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Abstract

A fundamental question in aging research is if the human lifespan has reached its max-

imum, as it has practical implications and affects the sustainability of our societies and

health care systems. This thesis uses methods and techniques from extreme value theory

to study human lifespan at extreme age, in particular the age at death of the world’s oldest

person (WOP) titleholders. Our study is a contribution to aging research for understanding

whether extreme value analysis is useful in modeling life at extreme age and if the models

used to fit the data predict the existence or lack of a limit to human life length.

Both the stationary and non-stationary models were considered for modeling the data. The

stationary generalized extreme value (GEV) distribution and stationary generalized Pareto

(GP) distribution which were fitted to the data indicated existence of a limit to human

lifespan with an upper bound ranging between 123 and 126 years. A better fit was obtained

with the non-stationary GEV model with trend in the location parameter, which took into

account the trend in the individual’s ages over the years. The non-stationary model does

not however indicate an existence of a limit to human life length. Assuming that the

linear trend in the location parameter holds in the future, a forecast probability of beating

the current world’s age record (122.45 years) for individuals born between 1902 and 1965

indicated more than 60% chance of observing a new age record for individuals born after

1940.
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1 Introduction

1.1 Background

The maximum human life span has increased considerably over the past century, mainly due

to factors such as the technological progress, the hygiene and biomedicine. Demographic

studies in Sweden, which gathered data on the recorded maximum ages at death for both

men and women, have shown that the maximum age at death has increased remarkably

between the 1860s and 1990s from 101 to 108 years, respectively. The rate of increase was

observed to accelerate from 0.44 years per decade in the 1960s to 1.11 years per decade the

following years. Studies also showed that women tend to live 1.7 years longer than men.

The results obtained in Sweden could be generally applied to other highly industrialized

countries in the world (Western Europe and North America) and attest that more than

70% of the increase in maximum age at death, is due to considerable reductions in death

rate above age 70.

The maximum lifespan, together with the average lifespan, are a stable characteristic of a

species. However the existence or lack of a limit to lifespan has divided researchers over

the years and convincing answers to this question have not been given yet. Some of the

supporters of a limit for human lifespan claim that “the maximum lifespan of humans is

fixed and subject to natural constraints” (Dong et al. (2016)) [1], others claim that “a

biologic barrier forecast” limit further lifespan progress (Antero-Jacquemin et al (2014))

[2]. Some researchers provide arguments both for and against the existence of a limit for

human lifespan as seen in papers by Aarssen and de Haan (1994) [3], Wilmoth et al. (2000)

[4] and (Weon and Je(2009)) [5]. The supporters of a non-limit for human lifespan such as

Gampe (2010) [6] claim that “human mortality after age 110 is flat at a level corresponding

to an annual probability of death of 50%”, Rootzén and Zholud. (2017) [7] give a similar

conclusion as Gampe [6] that “after 110 the risk of dying is constant and is about 47%

per year”. Medford and Vaupel (2019) [8] investigate how likely it is that the current

age record has held until now and how long it might stand in the future by studying life

length records via the (inter-) record times and using methods from statistical Records

Theory. Their findings indicate “a 25% chance that the record would have survived until

now and around a one in five chance that it will survive until 2050”. Studies [9] in aging

research confirm factors that help slowing down aging such as: healthy diet, exercise, social

engagement, meaning and purpose. Researchers agree that 20 to 30% of longevity is based

upon genetics, which means that 70% to 80% is due to the factors named above.
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The paper by Rootzén and Zholud (2017) [7], which inspired this thesis project, studies

the mortality of supercentenarians (someone who has reached 110 years) using Extreme

Value Theory. The Generalized Pareto (GP) distribution is used to model excess lifespan

of individuals with threshold u = 110. Due to the method of data sampling used, the data

is truncated and the GP distribution gives three different behaviours of force of mortality:

• The first case, the force of mortality tends to infinity and life is limited.

• The second case, the force of mortality is constant, life has no limit but it is short.

• The third case, the force of mortality tends to zero with age, life is unlimited.

Figure 1: Force of mortality against age [7]

The paper considers the GP distribution and exponential distribution (this corresponds to

the GP distribution with the shape parameter γ = 0 ), to be the appropriate models for the

data and studies the force of mortality for supercentenarians, also the difference in survival

based on various factors such as gender, birthday and region. No difference in survival

based on gender, birthday and region is observed and a prediction for the next 25 years

shows that maximum life length will fall between 119 and 128 years.

1.2 Objective and aims

As discussed in the previous section, the complexity of modeling extreme life length has led

to many controversies and debates between researchers. A lack of adequate mathematical

model and the lack of available and reliable data for extreme old age are the main challenges

for this subject. The main goal of this project is to build a mathematical model for extreme

life length and make predictions on maximum life length in the future. The results will

contribute to earlier studies on understanding the extreme life length modeling, in particular

for previous researches based on extreme value theory.
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Extreme value theory provides statistical techniques and models for analyzing the distri-

bution of the extreme parts of data such as extreme floods, the amount of large insurance

losses, road safety analysis or extreme life length in this case. The thesis will apply ex-

treme value theory models used by Rootzén and Zholud (2019) [7] such as the Generalized

Pareto distribution and the Exponential distribution but also models not used by Rootzén

and Zholud (2019) [7] such as the Generalized Extreme Value (GEV) model, and the non-

stationary GEV model. The parameter estimates of various distributions and the inference

for return levels and upper bound will be analyzed in an attempt to understand future

predictions on extreme life length.

This thesis aims to model the life length of the world’s oldest person (WOP) titleholders.

One of the obstacles faced in the study of extreme life length is the lack of reliable data on

extreme age, the data is obtained from the Gerontology Research Group (GRG) database

[10], which contains validated ages of the WOP titleholders from 1955 to 2018. The last

section will take into account the current living person using the survival analysis method:

censoring [11].

This project will try to bring answers to the following questions:

• Can extreme life length (in this case the world’s oldest person titleholders) be modeled

by extreme value theory models such as the Generalized Extreme Value distribution

and the Generalized Pareto distribution?

• If so, do the models used to fit the data predict the existence or lack of a limit to

human life length?

The results of this thesis will be compared to the results and conclusions of papers written

on this topic by Rootzén and Zholud.(2017) [7] and Medford and Vaupel (2019)) [8].
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2 Extreme Value Theory

The theory on extreme value analysis presented in the sections below is based on the book

[12] by Coles (2011), which provides a more detailed review on the theory of statistical

modeling of extreme values.

Let X1, ..., Xn be a sequence of independent random variables with a common distribution

function F . The goal is to model the statistical behaviour of Mn = max{X1, ..., Xn}, where

Mn is the maximum of the process over n time units of observation.

