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Abstract

Although deep learning has made advances in a plethora of fields, ranging from
financial analysis to image classification, it has some shortcomings for cases of limited
data and complex models. In these cases the networks tend to be overconfident in
their prediction even when erroneous - something that exposes its applications to
risk. One way to incorporate an uncertainty measure is to let the network weights be
described by probability distributions rather than point estimates. These networks,
known as Bayesian neural networks, can be trained using a method called variational
inference, allowing one to utilize standard optimization tools, such as SGD, Adam
and learning rate schedules. Although these tools were not developed with Bayesian
neural networks in mind, we will show that they behave similarly. We will confirm
some best practices for training these networks, such as how the loss should be scaled
and evaluated. Moreover, we see that one should avoid using Adam in favor of SGD
and AdaBound. Wee see that one should also group the learnable parameters in
order to use custom learning rates for the different groups.

Populärvetenskapligt sammanfattning

Genom att använda maskininlärning g̊ar det att lösa problem som vi tidigare trodde
var olösbara. Saker som ansiktsigenkänning, chatbottar och maskiner som lär sig g̊a
självmant känns idag helt triviala men var en enorm utmaning bara n̊agra decennier
sedan. Maskinlärning används i alla hörn av v̊art samhälle, fr̊an medicin och finans
till bilindustrin och telekommunikation. Gemensamt för alla dessa sektorer är att
man behöver ha full koll p̊a osäkerheten i alla beslut man tar. Ett exempel p̊a detta
är en doktor med en patient med cancer. Hur säker doktorn är p̊a att patienten
faktiskt har cancer kan avgöra om hen kommer behandlas med cellgifter eller ej.

Artificiella neurala nätverk, vilka är benstommen inom maskininlärning, har idag
inget mått p̊a hur säkra de är i de beslut de gör. Änd̊a används de för t.ex. diagnos-
ticera cancer och i självstyrande bilar. S̊a vad kan vi göra åt nätverken för att göra
dem mer osäkra? En möjlighet är n̊agot som heter Bayesianska neurala nätverk.
Dessa nätverk är medvetna om hur osäkra de är när de tar beslut. Dessa Bayesian-
ska neurala nätverk är dock sv̊arare att lära upp (att lära n̊agon som är kritisk till
allt är tämligen kr̊angligt). Detta arbete undersöker om det finns knep som g̊ar att
använda for att snabba upp träningsprocessen.
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Chapter 1

Introduction

“The beginning is the most important part of the work.”, Plato.

Artificial neural networks [1] are applied in sectors ranging from medicine and finance
to automotive and telecommunications. In all these sectors, decisions must have high
confidence and well-assessed uncertainties. However, standard artificial neural net-
works provide no inherent concepts of neither uncertainty nor confidence [2]. When
exposed to out-of-domain data they tend to make over-confident and even erroneous
predictions (see the example in fig 1.1) [2]. The reason for this is that these net-
works rely on the principle of maximum likelihood, also known as frequentism. One
flaw of frequentism is that it only seeks to maximize the likelihood of the observed
data without accounting for its uncertainties. This exposes applications using said
networks for the risk of making errors without any estimation of when it is doing
so [2].

Figure 1.1: A hand-picked example comparison between the classifications of a fre-
quentist and a Bayesian network on Gaussian noise. Both networks have been
trained to above 98% accuracy on recognizing handwritten digits.

Another issue of frequentist networks is the proneness to over-training. This
requires careful choice of network architecture, fine-tuned hyper-parameters and
well selected regularization methods. Not only does this force the user to resort to
heuristics, but can lead users to end up with non-optimal, even dubious, networks.
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Interestingly enough, the lack of uncertainty is one of the reasons for the tendency
of over-training. Hence, if one could implement an inherent uncertainty measure
into a network, one would also likely mitigate the effects of over-training [3].

Uncertainties may arise from the data, so called aleatoric uncertainty, and it can
rise from the model itself, resulting in epistemic uncertainty. As one often cannot
alter the data, the aleatoric uncertainty can be considered fixed. However, models
should be changed and updated. This renders epistemic uncertainty a valuable tool
for evaluating models.

In order to implement uncertainty into a network, the first step is to look beyond
traditional deep learning [4] and into probabilistic machine learning. To highlight
the differences this implies, consider a labelled dataset consisting of the inputs x
and the labels y. In light of new data points (x̂, ŷ) the prediction P(ŷ|x̂) can be
expanded as

P(ŷ|x̂) =

∫
P(ŷ|w, x̂)P(w|y, x) dw (1.0.1)

with an intermediate variable w which corresponds to a specific hypothesis. As one
must integrate over the whole space of hypothesises, the integral quickly becomes
intractable. As an answer to this inconvenient integral, various methods have been
developed to approximate it. Until recently those methods were either unscalable
or unfeasible computation-wise and one instead adopted a more simplistic approxi-
mation for artificial neural networks, namely one chooses a hypothesis as1

w = arg max
w∗

P(y|w∗, x) (1.0.2)

which gives the following prediction,

P(ŷ|x̂) = P(ŷ|w, x̂). (1.0.3)

This approximation is based in the belief that the likelihood will always take on the
largest possible value, also known as maximum likelihood. Constructing networks
based on this principle will produce well performing networks which, however, suffer
from the drawback that one cannot estimate the epistemic uncertainty. One can of
course build ensembles of frequentist networks and use them to construct epistemic
measures [5], but doing so is time extensive - especially for deep networks.

Not being able to estimate the epistemic uncertainty exposes one to the vulner-
abilities discussed earlier. The Bayesian approach is an alternative route to solving
the integral in order to construct an epistemic measure. In contrast to maximum
likelihood, it tries to model the distribution of P(w|y, x). If one refrains from using
point estimates for w, the integral does not vanish. Instead one can utilize Monte
Carlo sampling;

P(ŷ|x̂) =
1

M

∑
w

P(ŷ|w, x̂) (1.0.4)

where w is sampled from the posterior distribution P(w|y, x). As in the frequentist
case, P(ŷ|w, x̂) is modelled in the choice of the architecture. But now the weights
w are sampled. However, the distribution for w is inherently high-dimensional and

1This is a special case of the integral where P(w|y, x) = δ(w − w∗) with δ as the Dirac delta
function. Then maximum likelihood is invoked to choose the values on the weights w∗. Further,
the Dirac delta turns the integral into a single value.
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complex which makes it hard to sample from. The two main approaches are Markov
chain Monte Carlo (MCMC) and Variational Inference (VI). In MCMC one cre-
ates an approximate distribution of P(w|y, x) and samples from it. The sample can
be improved to arbitrary accuracy by repeatedly applying random transitions. Al-
though providing a high accuracy, it is a lengthy process and not very suitable for
large datasets [6].

Just as MCMC, VI creates an approximate distribution to P(w|y, x) but it uses
a loss function (distance between approximation and ground truth) which allows
one to use traditional optimization tools. This approach is more suitable for large
datasets in shorter computation times [6]. For these reasons, we will use VI to build
our networks in this study.

In the variational inference framework, the number of hyper-parameters is greatly
increased (typically doubled) while the gains in model complexity is minimal [3].
Further, using conventional training methods, the learning process is slower than its
frequentist counterpart and the end result has often worse performance, as seen in
fig. 1.2.

