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Abstract

The European Spallation Source will be a world leading neutron source available
for a range of neutron scattering experiments in the scientific community. In
order to accurately simulate the production of cold and thermal neutrons, an
accurate calculation of the neutron cross section for the moderator materials is
needed. The neutron cross sections used in the current simulation models for the
liquid para-hydrogen moderator at the European Spallation Source are based
on scattering kernels computed in NJOY. The scattering kernel calculations
for para-hydrogen in NJOY are based on inputs from work that was carried
out in the late 1980’s. These approximations have yielded reasonable results
and are therefore commonly used in cold neutron simulations. In more recent
times, input for scattering kernel calculations has been provided by molecular
modelling techniques. The present project investigated the methodology of
using such techniques for para-hydrogen, namely quantum molecular dynamics.
The method was bench-marked against results of other groups and was shown
to give a resulting cross section comparable to experimental data as well as
simulation data from other groups. Future work for improvements in the method
are also discussed and presented.
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Chapter 1

Introduction

1.1 The European Spallation Source, ESS

The European Spallation Source (ESS) is currently under construction in Lund,

Sweden. When it is finished it will be the world’s brightest neutron source

and will be available for a range of research areas doing neutron scattering

experiments [1]. Neutron scattering is a method that can be used to examine

material properties and structures. Because of the neutron’s neutral charge, it

interacts only with the nuclei of the atoms and can be used as a complementary

method to x-ray scattering experiments. In order to be able to produce high

quality scattering experiments, an intense source of neutrons is needed. The

technique used at ESS to create neutrons is called spallation. In this method,

protons are accelerated to high energies in a linear accelerator before colliding

into a target material. In the collision, neutrons are stripped from the target

material and spread away from the collision point, often with high energies.

For most neutron scattering experiments, however, low energy neutrons are

preferred. Therefore, spallation sources make use of a moderator, which is a

volume of a material placed next to the spallation target. Typical neutron

moderator materials include water, heavy water and hydrogen. The moderator

material is chosen to slow down the neutrons coming from the target before they

reach the guides that take them to the experimental stations. The slowing down,

or cooling of the neutrons is done by letting the neutrons collide repeatedly with

the molecules in the moderator. At each collision, a neutron deposits part of

its energy to the moderator molecules, until in thermal equilibrium with the

moderator material. To be able to calculate the final intensity and energy of

the neutrons reaching the experimental stations, it is therefore of importance

to be able to realistically simulate these collisions. For this reason, an accurate

calculation of the neutron cross section for the moderator material is needed.
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1.2 The ESS moderator

The novel design for the neutron moderator that will be used at the ESS uses

a flat moderator with a ’butterfly’ shape to increase the brightness at the

experimental stations and is described by Zanini et al. [2]. The brightness of a

neutron source is a characteristic property of the source, related to the number of

neutrons available for the neutron scattering experiments. The design includes

a pre-moderator filled with water and a cold moderator filled with liquid para-

hydrogen. The pre-moderator sits closer to the target and acts like a middle

step, bringing the neutrons from the MeV range right after the spallation, down

to the thermal range of 20-100 meV. This is of importance because the neutron

cross section of liquid hydrogen is dependent on the energy of the incoming

neutrons. High energy neutrons have a relatively low probability of interacting

with the hydrogen molecules, and by first letting the neutrons lose some of

their energy in the water moderator, the efficiency of the hydrogen moderator

is increased. Liquid para-hydrogen is a common choice for a cold moderator [2]

and moderates the neutrons from the thermal range down to the cold range of

< 5 meV. Furthermore, the butterfly design of the moderator includes both a

cold moderator of hydrogen and a thermal moderator of water, giving a high

brightness of both cold and thermal neutrons for the experimental stations. This

gives a wider range of available neutron scattering experiments for the users.

1.3 Scattering kernels

The neutron cross section is calculated using the thermal scattering law (TSL),

S(α, β), where α is the dimensionless momentum transfer in the scattering and

β is the dimensionless energy transfer. Information about the neutron cross

section is often stored in scattering kernels as tabulated values of S(α, β) for

a range of α and β. A number of computer codes to calculate the TSL have

been developed over the past 60 year, with the primary one being the LEAPR

module in the NJOY code, developed by MacFarlane et al. [3]. A modification

of the LEAPR module to account for low energy coherent inelastic scattering in

liquid hydrogen has been developed by Márquez Damián et al. [5] based on the

work by Granada and Gillete [6]. This modified version was used in the present

project and will henceforth be referred to as the H2D2-model.