In case F is known, the distribution of Mn is given for all values of n:

Pr{Mn ≤ z} = Pr{X1 ≤ z, ...,Xn ≤ z}
= Pr{X1 ≤ z} × ...× Pr{Xn ≤ z}
= {F (z)}n,

In practice, F is unknown therefore we consider Fn, estimated using extreme data. For

z < z+ such that F (z) = 1, Fn(z) converges to 0 as n −→∞. The consequence will be that

the distribution of Mn degenerates to a point mass z+. This problem is solved by letting a

linear re-normalization of the variable Mn:

M∗n =
Mn − bn

an

where {an > 0} and {bn} are constant such that, when well chosen, stabilize the location

and scale of M∗n as n increases. The limiting distribution of M∗n always belongs to one of

the following distributions:

1. G(z) = exp
{
− exp

[
−
(
z−b
a

)]}
−∞ < z <∞;

2. G(z) =

0, z ≤ b
exp

{
−
(
z−b
a

)−α}
z > b

3. G(z) =

exp
{
−
[
−
(
z−b
a

)]α}
z < b

1, z ≥ b
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These extreme value distributions are named Gumbel, Fréchet and Weibull distributions, re-

spectively with location and scale parameters b and a > 0, respectively and for distributions

2 and 3, α > 0.

2.1 Generalized Extreme Value Distribution

The family of distributions considered in the previous section can be combined into a single

distribution family: the generalized extreme value distribution (GEV) defined by Coles

(2001) [12] as below:

If there exist sequences of constants {an > 0} and {bn} such that

Pr {(Mn − bn)/an ≤ z} −→ G(z)

as n−→ ∞ for a non-degenerate distribution function G, then G is a member of the GEV

family.

G(z) = exp

{
−
[
1 + γ

(
z − µ
σ

)]−1
γ

}
(1)

defined on {z : 1 + γ( z−µσ ) > 0}, where −∞ < µ <∞, σ > 0 and −∞ < γ <∞.

When γ = 0, the GEV family is considered as the limit of eq.(1) as γ −→ 0. This is the

Gumbel family with distribution function:

G(z) = exp

{
− exp

[
−
(
z − µ
σ

)]}
−∞ < z <∞;

Let X1, X2..., Xn be independent observations divided into m blocks of equal length, then

the maximum values Mn in each block have a distribution, which can be approximated

asymptotically by the GEV distribution.

2.1.1 Inference for the GEV distribution

There are different techniques used to estimate parameters in extreme value model, the

likelihood-based technique will be used in this project because of its all-round utility and
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its ability to adapt to complex model-building. However, the use of likelihood methods

requires certain conditions to be satisfied, otherwise the results won’t be applicable: in case

γ > −0.5, the estimators have the usual asymptotic properties, for for −1 < γ < −0.5, the

estimators can be obtained but will not have the standard asymptotic properties, and when

γ < −1, the maximum likelihood estimators are unlikely to be obtainable.

The log-likelihood for the parameters considering Z1, ..., Zm as independent variables (block

maxima) with GEV distribution and γ 6= 0 is:

l(µ, σ, γ) = −m log(σ)−
(

1 +
1

γ

) m∑
i=1

log

[
1 + γ

(
zi − µ
σ

)]
−

m∑
i=1

[
1 + γ

(
zi − µ
σ

)]−1
γ

(2)

given that:

1 + γ

(
zi − µ
σ

)
> 0 (3)

for i = 1, ...,m. In case eq.(3) is not satisfied, the likelihood will be zero and log-likelihood

equal to ∞.

The case γ = 0 corresponds to the Gumbel distribution and the log likelihood is:

l(µ, σ) = −m log(σ)−
m∑
i=1

(
zi − µ
σ

)
−

m∑
i=1

exp

{
−
(
zi − µ
σ

)}
.

The maximum likelihoods estimates (µ̂, σ̂, γ̂) follow a multivariate normal distribution with

mean (µ, σ, γ) and variance-covariance matrix is obtained from the inverse of the observed

information matrix evaluated at the maximum likelihood estimate.

2.1.2 Return level

The extreme quantiles of the annual maximum distribution are estimated by inverting eq.(1)

and obtain:
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ẑp =

{
µ̂− σ̂

γ̂ [1− y−γ̂p ], γ̂ 6= 0

µ̂− σ̂ log yp, γ̂ = 0

where yp = − log(1− p)

V ar(ẑp) ≈ 5zTp V 5 zp, (4)

V is the variance-covariance matrix of (µ̂, σ̂, γ̂) and

5zTp =

[
∂zp
∂µ

,
∂zp
∂σ

,
∂zp
∂γ

]
=
[
1,−γ−1(1− y−γp ), σγ−2(1− y−γp )− σγ−1y−γp log yp

]
evaluated at (µ̂, σ̂, γ̂).

Right end-point

In case γ̂ < 0, the upper bound of the distribution (infinite observation return period) can

be estimated. The maximum likelihood estimate is :

ẑ0 = µ̂− σ̂

γ̂

The variance is obtained as in eq.(4) with

5zT0 = [1,−γ−1, σγ−2]

evaluated at (µ̂, σ̂, γ̂). The right end-point is equal to infinity if γ̂ ≥ 0.

The results for return level inferences should be considered with caution because the as-

sumption of normal distribution of the maximum likelihood estimates might not give the

best results.
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2.1.3 Profile likelihood

The evaluation of the parameters by profile likelihood consists of keeping one parameter

fixed and maximize the log-likelihood eq.(2) with respect to the other parameters. This

process is repeated for a range of values of the fixed parameter.

Profile likelihood is also used for estimating the right end-point:

ẑ0 = µ̂− σ̂

γ̂

by reparameterizing the GEV distribution (eq.1) and write z0 as a parameter of the model.

This can be done by rewriting the location parameter:

µ̂ = ẑ0 +
σ̂

γ̂

We replace µ̂ in the log-likelihood function and find the maximum likelihood estimate of

ẑ0. The confidence interval is evaluated by choosing the points where the log-likelihood

function l(ẑ0, σ, γ) intercepts the function

l(ẑ0, σ, γ)− 1

2
χ2
1(α),

where χ2
1(α) is the α quantile of the χ2

1 distribution.

2.2 Generalized Pareto distribution

The fact that the GEV model only considers the block maxima is less effective and over-

looks other extreme data available. The Peak over Threshold (POT) approach includes the

extreme events over a threshold u. The number of exceedances over threshold follows a

Poisson distribution asymptotically.