Figure 1.2: Comparison between accuracies of a frequentist (solid) and a Bayesian
network (dashed) on MNIST (left) and CIFAR10 (right). Both models have been
trained with Adam. Apart from that, no other optimization techniques have been
used.

For the Bayesian framework to be an attractive alternative to the frequentist
approach, the performance must be on par. When using VI, the optimization tools
used are built and adapted for frequentist networks. There is no guarantee that
same toolset applies equally well to both frameworks. We will in this study consider
how suitable different optimizers are for this task, what learning schedules should
be used and how the loss in VI should be treated. From there we derive a set of best
practices. As seen in fig 1.2, this investigation is of relevance even for fairly small
convolutional networks applied to image classifications, which will be the focus of
this study.
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Chapter 2

Bayesian neural networks

“The greatest obstacle to true learning is the inability to say ”I don’t know.” , Marty
Rubin.

Bayesian neural networks unify artificial neural networks with Bayesian statistics.
This gives several advantages over regular frequentist networks: Bayesian neural
networks are less confident when exposed to extraneous data, are less prone to
overfitting and feature inherent measurements for uncertainty. There are two cor-
nerstones of such networks:

Bayesianism Previous knowledge and beliefs are incorporated into predictions.
Instead of starting each network from scratch, we encode available information
into it.

Uncertainty Instead of learning point estimates for trainable parameters the
networks learn the underlying distributions. This allows one to sample predic-
tions and from there calculate uncertainty in the generated predictions.

This chapter will derive the basic formalism for Bayesian neural networks and
what tools should be used for obtaining efficient models. The tools include varia-
tional inference, backpropagation and weight initialization. As an introduction to
the Bayesian formalism the maximum a posteriori approach will be discussed. It is
an alternative to maximum likelihood, which is summarized in appendix B, where
one incorporates knowledge about the past and beliefs into the model.

The Maximum A Posteriori approach (MAP) relies on Bayes’ theorem,

P(A|X)︸ ︷︷ ︸
Posterior

=
1

P(X)︸ ︷︷ ︸
Evidence

P(X|A)︸ ︷︷ ︸
Likelihood

P(A)︸ ︷︷ ︸
Prior

(2.0.1)

which can be derived by reformulating the chain rule of probability for two events
X and A: P(A,X) = P(A|X) P(X) = P(X|A) P(A). The theorem relates the prior
probability P(A) to the posterior probability P(A|X) in light of new evidence X.
This relation requires knowledge of the evidence probability P(X) and the event
likelihood P(X|A).

The Maximum a Posteriori approach (MAP) seeks to maximize the posterior
P(A|X) rather than P(X|A) which is what one does using Maximum Likelihood
Estimates (MLE). As an example, consider a network with input x, labels y and
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weights w. If we regard the network as a model of the distribution P(y|x,w), the
weights in the two approaches become

wMLE = arg max
w∗

log P(y|w∗, x) and wMAP = arg max
w∗

log P(w∗|y, x). (2.0.2)

The weights obtained using MAP can be reformulated using Bayes’ theorem. Since
P(y|x) is independent of w∗, the MAP weights become

wMAP = arg max
w∗

[log P(y|w∗, x) + log P(w∗)] . (2.0.3)

The result in the maximum a posteriori framework is equivalent to the result using
maximum likelihood but with an added regularization term. This regularization
term is nothing else but the prior of the weights.

So far we have implicitly used point estimates for the weights. But in order
to develop a proper epistemic uncertainty measure, we should consider the weights
w to be a random variable from a distribution P(w|y, x). Then we can use the
Monte Carlo approximation in eq. (1.0.4). Exactly how we should treat P(w|y, x) is
discussed in the next section. There is an example below to further clarify MAP.

An example Consider an event with a probability p. Using a Bernoulli distri-
bution, p is related to the observations y via P(y) = Bernoulli(y|p). Given the
observations y = (0, 1), the likelihood function becomes

P(y = 0, 1|p) = p(1− p). (2.0.4)

Using MLE, one obtains a probability of p = 0.5. Additionally, consider a related
event with a probability that is distributed as Beta(3, 2). Including this in a MAP
estimate, gives1

p = arg max
p∗

p∗(1− p∗) p∗ 3−1(1− p∗)2−1︸ ︷︷ ︸
Prior

(2.0.5)

which corresponds to p = 0.6 and differs from what was obtained using MLE.

1The parameters in Beta(a, b) can be considered as a successes and b failures. This gives a mean
of a/(a+ b).
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2.1 Variational inference

As discussed in the introduction, the posterior P(w|y, x) can often not be evalu-
ated exactly. The two main approaches treating it is Markov Chain Monte Carlo
(MCMC) and Variational Inference (VI). As mentioned in chapter 1, MCMC is
not suitable for complex models with a significant number of parameters and large
datasets. For this reason, we will discuss how to build Bayesian neural networks in
a VI framework.

The concept of VI is to approximate the posterior P(w|y, x) with a distribu-
tion that is easier to evaluate. This approximation, which is called the variational
posterior, is found by minimizing the distance between the true posterior and said
approximation. The most common metric for this distance is the Kullback-Leibler
divergence, which is defined as

KL[ q | p ] :=

∫ ∞
−∞

q log
q

p
dw. (2.1.1)

The smaller the KL-divergence, the more similar the two distributions are.
Denote the approximate distribution as q(w|θ) where θ are the latent variables

of the distribution q. Said latent variables should then be chosen as2

θ = arg min
θ

KL[ q(w|θ) |P(w|y, x) ]. (2.1.2)

One can here identify the argument to the minimization as the loss of the model.
Using Bayes’ theorem, the loss can be reformulated as3

L(θ, y, x) = KL[ q(w|θ) |P(w) ]︸ ︷︷ ︸
Divergence

−E
[

log P(y|w, x)
]︸ ︷︷ ︸

Log likelihood

. (2.1.3)

The obtained loss can be divided into two parts: the divergence and the negative log
likelihood (which we are going to simply refer to as the likelihood). The divergence
punishes the model for deviating from the distributions of the priors (which inhibits
overfitting) while the likelihood forces the model to learn the features of the data.
The likelihood is the same loss that would be optimized in a MLE environment
(except that the weights are sampled in this case). The divergence on the other
hand is is a new metric without any resemblance from the frequentist case.

With a loss function available, networks can be trained using a traditional opti-
mization algorithm. The most simple of such algorithms is gradient descent. Given
the gradient ∇θL, the model can iteratively be updated as

θt+1 = θt − α∇θL(θt) (2.1.4)

for iteration t and learning rate α. This is the same as the frequentist case but instead
of updating the weights directly the underlying latent parameters are updated.

2The order of q and P do matter here. KL[ q |P ] is known as the reverse KL while KL[ P | q ]
is called forward KL. The reason we use reverse KL is that is more punishing for spreading the
distribution and is therefore more suitable for neural networks.

3One obtains an additional term log P(y, x), which can be ignored since it is an argument
minimization and P(y, x) is independent of θ.
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Mean-field approximation

The parameterized distribution q(w|θ) should be chosen to be fairly flexible and yet
simplify calculations. It is popular to factorize the distribution as

q(w|θ) =
∏
i

qi(wi|θi). (2.1.5)

This is a mean-field approximation that avoids interdependencies between variables
wi. This is more efficient for large data and scales better. Keep in mind here that
each θi still can consist of several variables, but we factor them out into independent
distributions.

