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Abstract
The classical Borel–Cantelli lemma is a beautiful discovery with wide appli-
cations in the mathematical field. The Borel–Cantelli lemmas in dynamical
systems are particularly fascinating. Here, D. Kleinbock and G. Margulis [1]
have given an important sufficient condition for the strongly Borel–Cantelli
sequence, which is based on the work of W. M. Schmidt [2], [3].

This Master’s thesis deals with an improvement of Kleinbock’s and Margulis’
theorem and obtains a weaker sufficient condition for the strongly Borel–
Cantelli sequences. Several versions of the dynamical Borel–Cantelli lemmas
will be deduced by extending another useful theorem by W. M. Schmidt [3],
W. J. LeVeque [4], and W. Philipp [5].

Furthermore, some applications of our theorems will be discussed. Firstly, a
characterization of the strongly Borel–Cantelli sequences in one-dimensional
Gibbs–Markov systems will be established. This will improve the theorem
of C. Gupta, M. Nicol, and W. Ott in [6]. Secondly, N. Haydn, M. Nicol,
T. Persson, and S. Vaienti [7] proved the strong Borel–Cantelli property in
sequences of balls in terms of a polynomial decay of correlations for Lip-
schitz observables. Our theorems will be applied to relax their inequality
assumption. Finally, as a result of Y. Guivarch’s and A. Raugi’s findings [8],
we know that the weakly mixing property could be characterized by Borel–
Cantelli sequences that only contain a finite number of distinct sets, where
each set has positive measure. This is a Borel–Cantelli result, although not
strong. So a weakly β-mixing property will be introduced to imply the strong
Borel–Cantelli property.
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1 Introduction
In 1909, the French mathematician Émile Borel [9] proved that if the sum of
the probabilities of a collection of stochastic events is finite, then the prob-
ability that infinitely many of these events occur must be zero. Generally,
the converse assertion will not be true. However, a couple of years later, the
Italian Francesco Paolo Cantelli found that the converse assertion of Borel’s
result indeed holds if the events are independent. More specifically, Cantelli
showed that if the sum of the probabilities of a collection of independent
events is infinite, then the probability of the occurrence of infinitely many of
these events must be one [10]. Nowadays, both results are together known
as the classical Borel–Cantelli lemma.

The independence assumption in the classical Borel–Cantelli lemma is not
necessary, and the lemma’s application is sometimes also made more diffi-
cult by this assumption. Extending the classical Borel–Cantelli lemma to
non-necessarily independent events has become an important topic in prob-
ability theory. There have been many attempts to weaken the independence
assumption and various versions of the Borel–Cantelli lemma has been es-
tablished. For instance, it is well known that the independence assumption
could be relaxed by pairwise independence, as shown in Chapter 6 in [11].

The classical Borel–Cantelli lemma is a fundamental tool for many conver-
gence theorems in probability theory. For example, the lemma is applied in
the standard proof of the Law of Large Numbers, which states that the sample
average of a large random sample is very close to the population average [11].

This Master’s thesis will study the Borel–Cantelli lemmas in dynamical sys-
tems. Suppose that (X,µ, T ) is a dynamical system and the transformation
T : X → X preserves the measure µ. By applying the Borel–Cantelli lemma
to the measure-preserving dynamical system (X,µ, T ), we can directly ob-
tain that if the n-th pre-image sets T−n (An) of the sets An in X are pairwise
independent with respect to µ and the measures µ(An) are large enough such

that
∞∑
n=1

µ(An) =∞, then the events T n(x) ∈ An occur infinitely many times

for almost every x in X. In other words, the set of the points x such that
T n(x) ∈ An holds for finitely many values n will have zero measure.

To be considered a Borel–Cantelli sequence, the measures µ(An) cannot ap-
proach zero too fast, since the classical Borel–Cantelli lemma implies that if
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∞∑
n=1

µ(An) < ∞, then for almost every x in X, the events T n(x) ∈ An occur

finitely often. On the other hand, the divergence condition
∞∑
n=1

µ(An) = ∞

alone is not enough to guarantee that T n(x) ∈ An holds infinitely many times
for almost every x in X. Through N. Chernov’s and D. Kleinbock’s result
in [8], it is known that for any non-atomic measure-preserving dynamical
system, we can always find a sequence {An} of sets with the divergence con-

dition
∞∑
n=1

µ(An) =∞ such that T n(x) ∈ An only holds for finitely many n for

almost every x in X. Note that Chernov’s and Kleinbock’s result works well
even for ergodic dynamical systems. In Example 1, we will give an ergodic
dynamical system that contains a sequence {An} with the divergence condi-
tion such that for all x in X, the event T n(x) ∈ An only holds for finitely
many n.

It is also known that the pairwise independence condition for the events
T−n (An) is not necessary. More specifically, it is seldom valid for measure-
preserving transformations. To overcome this difficulty, we usually try to find
conditions that are weaker than the pairwise independence condition. Plenty
of research has been done in this direction. For example, D. Kleinbock and
G. Margulis [1] defined

Definition 1. A sequence {An} is said to satisfy the condition 4 if there is
a constant C > 0 such that

N∑
m,n=M

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
≤ C

N∑
n=M

µ(An)

holds for all N ≥M ≥ 1.

They proved that if the sequence {An} satisfies
∞∑
n=1

µ(An) = ∞ and the

condition 4, then it is a strongly Borel–Cantelli sequence, i.e.

m∑
n=1

1T−n(An)(x)

m∑
n=1

µ(An)
−→ 1 almost surely in X as m→∞.

Note that the numerator
m∑
n=1

1T−n(An)(x) corresponds to the number of inte-

gers n ∈ [1,m] for which T n(x) ∈ An. It is clear that the condition 4 holds
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if the sets T−n(An) are pairwise independent. In their proof, Kleinbock and
Margulis use the asymptotic estimation

m∑
n=1

1T−n(An)(x) =
m∑
n=1

µ(An) +O

( m∑
n=1

µ(An)

) 1
2

log
3
2
+ε

(
m∑
n=1

µ(An)

) ,

which holds almost everywhere for every given constant ε > 0. This asymp-
totic estimation is extremely useful and was first proven by W. M. Schmidt
[2], [3]. Many researchers have applied the asymptotic estimation when try-
ing to prove the strong Borel–Cantelli property. However, it is not necessary
to apply a stronger asymptotic estimation in order to get the strong Borel–
Cantelli property. Instead, let us introduce a weaker condition 4α.

Definition 2. Let 0 ≤ α < 2. A sequence {An} is said to satisfy the condi-
tion 4α if there is a constant C > 0 such that

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
≤ C

(
N∑
n=1

µ(An)

)α

holds for all large integers N .

The first main task in this thesis is to prove that the condition 4 in Klein-
bock’s and Margulis’ theorem [1] could be replaced by the condition 4α for
some 1 ≤ α < 2. The result is

Theorem 1. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) = ∞,

and the condition 4α holds for some 1 ≤ α < 2, then {An} is a strongly
Borel–Cantelli sequence.

There are two advantages of the condition 4α over the condition 4 when
studying the strong Borel–Cantelli property. First of all, it is more compli-
cated to check the condition 4 than the condition 4α, since the condition 4
contains two free integers N, M , whereas the condition 4α only has one free
integer N . Secondly, the condition 41 is weaker than the condition 4, while
the condition 4α for α > 1 is weaker than the condition 41. The condition
41 is actually a special case of the condition 4 at M = 1. Hence, Theorem
1 is an improvement of Kleinbock’s and Margulis’ Theorem 1.4 [1].

Furthermore, we will construct an example to show that for any 1 < α < 2,
there exists a sequence in some ergodic dynamical system that satisfies the
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condition4α but not the condition4 (see Example 2). There will be another
example to show that the condition 4α with 1 ≤ α < 2 in Theorem 1 cannot
be replaced by the condition42. We will also give slightly stronger conditions

than the condition 42, which yields that
m∑
n=1

1T−n(An)(x)/
m∑
n=1

µ(An) −→ 1 in

L1 norm.

As an application of Theorem 1, several useful consequences will be deduced.
It seems that one of the most popular results to prove a strongly Borel–
Cantelli sequence should be the following theorem given by W. J .LeVeque
[4], W. M. Schmidt [3] and W. Philipp [5].

Theorem D ([3], [4], [5]). Suppose that the sequence {An} of sets in X

satisfies
∞∑
n=1

µ(An) = ∞, and there exists a positive series
∞∑
m=1

cm < ∞ such

that
µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm−n µ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

Theorem 1 gives the possibility to extend Theorem D. We will find that there
are two consequences of Theorem 1 that strengthen Theorem D in different
ways.

Corollary 1. Suppose that the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =

∞, and there exist a positive sequence {cm} and constants 0 ≤ β < 1 and
c > 0 such that

n∑
m=1

cm ≤ c

(
n∑

m=1

µ(Am)

)β

holds for all sufficiently large integer n, and

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm−n µ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

Obviously, the inequality assumption
n∑

m=1

cm ≤ c

(
n∑

m=1

µ(Am)

)β
in Corollary

1 is true if
∞∑
m=1

cm <∞. So Corollary 1 improves Theorem D. Furthermore,
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in Corollary 1, we do not assume that the series
∞∑
m=1

cm is convergent.