If X1, X2, ... is a sequence of independent and identically distributed random variables with

a common distribution F , then it makes sense to consider even those observations xi that

exceed a predefined threshold. Let X represents an arbitrary term in the Xi sequence, then

the following conditional probability describes the stochastic behaviour of extreme events:

14



Pr{X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, y > 0

Similar to the GEV model, the distribution of threshold exceedances has an unknown parent

distribution F and other approximation methods will be applied.

Let X1, X2, ... be a sequence of independent random variables with common distribution

function F , and let

Mn = max{X1, ..., Xn}.

Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies the GEV

distribution, so that for large n,

Pr{Mn ≤ z} ≈ G(z),

where

G(z) = exp

{
−
[
1 + γ

(
z − µ
σ

)]−1
γ

}

for some µ, σ > 0, and γ. Then, for large enough u, the distribution function of (X − u),

conditional on X > u, is approximately

H(y) = 1−
(

1 +
γy

σ̃

)−1
γ

(5)

defined on {y : y > 0 and
(
1 + γy

σ̃

)
> 0}, where

σ̃ = σ + γ(u− µ).

Eq.(5) defines the family of Generalized Pareto distributions. The parameters of GPD are

uniquely determined by those of GEV; in particular, the shape parameter γ is the same

for both distributions. The relationship between the GEV and generalized Pareto families

means that γ is important in explaining the behaviour of the GPD. If γ < 0, the distribution

has an upper bound of σ̃
|γ| ; in case γ > 0 the distribution does not have an upper bound.

When γ = 0, the distribution has no upper limit and is written as:

15



H(y) = 1− exp
(
− y
σ̃

)
, y > 0,

H(y) is an exponential distribution with scale parameter σ̃.

2.2.1 Modeling Threshold Excesses

Just as for the block maxima approach, the choice of the right threshold can be an issue

because too low a threshold will lead to bias and too high a threshold gives a high variance.

Two methods will be used to choose the appropriate threshold: the first method is based

on the mean of GPD and the second method applies a range of thresholds and choose the

value above which the shape parameter estimate γ is approximately constant.

Mean Residual Life Plot

Let X1, ..., Xn be a sequence that generates excesses of a threshold u0 modeled by GPD

and X an arbitrary term of the sequence such that:

E (X − u0|X > u0) =
σu0

1− γ
,

given that γ < 1, σu0 represents the scale parameter that corresponds to the excesses of

u0. If GPD holds for u0, it should also hold for all thresholds u > u0, with an appropriate

change of scale parameter to σu. For u > u0:

E (X − u|X > u) =
σu

1− γ

=
σu0 + γu

1− γ

Then, the conditional mean is a linear function of u. The sample mean of the threshold

excesses of u gives an empirical estimate of E (X − u|X > u). For values of u for which

GPD model is appropriate, the estimates will change linearly with u. Let x(1), ..., x(nu) be

observations that exceed u, the locus of points{(
u,

1

nu

nu∑
i=1

(x(i) − u)

)
: u < xmax

}
,
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where xmax is the largest of the Xi and nu is the number of observations exceeding u, is

the mean residual life plot. This plot should be linear in u above the threshold u0 at which

the GPD provides an appropriate approximation. The confidence intervals are included in

the plot and the sample means follow a normal distribution.

Model Based Approach

Another method of choosing the appropriate threshold is the model based approach, which

looks for the stability of parameter estimates. As described in the previous section, if the

generalized Pareto distribution can model the excesses of a threshold u0, it should also be

able to model the excesses of a threshold u such that u > u0. Even if the shape parameter

of the two distributions are identical, the scale parameter for u, σu changes with u unless

γ = 0:

σu = σu0 + γ(u− u0),

To solve this problem, the generalized Pareto scale parameter is reparameterized to be

constant with respect to u.

σ∗ = σu − γu,

If u0 is the right threshold for excesses to follow a GPD, the estimates of both σ∗ and γ

will be constant above u0. Hence, the valid threshold is chosen by plotting both σ̂∗ and γ̂

against u, together with confidence intervals for each of these quantities and selecting u0 as

the lowest value of u for which the estimates remain near constant.

2.2.2 Inference for generalized Pareto distribution

Maximum likelihood is used to estimate the parameters of GPD. Let y1, ..., yk be the se-

quence of threshold excesses, when γ 6= 0 the log-likelihood is:

l(σ, γ) = −k log σ −
(

1 +
1

γ

) k∑
i=1

log
(

1 +
γyi
σ

)
,

where
(
1 + γyi

σ

)
> 0 for = 1, ..., k.
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When γ = 0, the log-likelihood is:

l(σ) = −k log σ − σ−1
k∑
i=1

yi.

Numerical methods are used for parameter estimation and the choice of parameters requires

extra care otherwise the algorithm will fail.

2.2.3 Return Level

In extreme value modeling, it is usually more interesting to study the behaviour of quantiles

than individual parameter estimates. Let the GPD with parameters σ and γ be a convenient

model for the threshold u exceedances given by X. Given x > u,

Pr {X > x|X > u} =

[
1 + γ

(
x− u
σ

)]−1
γ

,

Then, we have

Pr{X > x} = ζu

[
1 + γ

(
x− u
σ

)]−1
γ

,

where ζu = Pr{X > u}. Let m be the period of observation, the return level xm that is

exceeded on average once every m observations is given by rearranging

ζu

[
1 + γ

(
x− u
σ

)]−1
γ

=
1

m

it follows that

xm = u+
σ

γ
[(mζu)γ − 1] ,

given that m is large enough such that xm > u.

Sometimes there are ny > 1 observations per year, then the number of observations m is

given by m = N × ny and the N -year return level is:
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zN = u+
σ

γ
[(Nnyζu)γ − 1] ,

Right end-point

Similar the GEV distribution, the GPD has upper end-point when the shape parameter

γ < 0. Here the return level estimate ẑ0, also know as the infinite period observation, is

given by

ẑ0 =
σ̂

|γ|

2.3 Model Diagnostics

It is of great interest to check the accuracy of the fitted model since the reliability of the

results about some aspect of the population from which the data were drawn depend on it.

Due to a lack of additional sources of data, the accuracy of the model will be judged using

the data from which it was derived.

2.3.1 Probability Plot

Given an ordered sample of independent observations

x(1) ≤ x(2) ≤ ... ≤ x(n)

from a population with estimated distribution function F̂ , a probability plot consists of the

points {(
F̂
(
x(i)
)
,

i

n+ 1

)
: i = 1, ..., n

}

The estimated distribution function F̂ is accepted if the points of the probability plot lie

close the unit diagonal.
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2.3.2 Quantile plot

Given an ordered sample of independent observations

x(1) ≤ x(2) ≤ ... ≤ x(n)

from a population with estimated distribution function F̂ , a quantile plot consists of the

points {(
F̂−1

(
i

n+ 1

)
, x(i)

)
: i = 1, ..., n

}
.