Stochastic variational inference

In general, gradient descent using the entire dataset in each weight update (so-called
”batch optimization”) is slow and problematic. For example, there is no guarantee
that the full training dataset can be fit into the physical memory of the computer.
The established solution is Stochastic Gradient Descent (SGD) where each iteration
is based on a small subset of data (a ”mini-batch”). However, SGD requires the loss
of the full data set to be the sum of the loss of its mini-batches [3];

L(θ, y, x) =
∑
i

Li(θ, yi, xi). (2.1.6)

This does not hold for the loss in eq. (2.1.3). To allow for mini-batches, it is therefore
motivated to scale the divergence for each mini-batch , to get

Li(θ, yi, xi) = πiKL[ q(w|θ) |P(w) ]− E
[

log P(yi|w, xi)
]
. (2.1.7)

This is know as KL-scaling or KL-reweighting. This solution is called stochastic
variation inference [7], and from now on, this is what we mean by VI.

There are several ways of choosing KL scaling. If we label the scaling of the
ith mini-bath as πi, then an intuitive scaling is πi = 1/M where M is the number
of minibatches. However, one could also construct the scalings dynamically, for
example as

πi = λi/

M∑
k=1

λk. (2.1.8)

for some λ ∈ R. This alternative scaling was shown to improve learning in [3] using
the value λ = 1/2. Another interesting remark is that if one sets πi = 0 then a
frequentist loss is obtained (ignoring the normalization).
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2.2 Reparameterizable gradients

In order to update the parameters θ it is preferable to use backpropagation since that
gives access to traditional tools for optimization. However, it requires one to be able
to evaluate the gradients of the loss function. In order to catch all dependencies one
needs to use a total gradient (this is specially important to catch the information in
the likelihood term). This is not straightforward, since our weights w are stochastic
and a differentiation with respect to a random variable is ill-defined. However, there
are some tricks to evaluate the total derivative ∇̂θL. One can use a score function [8,
p. 24–29] or use reparameterized gradients.

Since the expectation value is not dependent on w the term ∇wL will vanish and
the total gradient becomes

∇̂θL = ∇θ Ew∼q
[
log

(
q(w|θ)

P(w|y, x)

)]
. (2.2.1)

One can from here obtain4

∇̂θL = Ew∼q
[
log

(
q(w|θ)

P(w|y, x)

)
∇θ log q(w|θ)

]
. (2.2.2)

In this expression the only derivative that needs to evaluated is ∇θ log q(w|θ). This
can be identified as a score function from statistics.

In eq. (2.2.2) the gradients do not propagate through the model. This allows
using the score function approach for discontinuous distributions, but will yield a
high variance [9]. That is why, if possible, one should use something called repa-
rameterizable gradient instead.

Reparameterizable gradients is a method that allows the gradients to explicitly
flow through w by rewriting w as a function t(θ, ε) where ε is a random variable from
a fixed distribution. For a normal distribution this function is t(µ, σ, ε) = µ + εσ
(where it is understood that θ = (µ, σ)). Using the reparameterization, the expected
value can be taken from w to ε, as proven in [3], resulting in

∇̂θL = ∇̂θEε
[
log

q(w|θ)
P(w|y, x)

]
. (2.2.3)

The loss expectation value cannot be calculated directly, due to the unknown pos-
terior, and is therefore approximated by the mean of samples Lε. The implicit
θ-dependence in w = t(θ, ε) then implies

∇̂θLε = ∇θLε +
[
∇θ t(θ, ε)

]
∇wLε (2.2.4)

which can be written in more detail as (2.2.5) which has two terms that are divided
into a path derivative and a score function;

∇̂θLε = ∇θt∇w

(
log q(w|θ)− log P(w|y, x)

)︸ ︷︷ ︸
Path derivative

+∇θ log q(w|θ)︸ ︷︷ ︸
Score function

. (2.2.5)

4Write it in integral form, apply the product rule and realize the term with the differentiated
logarithm vanishes. To show that it indeed vanishes, remember that ∇θ

∫
q(w|θ) dw = 0.
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It was shown by G. Roeder et al. [9] that omitting the score function reduces the
gradient variance and results in lower loss after converging. They did so using dif-
ferent datasets from image classification with variational autoencoders in the frame
of stochastic VI.

Finally, the standard deviation must be non-negative, but that is not part of
our formalism. Putting this restriction directly onto a network will impede its
performance. This can be resolved by reparameterizing σ as

σ(ρ) = log(1 + eρ). (2.2.6)

2.3 Priors

Priors are one of the things that distinguish Bayesian networks from frequentist
ones. Having priors corresponds to an encoding of previous expectations. If there
is no such information one typically uses normal priors. In regression problems it
can also be motivated by being a conjugate prior if the data is believed to feature
Gaussian noise.

Initialization

Analogously with frequentist networks, initialization of parameters cannot be done
in an arbitrary way if the networks are to be efficient. Unless the initialization
scheme conserves variance throughout the network, there is a risk of exploding or
vanishing gradients and overall slower rate of convergence. Gloriot et. al [10] pro-
posed considering number of channels5 going into the layer, nin, and channels going
out, nout, in the initialization. One approach to stabilize the variance throughout
the network is the Xavier scheme;

wXavier ∼ N
(

0,

√
2

nin + nout

)
. (2.3.1)

Although the Xavier scheme has shown great success in improving rate of conver-
gence, it does not account for non-symmetric activation functions such as ReLU.
One modification by K. He [11] to overcome this drawback is the Kaiming scheme;

wKaiming ∼ N

(
0,

√
2

(1 + a2)nin

)
(2.3.2)

where a is a coefficient depending on what type of ReLU is used (e.g. Leaky ReLU).
For standard ReLU this constant is simply a = 1.

Considering Bayesian networks, there are typically several parameter groups to
be initialized (e.g. means and variances of the weights). In the case of normal priors,
the variances are set to the variances given from a Xavier or Kaiming initialization
schedule. Then the means can be drawn from a zero-mean Gaussian with associated
variance.

5Number of channels here is the number of inputs. If the previous layer consists of ten feed-
forward nodes, then nin is 10. If instead it is a convolutional layer with 6 output channels each
with a dimension 4 · 4, then nin is 6 · 4 · 4. The same logic applies to nout.

11



2.4 An example

This section will summarize this chapter by building a Bayesian version of Rosen-
blatt’s perceptron for the AND problem. On top of the perceptron the model output
will be interpreted as input to a modelling distribution to be consistent with the pre-
sented formalism. The model will also use ReLU instead of the Heaviside function
for activation function (also this to be consistent with earlier formalism).

In the AND problem there is discrete data. Therefore it is suitable to model
P(y|x) using a Bernoulli distribution (as put forward in appendix B). In chapter 1,
Monte Carlo sampling was used to estimate P(y|x);

P(y|x) =
1

M

∑
w∼q(w|θ)

P(y|x,w) (2.4.1)

which features the quantities M and q. The constant M is the number of samples.
For this toy example only a single sample will be used. The distribution q is the
variational posteriors which is required in VI (as shown in section 2.1.1). To simplify
matters further, only a single batch will be used.

The neuron can be put together as done in fig. 2.1. It will have an output of ỹ
and an activation function ϕ = ReLU. Its bias b, weights w1 and w2 are sampled
from the variational posterior q.

x2

b ∼ N (µb, σb)

x1

ϕ (
∑

iwixi + b) ỹ

w
1 ∼ N

(µ
1 , σ

1 )

w2 ∼ N (µ2, σ2)

Figure 2.1: A single Bayesian node where its weights and bias are sampled from
normal distributions.