Corollary 2. Suppose that the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =

∞, and there exists a positive series
∞∑
m=1

cm < ∞ and a constant 0 ≤ β < 1

such that

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + c1−βm−n µ(Am)

βµ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

Note that Corollary 2 for β = 0 corresponds to Theorem D.

Several applications of our theorems and corollaries will be presented. Firstly,
C. Gupta, M. Nicol and W. Ott [6] applied the condition 4 to prove a strong
Borel–Cantelli lemma for one-dimensional Gibbs–Markov systems under the
additional condition µ(Am) ≤ c µ(An) for m ≥ n ≥ 1. As a direct conse-
quence of our results, we get in Theorem 5 that the additional condition is
superfluous. Hence, we will establish a characterization of the strong Borel–
Cantelli property in one-dimensional Gibbs–Markov systems.

Secondly, through the inequality assumption q > (2/δ)+γ
1−γ , N. Haydn, M. Nicol,

T. Persson and S. Vaienti [7] proved a strong Borel–Cantelli lemma for se-
quences of the balls An with µ(An) ≥ c1 n

−γ in a dynamical system satisfying
the polynomial decay p(k) ≤ c2 k

−q of correlations for Lipschitz observables.
As an application of the results, we will show in Theorem 6 that their in-
equality assumption can be weakened by

q > max

{
γ

δ
+ 1,

(2/δ)γ + γ

1− γ

}
,

which, if γ ≥ −3+
√
13

2
, is equivalent to the inequality

q >
(2/δ)γ + γ

1− γ
.

Thirdly, it is well known that the ergodicity of a measure-preserving dy-
namical system could be characterized by both Borel–Cantelli and strongly
Borel–Cantelli constant sequences. Y. Guivarch and A. Raugi [8] proved
that the weakly mixing property could be characterized by Borel–Cantelli
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sequences that only contain a finite number of distinct sets, each with posi-
tive measure. This is a Borel–Cantelli result, but not a strong Borel–Cantelli
result. Instead, we will introduce the weakly β-mixing property, which im-
plies the strong Borel–Cantelli property in these sequences.
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2 Borel–Cantelli lemmas

2.1 The classical Borel–Cantelli lemma

Let (X,F , µ) be a probability space, where F is a σ-algebra in the sample
space X, and µ is a probability measure. Given a sequence of measurable
sets {An} in X, the indicator function of the subset An is defined as

1An(x) :=

{
1, if x ∈ An
0, if x /∈ An.

It is clear that
∞∑
n=1

1An(x) < ∞ almost surely in X if and only if for almost

every point x in X, there exist finitely many n such that x ∈ An. Similarly,
∞∑
n=1

1An(x) =∞ almost surely in X if and only if for almost every point x in

X, there exist infinitely many n such that x ∈ An.

Lemma A (Borel–Cantelli lemma).

(i) If
∞∑
n=1

µ(An) <∞, then almost every point x in X belongs to finitely many

sets An.
(ii) If

∞∑
n=1

µ(An) =∞ and all An are independent, then almost every point

x in X belongs to infinitely many sets An.

It is well known that the condition for the independent sets An in the Borel–
Cantelli lemma could be replaced by the pairwise independence of the sets An.
That is, µ (An ∩ Am) = µ (An)µ (Am) holds when n 6= m. The Borel–Cantelli
lemma is an important technical result and has been found to be extremely
useful when proving several limit results in probability theory. For instance,
the Borel–Cantelli lemma is a key component when proving the strong Law
of Large Numbers, which states that if {X1, X2, . . . , Xn, . . . } is a sequence
of independent and identically distributed random variables with the finite
expected value E(X1), then the sample average

X1 +X2 + · · ·+Xn

n
−→ E(X1) almost surely as n→∞.

The Borel–Cantelli lemma is also applied in the proof of another well known
theorem, which states that if a sequence of functions {fn(x)} converges to
f(x) in measure inX, then there exists a subsequence {fnk(x)} that converges
to f(x) almost everywhere inX. In fact, the convergence in measure of the se-
quence {fn(x)} implies that for each integer k > 0, there exists a sufficiently
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large nk such that µ (Ak) ≤ 2−k, where Ak =
{
x; |fnk(x)− f(x)| ≥ 2−k

}
.

Hence,
∞∑
k=1

µ(Ak) <∞ and by the Borel–Cantelli lemma, we get that
∞∑
k=1

1Ak(x) <

∞ almost everywhere in X. This implies that the subsequence {fnk(x)} con-
verges to f(x) almost everywhere.

2.2 A dynamical Borel–Cantelli lemma

Let T : X → X be a transformation. Denote by T n(x) the n-th iterate of T
at the point x ∈ X, where T n+1 = T ◦ T n for n = 1, 2, . . . . For a subset A in
X, we define the n-th pre-image set

T−n (A) = {x : T n(x) ∈ A} .

For simplicity, the notation T−nA = T−n (A) is used. Evidently, x ∈ T−n (A)
if and only if T n(x) ∈ A. The transformation T : X → X is called a
µ-preserving transformation if it is measurable and

µ
(
T−1 (A)

)
= µ (A)

holds for all measurable sets A ⊂ X. If T : X → X is a transformation
that preserves the probability measure µ in X, then (X,µ, T ) is called a
measure-preserving dynamical system. A measure-preserving dynamical sys-
tem (X,µ, T ) is called an ergodic dynamical system if whenever T−1(A) = A
holds for some measurable subset A of X, then either µ(A) = 0 or µ(A) = 1.

A direct application of the Borel–Cantelli lemma on the measure-preserving
dynamical system (X,µ, T ) results in the following lemma.

Lemma B.
(i) If

∞∑
n=1

µ(An) <∞, then for almost every point x in X, there exist at most

finitely many n such that T n(x) ∈ An, i.e.
∞∑
n=1

1T−nAn(x) <∞ holds

almost everywhere in X.

(ii) If
∞∑
n=1

µ(An) =∞ and all T−n (An) are independent, then for almost

every point x in X, there exist infinitely many n such that T n(x) ∈ An,
i.e.

∞∑
n=1

1T−nAn(x) =∞ holds almost everywhere in X.

The additional condition for the independence in the assertion (ii) in Lemma
B is not superfluous, as shown by Chernov and Kleinbock [8].
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Theorem A ([8]). If µ is a non-atomic measure (that is, any measurable
set A in X with µ(A) > 0 contains a measurable subset B of A such that
µ(A) > µ(B) > 0 ), then for any µ-preserving transformation T of X, there

exists a sequence {An} of measurable subsets of X with
∞∑
n=1

µ(An) =∞ such

that for almost every point x ∈ X, there exist at most finitely many n for
which T n(x) ∈ An.

Theorem A works well for ergodic dynamical systems. Below, we will give
a simple example to show that the independence in Lemma B is not super-

fluous. Let us construct a sequence of subsets {An} with
∞∑
n=1

µ(An) = ∞ in

a measure-preserving dynamical system (X,µ, T ) such that for each point
x ∈ X, there exist at most finitely many n for which T n(x) ∈ An.

Example 1. The ergodic measure-preserving dynamical system (X,µ, T )
is studied, where µ is the product Lebesgue measure on the sample space
X = [0, 1) × [0, 1), and T is the invertible µ-preserving Baker’s transforma-
tion in X defined by

T (x, y) =

{ (
1
2
x, 2y

)
, if 0 ≤ y < 1

2(
1
2
x+ 1

2
, 2y − 1

)
, if 1

2
≤ y < 1.

Take the subsets

B0 = {0} × [0, 1) and Bk =
[
2−k, 2−k+1

)
× [0, 1) for k = 1, 2, 3, . . .

Hence, these sets are disjoint, µ(Bk) =
1
2k

and ∪∞k=0Bk = X. We denote by
{Dn} the following sequence

B0︸︷︷︸, B1, B1︸ ︷︷ ︸, B2, B2, B2, B2︸ ︷︷ ︸, B3, B3, B3, B3, B3, B3, B3, B3︸ ︷︷ ︸, . . . ,
that is, D0 = B0, D1 = B1, D2 = B1, D3 = B2, D4 = B2, . . . and so on.

Then
∞∑
n=0

µ(Dn) =
∞∑
k=1

2k · 1
2k

=
∞∑
k=1

1 = ∞, and for every (x, y) ∈ X, there

exist at most finitely many n such that (x, y) ∈ Dn. Let An = T n(Dn) for

n = 0, 1, . . . . Then
∞∑
n=1

µ(An) =
∞∑
n=1

µ(Dn) = ∞ and for all (x, y) ∈ X, we

have that T n(x, y) ∈ An if and only if (x, y) ∈ Dn, which might happen at
most finitely many times.
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3 Borel–Cantelli lemmas in dynamical systems

3.1 Borel–Cantelli properties

Let

Sm(x) =
m∑
n=1

1T−n(An)(x)

and

Em =

∫
X

Sm(x) dµ =
m∑
n=1

µ(An)

for a sequence of measurable subsets {An} in X. The norm ‖f‖ of the
function f in the space L1 is given by

‖f‖ =
∫
X

|f(x)| dµ.