The estimate distribution function F̂ is an appropriate estimate of F if the quantile plot

lies close to the unit diagonal.

2.4 Non-Stationary model

Non-stationary processes have characteristics that change systematically with time. For

example in the case of environmental processes, the seasonal effects create different climate

patterns, which raise doubts of applying a constant distribution through time. This requires

the non-stationary processes to have a different treatment.

When the annual maximum observations increase linearly with time, but in other aspects

the distribution (GEV distribution in this case) does not change, then it’s plausible to model

Zt, the annual maximum observation as

Zt ∼ GEV (µ(t), σ, γ),

where

µ(t) = β0 + β1t

for parameters β0 and β1. The latter represents the annual rate of change in annual maxi-

mum observation.The location parameter µ may be expressed in other forms, for example as

a quadratic model, change-point model, etc. The non-stationary model applies to the other
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extreme value parameters as well. For example, the scale parameter σ can be represented

as an exponential function as follows:

σ(t) = exp (β0 + β1t),

the use of the exponential function keeps σ positive for all values of t. Given the complexity

of modeling extreme value shape parameters, they are usually kept constant.

2.4.1 Parameter inference

Maximum likelihood is preferred to other methods for its adaptability to changes in model

structure. Let the annual maximum observation Zt for t = 1, ...,m have a GEV distribution:

Zt ∼ GEV (µ(t), σ(t), γ(t)) ,

For γ(t) 6= 0, then the log-likelihood is:

l(µ, σ, γ) = −
m∑
t=1

{
log σ(t) +

(
1 +

1

γ(t)

)
log

[
1 + γ(t)

(
zt − µ(t)

σ(t)

)]
+

[
1 + γ(t)

(
zt − µ(t)

σ(t)

)] −1
γ(t)

}

given that

1 + γ(t)

(
zt − µ(t)

σ(t)

)
> 0

for t = 1, ...,m

The parameter estimates are obtained by maximizing the log-likelihood function using nu-

merical techniques.

2.4.2 Autocorrelation Function (ACF)

The autocorrelation function evaluates the dependency of a process according to different

time periods. Let’s consider a process X such that the stochastic variable Xt, Xs ∈ X,

where t and s are different time-points, then the autocorrelation function R, is defined by:
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R(s, t) =
E[Xt − µt]E[Xs − µs]

σtσs

where µt, µs and σt, σs is the mean and standard deviation of the stochastic variables,

respectively. The range of the autocorrelation function lies between [−1, 1], where the value

of 1 indicates a perfect correlation and −1 indicates perfect anti-correlation.

2.4.3 Likelihood Ratio Test

The likelihood ratio test is used to compare two nested models say M0 (with parameter

θ(2)) and M1 (with parameter θ0 = (θ(1), θ(2))) with condition that the k-dimensional sub-

vector θ(1) = 0. Let l0(M0) and l1(M1) be the maximized values of the log-likelihood for

models M0 and M1 respectively, a test of the validity of model M0 relative to M1 at the

α level of significance is to reject M0 in favor of M1 if D = 2{l1(M1) − l0(M0)} > cα,

where cα is the (1− α) quantile of the χ2
k distribution.

2.5 Censoring

Survival analysis studies time-to-event data in diverse fields such as economics, medicine,

biology, public health, etc. This analysis might present some problems depending on how

the data is featured. One of those features is known as censoring and this means that for

some data, the event is known to have happened in some period interval, whereas for the

rest of the data, the exact lifetime is known. There are different types of censoring: right

censoring is when the individual is known to be alive at a given time, for left censoring, the

individual has experienced the event of interest before the start of the study and interval

censoring is when the event of interest is known to occur within some interval. Only right

censoring will be used in this project. Theory in this section is based on the book [11] by

Klein and Moeschberger (1997), which is recommended for a more detailed review of the

theory on survival analysis.

2.5.1 Right censoring

For a given individual in the experiment, there is a lifetime X and a fixed censoring time

Cr. When X ≤ Cr, the exact lifetime is known otherwise the individual is a survivor and

the event time is censored at Cr. A pair of random variables (T, δ) is used to represent the
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data from the study. When δ = 1, the lifetime X is observed and equals T , when δ = 0,

the lifetime is censored and Cr equals T .

In this project, individuals enter the study at different time and the censoring time is fixed

by the investigator. The data will be represented by a Lexis diagram where the calendar

time is on the horizontal axis and lifetime is given by 45◦ line.

Figure 2: Lexis diagram for right censoring [11]

In the figure above, the life length of patients 1 and 3 are known (δ = 1), whereas patients

2 and 4 are censored given that they are still alive at the end of the experiment (δ = 0).

2.5.2 Likelihood construction

Let’s assume that the lifetimes and censoring times are independent, likelihood construction

requires extra care on what information each observation provides. If an observation has

an exact event time, it provides information that the event occurs at this time, which

can be approximated to the density function of X at this time. In case of right censored

observation, the lifetime is larger than the time of study so the information is the survival

function evaluated at the on study time.
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L ∝
∏
i∈D

f(xi)
∏
i∈R

S(Cr)

D represents the set of death times, R the set of right censored observations, S(Cr) is the

survival function.

A detailed construction of the likelihood for right censoring is given below:

For δ = 0,

Pr[T, δ = 0] = Pr[T = Cr|δ = 0]Pr[δ = 0] = Pr(δ = 0)

= Pr(X > Cr) = S(Cr).

For δ = 1,

Pr[T, δ = 1] = Pr[T = X|δ = 1]Pr[δ = 1]

= Pr(X = T |X ≤ Cr)Pr(X ≤ Cr)

=

[
f(t)

1− S(Cr)

]
[1− S(Cr)] = f(t).

Combining the two expressions into one gives:

Pr(t, δ) = [f(t)]δ[S(t)]1−δ.

With the random sample of pairs (Ti, δi), i = 1, ..., n, the likelihood function is

L =
n∏
i=1

Pr[ti, δi] =
n∏
i=1

[f(ti)]
δi [S(ti)]

1−δi (6)

The GEV distribution will be considered in this project and the parameters are estimated

by maximizing the log-likelihood function of eq.(6) using numerical techniques.
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3 Data and Methods

The first part of this section describes how the data was collected and which parts were

used in the study. The second part contains the results obtained from different analyses,

given in this order: Generalized extreme value distribution, Gumbel distribution, Peak

over Threshold approach, Exponential distribution, non-stationary model, the probability

of observing a new age record and the non-stationary model with censoring.