In 2.2, reparameterizable gradients was discussed. In the same section, there was
also an example with normal distributions. Following that outline, assume that q
are Gaussians here also. As there is two weights and a bias one gets

w1 ∼ N (µ1, σ1), w2 ∼ N (µ2, σ2) and b ∼ N (µb, σb). (2.4.2)

Section 2.3 discussed priors. As normal distributions are used for the variational
posteriors, the priors should preferably be within the same family. For simplicity,
we set the priors to N (0, 1) for both the weights and the bias.

The variance of q will be initialize from a Kaiming scheme (eq. (2.3.2) with
n = 2) which allows initialization of µ1 ∼ N (0, σ1). The same procedure can be
used to initialize µ2, σ2, µb and σb.
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Evaluating the gradients For the sake of clarity, one can evaluate the gradients
analytically. For a single update four gradients are required - one for each latent
parameter. For example, consider eq. (2.2.5) for µ1,

∇̂µ1L = Eε
[
∇µ1t∇w1

(
log q(w1|µ1, σ1)− log P(y|w1, x)− log P(w1)

)]
+ Eε

[
∇µ1 log q(w1|µ1, σ1)

]
(2.4.3)

In the Gaussian case where t = µ1 + εσ1 it follows that ∇µ1t = 1. With P(y|w1, x) =
Bernoulli(ỹ), the loss gradient becomes;

∇̂µ1L = Eε
[
∇w1 log Bernoulli(ỹ) + 1

]
(2.4.4)

The Bernoulli term amounts to a one-dimensional cross-entropy loss that can be
recognized from the frequentist case, and the prior contributes with a simple 1. The
different derivatives of the variational posterior cancel each other.

To actually simulate the model, one needs a probabilistic programming language
that includes some form of gradient handling. At at the time of writing this, Py-
Torch features a capable autograd engine and can to some (minor) extent handle
probabilistic programming.

This implementing this setup one can obtain the results in fig. 2.2. Here Adam
was used with a learning rate of 10−2. By scaling up the network and fully im-
plementing the concepts discussed earlier, these networks can become on par with
frequentist networks.

Figure 2.2: Training loss (left) and prediction before and after training (middle and
to the right).
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Chapter 3

Optimization

“There is always space for improvement, no matter how long you’ve been in the
business.”, Oscar De La Hoya.

This chapter will discuss the optimization of the loss function obtained from our
networks. It will also review the general structure of optimizers, stochastic gradi-
ent descent and how to treat the learning rate for gradient descent. This chapter
will also look into robust regions and learning rate schedules for the learning rate.
Finally, a more intricate discussion of available optimizers is featured in appendix
C.

There are various optimization algorithms used for training artificial neural net-
works. These algorithms strive to find a minima to some loss function f and are
classified as first order if utilizing ∇f or second order if they also employ ∇2f .
However, second order methods requires calculation of the Hessian, something that
with current methods is unviable for any larger network (especially deep networks).
Therefore we will only consider first order algorithms.

In general, first order algorithms can be written as done in algorithm 1 (following
the formalism outlined by L. Luo et al. [12]) for some functions φ, ϕ and θ. The choice
of φ and ϕ determines the properties of the algorithm. Typically, we want φ and ϕ
to be approximations for the first and second moment of ∇f since that guarantees
all updates to be of the same magnitude. Lastly, the function θ corresponds to a
dynamic learning rate that depends on some initial value α.

Algorithm 1 Generic optimizer for a model L and weights w.

1: for t = 1 to T do
2: gt = ∇Lt(wt)
3: mt = φt(g1, ..., gt) and vt = ϕt(g1, ..., gt)
4: αt = θ(α, t)
5: wt+1 = xt − αtmt/

√
vt

6: end for

Having considered algorithm 1, one can find φ and ϕ for some of the most
common optimizers, as done in 3.1. The used exponential moving average is defined
as

〈xt〉β = βtx0 + (1− β)
t∑
i=1

βt−ixi (3.0.1)
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where β is called the smoothing constant.

Table 3.1: The functions φ and ϕ−1/2 for a few optimizers. How the smoothing
constant is labelled and structured may vary between the established versions of the
optimizers. The clipping function clips its first value to between its other arguments.
The functions ηl and ηu are some given bounding functions.

ϕ−1/2
φ

gt 〈gt〉β1

I SGD Momentum SGD

〈g2t 〉
−1/2
β2

RMSProp Adam

Clip
[
〈g2t 〉

−1/2
β2

, ηl(t), ηu(t)
]

AdaBound

Algorithms utilizing ϕ, i.e. the second order estimate, are called adaptive opti-
mizers. These algorithms can be used to be obtain satisfying results but one study
shows that they tend to end up in dubious minima for several over-parameterized
problems [13].

3.1 Gradient descent

Gradient descent is a form of an Euler step where one traverses the gradient land-
scape to find a minima. Mathematically, this can be expressed as

wt+1 = wt − α∇Lt. (3.1.1)

If the L is a convex function, this is guaranteed to converge to the global optima [14].
However, there is no guarantee that it is a convex function and the loss function
function to artifical neural networks tends not to be [15]. Further, gradient descent
is also vulnerable to large gradients.

The problem of not escaping local minima can be countered to some extent with
momentum, which applies the update rule1{

mt+1 = µmt + α∇Lt
wt+1 = wt −mt+1

(3.1.2)

where α is the learning rate, µ is the momentum and m0 is set to 0. However, tuning
the hyperparameters α and µ requires some thought. Consider the update mt. The
term mt can be expanded once as

mt = µ (µmt−2 + α∇Lt−2) + α∇Lt−1, (3.1.3)

1This calculation is carried out in one dimension, but it is easily extended to an arbitrary
number of dimensions.

15



which can be recursively unfolded to

mt = µtm0 + α
t−1∑
i=0

µt−i∇Li. (3.1.4)

By studying the expected value of the update in eq. (3.1.5) one can see that it is
scaled up by the momentum, something that can be countered by choosing a smaller
learning rate.

E[m] = E[∇L]α

(
1− µt

1− µ

)
. (3.1.5)

For realistic applications the momentum should µ < 1 which allows one to neglect
µt for large t. Hence one obtains

E[m] ≈ E[∇L]

(
α

1− µ

)
. (3.1.6)

Using too large updates will cause to model to settle for non-optimal minima or
even diverge. Assume there is an upper threshold a to α

1−µ for when the model is
stable and able to find minima that generalize well. This results in

α + aµ ≤ a, (3.1.7)

which is a linear upper bound. This upper bound should be observed when probing
the (µ, α)-landscape. Here, a corresponds to a fixed learning rate in an update
without momentum. There are algorithms designed to find suitable values on such
a learning rate, e.g. YellowFin [16], but none of them have become de facto standard.

A powerful tool to escape local minima is to introduce mini-batches. This results
in the enhanced gradient descent algorithm is known as Stochastic Gradient Descent
(SGD) [17]. It has shown to function well with noisy gradients (which is common
for real-world applications). SGD can be easily combined with momentum, and
fine-tuned SGD is the de-facto standard for obtaining state-of-the-art models [16].