Definition 3.
(i) A sequence of measurable subsets {An} in X is called a Borel–Cantelli

sequence relative to T if
∞∑
n=1

µ(An) =∞ and for almost every point x

in X, there exist infinitely many n such that T n(x) ∈ An.
(ii) A sequence of measurable subsets {An} in X is called an L1 Borel–

Cantelli sequence relative to T if
∞∑
n=1

µ(An) =∞ and∣∣∣∣∣∣∣∣Sm(x)Em
− 1

∣∣∣∣∣∣∣∣ −→ 0 as m→∞.

(iii) A sequence of measurable subsets {An} in X is called a strongly Borel–

Cantelli sequence relative to T if
∞∑
n=1

µ(An) =∞ and

Sm(x)

Em
−→ 1 almost surely in X as m→∞.

Note that {An} is a Borel–Cantelli sequence if and only if {Sn(x)} is an
unbounded sequence for almost all x in X. Moreover, the following theo-
rem shows that any strongly Borel–Cantelli sequence is an L1 Borel–Cantelli
sequence, and any L1 Borel–Cantelli sequence is a Borel–Cantelli sequence.

Theorem B.
(i) If {An} is a strongly Borel–Cantelli sequence, then it is an L1 Borel–

Cantelli sequence as well.
(ii)If {An} is an L1 Borel–Cantelli sequence, then it is a Borel–Cantelli

sequence as well.
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Proof. (i) Assume that {An} is a strongly Borel–Cantelli sequence. Then
Sm(x)
Em
→ 1 almost surely in X as m→∞. Since Sm(x)

Em
≥ 0 in X, we have∥∥∥∥Sm(x)Em

∥∥∥∥ =

∫
X

Sm(x)

Em
dµ =

Em
Em

= 1 = ‖1‖.

By Scheffé’s lemma (Lemma 5.4.3 in [12]), we get that ‖Sm(x)
Em
− 1‖ → 0 as

m→∞ . Hence, {An} is an L1 Borel–Cantelli sequence.
(ii) Assume that {An} is an L1 Borel–Cantelli sequence. Then for any ε > 0,
we have

µ

{
x ∈ X;

∣∣∣∣Sm(x)Em
− 1

∣∣∣∣ ≥ ε

}
≤ 1

ε

∣∣∣∣∣∣∣∣Sm(x)Em
− 1

∣∣∣∣∣∣∣∣ −→ 0 as m→∞.

So Sm(x)
Em

converges to 1 in measure in X. Thus, there exists a subsequence{
Smk (x)

Emk

}
that converges to 1 almost everywhere in X. But Emk → ∞ as

k →∞. Hence, Smk(x)→∞ almost everywhere in X. Since {Sm(x)} is an
increasing sequence, we get that Sm(x)→∞ for almost all x in X.

3.2 Sufficient conditions on strongly Borel–Cantelli se-
quences

D. Kleinbock and G. Margulis [1] proved that the independence of the sets
T−n (An) in Lemma B could be weakened by the condition 4.

Theorem C ([1]). If the sequence {An} of subsets of X satisfies
∞∑
n=1

µ(An) =

∞ and the condition 4 holds, then {An} is a strongly Borel–Cantelli se-
quence.

A more general condition was first obtained by W. M. Schmidt [2], [3], see
also Lemma 10 in Chapter 1 in [13]. The following lemma is crucial to the
proof of Theorem C.

Lemma C ([2], [3], [13]). Let {fk(x)} be a sequence of non-negative measur-
able functions in X. Suppose that {ak} and {bk} are two sequences of real
numbers satisfying

(i) φn :=
n∑
k=1

bk →∞ as n→∞;

(ii) There is a constant C1 > 0 such that

0 ≤ ak ≤ bk ≤ C1 for k = 1, 2, . . . ;
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(iii) There is a constant C2 > 0 such that∫
X

(
N∑

k=M

fk(x)−
N∑

k=M

ak

)2

dµ ≤ C2

N∑
k=M

bk for all integers N ≥M > 0.

Then, for any constant ε > 0, we have
n∑
k=1

fk(x) =
n∑
k=1

ak +O
(
φ

1
2
n log

3
2
+ε φn

)
almost everywhere in X.

Remark. The asymptotic estimation from the result in Lemma C means
that for almost every x ∈ X, there exists a constant c(x) > 0 such that the
inequality ∣∣∣∣∣

n∑
k=1

fk(x)−
n∑
k=1

ak

∣∣∣∣∣ ≤ c(x)φ
1
2
n log

3
2
+ε φn

holds for all n = 1, 2, . . . , where the constant c(x) might depend on the point
x in X, see Remark 3.2 in [6].

It is not necessary to check the inequality assumption 4 for all integers
N ≥ M > 0 in Theorem C. Below, we will prove that it is enough to as-
sume that the inequality assumption 4 only holds for all integers N > 0 and
M = 1. Furthermore, in order to prove the strong Borel–Cantelli property, it
will not be necessary to prove such an asymptotic estimation like in Lemma
C. So a new direct proof of Theorem C will be given. Recall the condition
4α: There are constants C > 0 and α ≥ 0 such that

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
≤ C

(
N∑
n=1

µ(An)

)α

holds for all large integers N .

Note that we cannot adopt the stronger inequality
N∑

m,n=1

µ
(
T−mAm ∩ T−nAn

)
≤ C

(
N∑
n=1

µ(An)

)α

instead of the condition 4α for 1 ≤ α < 2. This is due to the fact that if it
were true, then by Hölder’s inequality, we would have(

N∑
n=1

µ(An)

)2

=

∫
X

N∑
n=1

1T−n(An)(x) dµ

2
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≤
∫
X

12 dµ

∫
X

(
N∑
n=1

1T−n(An)(x)

)2

dµ

=

∫
X

N∑
m,n=1

1T−m(Am)(x)1T−n(An)(x) dµ

=
N∑

m,n=1

µ
(
T−mAm ∩ T−nAn

)
≤ C

(
N∑
n=1

µ(An)

)α

.

Hence, (
N∑
n=1

µ(An)

)2−α

≤ C,

which is impossible because 2− α > 0 and
∞∑
n=1

µ(An) =∞.

Evidently, the condition 4 implies the condition 41, while the condition 41

implies the condition 4α for α ≥ 1. Now, let us improve Theorem C in terms
of the condition 4α for 1 ≤ α < 2.

Theorem 1. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) = ∞

and the condition 4α holds for some 1 ≤ α < 2, then {An} is a strongly
Borel–Cantelli sequence and moreover satisfies∥∥∥∥∥

(
Sn(x)

En
− 1

)2
∥∥∥∥∥ ≤ C

E2−α
n

for n = 1, 2, . . .

Proof. It follows from Hölder’s inequality that for any integer N > 0, we
have

‖SN(x)− EN‖2 =

∥∥∥∥∥
N∑
n=1

{
1T−n(An)(x)− µ(An)

}∥∥∥∥∥
2

≤
∫
X

12 dµ

∫
X

(
N∑
n=1

{
1T−n(An)(x)− µ(An)

})2

dµ

=
∣∣∣∣(SN(x)− EN)2∣∣∣∣ = ∫

X

(
N∑
n=1

{
1T−n(An)(x)− µ(An)

})2

dµ

=

∫
X

N∑
m=1

{
1T−m(Am)(x)− µ(Am)

} N∑
n=1

{
1T−n(An)(x)− µ(An)

}
dµ

16



=
N∑

m,n=1

∫
X

{
1T−m(Am)(x)− µ(Am)

}{
1T−n(An)(x)− µ(An)

}
dµ

=
N∑

m,n=1

∫
X

1T−m(Am)(x)1T−n(An)(x) dµ

−
N∑

m,n=1

∫
X

{
1T−m(Am)(x)µ(An) + 1T−n(An)(x)µ(Am)− µ(Am)µ(An))

}
dµ

=
N∑

m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
≤ C

(
N∑
n=1

µ(An)

)α

= CEα
N ,

where the last inequality follows from the condition 4α. Thus, we get

‖ (SN(x)− EN)2 ‖ ≤ CEα
N ,

which implies ∥∥∥∥∥
(
SN(x)

EN
− 1

)2
∥∥∥∥∥ ≤ C

E2−α
N

and
‖SN(x)− EN‖ ≤ C

1
2E

α
2
N .

Hence, we have ∥∥∥∥SN(x)EN
− 1

∥∥∥∥ ≤ C
1
2

E
1−α

2
N

=
C

1
2

E
2−α
2

N

.