3.1 Data collection

The world’s oldest person (WOP) titleholders was obtained from Gerontology Research

Group (GRG) database1, which is a global group of international researchers specialized

in gerontology (study of the social, cultural, psychological, cognitive and biological aspects

of ageing). The GRG tracks and verifies supercentenarians or individuals who are at least

110 years old. The information about a person recorded by the WOP titleholders database

consists of their name, gender, race, birthplace, birthday, age at death, year of death,

when oldest, age at accession, length of reign and the death place. The record contains

information about individuals since 1955 and the last update was done on July 31,2018.

The data used in this project for the extreme values modeling includes the individual’s age

(age+days, since given), year of death and later in the project the year of birth. From 1955

to 2018, there have been 65 WOP titleholders, the current titleholder included. For data

modeling, only deceased former titleholders are considered and the one who is still alive

will be included in survival analysis using censoring. Data modeling and analysis was done

using MATLAB and RStudio in particular the package in2extRemes.

1https://grg.org/Adams/C.HTM
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Figure 3: Age against Year of death

The plot of age against year of death (Figure 3) shows clearly that age at death of the

WOP titleholders increased with time. The first step in the data analysis is to check for

dependency in the time series data using the autocorrelation function. The size of the lag

between elements of the data is represented on the x-axis. Lag 0 is equal to 1 since it

indicates the correlation of an element with itself. When the spikes are higher than the

dashed horizontal lines, that means that the correlation is high.
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Figure 4: Autocorrelation function of age of WOP titleholders

As it can be seen on Figure 4, the autocorrelation function indicates that there exists

dependency between the ages at death of individuals. This dependency is observed up

to lag 10. However, it is hard to imagine dependency between the ages at death of the

world’s oldest person titleholders, this could be explained by a trend possibly created by a

long-term change in ages at death of individuals. This issue will be considered later when

the non-stationary model is used. The autocorrelation function will be plotted again after

removing the possible trend in the data.

3.2 Extreme Value Analysis

In this section, three extreme value distributions are fit to the data: Generalized extreme

value (GEV) distribution, Generalized Pareto distribution and the non-stationary GEV

distribution.

3.2.1 Generalized Extreme Value distribution

The WOP titleholders data was fit to the GEV distribution and the first step is to check

the goodness-of-fit using the diagnostic plots. Figure 5 shows that both the probability plot
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and the quantile plot confirm the validity of the fitted model, each set of plotted points is

near-linear. Also, the density plot agrees with the histogram of the data.

Figure 5: Diagnostic plots for GEV fit to the WOP data

Parameter estimates

The GEV parameter estimates (µ̂, σ̂, γ̂) are obtained by the maximum likelihood method

and the profile log-likelihood is used to find the 95% confidence intervals of the parameter

estimates.

Table 1: Parameter estimates with confidence interval

95% Lower

Bound

Point

Estimate

95%

Upper

Bound

µ̂ 112.5 113.141 113.8

σ̂ 2.116 2.5127 3.056

γ̂ -0.2934 -0.1936 -0.0421
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The shape parameter is of most importance in this part as it indicates the behaviour of the

tail of distribution. We observe that γ̂ is negative, which implies the existence of a finite

upper bound of the distribution. The confidence interval of the shape parameter confirms

the existence of an upper end-point of the distribution.

Right end-point

Given that the shape parameter estimate is negative, the distribution has an upper-bound.

Table 2 and Figure 6 show the maximum likelihood estimate and the 95% confidence inter-

vals for the right end-point of the distribution based on profile log-likelihood.

Table 2: Right end-point estimate with confidence interval

95% Lower

Bound

Point estimate 95% Upper

Bound

125.485 126.120 126.745

Figure 6: Right end-point of the distribution based on profile likelihood

Reducing the confidence intervals to 99% does not change significantly the results as it can
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be seen in Figure 7.

Figure 7: Right end-point of the distribution based on profile likelihood

3.2.2 Gumbel distribution

The Gumbel distribution considers the shape parameter γ = 0 and has the distribution as

follows:

G(z) = exp

{
− exp

[
−
(
z − µ
σ

)]}
−∞ < z <∞;

The diagnostic plots in Figure 8 produce a set of plotted points that lie close to the unit

diagonal, even if the quantile plot deviates for higher values.
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Figure 8: Diagnostic plots for the Gumbel distribution fit to the age of WOP titleholders

Parameter estimates

The parameters estimated by maximum likelihood, together with the 95% confidence inter-

val are represented in Table 3. These estimates are not very different from GEV parameter

estimates.

Table 3: Parameter estimates with confidence interval

95% Lower

Bound

Point estimate 95% Upper

Bound

µ̂ 112.243 112.879 113.515

σ̂ 2.003 2.449 2.894

Likelihood Ratio Test

The likelihood ratio test is used to compare the Gumbel distribution (null hypothesis) to

the GEV distribution (alternative hypothesis).

31



H0 : γ = 0

H1 : γ 6= 0

The deviance statistic is defined as:

D = 2(l1(M1)− l0(M0)) > cα

where l0(M0) is the maximized log-likelihood of the Gumbel distribution and l1(M1) is the

maximized log-likelihood of the GEV distribution with γ 6= 0. The result follows below:

D = 2(−152.0628 + 154.8771) = 5.6286 > 3.841

The likelihood ratio test statistic for the reduction to the Gumbel distribution is big com-

pared to the χ2
1 distribution. Thus, the GEV distribution is adequate for these data and

the shape parameter, γ 6= 0.

3.2.3 Peak Over Threshold (POT)

The POT model fits the threshold excesses data to the Generalized Pareto distribution. In

this section, the appropriate threshold is found based on the Mean Residual Life Plot and

Model Based Approach, then the GPD parameters and right end-point are estimated.
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Figure 9: Mean residual life plot for the age of WOP titleholders

Figure 10: Parameter estimates against threshold for the age of WOP titleholders

The mean residual life plot in Figure 9 is not easy to interpret for threshold selection
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therefore, we will refer to the model based approach. After examining Figure 10, the

threshold u = 110 is chosen because it is where the parameters appear to be near constant.

After choosing the appropriate threshold, the next step is to look at the goodness-of-fit

of the distribution using the diagnostic plots. Both the probability and quantile plots are

near-linear, the quantile plot slightly deviates for higher ages but in general, the threshold

excesses can be fitted to the model.