3.2 Robust regions

There is an interesting result from classical optimization theory that can serve as
a guide in the choice of α and µ. There are regions in the (µ, α)-landscape for
gradient descent with optimal rate of convergence [16]. These regions are called
robust regions and can in the convex case be found as

1

h
(1−√µ)2 ≤ α ≤ 1

h
(1 +

√
µ)2 (3.2.1)

where h is the curvature of the loss function. An example of robust regions for
different curvatures is shown in fig. 3.1.
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Figure 3.1: Robust regions for different values on the curvature h.

3.3 Learning rate schedules

Considering the robust regions, derived in the previous section, there is little mo-
tivation to rely on a constant learning rate. Since the loss landscape changes as
the network is trained it is plausible that one should use a non-constant learning
rate. Building upon robust regions, there are maximal and minimal viable learning
rates for a given network and problem. This concept can be confirmed further by
performing a training where the learning rate varies from a very low learning rate to
a very high one. This procedure, also known as a learning rate range test, was devel-
oped by L. N. Smith [18]. Letting the function θ in algorithm 1 be time-dependent
is known as learning rate schedules. Here are a few examples:

Cyclic learning rate A cyclic learning rate is when one updates the learning
rate using a periodic function. The frequency of the function might change
during training.

Warm-up One can start out with a small learning rate which is increased during
training until some threshold have been reached. This is called warm-up and can
be used to e.g. counter the initial high variance of Adam [19].

Plateau schedules A plateau schedule is when one uses a metric as guide and
when this metric does not improve, one decreases the learning rate. One can
also include a so-called patience, by letting the algorithm wait a given number
of epochs before updating the learning rate.

Some other example schedule types are shown in fig. 3.2.

Figure 3.2: Examples of different learning rate schedules for linear regression using
SGD.
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Chapter 4

Methodology

“March on. Do not tarry. To go forward is to move toward perfection. March on,
and fear not the thorns, or the sharp stones on life’s path”, Khalil Gibran.

This section will discuss the goals of this study, the experimental setup and net-
work architectures that are to be used. In order to see if the results generalize well,
we will use various different networks and datasets. Among the architectures, we
will study a Bayesian version of LeNet [20].

4.1 Objective

The goal is to learn how Bayesian neural networks train efficiently using VI. There
are several apparent differences between training Bayesian networks and frequentist
ones. One such difference is the choice of distributions for the priors and variational
posteriors - which is out of scope for this thesis. However, other distinct differences
are:

1. The loss function has a different shape. One can utilize the path derivative
(eq. (2.2.5)) instead of the standard score function and choose several KL
scaling methods.

2. The trainable parameters have natural groupings. In the case of normal vari-
ational posteriors, the parameters can be divided into means and standard
deviations. There are no reason to assume that these groups should be opti-
mized in the same manner.

3. One can sample the gradient. There are methods for subsampling which utilize
the mean of the samples but one could also incorporate a variance measure
into the optimization process.

Using observations 1 and 2 as a baseline we are going to design and run several
different simulations to see how each of these points can be used to an advantage.
Later, following this outline, the results will be structured into these two parts.

The goal of the training is to minimize the sum of the divergence and the neg-
ative log likelihood (see eq. (2.1.3)). A low negative log likelihood indicates that
the network conforms to the data while a low divergence signals that the network
conforms to our initial hypothesis. Hence, a high divergence can indicate that ei-
ther our initial hypothesis is wrong or the network is too driven by data. However,
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since divergence is not a clear-cut measure, the most satisfactory networks are not
necessarily the ones with the lowest total loss. Therefore, we will try to review what
options one has when training these networks and how they affect performance.

4.2 Setup

The aim of the experimental setup is to facilitate reproducibility across different
models and different datasets. We also attempt to minimize the impact of hyperpa-
rameters that are not of interest to the simulations.

Priors and variational posteriors For priors P(w) and variational posteriors
q(w|θ) we will use normal distributions. Keeping the variational posteriors in the
same family of distributions facilitates VI, and the normal distribution is the stan-
dard priors in VI literature.

The initialization process will be done in several steps, which are the same for
both convolutional layers as well as conventional feed-forward layers. The priors are
set to to have zero mean and standard deviations from a Kaiming scheme. For the
variational posteriors the initial means are sampled from uniform Kaiming scheme
(which is standard in the framework PyTorch) using the prior standard deviation.
The standard deviation of the posteriors is instead initialized to a value selected by
hand. Setting this value too high will impair network performance while a too low
value results in frequentist networks, rendering all our efforts redundant. We found
that a σ as in eq. (2.2.6) of ln(1 + e−10) was a satisfactory trade-off between these
constraints (see further discussion in appendix A).

Loss normalization In order for the loss to scale independently of the dataset
the loss will be divided by the number of samples in the data set. This should allow
losses and learning rates to be more easily comparable between different datasets.
Note that it is the full loss that is normalized and this operation will not affect the
KL scaling. We apply mini-batches with a size of 102, since that works for moderate
CPU and memory capabilities.

Datasets We will use two popular datasets from computer vision, namely MNIST [20]
and CIFAR10 [21]. MNIST is a labelled dataset of 28 · 28 pixel monochrome images
of handwritten digits. It has 60 000 training images and 10 000 validation images
with balanced classes. CIFAR10 is a balanced, labelled dataset as well but contains
colored 32 · 32 pixel images. The images are of airplanes, automobiles, birds, cats,
deers, dogs, frogs, horses, ships and trucks. It consists of 50 000 training images and
10 000 validation images.

The data will be preprocessed as little as possible. The data will be normalized
to a mean of 0 and a variance of 1 to equal the playing field for features with different
scales. However, no data augmentation will be utilized.
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4.3 Model

As the chosen tasks are in the field of computer vision, using convolutional neural
networks is suitable. In order to have available benchmarks we will opt for the
established LeNet models [20] invented by Y. Lecun et al. These models were created
for character recognition. One particular model, known as LeNet-5, obtained an
accuracy of 99.05% on MNIST [20]. This is an impressive feat considering the small
size of the model. A modern version of LeNet-5 (see fig. 4.1) has obtained 76.23%
[22] on CIFAR-10 when utilizing data augmentation, preprocessing and weight decay.

1@28x28
6@24x24

6@12x12
16@8x8

16@4x4
120

84 10

Figure 4.1: The LeNet-5 convolutional network. Here white layers are convolutional
layers with ReLU, red are max-pooling and blue are fully connected feed-forward
layers. ReLU are used as activation functions.

Typically, the softmax function is used for outputs in mutliclass tasks, as it
ensures unitarity and allows for a probability interpretation of the outputs. However,
in order to estimate the epistemic uncertainty in a Bayesian network, one needs to
be able to draw multiple samples from a single network output. For this reason, we
use logistic outputs as parameters in a multinoulli distribution, which we estimate
with a single sample Monte Carlo approximation.

We construct a Bayesian version of LeNet-5 using the theory from chapter 2
and section 4.2. We replaced average pooling with max pooling in order to speed
up training, and used ReLU1 as activation function which is standard practice in
modern deep learning. This model was capable of obtaining a validation accuracy
of 97.74% on MNIST and 59.38% on CIFAR10 with a vanilla training process.