From
∞∑
n=1

µ(An) =∞, it follows that we can take the smallest integer N1 > 0

such that

EN1 =

N1∑
n=1

µ(An) ≥ 1
4

2−α .

Since 4
2−α > 2 we get (x + 1)

4
2−α > x

4
2−α + 1 for x ≥ 1. Hence, there exists

the smallest integer N2 > N1 such that

EN2 =

N2∑
n=1

µ(An) ≥ 2
4

2−α .

17



By repeating this procedure, we can get a sequence of integers 0 < N1 <
· · · < Nk < · · · such that

ENk =

Nk∑
n=1

µ(An) ≥ k
4

2−α >

Nk−1∑
n=1

µ(An) = ENk−1 for k = 1, 2, · · ·

So when α < 2, we get∥∥∥∥SNk(x)ENk
− 1

∥∥∥∥ ≤ C
1
2

E
2−α
2

Nk

≤ C
1
2

k
4

2−α
2−α
2

=
C

1
2

k2
for k = 1, 2, · · ·

Hence, by using the triangle inequality for the norm || · ||, we get∥∥∥∥∥
∞∑
k=1

∣∣∣∣SNk(x)ENk
− 1

∣∣∣∣
∥∥∥∥∥ ≤

∞∑
k=1

∥∥∥∥SNk(x)ENk
− 1

∥∥∥∥ ≤ ∞∑
k=1

C
1
2

k2
<∞,

which implies that the series
∞∑
k=1

∣∣∣SNk (x)ENk
− 1
∣∣∣ is convergent almost everywhere

in X. Hence, SNk (x)

ENk
→ 1 almost surely as k → ∞. Now, for any positive

integer N , we take k such that Nk ≤ N < Nk+1. Then

SNk(x)

ENk

ENk
ENk+1

≤ SNk(x)

ENk

ENk
EN
≤ SN(x)

EN
≤
SNk+1

(x)

ENk+1

ENk+1

EN
≤
SNk+1

(x)

ENk+1

ENk+1

ENk
.

Hence, to show that SN (x)
EN

→ 1 almost surely as N → ∞, it is enough to

show that
ENk+1

ENk
→ 1 as k →∞. For each k, we have

1 ≤
ENk+1

ENk
=

Nk+1∑
n=1

µ(An)

ENk
=

Nk+1−1∑
n=1

µ(An) + µ
(
ANk+1

)
ENk

=
ENk+1−1 + µ

(
ANk+1

)
ENk

≤ (k + 1)
4

2−α + 1

k
4

2−α

= (1 +
1

k
)

4
2−α +

1

k
4

2−α
−→ 1 as k →∞,

which implies that
ENk+1

ENk
→ 1 as k →∞. The proof is now complete.

The proof of Theorem 1 also implies the following theorem.
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Theorem 2. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =∞ and

there exist constants 0 ≤ β < 1 and C > 0 such that

‖Sn(x)− En‖ ≤ C Eβ
n for all large n,

then {An} is a strongly Borel–Cantelli sequence.

For each 1 < α < 2, we construct a strongly Borel–Cantelli sequence {An}
of subsets in a measure-preserving dynamical system (X,µ, T ) that satisfies
the condition 4α but not 4. In this sense, we can say that Theorem 1 is an
improvement of Theorem C.

Example 2. Let µ be the product Lebesgue measure on the sample space
X = [0, 1)× [0, 1) and let T be the invertible µ-preserving Baker’s transfor-
mation in X given in Example 1. For any 1 < α < 2, we define the subsets
An = T n ([(n+ 1)α−2, 1)× [0, 1)) in X for n = 1, 2, . . . . Then {T−n(An)} =
{[(n+ 1)α−2, 1)× [0, 1)} is an increasing sequence, i.e. T−n(An) ⊂ T−n−1(An+1)
for n = 1, 2, . . . , and µ(An) = µ (T−n(An)) = 1 − (n + 1)α−2. Hence,
∞∑
n=1

µ(An) ≥
∞∑
n=1

µ(A1) =∞, and for all N ≥ 1, we have

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
≤

N∑
m,n=1

{
µ
(
T−nAn

)
− µ(Am)µ(An)

}
=

N∑
m,n=1

{µ (An)− µ(Am)µ(An)}

=
N∑
n=1

µ(An)
N∑
m=1

(1− µ(Am)) =
N∑
n=1

µ(An)
N∑
m=1

1

(m+ 1)2−α

≤
N∑
n=1

µ(An)
N∑
m=1

∫ m+1

m

1

x2−α
dx =

N∑
n=1

µ(An)

∫ N+1

1

1

x2−α
dx

=
(N + 1)α−1 − 1

α− 1

N∑
n=1

µ(An) ≤
(N + 1)α−1 − 1

α− 1
N

≤ (N + 1)α

α− 1
≤ 2αNα

α− 1
.

On the other hand, the inequality µ(An) ≥ µ(A1) = 1 − 2α−2 holds for all
n = 1, 2, . . . . So we get(

N∑
n=1

µ(An)

)α

≥
(
1− 2α−1

)α
Nα,

19



and hence
N∑

m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
= O

((
N∑
n=1

µ(An)

)α)
.

Thus, the sequence {An} satisfies the condition 4α. By Theorem 1, we get
that it is a strongly Borel–Cantelli sequence. Now, let us show that {An}
does not satisfy the condition 4. We have

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= 2
N∑
n=1

n−1∑
m=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
≥ 2

N∑
n=1

n−1∑
m=1

{µ (Am)− µ(Am)µ(An)} = 2
N∑
n=1

(1− µ(An))
n−1∑
m=1

µ(Am)

≥ 2µ(A1)
N∑
n=1

(1− µ(An)) (n− 1) = 2µ(A1)
N∑
n=1

n− 1

(n+ 1)2−α
,

which, by the inequality 2(n− 1) ≥ n+ 1 when n ≥ 3, is larger than

µ(A1)
N∑
n=3

1

(n+ 1)1−α
≥ µ(A1)

N∑
n=3

∫ n+1

n

1

x1−α
dx

= µ(A1)

∫ N+1

3

1

x1−α
dx =

µ(A1) ((N + 1)α − 3α)

α

=
µ(A1)

((
1 + 1

N

)α − ( 3
N

)α)
α

Nα,

where

µ(A1)
((
1 + 1

N

)α − ( 3
N

)α)
α

−→ µ(A1)

α
> 0 as N →∞.

So, by 1 < α < 2, we have shown that {An} does not satisfy the condition4.

The following theorem is very useful in the study of the strong Borel–Cantelli
property and has been proven by W. J. LeVeque [4], W. M. Schmidt [3] and
W. Philipp [5].
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Theorem D ([3], [4], [5]). Suppose that the sequence {An} of sets in X

satisfies
∞∑
n=1

µ(An) = ∞ and that there exists a positive series
∞∑
m=1

cm < ∞

such that

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm−n µ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

As a simple application of Theorem 1, we will improve Theorem D and give
the following two corollaries.

Corollary 1. Suppose that the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =

∞ and that there exist a positive sequence {cm} and constants 0 ≤ β < 1 and
c > 0 such that

n∑
m=1

cm ≤ c

(
n∑

m=1

µ(Am)

)β

holds for all sufficiently large integers n, and

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm−n µ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

It is clear that the inequality assumption
n∑

m=1

cm ≤ c

(
n∑

m=1

µ(Am)

)β
holds

when
∞∑
n=1

µ(An) =∞ and
∞∑
m=1

cm <∞. Thus, Corollary 1 is an improvement

of Theorem D.

Proof. By Theorem 1, it is enough to check the condition 4α for some 1 ≤
α < 2. For any large N ≥ 1, we have

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= 2
N∑
n=1

N∑
m=n+1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
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≤ 2
N∑
n=1

N∑
m=n+1

cm−n µ(An) +
N∑
n=1

µ (An)

≤

(
1 + 2

N∑
m=1

cm

)
N∑
n=1

µ(An) ≤
N∑
n=1

µ(An) + 2c

(
N∑
n=1

µ(An)

)1+β

≤ (1 + 2c)

(
N∑
n=1

µ(An)

)1+β

.

Hence, {An} satisfies the condition 41+β with 1 < 1 + β < 2.

Remark. It is fairly easy to see that the inequality assumption

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm−n µ(An) for all m > n

in Corollary 1 could be replaced by one of the following inequalities

1. µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm−n µ(Am) for all m > n

2. µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm µ(An) for all m > n

3. µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cn µ(Am) for all m > n

Corollary 2. Suppose that the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =

∞ and that there exists a positive series
∞∑
m=1

cm <∞ and a constant 0 ≤ β <

1 such that

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + c1−βm−n µ(Am)

βµ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

Note that Corollary 2 with β = 0 corresponds to Theorem D. So Corollary
2 extends Theorem D.