Figure 11: Diagnostic plots for the GPD fit to the WOP data

Parameter estimates

Table 4: Parameter estimates with confidence interval

95% Lower

Bound

Point estimate 95% Upper

Bound

σ̂ 6.0370 6.2565 6.6770

γ̂ -0.490 -0.4783 -0.3832

Similar to GEV model, the shape parameter estimate γ̂ is of most importance for the

Generalized Pareto distribution. Table 4 shows that γ̂ and its confidence intervals are

negative, which supports the existence of an upper bound point of the distribution.

Right end-point

Now knowing that the γ̂ is negative, it is of great interest to make inference on the right

end-point of the distribution. This is the observation that will be reached with p = 0, also
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known as the infinite observation return period. The estimate and 95% confidence interval

based on profile likelihood are presented in Table 5 and Figure 12 below.

Table 5: Right end-point estimate with confidence interval

95% Lower Bound Point estimate 95% Upper Bound

122.50 123.08 124.85

Figure 12: Right end-point of the distribution based on profile likelihood

The upper-bound estimate ẑ0 = 123.08 is surprisingly low compared to the GEV right

end-point estimate and the current validated age record, 122.45.

3.2.4 Exponential distribution

The exponential distribution is a special case of the Generalized Pareto (GP) distribution,

it corresponds to the shape parameter γ = 0. To study this distribution, the diagnostic

plots and the parameter estimates with 95% confidence interval are analyzed, the threshold

is kept equal to u = 110. The GP distribution takes the form below:
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H(y) = 1− exp
(
− y
σ

)
, y > 0,

where σ is the scale parameter of the distribution.

The diagnostic plots in Figure 13 show that both the probability plot and the quantile plot

fail to confirm the validity of the fitted model since the set of plotted points does not lie

close to the unit diagonal.

Figure 13: Diagnostic plots for the Exponential distribution fit to the WOP data

The scale parameter estimate with 95% confidence intervals are presented in Table 6:

Table 6: Parameter estimates with confidence interval

95% Lower

Bound

Point estimate 95% Upper

Bound

σ̂ 3.346 4.479 5.613

Likelihood Ratio Test
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The log-likelihood ratio test compares two nested models against one another. The ex-

ponential distribution is the null hypothesis and the GP distribution with γ 6= 0 is the

alternative hypothesis.

H0 : γ = 0

H1 : γ 6= 0

The deviance statistic for comparing the two models is:

D = 2(l1(M1)− l0(M0)) > cα

where l0(M0) is the log-likelihood maximum of exponential distribution and l1(M1) is the

log-likelihood maximum of the GP distribution with γ 6= 0. The result follows below:

D = 2(−141.3213 + 149.9664) = 17.2902 > 3.841

The deviance statistic value is greater than chi-square distribution, therefore the null hy-

pothesis is rejected at the 0.05 significance level.

Looking at the GP shape parameter estimate and confidence intervals in table 4, it is not

likely that the shape parameter will take the value of zero since the estimated values are

not close to zero. It can also be seen by comparing Figure 11 and Figure 13 that the better

fit for the probability plot and quantile plot is obtained when γ 6= 0 (Figure 11).

3.2.5 Non-Stationary Model

Returning to Figure 3, there seems to be visual evidence of a trend in the age data series

and the strength of this evidence needs to be tested using the non-stationary modeling.

This time the year of birth of the WOP titleholders will be used instead of year of death.

In the data used for the project, the year of birth ranges between 1842 and 1901 and there

appears to be a trend here as well (Figure 14).
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Figure 14: Age against Year of birth

The GEV distribution will be used in this section with trend in the location parameter µ.

The diagnostic plots in Figure 15 show that the probability plot and quantile plot confirm

the validity of the fitted model. The fitted density plot agrees with the empirical density of

the observed data.
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Figure 15: Diagnostic plots in linear trend GEV model of the WOP data

Parameter estimates

Let Zt represent the age of the WOP titleholders . Zt increases with time t (year) and is

modeled as:

Zt ∼ GEV (µ(t), σ, γ),

where

µ(t) = β0 + β1t

The location parameter µ(t) is represented as a linear function where the parameter β1
corresponds to the annual increase in age of the WOP titleholders. t represents the trans-

formed year of birth of the individuals, it is transformed for numerical stability reasons such

that t ∈ [0, 1] in the following way:

t =
Yi − Y1
Yend − Y1

, i = 1, ..., 64

where Yi represents the year of birth of individual i, Y1 is the earliest year of birth in the

data, corresponding to 1842 and Yend is the latest year of birth in the data, corresponding
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to 1901.

Table 7: Parameter estimates with standard errors

β̂0 β̂1 σ̂ γ̂

Parameter

estimates

108.9922

(0.2330)

0.1247

(0.0053)

0.9123

(0.1089)

0.2397

(0.1209)

Table 7 shows that the estimated increase in age at death, β̂1 for an individual is 45.55 ≈ 46

days per year. It is important to notice that the shape parameter estimate γ̂ is now positive,

which changes the assumption on the distribution of the age of the WOP titleholders.

Indeed, when γ̂ is positive, the upper-bound is equal to infinity and this has a major impact

on the conclusion of life length analysis.

In Figure 16 the linear trend in µ is plotted relative to the original data. The quality of the

plot shows that the model fits well the data.

Figure 16: Fitted estimates for µ in linear trend GEV model of the WOP data

Likelihood Ratio Test
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The log-likelihood ratio test compares two nested models against one another. The station-

ary GEV model is the null hypothesis and the non-stationary GEV model is the alternative

hypothesis.

H0 : β1 = 0

H1 : β1 6= 0

The deviance statistic for comparing the two models is:

D = 2(l1(M1)− l0(M0)) > cα

where l0(M0) is the log-likelihood maximum of the stationary GEV model and l1(M1) is

the log-likelihood maximum of the non-stationary GEV model. The result is shown below:

D = 2(−103.7968 + 152.0628) = 96.532 > 3.841

The deviance statistic value is highly relevant compared with a chi-square distribution,

hence providing strong evidence in favor of the non-stationary GEV model (alternative

hypothesis). The result supports the existence of a linear trend in the location parameter

µ.