The scattering of neutrons at high energies (above a few eV) is not dependent

on the chemical structures of the scattering material, however, at lower energies

these structures start to play a role and, in order to properly model the scattering,

knowledge of the structure and dynamics on a molecular level is needed. Earlier

evaluations of the TSL relied on a number of approximations to account for these
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molecular effects. Recent advancements in atomistic simulation techniques such

as molecular dynamics (MD) and higher computing power of modern computers

have made it possible to study the molecular effects in more detail. As a result,

new methods to calculate the TSL using molecular simulation results have been

developed. A recent report by the Nuclear Energy Agency discusses a number of

these methods, developed by different research groups [4]. One of these methods,

developed by Márquez Damián et al. [7], makes use of classical MD to simulate

the scattering molecules and compute atomic correlation functions that are then

used as an input to NJOY which calculates the TSL. This method is applied to

water, however, for a quantum liquid such as liquid hydrogen, classical MD is not

sufficient to incorporate the full dynamics of the system. A few groups, including

Guarini et al. [8] and Miller and Manolopoulos [9], have showed that the use

of quantum molecular dynamics (QMD) can be used to successfully compute

atomic correlation functions for liquid hydrogen. Guarini et al. [8] also uses

these correlation functions to compute the TSL directly without implementing

it in NJOY. However, for this project it is deemed too computationally heavy

for development of a scattering kernel. Instead, the method of Guarini et al. [8]

using QMD, could be combined with the work of Márquez Damián et al. [7],

thus implementing the atomic correlation functions from QMD into the standard

methods for calculating the scattering kernels using NJOY. In this way it could

be used as an ab initio method to calculate the neutron cross section. This

would provide a more fundamental neutron cross section than what is currently

used in simulations at the ESS and would as such be an upgrade to the current

methods.

1.4 Objectives

The objective of this project was therefore to investigate the feasibility of

implementing a new method to calculate the thermal scattering law, S(α, β),

from quantum molecular dynamics simulations. The results were bench-marked

against existing literature at each possible step of the calculations in order

to make sure the method is correct and adaptable. The final cross section

calculated through NJOY was compared to the cross section calculated with

the current methods.
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Chapter 2

Thermal neutron scattering

The neutrons escaping the spallation target can have high energies, in the MeV

range [2]. Such high energy neutrons need to be slowed down before reaching

the experimental stations and this energy range is therefore called the ’slowing-

down region’. The interaction of neutrons in the slowing-down region with

the moderator material can be modelled with simple, known theory [10] that

will not be discussed further in the present report. When the neutrons are

slowed down to energies below 1 eV they enter the ’thermal region’, in which

the neutron energies are similar to the thermal energies of the scattering nuclei.

Now the nuclei can no longer be considered at rest, relative to the motion of the

neutron, and the simple theory from the slowing-down region breaks down. At

these energies the effect of the binding of the nuclei in molecules and solid crystal

structures must also be taken into consideration. This is both with regards to the

recoil of the molecule structure in the collisions, as well as possible interference

effects arising due to the de Broglie wavelength of the neutron in the thermal

region becoming comparable to the distances between atoms in the molecules.

These effects in the thermal region only affect the neutron scattering. For the

absorption cross sections, the changes are negligible and the same theory as in

the slowing down region can be used [10]. Absorption will hence not be discuss

further in the present report.

The thermal scattering is divided in two parts: elastic and inelastic scattering,

which in turn can be either coherent or incoherent. Inelastic scattering is

associated with an excitation or de-excitation of the scatterer. In the thermal

region the neutrons don’t have enough energy to excite the individual atom,

however, if the atom is bound in a molecule or crystal structure, this system can

have vibrational and rotational excitation modes in the thermal neutron energy

range. In a liquid or gas, the excitation can also correspond to an atomic or

molecular recoil motion, referred to as a translational excitation. A collision in
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which the neutron gains or loses energy due to an excitation or de-excitation

of the scatterer is described as thermal inelastic scattering. In thermal elastic

scattering there are no such changes in the internal states of the scatterer, and

as a consequence no change in the neutron’s energy. It should be noted that this

definition of thermal elastic scattering differs from the elastic scattering known

for higher energy neutrons in which the neutron can loose energy in elastic

scattering. This is because in thermal elastic scattering, the neutron interacts

with an aggregate of atoms instead of individual atoms, thus the effective mass

of the scatterer will be much greater than the neutron and will not lose energy

in the collision [3,10]. It can be shown that for thermal scattering in liquids and

gases there will be no elastic scattering [11], therefore elastic scattering will not

be further considered in the present report.