Proof. By Theorem 1, it is enough to check the condition 4α for some 1 ≤
α < 2. If β = 0, the proof of Corollary 1 gives that for any N ≥ 1,

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

≤

(
1 + 2

N∑
m=1

cm

)
N∑
n=1

µ(An) ≤

(
1 + 2

∞∑
m=1

cm

)
N∑
n=1

µ(An).
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So {An} satisfies the condition 41 and is therefore a strongly Borel–Cantelli
sequence.

If 0 < β < 1, then for any N ≥ 1, we have
N∑

m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
= 2

N∑
n=1

N∑
m=n+1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
≤ 2

N∑
n=1

N∑
m=n+1

c1−βm−n µ(Am)
βµ(An) +

N∑
n=1

µ (An)

= 2
N∑
n=1

µ(An)
N∑

m=n+1

c1−βm−n µ(Am)
β +

N∑
n=1

µ (An) .

By applying Hölder’s inequality for 1
p
+ 1

q
= 1, where p = 1

β
> 1 and q =

1
1−β > 1, we get

N∑
m=n+1

c1−βm−n µ(Am)
β ≤

(
N∑

m=n+1

(
c1−βm−n

) 1
1−β

)1−β ( N∑
m=n+1

(
µ(Am)

β
) 1
β

)β

=

(
N∑

m=n+1

cm−n

)1−β ( N∑
m=n+1

µ(Am)

)β

≤

(
∞∑
k=1

ck

)1−β ( N∑
m=1

µ(Am)

)β

.

Hence, we have
N∑

m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

≤ 2

(
∞∑
k=1

ck

)1−β ( N∑
m=1

µ(Am)

)1+β

+
N∑
n=1

µ (An)

≤

1 + 2

(
∞∑
k=1

ck

)1−β
( N∑

m=1

µ(Am)

)1+β

.

Thus, {An} satisfies the condition 41+β with 1 < 1 + β < 2 and is therefore
a strongly Borel–Cantelli sequence.
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Remark. From the proof of Corollary 2, it turns out that the inequality
assumption

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + c1−βm−n µ(Am)

βµ(An) for all m > n

in Corollary 2 can be replaced by one of the following inequalities

1. µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + c1−βm−n µ(Am)µ(An)

β for m > n

2. µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + c1−βm µ(Am)

βµ(An) for m > n

3. µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + c1−βm µ(Am)µ(An)

β for m > n

On the other hand, the inequality µ(Am) ≤ µ(Am)
β holds for 0 < β ≤ 1.

This leads to the following corollary.

Corollary 3. Suppose that the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =

∞ and that there exists a positive series
∞∑
m=1

cm <∞ and a constant 0 < γ ≤

1 such that

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cγm µ(Am)µ(An)

holds for all m > n. Then {An} is a strongly Borel–Cantelli sequence.

Another consequence of Theorem 1 says that any {An} with a very large
measure µ(An) is a strongly Borel–Cantelli sequence.

Corollary 4. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =∞ and

there are constants C > 0 and 0 < β < 1 such that

N∑
n=1

(1− µ(An)) ≤ C

(
N∑
n=1

µ(An)

)β

holds for all N ≥ 1, then {An} is a strongly Borel–Cantelli sequence.

Proof. For any N ≥ 1, we have

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

≤
N∑

m,n=1

{
µ
(
T−mAm

)
− µ(Am)µ(An)

}
=

N∑
m,n=1

{µ (Am)− µ(Am)µ(An)}
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=
N∑
m=1

µ(Am)
N∑
n=1

(1− µ(An)) ≤ C

(
N∑
n=1

µ(An)

)1+β

.

So the sequence {An} satisfies the condition 4α with α = 1 + β < 2 and by
Theorem 1, we get that {An} is a strongly Borel–Cantelli sequence.

The following example shows that Corollary 4 fails for β = 1.

Example 3. Assume that µ is the Lebesgue measure on X = [0, 1] and
T is the identity transformation in X. Let An = [0, 1/2] for all n = 1, 2, . . . .

Clearly,
∞∑
n=1

µ(An) =∞, while {An} is not a Borel–Cantelli sequence. Hence,

it is not a strongly Borel–Cantelli sequence either. Moreover, for any N ≥ 1,
we have

N∑
n=1

(1− µ(An)) =
N

2
=

N∑
n=1

µ(An),

which implies that {An} satisfies the inequality assumption in Corollary 4
for β = 1.

Example 3 also shows that the condition 4α with 1 ≤ α < 2 in Theorem
1 cannot be improved by the condition 42. In fact, we have the following
corollary of Theorem 1, which is slightly stronger than Corollary 4.

Corollary 5. Let 1 ≤ α < 2 and C > 0. Suppose that the sequence {An}
with

∞∑
n=1

µ(An) =∞ satisfies one of the following conditions:

(i) The inequality

N∑
n=1

µ(An)
N∑

m=n+1

(1− µ(Am)) ≤ C

(
N∑
n=1

µ(An)

)α

holds for all N ≥ 1;
(ii) The inequality

N∑
n=1

(1− µ(An))
n−1∑
m=1

µ(Am) ≤ C

(
N∑
n=1

µ(An)

)α

holds for all N ≥ 1.
(iii) The inequality

N∑
n=1

(1− µ(An))
N∑

m=n+1

µ(Am) ≤ C

(
N∑
n=1

µ(An)

)α
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holds for all N ≥ 1.
(iv) The inequality

N∑
n=1

µ(An)
n−1∑
m=1

(1− µ(Am)) ≤ C

(
N∑
n=1

µ(An)

)α

holds for all N ≥ 1.
Then {An} is a strongly Borel–Cantelli sequence.

Proof. There is only a need to prove (i) and (ii). The proofs of (iii) and (iv)
are done in a similar way. Assume that assertion (i) is true. Then, for any
N ≥ 1, we write

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= 2
N∑
n=1

N∑
m=n+1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
≤ 2

N∑
n=1

N∑
m=n+1

{
µ
(
T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
≤ 2

N∑
n=1

µ(An)
N∑

m=n+1

(1− µ(Am)) +
N∑
n=1

µ (An)

≤ (1 + 2C)

(
N∑
n=1

µ(An)

)α

.

So by Theorem 1, we get that {An} is a strongly Borel–Cantelli sequence.

If assertion (ii) is true, then we get

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= 2
N∑
n=1

n−1∑
m=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
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+
N∑
n=1

{
µ (An)− µ(An)2

}
≤ 2

N∑
n=1

(1− µ(An))
n−1∑
m=1

µ(Am) +
N∑
n=1

µ (An)

≤ (1 + 2C)

(
N∑
n=1

µ(An)

)α

,

which, by Theorem 1, implies that {An} is a strongly Borel–Cantelli sequence.

The proof shown above implies that the conditions (i) and (ii) in Corollary 5
are equivalent to the condition 4α when the sequence {T−n(An)} is increas-
ing, i.e. T−1(A1) ⊂ T−2(A2) ⊂ T−3(A3) ⊂ . . . . Similarly, the conditions (iii)
and (iv) in Corollary 5 are equivalent to the condition 4α when the sequence
{T−n(An)} is decreasing.

Finally, we will give another type of consequence of Theorem 1.

Corollary 6. Let 0 ≤ ν < 1 and β < 1−2ν. Suppose that there are constants
c1 > 0 and c2 > 0 such that both

n∑
k=1

µ(Ak) ≥ c1 n
1−ν and

n−1∑
m=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
≤ c2 n

β

hold for all large n. Then {An} is a strongly Borel–Cantelli sequence.

Proof. From
n∑
k=1

µ(Ak) ≥ c1 n
1−ν , it follows that

∞∑
k=1

µ(Ak) =∞. For all large

N , we have

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= 2
N∑
n=1

n−1∑
m=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
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≤ 2
N∑
n=1

c2 n
β +

N∑
n=1

µ (An) ≤ 2c2N
β

N∑
n=1

1 +
N∑
n=1

µ (An)

= 2c2N
β+1 +

N∑
n=1

µ (An) ≤ 2c2

(
1

c1

N∑
n=1

µ (An)

)β+1
1−ν

+
N∑
n=1

µ (An) .

Since β < 1 − 2ν, we have β+1
1−ν < 2. Hence, the condition 4α holds for the

constant α = β+1
1−ν < 2. By Theorem 1, we know that {An} is a strongly

Borel–Cantelli sequence.

3.3 Sufficient conditions on Borel–Cantelli properties
with convergence in L1

The condition 42 cannot guarantee the strongly Borel–Cantelli property.
However, we have

Theorem 3. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =∞ and

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= o

( N∑
n=1

µ(An)

)2
 as N →∞,

where N = 1, 2, . . . , then {An} is an L1 Borel–Cantelli sequence.

Proof. It follows from the proof of Theorem 1 that for each integer N > 0,
we have

‖SN(x)− EN‖2 ≤
N∑

m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= o

( N∑
n=1

µ(An)

)2
 = o

(
E2
N

)
as N →∞.

Hence, ∥∥∥∥SN(x)EN
− 1

∥∥∥∥ −→ 0 as N →∞.