Different models are tested to examine if there is a better choice than the linear trend in µ

of GEV model. The first model considers a quadratic trend in µ, defined as:

µ(t) = β0 + β1t+ β2t
2,

The second model considers a trend in the scale parameter of the GEV distribution:

σ(t) = exp(β0 + β1t),

the exponential function is used to make sure that the values of σ are positive. The maxi-

mum log-likelihoods and parameter estimates, with standard errors in brackets, of different

models for µ and σ in GEV model are shown in Table 8
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Table 8: Maximum log-likelihood, Parameter estimates with standard errors

Model Log-

likelihood

β̂ σ̂ γ̂

Constant -152.06 113.03 (0.31) 2.15 (0.21) -0.14 (0.07)

Linear -103.8 (108.99,0.12)

(0.23,0.0053)

0.91(0.10) 0.24 (0.12)

Quadratic -103.47 (108.65,0.16,-

0.028)

0.90(0.11) 0.23 (0.12)

Linear

(location and

scale)

-103.21 (109.2,0.12)

(0.33,0.008)

(1.19,-

0.0073)(0.3,0.007)

0.193 (0.12)

The deviance statistic for comparing the linear model and quadratic model is:

D = 2(−103.4657 + 103.7968) = 0.662 < 3.841

The null hypothesis can not be rejected, the linear trend in the location parameter for GEV

model fits better the data. The deviance statistic for comparing the linear model and the

model with trend in location and scale parameter is:

D = 2(−103.2117 + 103.7968) = 0.279 < 3.841

The null hypothesis can not be rejected, hence the GEV model with linear trend in the

location parameter is chosen as the appropriate model that fits better the data.

Autocorrelation function after trend removal

Having determined that the GEV model with trend in location parameter is the more

adequate model that describes well the data, the autocorrelation function from section 3.1

is considered again, this time after removing the trend in location parameter. Figure 17

shows the plot of the data when trend is removed.
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Figure 17: Age against year of death after removing trend in location parameter

The autocorrelation function after removing the trend in the location parameter (Figure 18)

is much more improved compared to Figure 4 and indicates that data is nearly independent

(lag 2 and 3 slightly above the dashed horizontal lines).

Figure 18: Autocorrelation function after removing trend in location parameter
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Return Level

The GEV distribution with trend in location parameter µ was chosen as the model that fits

well the data, so from now on it will be the model used for the rest of the project.

Given that the shape parameter estimate µ̂ is positive, the upper bound point is equal to

infinity. Return levels, which are values that are exceeded on average once every m years

observations, are estimated below. The equation for estimating return levels for GEV as

seen earlier is:

ẑp =

{
µ̂− σ̂

γ̂ [1− y−γ̂p ], γ̂ 6= 0

µ̂− σ̂ log yp, γ̂ = 0

where

yp = − log(1− p)

This time since the location parameter µ is time-varying µ̂(t) = β̂0 + β̂1t, there will be time-

varying return levels ẑp(t) as well. Figure 19 shows the 10,50 and 100-year return levels,

the index corresponds to the year of birth of different individuals (0 and 64 correspond

to years 1842 and 1901 respectively). For the next 10, 50 and 100 years, age is expected

to increase with time, however only in the next 100 years, the return level is expected to

reach new records (above 122.45 years). For the 10-year return level, age ranges between

111.71 and 119.07 years, for 50-year return level, age ranges between 114.88 and 122.24

years, for the 100-year return level, age ranges between 116.65 and 124.01 years. Looking

at Figure 19, the 50 and 100-year return levels lie above the current observed ages for the

WOP titleholders, which indicates that Jeanne Calment, the oldest validated person, could

be treated as an outlier.
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Figure 19: 10-, 50- and 100-year return level plot of the WOP data

Probability of beating Jeanne Calment’s record

The return level estimate is assumed to vary for individuals born between 1902 and 1965.

This forecast assumes that the linear trend in the location parameter still holds as we move

beyond the range of the data. Therefore the probability of observing a new record from

individuals in this group is:

P (X ≥ xrec) = 1−

(
exp

{
−
[
1 + γ

(
xrec − µ(t)

σ

)]−1
γ

})

where µ(t) = β0 + β1t and xrec is the record age (122.45).

From Figure 20, as it could be expected the probability increases with time but it is very

low for individuals born earlier in the 20th century. A significant increase is observed for the

individuals born after 1940 with probabilities ranging between 60% and 99%. This means

that it is expected to see individuals alive now with a new age record if the linear trend in

µ of GEV model still holds for this group.
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Figure 20: Probability for new age record for individuals born between 1902 and 1965

3.2.6 Non-stationary model with censoring

In this section, the current world’s oldest person is included in the data and survival analysis

is used. This last observation is treated differently because the individual, on the opposite

from the others, has not died yet as of July 2018, date of the last update. The deceased

individuals in the study will have the lifetime X and the living individual will have the

censored time Cr, which is the time she has on July 2018. The GEV with linear trend in

the location parameter µ model, chosen as the most appropriate model for the data, is used.

The likelihood function for this model is given below:

L =

n∏
i=1

Pr[ti, δi] =

n∏
i=1

[f(ti)]
δi [S(ti)]

1−δi

[T, δ] is used to represent the data from the study. When δ = 1, the lifetime X is observed

and equals T , when δ = 0, the lifetime is censored and Cr equals T . f(ti) is the density

function of the GEV distribution, S(ti) is the survival function defined as:

S(Cr) = Pr(X > Cr)
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The log-likelihood is maximized using numerical techniques.

Parameter estimates

Table 9: Parameter estimates with standard errors

Parameter

estimates

β̂0 β̂1 σ̂ γ̂

109.071 0.126 0.847 0.276

(0.0042) (0.0063) (0.0025) (0.0013)

In Table 9, it is seen that the shape parameter estimate γ̂ is still positive, confirming

the existence of an infinite upper bound of the distribution. β̂1 is equal to 0.126, which

corresponds to an estimated annual increase of 45.91 ≈ 46 days for the WOP titleholders.
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4 Conclusion and Discussion

This project investigates different models of the extreme value theory for describing human

life length at extreme age, in this case the age at death of the world’s oldest person titlehold-

ers. The use of validated data (from GRG database) is useful in order to produce reliable

results. The data evaluated by the autocorrelation function (ACF) indicated correlation

between the data (Figure 4) due to the trend in the age of the individuals created over the

years, but the data was independent after the removal of the linear trend in the location

parameter (Figure 18).