2.1 Thermal scattering law

The double differential cross section, d2σ
dE′dµ , over the final state energy E′ and

the cosine of the scattering angle, µ [10,13], can be calculated from the thermal

scattering law, S(α, β), from the following relationship [7],

d2σ

dE′dµ
=

σb
2kbT

√
E′

E
S(α, β). (2.1)

Here σb is the bound scattering cross section of the atom, kb is Boltzmann’s

constant, T is the temperature and E and E′ are the energies of the incident

and outgoing neutron. S(α, β) is a function of the dimensionless momentum

transfer, α, and the dimensionless energy transfer, β, given by the definitions in

equation 2.2,

α =
E′ + E − 2

√
EE′µ

m/mnkbT
; β =

E′ − E
kbT

, (2.2)

where m is the mass of the scattering atom and mn is the mass of the neutron.

The thermal scattering law can also be written as a function of the momentum

transfer, Q, and the energy transfer, h̄ω, where h̄ is the reduced Planck’s

constant and

ω =
E′ − E
h̄

.

The two functions are related by a scaling constant as

S(α, β) =
kbT

h̄
S(Q,ω). (2.3)

The dimensionless quantities α and β can also be related to Q and ω as

α =
h̄2Q2

2mkbT
, β =

h̄ω

kbT
. (2.4)
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2.1.1 Incoherent and coherent scattering

In thermal inelastic scattering, interference effects must be taken into account.

This is because the de Broglie wavelength of the thermal neutrons are comparable

to the distances between the atoms in the scatterer molecules. The de Broglie

wavelength, λ, in ångström of a neutron with energy, E, in meV is given by [10]

λ =
9.045√
E
. (2.5)

The molecular bond length in a hydrogen molecule is 0.74 ångström [12], and

then by equation 2.5 this means neutrons of energy in the order of 3.5 meV would

have the possibility to interfere. The general procedure of adding the interfering

waves is the same as for scattering of light and the scattered waves are added in

a coherent way with regard taken to their relative phases. Generally, the total

cross section is given as a combination of a coherent part and an incoherent

part, where the coherent scattering takes the interference into account and

contains information about the interaction between atoms, while the incoherent

scattering does not give interference effects and contain information about the

properties of the individual atoms. The inelastic cross section can then be

written as a sum of the coherent and the incoherent parts as

d2σ

dE′dµ
= (

d2σ

dE′dµ
)coh + (

d2σ

dE′dµ
)incoh. (2.6)

2.1.2 Self- and distinct dynamics

The thermal scattering law can be written as the Fourier transform in space

and time of the pair distribution functions [10],

G(r, t) = Gs(r, t) +Gd(r, t), (2.7)

containing information about the dynamics of the scattering material. If a

scattering atom is located at the origin at the time t = 0, in the absence of

quantum effects, G(r, t) describes the probability that a second atom will be

present at time t within a unit volume at position r. The ’self’ part, Gs(r, t),

describes the probability that the second atom is the same (identical) as the first

one, while the ’distinct’ part, Gd(r, t), describes the probability that the second

atom is different than the first. Two Fourier transforms are then written, one

for the total G(r, t), and one for the self part as

S(Q,ω) =
1

2π

∫ ∞
−∞

∫
ei(Qr−ωt)G(r, t)drdt,

Ss(Q,ω) =
1

2π

∫ ∞
−∞

∫
ei(Qr−ωt)Gs(r, t)drdt,

(2.8)
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where the scattering functions S and Ss are related to the coherent and incoherent

cross sections in equation 2.6 by equation 2.1 and 2.3 as

(
d2σ

dE′dµ
)coh =

σcoh
4πh̄

√
E

E′
S(Q,ω),

(
d2σ

dE′dµ
)incoh =

σincoh
4πh̄

√
E

E′
Ss(Q,ω).

(2.9)

Note here that the coherent cross section contains both the distinct and the self

dynamics. Equation 2.6 gives the total differential cross section as a sum of the

coherent and incoherent parts. With equations 2.7, 2.8 and 2.9 an alternative

notation for the total differential cross section, which separates the distinct and

self dynamics, is given as

d2σ

dE′dµ
=

1

4πh̄

√
E

E′
(σcohSd(Q,ω) + (σcoh + σincoh)Ss(Q,ω)). (2.10)

The constants σcoh and σincoh correspond to the respective bound scattering

cross sections, with the total σb given by

σb = σcoh + σincoh. (2.11)

The bound scattering cross sections contain the nuclear aspects of the scattering,

i.e. the interaction between the neutron and the nucleus, while S and G

contain the dynamics of the scattering system and interactions between the

scattering atoms. The bound scattering cross section is used to calculate two

parameters that are given as inputs in LEAPR. The first parameter is the free

atom scattering cross section, σf , which is given in the input variable spr. It is

calculated from the σb as

σf = σb
A

A+ 1
, (2.12)

where A is the mass number of the scatterer. For hydrogen A = 1 and the

equation simply becomes

σf =
σb
4
.