4.4 Optimizers

This study will consider the SGD and Adam optimizers since these two are the
most common ones. The optimizers AdaBound, RAdam and YellowFind will also
be included, to feature some new non-conventional optimizers. All three of these
are designed to battle the problems with learning rates that SGD and Adam have.
Optimizers such as Adagrad, Adadelta and RMSProp (see appendix C) are excluded

1Using ReLU suits well with the Kaiming scheme we use for initialization.
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as we believe those are outdated and limited by their shortcomings. Bellow follows
a brief summary of the picked optimizers.

SGD with momentum, as described in section 3.1.

Adam [15] keeps track of first and second order moments using exponential
moving averages. For more details, see table 3.1 in chapter 3.

AdaBound [12] is a hybrid between Adam and SGD. Initially it behaves as
Adam but as training progresses the individual learning rates are clipped down
to match the ones of SGD.

RAdam [19] counters the problem of Adam having high variance in the initial
stage of training. By approximating the exponential moving average as a simple
average it is capable of rectifying the variance for a better estimate.

YellowFin [16] is an optimizer built around the principle of robust regions (sec-
tion 3.2). It is SGD but with a scheme to enforce the learning rate and momen-
tum to said robust regions.

All these optimiziers behave well in the frequentist case and their performance for
Bayesian neural networks will be studied in the next section.
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Chapter 5

Results and discussion

“To acquire knowledge, one must study; but to acquire wisdom, one must observe.”,
Marilyn vos Savant.

This chapter will investigate and discuss each of the points in section 4.1. It begins by
investigating the score function in the VI framework and how the divergence should
be weighted. It is followed by how different common optimizers behave and lastly,
how one can optimize different parameter groups to obtain better performance.

5.1 Score function gradients

Using only the path derivative leads to decreased variance during training and an
overall increase in performance in some cases including Bayesian variational autoen-
coders using VI on image classification tasks [9]. We are here going to extend this
study and consider the impacts of path derivative on LeNet-5.

Figure 5.1: A comparison between total derivative including the score function (solid
line) and only path derivative (dashed line) using a LeNet-5 on CIFAR10 with Adam
with a learning rate of 10−3.

A comparison between including the score function and using only path deriva-
tive is shown in fig. 5.1. Omitting the score function does in fact lead to better
performance. However, the same simulation was also performed on MNIST and
showed no significant difference between the two approaches. Although these are
narrow results, it seems that using only the path derivative is at least as suitable,
or better, for small Bayesian convolutional networks. In the following all results are
obtained with the score function omitted.
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5.2 KL re-weighting

According to [3], using mini-batch KL re-weighting of the divergence in eq. (2.1.3)
facilitates obtaining better accuracies than using a fixed scaling. Using an alternat-
ing KL scale relies on the assumption that parts of the epoch is better off data-driven
while others should be divergence-driven. As discussed in section 2.1, one can weight
each mini-batch as

πi = λi/
N∑
k=1

λk (5.2.1)

where i is the index of respective mini-batch. We will study how this performs for
a few different values on λ:

0 For λ = 0 we define πi = 0. This ignores the divergence and is equivalent to
frequentist training.

1/2 In each mini-batch, training is initially mainly influenced by the divergence.
This allows the network to focus on learning the uncertainties in the beginning
of each epoch and focusing on the data towards the end. This was proposed
in [3].

1 This corresponds to πi= 1 / number of batches. This is the standard heuristic.

2 We propose the value λ = 2. This corresponds to the opposite of λ = 1/2
where each epoch initially focuses on data and divergence towards the end.

Figure 5.2: Different values on λ for MNIST (top) and CIFAR10 (bottom). The
training used Adam with a learning rate of 10−3.

In the simulations shown in fig. 5.2 it is clear that using λ 6∈ {0, 1} results in
better performance. However, the divergence (and total loss) is worse off. This is
because most part of the training is frequentist training. For CIFAR10, which has
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500 batches in our setting, only 2% of the batches is assigned a π above 1/500 (and
only 3% has a π above 1/5002). Very similar percentages apply to MNIST. This
offset is what causes the poor performance in the divergence. It would be more
reasonable to use λ ≈ 1 ± 0.03, which would yield a percentage of 50%. However,
doing so results in networks that are worse off in both performance and divergence.
Lastly, there are a few batches that are very divergence-driven which hinders the
networks from obtaining the same performances as the network using λ = 0.

The similarity of the performances for λ = 1/2 and λ = 2 contradicts the
argument that the order of data-driven and divergence-driven learning matters put
forward in [3]. This combined with a worse off total loss favors using a constant π.
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5.3 Optimizers in a Bayesian setting

To investigate how different optimizers behave in a Bayesian framework, we ran
almost 500 simulations for the optimizers in table 5.1, with different hyperparameter
settings. To avoid the fallacies of grid search as discussed in [23], the used values
was sampled from N (v, v/2) where v is a value from table 5.2.

Table 5.1: This table describes the optimizers used in the simulation and which
hyper-parameters that was altered.

Optimizer Hyperparameter

Adam Learning rate, use AMSGrad
AdaBound Learning rate, final learning rate
RAdam Learning rate
SGD Learning rate, momentum
YellowFin Learning rate, momentum

Table 5.2: The different base values for the hyper-parameters in table 5.1. Values
are picked from here using all possible combinations.

Hyperparameter Values

Learning rate 10−3, 10−2, 10−1

Final learning rate 10−2, 10−1

Momentum 0, 0.1, 0.5, 0.9, 0.95
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Figure 5.3: Comparison between different optimizers for CIFAR10 with means
(solids), mean ± a standard deviation (dashed) and top performer (solid gray line).
The statistics are based on 486 runs in total. Here all networks unable to obtain a
validation accuracy above 15% have been ignored. The success rate is how many
networks succeeded in beating said 15%.

The results from the simulation are presented in fig. 5.3. The top performers
(AdaBound, YellowFin and SGD) only rely on first moment information while the
weaker performers (Adam and RAdam) also utilize estimates of the second moment.
There are two possible explanations to this; adaptive optimization is inherently
inefficient or the estimates of the second moment are inadequate. There is a range
of evidence supporting the former [12, 24, 25] for late stage training.

The poor results for RAdam are disagreement to observations in non-Bayesian
applications [19], which could suggest that RAdam has problems in a Bayesian set-
ting. Studying the individual runs of RAdam, we found several runs that reaches an
accuracy of ca 30% and then immediately drops back to 10%. Future investigations
are needed to determine if this behavior is caused, e.g., by some numerical instability
or by a too large step in σ.
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SGD

We performed simulations with 1 epoch in MNIST and 10 epochs on CIFAR10,
to study how SGD behaves for different values on learning rate and momentum.
Although the training likely has not fully converged in any of these cases, it allows
us too look into the behaviour of the optimization algorithm. Training for a single
epoch allows more simulations to be done, creating the dense result plot in fig. 5.4,
while fig. 5.5 offers less detail but still show similar tendencies. For plot clarity, the
hyperparameters were sampled from uniform distributions.

Figure 5.4: Learning rate vs momentum landscape for a single epoch on MNIST.
Data in the outer 3-quartiles have been clipped and a lower bound for a robust
region with curvature 1.5 has been added. The upper line has a coefficient of 1.9.

In both figure 5.4 and 5.5 there are stable, seemingly bounded regions. These do
not completely coincide with the robust regions for SGD derived by J. Zhang et.al. [16],
although it can be that it converges to this lower bound later in the training process.
Further research is still required to investigate methods to determine the curvature
of the lower bound and slope of the upper bound.

