 
determining values for querying contours, and helped quantify the impact of data quality on 
the results. 
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6 Conclusions 
The increasing need for resource-efficient food production is highlighted by an increasing 
global population, with the largest projected population increase on the African continent. 
Crop monitoring with remote sensing could contribute both to furthering crop productivity in 
smallholder farmers and be used for yield forecasting. In light of this, two methods for crop 
monitoring of agricultural smallholder farm fields in Ghana were tested in this study. The two 
explored methods utilized SfM point clouds in attempts to estimate maize plant density, an 
important crop parameter related to yield. The first method explored a potential relationship 
between a metric of variations in canopy structure and maize plant density. The results of this 
method indicated a relationship between the two variables, and might therefore have potential 
for providing indications of variations of maize plant density within a field. However, it 
should be emphasized that the sample size of this exploratory study was too small to draw a 
conclusion of a statistical relationship between the two variables. Furthermore, the method 
proved vulnerable with regards to the presence of larger areas of bare ground as well as 
heterogeneity of the plants distribution within the sample area. A future study should 
therefore utilize a larger sample, mask out large areas of bare ground before applying the 
method, as well as explore different sample area sizes to potentially mitigate the impact of 
heterogeneous plant distributions.   

The second method attempted to locate individual maize plants through an elevation 
contour analysis. This method produced results of low accuracy, as the contours did not 
consistently align with the estimated location of the maize plants. The lack of a clearly 
definable center-point in the maize plants likely led to scattered contours, making it difficult 
to outline individual plants. Differing maize heights within an area also makes it hard to 
capture the top of individual maize plants. The method is therefore likely inadequate for 
locating objects with a complicated geometry such as maize plants.  

In addition, the results were likely influenced by poor data quality. The accuracy of 
the point clouds might have been lowered due to varying light conditions during flight, image 
blurriness (Sieberth et al. 2014; Dandois et al. 2015) as well as suboptimal flight planning 
(De Souza et al. 2017). This could have resulted in incorrectly placed low, or high lying 
points. However, due to a lack of validation data, the influence of data quality could not be 
determined on either method.  

Nevertheless, the potential of relatively low cost methods based on SfM point clouds 
motivate further exploration in this field. Apart from revising the methods according to the 
previous discussion, future studies should consider stable light conditions and employ state of 
the art UAV flight planning for gathering data for constructing SfM point clouds. 
Additionally, validation data of the height and location of maize plants should be employed 
to assess accuracy of the SfM point clouds and better outline the viability and shortcomings 
of these SfM based methods. 
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8 Appendix A 
Flight 1: Orthomosaic in Area of Interest 

Figure 1. The Area of Interest (red rectangle) in which data was sampled for Flight 1, shown on top of the 
orthomosaic created from the drone imagery used in this study. 
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9 Appendix B 
Flight 2: Orthomosaic, Area of Interest (AOI) 1 
 

Figure 1. The Area of Interest (AOI) number 1, in which data was sampled for Flight 2 (blue rectangle). The 
AOI is shown on top of the orthomosaic created from the drone imagery used in this study. 
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10 Appendix C 
Flight 2: Orthomosaic, Area of Interest 2 
 

Figure 1. The Area of Interest (AOI) number 2, in which data was sampled for Flight 2 (red rectangle). The AOI 
is shown on top of the orthomosaic created from the drone imagery used in this study. 
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11 Appendix D 
Flight 2: Areas of Interest and sample areas 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The two Areas of Interest (AOI) in which the sample was taken (red and blue rectangles), together 
with the total of 7 sample areas (black and yellow squares). The AOIs are shown on top of the orthomosaic 
created from the drone imagery used in this study. 
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12 Appendix E 
Flight 2: Contour analysis for finding individual maize plants 
 
The generated contours are located at some of the estimated maize plant locations for the 
DVA2 (Fig. 1, (a) and (b)), however many contours are also found at locations not 
corresponding to the estimated locations. The contours for the SVA2 are less accurately 
located, and fewer contours are found in the estimated locations of the maize plants (Fig. 1, 
(c) and (d)).  
 

 

Figure 1. In (a), all generated height contours are shown for the DVA2 (black square). In (b), the same sample 
area is shown but containing only the remaining contour lines after filtration on height and length. The same 
information of contour lines before filtering on height and length (c) and after filtering (d) for SVA2. The 
estimated locations of the maize plants are shown as blue dots to be used in reference to the filtered contour 
lines. 
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