The GEV distribution was a good fit for the data as the probability plot and quantile plot

followed a unit diagonal (Figure 5). The obtained shape parameter estimate was negative

indicating the existence of an upper bound to the distribution and this was confirmed by

the confidence intervals, which were all negative. The right-end point of the distribution,

which is the highest age that will be exceeded with probability, p = 0, was estimated by

profile log-likelihood and was about 126.12 years (Figure 2), this value is around four years

greater than the highest documented human age, 122.45. The GEV distribution was also a

better fit for the data compared to the Gumbel distribution (γ = 0). This was confirmed by

the standard diagnostic graphical checks, with a deviation for higher values for the Gumbel

distribution (Figure 8) and the likelihood-ratio test. The GP distribution produced a good

fit for the data (Figure 11) both with the probability plot and quantile plot (with a small

deviation for higher values). Just like the GEV model, the GP distribution produced a

negative shape parameter estimate and negative confidence intervals, which indicates the

existence of a right end-point. The estimated upper bound is 123.08 with confidence interval

(122.5, 124.85). This estimate compared to the GEV model estimate is surprisingly small,

also given that the highest documented human age is of 122.45. The exponential distribution

(γ = 0) proved not to be a better model than the GP distribution (γ 6= 0) by the likelihood

ratio test but also as it can be seen on the diagnostic plots (Figure 13 and Figure 11), the

GP distribution produced a better fit.

The non-stationary GEV model with trend in the location parameter provided the best fit

for the data. The diagnostic plots were better than the stationary GEV distribution and the

GP distribution, with set of plotted points close the unit diagonal. The likelihood ratio-test

between the two models provided strong evidence in favor of the non-stationary GEV model.

Also when the linear trend in µ was plotted relative to the original data, the plot was of

good quality except for the abnormally high age of Jeanne Calment (Figure 16). Larger non-

stationary GEV models (quadratic trend in the location parameter, trend in scale parameter

and both linear trend in location parameter and scale parameter) were not an improvement
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compared to the GEV model with linear trend in the location parameter. Conclusively the

world’s oldest person titleholders age is best described by the non-stationary model with

linear trend in the location parameter. Surprisingly the shape parameter of the model and

its confidence intervals are positive indicating that age distribution has no upper bound,

this goes against earlier results found by stationary GEV and GP distributions where the

distribution has an upper bound. For individuals born between 1842 and 1901, age has

increased linearly with an increase of approximately 46 days per year (Table 7). The return

level plot is expected to increase with time for the 10,50 and 100-year levels (Figure 19).

Also assuming that linearity in the location parameter holds for individuals born between

1902 and 1965, the probability of observing a new age record increases significantly for those

born in 1940 and later. This means that it is expected to see individuals alive now with

a new age record if the linear trend in the location parameter of GEV model still holds

for this group. Finally the non-stationary model with censoring was used in order to add

the current living world’s oldest person, the results were very similar to the non-censored

model with a slight increase in the shape parameter and an estimated annual increase of

45.91 days for the WOP titleholders.

As seen above, extreme value analysis of the age at death of the world’s oldest person

titleholders does not indicate an existence of a limit for human life length at extreme age.

These findings agree with the studies by Rootzén and Zholud (2017) [7] that there is no

evidence of a finite upper limit to the human lifespan. The difference between the two

studies is that the age of the WOP titleholders is best modeled by the non-stationary GEV

model (γ > 0), whereas the age of validated supercentenarians was best modeled by the

Exponential distribution (γ = 0). In this project, the Exponential distribution was not a

good model for the data. Hence, the return level plot in this project is concave with no

evidence of a finite bound, whereas the return level in the paper by Rootzén and Zholud

(2017) [7] is linear with no evidence of a finite bound as well. The results agree with the

conclusions made by Medford and Vaupel (2019) [8] that there is a small chance (around

one in five chance for the paper by Medford and Vaupel (2019) [8]), that the current world’s

age record will survive until 2050, compared to the results obtained in this project that

the probability of beating the record for individuals born in 1940 and later, is above 60%

(Figure 20). Results from this study bring support to efforts being invested into finding the

“cure for aging” in order to extend human life length, Häggström (2016) [13], [9].
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A Right end-point estimate with profile likelihood

In this section, the MATLAB program used to estimate the right end-point and confidence

intervals for GEV distribution is given (Figure 2). The details are explained in section 2.1.3,

the transformed log-likelihood function is presented as below:

l(µ, σ, γ) = −m log(σ)−
(

1 +
1

γ

) m∑
i=1

log

1 + γ

zi −
(
ẑ0 + σ̂

γ̂

)
σ



−
m∑
i=1

1 + γ

zi −
(
ẑ0 + σ̂

γ̂

)
σ


−1
γ

The MATLAB code is presented below:

1 %% Right End−po in t s e s t imat i on us ing P r o f i l e log−l i k e l i h o o d (GEV)

2 % Age d= age+days o f i n d i v i d u a l s

3 % sigma= s c a l e parameter e s t imate

4 % gamma= shape parameter e s t imate

5 % endpoints= range o f r i g h t end−po in t s o f the d i s t r i b u t i o n

6 % N= number o f i n d i v i d u a l s

7 N=length ( Age d ) ;

8 endpoints =(125 :0 . 001 :128) ;

9 m=zero s ( l ength ( Age d ) , l ength ( endpoints ) ) ;

10 n=ze ro s ( l ength ( Age d ) , l ength ( endpoints ) ) ;

11 l=ze ro s ( l ength ( endpoints ) , 1 ) ;

12 f o r j =1: l ength ( endpoints )

13 f o r i =1: l ength ( Age d )

14 m( i , j )=log (1+(gamma∗( Age d ( i )−( endpoints ( j )+(sigma/

gamma) ) ) / sigma ) ) ;

15 n( i , j )= (1+(gamma∗( Age d ( i )−( endpoints ( j )+(sigma/

gamma) ) ) / sigma ) ) .ˆ(−1/gamma) ;

16 end

17 l ( j )=(−N∗ l og ( sigma ) )−((1+(1/gamma) ) ∗sum(m( : , j ) ) )−sum(n ( : , j

) ) ; % log−l i k e l i h o o d func t i on

18 end
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19 xrange =(125:128) ;

20 yrange =(−160:−150) ;

21 ch i sq e=max( l )−( ch i 2 inv ( 0 . 9 5 , 1 ) /2) ;

22 p lo t ( endpoints , l )

23 hold on

24 p lo t ( xrange , repmat ( ch i sqe , 1 , l ength ( xrange ) ) )

25 hold on

26 p lo t ( xrange , repmat (max( l ) ,1 , l ength ( xrange ) ) )

27 hold on

28 p lo t ( repmat (125 . 485 , 1 , l ength ( yrange ) ) , yrange ) % Lower bound

29 hold on

30 p lo t ( repmat (126 . 745 , 1 , l ength ( yrange ) ) , yrange ) % Upper bound

31 xlim ( [ 1 2 5 . 1 , 1 2 7 . 5 ] )

32 ylim ([−160 ,−150])

33 x l a b e l ( ’ Right endpoints ’ )

34 y l a b e l ( ’ P r o f i l e log−l i k e l i h o o d ’ )
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