Thus, {An} is an L1 Borel–Cantelli sequence.
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Similarly to the proof of Corollary 4, we can apply Theorem 3 to deduce the
following corollary.

Corollary 7. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =∞ and

N∑
n=1

(1− µ(An)) = o

(
N∑
n=1

µ(An)

)
as N →∞,

then {An} is an L1 Borel–Cantelli sequence.

Another useful consequence of Theorem 3 is

Corollary 8. Suppose that the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =

∞ and that there exists a positive sequence {cn} with lim
n→∞

cn = 0 such that

µ
(
T−mAm ∩ T−nAn

)
≤ µ(Am)µ(An) + cm µ(Am)µ(An)

holds for all integers m > n. Then {An} is an L1 Borel–Cantelli sequence.

Proof. From the assumption, we have

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= 2
N∑
n=1

N∑
m=n+1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
+

N∑
n=1

{
µ (An)− µ(An)2

}
≤ 2

N∑
n=1

µ(An)
N∑
m=1

cm µ(Am) +
N∑
n=1

µ (An) .

From lim
n→∞

cn = 0, it follows that for each ε > 0, we can choose M > 0 such
that cm < ε for all m > M . So for N > M , we get

N∑
m=1

cm µ(Am) ≤
M∑
m=1

cm µ(Am) + ε
N∑

m=M+1

µ(Am),
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which, by
∞∑
m=1

µ(Am) =∞, implies that

N∑
m=1

cm µ(Am) = o

(
N∑
m=1

µ(Am)

)
as N →∞.

Thus,

N∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}
= o

( N∑
n=1

µ(An)

)2


as N → ∞. Hence, Theorem 3 gives that {An} is an L1 Borel–Cantelli
sequence.

Theorem 4. If the sequence {An} of sets in X satisfies
∞∑
n=1

µ(An) =∞ and

there exist integers n1 < n2 < · · · < nk < . . . such that

nk∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= o

( nk∑
n=1

µ(An)

)2
 as k →∞,

then {An} is a Borel–Cantelli sequence.

Proof. From the proof of Theorem 1, we get

||Snk(x)− Enk ||
2 ≤

nk∑
m,n=1

{
µ
(
T−mAm ∩ T−nAn

)
− µ(Am)µ(An)

}

= o

( nk∑
n=1

µ(An)

)2
 = o

(
E2
nk

)
as k →∞.

Hence, we have ∥∥∥∥Snk(x)Enk
− 1

∥∥∥∥ −→ 0 as k →∞,

which implies that Snk (x)

Enk
converges to 1 in measure. So there exists a subse-

quence
{
Snkl

(x)

Enkl

}
of
{
Snk (x)

Enk

}
such that

Snkl
(x)

Enkl
converges to 1 almost surely
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in X. Therefore, by Enkl → ∞, we get that Snkl (x) → ∞ almost surely in

X. Finally, since Sn(x) =
n∑

m=1

1T−m(Am)(x) increases as n increases, we can

see that Sn(x) → ∞ almost surely in X. This is the same as saying that
{An} is a Borel–Cantelli sequence.
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4 Applications of dynamical Borel–Cantelli lem-
mas

In this section, we will apply our results to improve some of the already
known theorems.

4.1 One-dimensional Gibbs–Markov systems

Let (X,B, µ) be a Lebesgue probability space. Also, let P be a countable
partition of the compact interval X into subintervals such that µ(α) > 0 for
all α ∈ P . For each n ∈ N, we define

Pn =

{
n−1⋂
i=0

T−i(αi); αi ∈ P for 0 ≤ i ≤ n− 1

}
.

A µ-preserving map T : X → X is said to be a Gibbs–Markov map if the
following conditions are satisfied [6]:
(1) We have B = σ ({T−i(α); α ∈ P , i ∈ Z+}) (mod µ), where σ(A) denotes

the σ-algebra that is generated by the set A.
(2) For all α, β ∈ P , if µ (T (α) ∩ β) > 0, then β ⊂ T (α) (mod µ).
(3) For all α ∈ P , the restriction map T |α is invertible.
(4) For all α ∈ P , T (α) = X (mod µ).
(5) There exists c1 > 0 and 0 < γ1 < 1 such that µ(α) ≤ c1γ

n
1 for all n ∈ N

and α ∈ Pn.
(6) There exists c2 > 0 and 0 < γ2 < 1 such that for all n ∈ N and α ∈ Pn,

we have that ∣∣∣∣log(JT (x)JT (y)

)∣∣∣∣ ≤ c2γ
n
2

holds for all x, y ∈ α, where JT = d(µ◦T )
dµ

.

Assume that T : X → X is a measure-preserving Gibbs–Markov map in X.
So we have the one-dimensional Gibbs–Markov system (X,B, µ, T,P). C.
Gupta, M. Nicol and W. Ott [6] obtained a sufficient condition for strongly
Borel–Cantelli sequences in one-dimensional Gibbs–Markov systems.

Theorem E ([6]). Let (X,B, µ, T,P) be a one-dimensional Gibbs–Markov
system. Also, let {An} be a sequence of intervals in X for which there exists
a constant C > 0 such that µ(Aj) ≤ C µ(Ai) holds for all j ≥ i ≥ 1. If
∞∑
n=1

µ(An) =∞, then {An} is a strongly Borel–Cantelli sequence.
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C. Gupta, M. Nicol and W. Ott applied the condition 4 to prove Theorem
E. As an application of our theorems, we will prove that the inequality
assumption µ(Aj) ≤ C µ(Ai) for j ≥ i ≥ 1 in Theorem E is superfluous. So
we will establish a characterization of the strongly Borel–Cantelli sequences
in one-dimensional Gibbs–Markov systems.

Theorem 5. Let (X,B, µ, T,P) be a one-dimensional Gibbs–Markov system

and let {An} be a sequence of intervals in X. Then
∞∑
n=1

µ(An) = ∞ if and

only if the sequence {An} is a strongly Borel–Cantelli sequence.

Proof. Assume that {An} is a strongly Borel–Cantelli sequence. Then {An}
is a dynamical Borel–Cantelli sequence as well. However, from Lemma

B, it follows that the convergence condition
∞∑
n=1

µ(An) < ∞ implies that

{An} is not a dynamical Borel–Cantelli sequence. Thus, we must have
∞∑
n=1

µ(An) =∞.

On the other hand, assume that
∞∑
n=1

µ(An) = ∞. In the proof of Theorem

1 in reference [6], C. Gupta, M. Nicol and W. Ott discussed four different
cases of the indexes i and j to get the estimation

µ
(
T−jAj ∩ T−iAi

)
− µ(Aj)µ(Ai) ≤ C1τ

j−i
2 µ(Aj) for all j > i ≥ 1,

where the constants C1 > 0 and 0 < τ < 1. So by Corollary 1 and the
following remark after the proof of Corollary 1, we know that the sequence
{An} is a strongly Borel–Cantelli sequence.

4.2 A dynamical Borel–Cantelli lemma on sequences of
balls

Suppose that (X,µ, T ) is a measure-preserving dynamical system, where X
is a metric space with the probability measure µ. We will use the notation
E(f) :=

∫
X
fdµ for any integrable function f . Following paper [7], the con-

ditions (A) and (B) are defined below:

(A) There exist positive constants p(k) with k = 0, 1, 2, . . . such that the
inequality∣∣E (φψ ◦ T k)− E(φ)E(ψ)∣∣ ≤ p(k)||φ||Lip||ψ||Lip
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holds for all Lipschitz functions φ, ψ in X.

(B) There exist constants r0 > 0 and 0 < δ < 1 such that for all points
p ∈ X and all 0 < ε < r ≤ r0,

µ {x : r < d(x, p) < r + ε} ≤ εδ.

N. Haydn, M. Nicol, T. Persson and S. Vaienti [7] gave a sufficient condition
for the strong Borel–Cantelli property in sequences of balls in X. They
proved

Theorem F ([7]). Let c1 and c2 be positive constants. Assume that (X,µ, T )
satisfies the conditions (A) and (B) with p(k) ≤ c1 k

−q, and assume that the
balls Ak satisfy c2/kγ ≤ µ(Ak) for some constant 0 < γ < 1. If

q >
(2/δ) + γ

1− γ
,

then {An} is a strongly Borel–Cantelli sequence.

Let us apply Theorem 2 with a modification of their proof to show that the
inequality assumption q > (2/δ)+γ

1−γ in Theorem F could be weakened. The
result is

Theorem 6. Let c1 and c2 be positive constants. Assume that (X,µ, T )
satisfies the conditions (A) and (B) with p(k) ≤ c1 k

−q, and assume that the
balls Ak satisfy c2/kγ ≤ µ(Ak) for some constant 0 < γ < 1. If

q > max

{
γ

δ
+ 1,

(2/δ)γ + γ

1− γ

}
,

then {An} is a strongly Borel–Cantelli sequence.