The other input parameter is the coherent fraction, given in the variable cfrac.

The coherent fraction gives the weight of the coherent scattering and is calculated

as

cfrac =
σcoh
σb

.

2.2 Neutron scattering in para-hydrogen

The nucleus of a hydrogen atom consists of a single proton with spin s = 1/2.

The nuclei in an H2 molecule can then form states of total spin S = 0 or
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S = 1, depending on if the spins are anti-parallel (S = 0) or parallel (S = 1).

The molecules in the S = 0 state are called para-hydrogen and the ones in

the S = 1 state are called ortho-hydrogen. This spin correlation must be

taken into account when evaluating the total differential cross section for liquid

hydrogen. Following the work of Young and Koppel [16] and Guarini et al.

[8, 17], an approach to calculating the thermal scattering law and the double

differential cross section, that is valid for liquid hydrogen, is presented below.

The calculations done by Young and Koppel [16], and Guarini et al. [17], take

into account the spin correlation as well as the possible transitions between an

initial and final vibrational, rotational and translational state of the hydrogen

molecule.

It is shown by Guarini et al. [8] that the total differential scattering cross section

for para-hydrogen can be written in a similar way to equation 2.10, dividing the

problem into it’s self and distinct dynamics,

d2σ

dE′dµ
=

√
E

E′
(u(Q)Sd,c.m.(Q,ω)+∑

J0J1v0v1

FJ0J1v0v1(Q)Ss,c.m.(Q,E − EJ0J1 − Ev0v1).
(2.13)

The differences here to equation 2.10 is partly the introduction of the subscript

c.m. which indicates that the distinct and self dynamics considered here are

the dynamics of the centre of mass of the hydrogen molecules. In this notation,

the c.m. dynamics contain the translational modes while the sum in the second

part of equation 2.13 then represents the convolution of the c.m. self dynamics

with the possible rotational and vibrational transitions of the molecule. Here

J0 and J1 are the initial and final rotational states and v0 and v1 are the initial

and final vibrational states. u(Q) and FJ0J1v0v1
(Q) are Q-dependent weight

functions containing the bound scattering cross section and are given in detail

in [17].

The inelastic scattering for liquid para-hydrogen is mostly incoherent [10] and

is sufficiently described by the self-dynamics. However, at low incident neutron

energies (on the order of 3.5 meV, as seen in equation 2.5), coherent scattering

effects must also be taken into account. The problem is that the distinct

pair distribution function, Gd, typically is a complicated function. Instead

of calculating it explicitly, an approximation was developed by Vineyard [14]

and later improved by Sköld [15], which uses a modification of the self part

of the scattering law to model the coherent scattering law. The Vineyard

approximation is given by

Sc.m.(Q,ω) = S(Q)Ss,c.m.(Q,ω), (2.14)

8



while the Sköld approximation is slightly altered as

Sc.m.(Q,ω) = S(Q)Ss,c.m.(
Q√
S(Q)

, ω). (2.15)

The function S(Q) used in both approximations is called the static structure

factor and contains information about the correlations of the positions of nearby

molecules. The static structure factor can be determined by experimental data

[8], however, it can also be calculated from molecular dynamics results. The

detailed description on how to compute S(Q) from molecular dynamics is given

in Chapter 3. Within the Skold approximation, an expression can then be found

for the distinct part of the scattering law used in equation 2.13 as

Sd,c.m(Q,ω) = S(Q)Ss,c.m.(
Q√
S(Q)

, ω)− Ss,c.m.(Q,ω). (2.16)

The H2D2-model of NJOY [4,5] implements the Sköld approximation in a similar

way. Namely, using the c.m. self dynamics instead of the total self dynamics

including the rotational modes [6], as previous versions of NJOY had done.

In the following subsections, the c.m. and total self dynamics will be evaluated

in more detail, as implemented in NJOY.