Another interesting aspect is that there is a “region of death” in the dark area
to right of the yellow part. Networks trained here gain low accuracy and very high
loss, which is in agreement with the existence of an upper bound on α + aµ for
model stability, discussed in section 3.1. Interestingly enough, this upper bound is
different between the MNIST and CIFAR simulations.
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Figure 5.5: Learning rate momentum landscape for 10 epochs on CIFAR. The loss
have been clipped to in the lower 2-quantile and a lower bound for a robust region
with curvature 2.0. The upper line has a coefficient of 0.45.

The optimal regions in the MNIST and CIFAR simulations have similar shape
but the CIFAR one is significantly smaller. This can be for several reasons: different
datasets and hence widely different loss landscapes or dependence on number of
epochs trained.

To summarize our findings, there is a strong covariance between α and µ and they
cannot be tuned independently. There seems to be a clear robust region, motivating
optimizers such as YellowFin.
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Adam

The optimizer Adam has three parameters of interest1: α, β1 and β2. The parameter
β1 is more or less equivalent to momentum parameter in SGD. In fact, SGD is a
special case of Adam, with β2 = 0. In order to see how Adam depends on our betas
we will construct landscape plots, similar to the previous section.

Figure 5.6: Beta landscape for 1 epoch on MNIST. The outermost 10-quantiles have
been removed to more clearly convey the division of the different regions.

Figure 5.6 and 5.7 show that that low values for β2 give better performance,
which is in conflict with the β2 = 0.999 default value2 recommended by the authors
of Adam [15]. Since a low value for β2 makes Adam more similar to SGD, the result
instead agrees with the claim that fine-tuned SGD outperforms Adam [24].

Figure 5.7: Beta landscape for 10 epochs on CIFAR. The outermost 10-quantiles
have been removed to more clearly convey the division of the different regions.

1There is also a parameter ε for numerical stability that was shown to be of interest in [19].
However, we are going to ignore it in this study.

2This is default in all major frameworks, such as e.g. PyTorch, Tensorflow and MXNet
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5.4 Individual training

In Bayesian frameworks, there are typically several different groups of latent pa-
rameters, and there is no reason that these groups should be optimized in identical
manners, perhaps not even with the same algorithm. As we use Gaussian distribu-
tions, we will here study individual training of means as one group and standard
deviations as another.

One straightforward approach is to alternate between optimizing µ and σ for a
fixed number of epochs during training. This also gives insights to how training
the different parameter groups impacts performance. The results from one such
simulation is shown in fig. 5.8. Comparing conventional training and this sequential
training results in more or less the same accuracy. However, the likelihood loss and
divergence differ greatly. When training µ, the likelihood decreases, while training
σ decreases the divergence.

Figure 5.8: Comparison between conventional training and training variable groups
separately. The training used LeNet-5 on CIFAR with Adam with a learning rate
of 10−3.

One further conclusion we can draw from fig. 5.8 is that the learning rate for µ,
here named αµ, affects the likelihood. Similarly, the learning rate for σ, which we
label ασ, affects the divergence. To look for optimal learning rates, we ran a random
search for Adam and AdaBound, with results in fig. 5.9.

AdaBound has regions with optimal values for αµ, but seems invariant to the
specification of ασ. This is likely due to the fact that the initial learning rate set in
AdaBound is less important than the final learning rate (which where fixed to 0.1
in this experiment). Hence, the only requirement on the initial learning rate is to
stop the system from becoming unstable (which is what happens at αµ & 10−1). In
terms of divergence, there is a clear limit on where αµ becomes suboptimal.
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While AdaBound did not benefit from separating the training groups, Adam did.
There are optimal values for both αµ and ασ, although the width of the region for
αµ is smaller then for ασ. In terms of divergence, it seems the larger ασ, the better.

Figure 5.9: Training with different learning rate for means and standard deviations
on CIFAR where each network has been trained for 50 epochs. The top plots are
for AdaBound and lower plots for Adam.

For Adam, fig. 5.9 suggests that there are optimal regions for both αµ and ασ,
and that the region for αµ is more narrow. To investigate their relations in more
detail, we adopted a heuristic approach, where we first determined a good αµ from
fig. 5.9, then different values were probed for the ratio

r =
ασ
αµ
. (5.4.1)

with a fixed αµ = 0.01. The result in fig. 5.10 shows that αµ should be at least a
factor 10 larger than ασ.

Figure 5.10: Networks trained using different values on r where αµ = 10−3 using
Adam, LeNet-5 and CIFAR10. Each curve is an average over 4 runs.

To automatize the simultaneous search for good values for αµ and ασ, we ran a
plateau scheduler (as presented in section 3.3). Based on the results in fig. 5.8, we
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decided to let the likelihood be the metric for αµ and the divergence the metric for
ασ. The results with this training is shown for CIFAR in fig. 5.11, where it seems
to improve the training process significantly. However, the same plateau scheduler
on MNIST made no significant difference.

Figure 5.11: Comparison for Adam between conventional training (dashed) and
training variable groups separately using a plateau learning rate schedule (solid).
The schedule had a patience of 1, a decay factor of 0.1 and an initial learning rate
of 10−3. The conventional trainings used the learning rates 10−3 and 10−4.

In each simulation, we saw a decreasing divergence. This is in contrast to what
you would expect. As µ is learnt, the divergence should increase (as we deviate
from the prior). Since we have opted for initialization of rather narrow variational
posteriors, this is likely countered by σ increasing.
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Chapter 6

Conclusion

“A conclusion is simply the place where you got tired of thinking.”, Dan Chaon.

In chapter 5 it was shown that the choice of optimizer, learning rates and diver-
gence weighting matters. Section 5.3 studied optimizers and had the most success
with YellowFin and AdaBound. These optimizers had the lowest training variance
and quite high robustness to misspecification of hyper-parameters. Among these
AdaBound seem to be most robust to misspecifications and the one we recommend.
On the other hand, Adam and RAdam had the least satisfactory results with high
training variance and low mean performance.

In section 5.4 it was seen that if one uses normal distributions, then one should
consider optimizing the means and standard deviations separately. Our applications
benefited from a lower learning rate for the standard deviations of the variational
posteriors than for the means. Moreover, one can use separate learning rate sched-
ules for the means and standard deviations. We had some success using a plateau
schedule where we used the negative log likelihood as metric for the learning rate
for the means and the divergence as metric for the standard deviation learning rate.

Lastly, one must weight the divergence properly. The most optimal weight is
one over the number of batches (see section 5.2) and one should use path derivative
over a score function (section 5.1).

We have to note that this study was done for a relatively small network (LeNet-
5) for image classification tasks on MIST and CIFAR10. Hence, these results should
apply for these kind of networks. It should also be studied if these results hold
for larger architectures and other data domains. We have also used rather narrow
variational distributions to obtain satisfying results, however, this is in contradiction
with Bayesian philosophy. Hence, it is left to confirm if this work holds for wider
distributions.

To conclude, Bayesian neural networks are capable of obtaining performances
similar to frequentist networks but it requires a clever choice of optimizer and learn-
ing rate schedule. One should also consider using custom learning rates for the
different variable groupings.
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Appendix A

Setup details

Initial σ for q

The choice of the standard deviation σ for creating the initial distributions for q
features some trade-offs. Using a too small value will lose the benefits of a Bayesian
framework while using a too high value will result in poor performance. To investi-
gate this we run a few runs for different values the scales. The results are presented
in fig. A.1.