Note that the maximum in Theorem 6 is smaller than (2/δ)+γ
1−γ in Theorem F,

since we have

(2/δ) + γ

1− γ
>

2

δ(1− γ)
>

1

δ
+

1

δ
>
γ

δ
+ 1.

Proof. From
n∑
k=1

µ(Ak) ≥
n∑
k=1

c2/k
γ ≥ c0 n

1−γ, it follows that
∞∑
k=1

µ(Ak) =∞.

By Theorem 2, it is enough to prove that there exist constants 0 ≤ β < 1
and C > 0 such that ||Sn(x)− En|| ≤ C Eβ

n holds for all large n.
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Let 0 < ε1 < 1 − γ. By using linear interpolation, we can choose a Lip-
schitz function f̃k(x) in X such that f̃k(x) = 1 if x ∈ Ak, f̃k(x) = 0 if
d(Ak, x) ≥ (c2/k

γ+ε1)
1/δ, 0 ≤ f̃k(x) ≤ 1 and ‖f̃k‖Lip ≤ (kγ+ε1/c2)

1/δ. Write
f̃k(x) = 1Ak(x) + h̃k(x), fk(x) = f̃k

(
T k(x)

)
and hk(x) = h̃k

(
T k(x)

)
. Then

fk(x) = 1T−kAk(x)+hk(x) and 0 ≤ hk(x) ≤ 1. By the triangle inequality, we
get

||Sn(x)− En|| =
∫
X

∣∣∣∣∣
n∑
k=1

1T−kAk(x)−
n∑
k=1

µ(Ak)

∣∣∣∣∣ dµ
≤
∫
X

∣∣∣∣∣
n∑
k=1

1T−kAk(x)−
n∑
k=1

fk(x)

∣∣∣∣∣ dµ+

∫
X

∣∣∣∣∣
n∑
k=1

fk(x)−
n∑
k=1

E(fk)

∣∣∣∣∣ dµ
+

∫
X

∣∣∣∣∣
n∑
k=1

E(fk)−
n∑
k=1

µ(Ak)

∣∣∣∣∣ dµ := I + II + III.

Since T is µ-preserving, the condition (B) gives

µ(Ak) ≤ E(f̃k) = E(fk) = µ(Ak) + E (hk(x)) ≤ µ(Ak) +
c2

kγ+ε1
.

Hence,
n∑
k=1

µ(Ak) ≤
n∑
k=1

E(fk) ≤
n∑
k=1

µ(Ak) + c3n
1−γ−ε1 ,

which implies

III =

∣∣∣∣∣
n∑
k=1

E(fk)−
n∑
k=1

µ(Ak)

∣∣∣∣∣ ≤ c3n
1−γ−ε1 ≤ c4

(
n∑
k=1

µ(Ak)

) 1−γ−ε1
1−γ

.

From fk(x) = 1T−kAk(x) + hk(x) and the condition (B), we get

I =

∫
X

∣∣∣∣∣
n∑
k=1

1T−kAk(x)−
n∑
k=1

fk(x)

∣∣∣∣∣ dµ =

∫
X

∣∣∣∣∣
n∑
k=1

hk(x)

∣∣∣∣∣ dµ
=

n∑
k=1

∫
X

hk(x)dµ =
n∑
k=1

∫
X

h̃k
(
T k(x)

)
dµ

≤
n∑
k=1

c2
kγ+ε1

≤ c3n
1−γ−ε1 ≤ c4

(
n∑
k=1

µ(Ak)

) 1−γ−ε1
1−γ

.
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It follows from Hölder’s inequality that

II =

∫
X

∣∣∣∣∣
n∑
k=1

fk(x)−
n∑
k=1

E(fk)

∣∣∣∣∣ dµ
≤

∫
X

12 dµ

1/2 ∫
X

(
n∑
k=1

fk(x)−
n∑
k=1

E(fk)

)2

dµ

1/2

=

∫
X

(
n∑
k=1

fk(x)−
n∑
k=1

E(fk)

)2

dµ

1/2

=

(
n∑

i,j=1

{E (fifj)− E(fi)E(fj)}

)1/2

=

(
2

n∑
i=1

n∑
j=i+1

{E (fifj)− E(fi)E(fj)}+
n∑
i=1

{
E
(
f 2
i

)
− E(fi)2

})1/2

,

which, by 0 ≤ fk ≤ 1, is less than(
2

n∑
i=1

n∑
j=i+1

|E (fifj)− E(fi)E(fj)|+
n∑
i=1

E (fi)

)1/2

≤ 21/2

(
n∑
i=1

n∑
j=i+1

|E (fifj)− E(fi)E(fj)|

)1/2

+

(
n∑
i=1

E (fi)

)1/2

.

So we only need to prove that there exists a constant α < 2 such that

n∑
i=1

n∑
j=i+1

|E (fifj)− E(fi)E(fj)| ≤ c5

(
n∑
i=1

E (fi)

)α

.

Let ε2 > 0. Take the constant σ = 1− γ − ε2 > 0. Write

n∑
i=1

n∑
j=i+1

|E (fifj)− E(fi)E(fj)| =
n∑
i=1

n∧(i+[iσ ])∑
j=i+1

|E (fifj)− E(fi)E(fj)|

+
n∑
i=1

n∑
j=i+[iσ ]+1

|E (fifj)− E(fi)E(fj)| := II1 + II2,
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where we use the notation a∧ b = min(a, b) and [iσ] denotes the integer part
of the number iσ. By 0 ≤ fi, fj ≤ 1 we get

|E (fifj)− E(fi)E(fj)| ≤ |E (fifj)|+ |E(fi)E(fj)| ≤ 2 |E(fi)| ,

and hence

II1 ≤ 2
n∑
i=1

n∧(i+[iσ ])∑
j=i+1

E (fi) ≤ 2
n∑
i=1

n∧(i+[iσ ])∑
j=i+1

(
µ(Ai) +

c2
iγ+ε1

)

≤ 2
n∑
i=1

(
iσµ(Ai) +

c2i
σ

iγ+ε1

)
≤ 2nσ

n∑
i=1

µ(Ai) + c6n
1+σ−γ−ε1

≤ c7

(
n∑
i=1

µ(Ai)

) σ
1−γ+1

+ c8

(
n∑
i=1

µ(Ai)

) 1+σ−γ−ε1
1−γ

≤ c9

(
n∑
i=1

µ(Ai)

) 2−2γ−ε2
1−γ

= c9

(
n∑
i=1

µ(Ai)

)2− ε2
1−γ

.

On the other hand, by the condition (A), we get

II2 =
n∑
i=1

n∑
j=i+[iσ ]+1

|E (fifj)− E(fi)E(fj)|

=
n∑
i=1

n∑
j=i+[iσ ]+1

∣∣∣∣∫
X

f̃i
(
T i(x)

)
f̃j
(
T j(x)

)
dµ− E(fi)E(fj)

∣∣∣∣
=

n∑
i=1

n∑
j=i+[iσ ]+1

∣∣∣∣∫
X

f̃i(x)f̃j
(
T j−i(x)

)
dµ− E(fi)E(fj)

∣∣∣∣
≤

n∑
i=1

n∑
j=i+[iσ ]+1

‖f̃i‖Lip‖f̃j‖Lip p(j − i)

≤ c10

n∑
i=1

n∑
j=i+[iσ ]+1

i
γ+ε1
δ j

γ+ε1
δ

(j − i)q
≤ c10

n∑
i=1

i
γ+ε1
δ

∞∑
k=1

(i+ [iσ] + k)
γ+ε1
δ

([iσ] + k)q

≤ c10

n∑
i=1

i
γ+ε1
δ

∞∑
k=1

2
γ+ε1
δ

(i+ k)
γ+ε1
δ

([iσ] + k)q
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= c11

n∑
i=1

i
γ+ε1
δ

∞∑
k=1

([iσ] + k)
γ+ε1
δ
−q
(

i+ k

[iσ] + k

) γ+ε1
δ

,

where (
i+ k

[iσ] + k

) γ+ε1
δ

=

(
1 +

i− [iσ]

[iσ] + k

) γ+ε1
δ

≤
(
1 +

i− [iσ]

[iσ]

) γ+ε1
δ

=

(
i

[iσ]

) γ+ε1
δ

≤
(
2 i

iσ

) γ+ε1
δ

= 2
γ+ε1
δ i(1−σ)

γ+ε1
δ .

Thus, we get

II2 ≤ c12

n∑
i=1

i
γ+ε1
δ

+(1−σ) γ+ε1
δ

∞∑
k=1

([iσ] + k)
γ+ε1
δ
−q

≤ c13

n∑
i=1

i
2γ−σγ+2ε1−σε1

δ

∞∑
k=1

(iσ + k)
γ+ε1
δ
−q,

which, if γ+ε1
δ
− q < −1, is less than

c14

n∑
i=1

i
2γ−σγ+2ε1−σε1

δ iσ(
γ+ε1
δ
−q+1) = c14

n∑
i=1

i
2γ
δ
−σq+σ+ 2ε1

δ

≤ c15n
2γ
δ
−σq+σ+1+

2ε1
δ = c15n

2γ
δ
+1+(1−γ)−(1−γ)q−ε2−ε2q+ 2ε1

δ

≤ c16

(
n∑
k=1

µ(Ak)

) 2γ
δ

+1

1−γ +1−q+
−ε2−ε2q+

2ε1
δ

1−γ

.

By the arbitrariness of ε1 and ε2, we have proven Theorem 6 as long as we
assume that q > γ

δ
+ 1 and

2γ
δ
+1

1−γ + 1− q < 2, i.e.

q > max

{
γ

δ
+ 1,

(2/δ)γ + γ

1− γ

}
.

Note that if γ ≥ −3+
√
13

2
= 0.30278 . . . , then

max

{
γ

δ
+ 1,

(2/δ)γ + γ

1− γ

}
=

(2/δ)γ + γ

1− γ
,

since we have
γ

δ
+ 1 ≤ (2/δ)γ + γ

1− γ
⇐⇒ γ2

δ
+
γ

δ
+ 2γ − 1 ≥ 0

⇐= γ2 + 3γ − 1 ≥ 0,

which is true when γ ≥ −3+
√
13

2
.
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4.3 Ergodic dynamical systems

Following Chapter 6 in [12], there are several notions of mixing for measure-
preserving transformations in X.

Definition 4. Let (X,µ, T ) be a measure-preserving dynamical system.
(i) T is called a mixing if, for all measurable sets A and B in X, we have

lim
n→∞

µ
(
T−n (A) ∩B

)
= µ(A)µ(B).

(ii) T is called a weakly mixing if, for all measurable sets A and B in X, we
have

lim
n→∞

1

n

n−1∑
k=0

∣∣µ (T−k (A) ∩B)− µ(A)µ(B)
∣∣ = 0.

(iii) T is called ergodic if, for all measurable sets A and B in X, we have

lim
n→∞

1

n

n−1∑
k=0

{
µ
(
T−k (A) ∩B

)
− µ(A)µ(B)

}
= 0,

that is

lim
n→∞

1

n

n−1∑
k=0

µ
(
T−k (A) ∩B

)
= µ(A)µ(B).

Evidently, weakly mixing implies ergodicity. From Chapter 6.2 in [12], we
get that mixing implies weakly mixing as well. Generally, the converse im-
plications do not hold.

The ergodic and weakly mixing properties of measure-preserving dynami-
cal systems could be characterized by means of Borel–Cantelli and strongly
Borel–Cantelli sequences, as shown in the following two Theorems.

Theorem G ([8]). Let (X,µ, T ) be a measure-preserving dynamical system.
Then the following statements are equivalent.

(a) T is ergodic;
(b) Each constant sequence {A} with µ(A) > 0 is a Borel–Cantelli

sequence;
(c) Each constant sequence {A} with µ(A) > 0 is a strongly Borel-

Cantelli sequence.

Theorem H ([8]). Let (X,µ, T ) be a measure-preserving dynamical system.
Then the following statements are equivalent.

(a) T is weakly mixing;
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(b) Each sequence {An} that only contains finitely many distinct sets,
each with positive measure, is a Borel–Cantelli sequence;

(c) Each sequence {An} that only contains finitely many distinct sets,
each with positive measure, is a Borel–Cantelli sequence in the L2

metric, i.e. ∥∥∥∥∥
(
Sn(x)

En
− 1

)2
∥∥∥∥∥ −→ 0 as n→∞.

According to paper [8], the equivalence to the assertions (a) and (b) in The-
orem H was first proven by Y. Guivarch and A. Raugi. The equivalence
to the assertions (a) and (c) was given by N. Chernov and D. Kleinbock.
However, Theorem H does not discuss the strong Borel–Cantelli property of
the sequence {An}. For this purpose, let us introduce a new type of weakly
mixing transformations.

Definition 5. Let 0 < β ≤ 1. A µ-preserving transformation T is called
a weakly β-mixing with respect to a collection of measurable sets in X if, for
any two sets A and B in the collection, there exists a constant C > 0 such
that

n−1∑
k=0

∣∣µ (T−k (A) ∩B)− µ(A)µ(B)
∣∣ ≤ Cnβ for n = 1, 2, . . . ,

that is,
n−1∑
k=0

∣∣µ (T−k (A) ∩B)− µ(A)µ(B)
∣∣ = O

(
nβ
)
.

Now, we have

Theorem 7. Let 0 < β < 1 and (X,µ, T ) be a measure-preserving dynami-
cal system. If the map T is weakly β-mixing with respect to the sequence {An},
which only contains finitely many distinct sets, each with positive measure,
then {An} is a strongly Borel–Cantelli sequence and satisfies∥∥∥∥∥

(
Sn(x)

En
− 1

)2
∥∥∥∥∥ = O

(
1

n1−β

)
.

Proof. We have

‖ (Sn(x)− En)2 ‖ =
n∑

k,m=1

{
µ
(
T−kAk ∩ T−mAm

)
− µ(Ak)µ(Am)

}
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= 2
n∑

m=1

n∑
k=m+1

{
µ
(
T−kAk ∩ T−mAm

)
− µ(Ak)µ(Am)

}
+

n∑
m=1

{
µ (Am)− µ(Am)2

}
= 2

n∑
m=1

n∑
k=m+1

{
µ
(
T−m

(
T−(k−m)Ak

)
∩ T−mAm

)
− µ(Ak)µ(Am)

}
+

n∑
m=1

{
µ (Am)− µ(Am)2

}
,

which, by the equality T−m(A) ∩ T−m(B) = T−m(A ∩ B) for all sets A, B,
is equal to

2
n∑

m=1

n∑
k=m+1

{
µ
(
T−(k−m)Ak ∩ Am

)
− µ(Ak)µ(Am)

}

+
n∑

m=1

{
µ (Am)− µ(Am)2

}
≤ 2

n∑
m=1

n∑
k=m+1

∣∣µ (T−(k−m) (Ak) ∩ Am
)
− µ(Ak)µ(Am)

∣∣+ En.

The sequence {Ak} only contains a finite number of distinct sets (each with
positive measure), say, D1, D2, . . . , DL. So there exist two positive constants
c1 and c2 such that c1 ≤ µ(Ak) ≤ c2 for all k = 1, 2, · · · . Hence,

c1n ≤
n∑
k=1

µ(Ak) ≤ c2n, i.e. c1n ≤ En ≤ c2n for n = 1, 2, · · · .

Thus, we get
‖ (Sn(x)− En)2 ‖

≤ 2
n∑

m=1

L∑
l,w=1

n−m∑
s=1

∣∣µ (T−s(Dl) ∩Dw

)
− µ(Dl)µ(Dw)

∣∣+ En,

where En = O(n) = O
(
n1+β

)
. On the other hand, by the weakly β-mixing

property of T with respect to {An}, we get

n∑
m=1

L∑
l,w=1

n−m∑
s=1

∣∣µ (T−s(Dl) ∩Dw

)
− µ(Dl)µ(Dw)

∣∣
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= O

(
n∑

m=1

L∑
l,w=1

(n−m)β

)
= O

(
n∑

m=1

(n−m)β

)

= O

(
n−1∑
k=1

kβ

)
= O

 n∫
1

xβ dx

 = O
(
n1+β

)
.

Thus, we have ∣∣∣∣(Sn(x)− En)2∣∣∣∣ = O
(
n1+β

)
,

which implies ∥∥∥∥∥
(
Sn(x)

En
− 1

)2
∥∥∥∥∥ = O

(
n1+β

E2
n

)
= O

(
1

n1−β

)
.

It follows from c1n ≤ En ≤ c2n that
∞∑
n=1

µ(An) = lim
n→∞

En =∞ and

n∑
k,m=1

{
µ
(
T−kAk ∩ T−mAm

)
− µ(Ak)µ(Am)

}
= ‖ (Sn(x)− En)2 ‖

= O
(
n1+β

)
= O

(
E1+β
n

)
.

So {An} satisfies the condition 41+β with 1 < 1+ β < 2. By Theorem 1, we
get that {An} is a strongly Borel–Cantelli sequence.
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5 Unsolved problems and future work
In this Master’s thesis, we have investigated several versions of the sufficient
condition for the strong Borel–Cantelli property. We have also discussed
some of their applications. Hopefully, these findings can be applied to fur-
ther improve some of the already known results.

This thesis has mainly dealt with the strong Borel–Cantelli property. Con-
sequently, it becomes natural to think about the sufficient condition for the
Borel–Cantelli property itself.

We have proven that the weakly β-mixing with 0 < β < 1 implies the strong
Borel–Cantelli property in sequences of sets that only consist of finitely many
distinct sets, where each set has positive measure. However, the converse as-
sertion is still unknown, so for a future work, it would be rather interesting
to research the characteristics of the strong Borel–Cantelli property in those
sequences by means of some kind of mixing property.
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