Figure A.1: Comparison of different ρ for the variational posteriors for LeNet-5 on
CIFAR10. The relation to the standard deviation σ is σ(ρ) = ln(1 + eρ).

Benchmarks

Using the setup described in this paper, each optimizer was able to obtain the
accuracies in fig. A.2.
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Figure A.2: Comparison between different optimizers for CIFAR10. These are best
performers for each optimizer out of 486 runs in total.
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Appendix B

Maximum likelihood networks

In this appendix we will look more closely into maximum likelihood networks. We
will focus on the loss functions and derive it for the cases of regression and classifi-
cation.

For predictive tasks, we want to model the likelihood P(y|x,w) for some given
input data x, labels y and model parameters w chosen using maximum likelihood.
Mathematically, this can be written as

w = arg max
w∗

P(y|x,w∗). (B.0.1)

For this equation to be useful, we need to make some assumptions on the data (and
from there on choose our model). Depending on what y we expect we can make
some inferences. If we expect the output data to be continuous we should opt for
normal distributions (unless we have information persuading us to do otherwise). If
we instead expect discrete output, the go-to choice is to use categorical distributions.
Now, let us see what happens with our framework for these two choices.

Regression

Regression tasks usually treat continuous output data, rendering normal distribu-
tions rather suitable, i.e. P(y|x,w) = N (µ, σ). This leaves is with the mission to
find µ and σ. For µ we can model it directly in the network as µ = µ(x,w). For
σ use a constant value, for reasons that will be clear soon. This gives us sufficient
information to derive the likelihood L. Let us write out explicitly;

L = (2πσ)−1/D exp

[
−
(
yi − µ(xi, w)

2σ

)2
]
. (B.0.2)

This heinous beast is not something one wants to optimize directly. However, max-
imizing the likelihood is equivalent to minimizing the log likelihood. If we instead
consider the log likelihood, we obtain

logL = −
∑
i

1

D
log(2πσ) +

(
yi − µ(xi, w)

2σ

)2

. (B.0.3)

When using log likelihood, we choose our w from argument minimization instead of
maximization. This also allows us to ignore the constant terms and factors (as they
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will not matter in an optimization problem). Then the weights should be chosen
from

w = arg min
w

∑
i

(yi − µ(xi, w))2 . (B.0.4)

This is nothing but the standard mean square error loss. We obtained this simple
expression because we assumed σ to be a constant. If we had instead also modelled
σ = σ(x, u) for some other weights u, the log likelihood would turn into something
that is not as easily treated.

Classification

In the case of classification tasks, we have discrete output data. Then we assume
our data obeys a categorical distribution,

P(yi|x,w) = pi(x,w). (B.0.5)

In order words, our network will model the probabilities of the categorical distri-
bution. We can reformulate our distribution and impose our maximum likelihood
framework on it;

P(yi|x,w) = arg max
w

∏
k

pδikk (x,w) (B.0.6)

where δik is the Kronecker delta. As in the previous section, it is much easier to
minimize the log likelihood than maximizing the likelihood;

logLi =
∑
k

δik log pk(x,w) (B.0.7)

Interestingly enough, this can be identified as cross-entropy1 between the produced
distribution and the true distribution.

1Cross entropy is a information theoretic measure between two distinct distributions.
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Appendix C

More on optimizers

Here we will peek into the reign of adaptive algorithms. The idea behind adaptive
algorithms is to use a unique learning rate for each parameter. This is accomplished
by scaling the base learning rate with some variance-like measure. This measure is
often the raw, uncentered variance1.

In order to make things as clear as possible I will not use vector notation. It is
easily extendable to vectors but requires element-wise operations that will make the
derivations unnecessarily cluttered and fuzzy.

Adagrad

The adaptive gradient algorithm (Adagrad) uses a cumulative gradient to improve
the learning rate. It was introduced in [26] and was among the first the approaches
to efficiently utilize accumulated square gradients. Define the cumulative gradient
as

Gt =
t∑
k

g2k. (C.0.1)

Using these definitions (and introducing some small ε for numerical stability), Ada-
grad takes on the update rule

θt+1 = θt −
η√

Gt + ε
gt. (C.0.2)

Adagrad performs great if it is capable of converging quickly. However, as Gt

grows 1/Gt decreases. This results in an ever decreasing learning rate and the
algorithms stops learning at some point. This is the major drawback of Adagrad.

Adam

Adaptive moment estimation (Adam) is the cornerstone of adaptive moment algo-
rithms [15]. It estimates both the mean mt and variance vt of the gradient and uses
them in the update scheme. Analogously to the definition of classical momentum,
mean and variance are defined with exponential moving averages. Introducing the
smoothing parameters β1 and β2, the estimation update rule becomes

mt+1 = β1mt + (1− β1)gt, vt+1 = β2vt + (1− β2)g2t . (C.0.3)

1This is equivalent to assuming the true mean of the gradient is zero, which we have no reason
not to assume.
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However, since the moving sum is finite for finite t, one must introduce the correction

m̂t = mt/(1− βt1) v̂t = vt/(1− βt2). (C.0.4)

Combining the corrected moments, the update rule becomes

θt+1 = θt −
η√
v̂t + ε

m̂t. (C.0.5)

AMSGrad

In [27] several suggestions to fix the flaws of Adam-like algorithms are put forward.
Adam and RMSprop has several occasions when they converge less than desirable
minimas. The AMSGrad algorithm is an attempt to fix this. Instead of the bias
correction, they utilize

v̂t = max(v̂t−1, vt) (C.0.6)

and an update scheme for β2.

Adabound and AMSBound

Adaptive optimizers tend to perform well initially but worse than SGD after a
given amount of time [24]. The approach with AdaBound [12] is to set dynamic
upper and lower bounds on α/

√
ϕ∗ and clip it whenever it exceeds those bounds.

Initially these bounds are set to [0,∞) (and the optimizer is equivalent to Adam),
which then during training approaches [α∗, α∗] to which it starts behaving as SGD.
Analogously, AMSBound is obtained by enforcing max-choice of the variance as in
eq. (C.0.6). AdaBound accomplishes the update clipping by clipping the second
order estimation, that is

α/
√
ϕ∗ = Clip(α/

√
ϕ∗, ηl(t), ηu(t)) (C.0.7)

where the boundary functions are

ηl(t) = α∗ − α∗

(1− β2)t+ 1
ηu(t) = α∗ +

α∗

(1− β2)t
. (C.0.8)

Here α is the initial learning rate (the one used by Adam) and α∗ is the final learning
rate (the one used by SGD). We also note that due to existence of two different
learning rates, setting learning rate schedules is no longer as straightforward.

YellowFin

YellowFin is an algorithm that keeps (α, µ) in the robust region while simultaneously
attempting to minimize the distance to the nearest local minimum. This is achieved
using rough estimates of the distance to the minimum

dt =

〈
〈||gt||〉
〈||g2t ||〉

〉
β

, (C.0.9)

the central variance
vt = 〈||g2t ||〉β − 〈||gt||〉2β, (C.0.10)
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and upper and lower bounds on the curvature{
hmax = 〈||max g ||〉β
hmin = 〈||min g ||〉β

. (C.0.11)

The step is then taken using SGD and with µt and ηt determined by those con-
straints [16].
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