2.2.1 Rotational- and vibrational modes

Young and Koppel [16] make the assumption that the translational modes can

be separated from the rest of the self dynamics. In the following discussions the

notations are changed to describe the TSL in terms of α and β, and St(α, β) is

used to denote the c.m. dynamics since it contains the translational modes. The

total self part of the TSL can then be written as a convolution of St(α, β) and

a function SS,J,v(α) containing the rotational, vibrational and spin-dependent

effects,

Ss(α, β) = St(α, β)× SS,J,v(α). (2.17)

They further assume the molecular Hamiltonian to be spin-independent and

the coupling between rotation and vibration is neglected. The rotational energy

levels of a diatomic molecule with fixed bond length, a, are given by

EJ =
h̄2J(J + 1)

4ma2
= 0.015

J(J + 1)

2
eV, (2.18)

where J is the total angular momentum quantum number. Since S = 0 for para-

hydrogen, only rotational states of even J are allowed (J=0,2,4...). For ortho-

hydrogen only odd J are allowed. The vibrations in the hydrogen molecule are

described as the two atoms vibrating around their separation distance, a, and is

9



assumed to behave like a harmonic oscillator. The energy levels for a harmonic

oscillator are given by

En = (n+
1

2
)h̄ωv, (2.19)

where n is the vibrational quantum number and ωv is the angular frequency

of the oscillator. For a hydrogen molecule, h̄ωv = 0.546 eV and the lowest

vibrational transition in para-hydrogen is therefore at E = 0.546 eV above the

vibrational ground state. The average molecular kinetic energy is related to the

temperature as

〈Ek〉 =
2

3
kbT.

For a temperature of T = 20 K, the average molecular energy is 〈Ek〉 = 0.001

eV and all the hydrogen molecules can be assumed to be in their rotational and

vibrational ground states. If the incoming neutrons have high enough energy,

they can introduce transitions to the higher states. If only the scattering of

neutrons of initial energies ’sufficiently less’ [16] than 0.546 eV is considered,

such that the vibrational transitions need not be considered, then the function

SS,J,v(α) can be written as

SS,J,v(α) =
∑

J=0,2,4..

PJ
4π

σb
(a2
c

∑
J′=0,2,4...

+a2
i

∑
J′=1,3,5...

)

×(2J ′ + 1)

J′+J∑
l=|J′−J|

4j2
l (y)C2(JJ ′l : 00).

(2.20)

Here PJ is a statistical weight vector, ac and ai are the coherent and incoherent

scattering lengths, connected to the bound scattering cross section, σb, by

σb = 4π(a2
c + a2

i ),

jl(x) is a spherical Bessel function of order l and C2(JJ ′l : 00) is a Clebsch-

Gordan coefficient. y is given by

y =
a

2

√
4mkbTα/2,

where α is the dimensionless momentum transfer from equation 2.2. The sums

in equation 2.20 are written as operators so that the equation is more compact.

2.2.2 Translational modes

To calculate the translational part, St, Young and Koppel [16] assume that

the molecular translations are free, which is a good assumption for hydrogen

gas. However, for liquid hydrogen this assumption is no longer correct as the

molecules in the liquid interact with each other. A model by Keinert and Sax [18]

10



models the collective translational modes of a liquid as a combination of a solid-

like phonon distribution and a diffusion component. The idea is that solid-like

clumps of hydrogen molecules diffuse through a liquid [3]. In a solid crystal

structure, an incoming neutron can excite vibrations, or phonons, of the whole

crystal. The phonon distribution, ρ(ω), or frequency spectrum, then describes

the probability of a vibration with a frequency, ω. In order to keep the notations

in this section consistent with the NJOY manual [3], the frequency is denoted by

the dimensionless β defined in equation 2.4. In the Keinert and Sax model [18],

the effective phonon distribution, ρtot(β) is described by a combined solid part

and a diffusion component,

ρtot(β) = ρsolid(β) + ρdiff (β). (2.21)

Solid component

For a phonon distribution from a solid crystal, ρsolid(β), the theory of calculating

the thermal scattering law is well explained in for example Bell and Glasstone

[10]. Applying the theory from Bell and Glasstone, and as described in the

NJOY manual [3], the translational part of the thermal scattering law, St(α, β),

can be calculated from ρsolid(β) with the Gaussian approximation,

St(α, β) =
1

2π

∫ ∞
−∞

eiβte−αγ(t)dt, (2.22)

with the function γ1(t) given by

γ(t) =

∫ ∞
−∞

ρsolid(β)

2β sinh(β/2)
(1− e−iβt)e−β/2dβ. (2.23)

The diffusion part of the phonon distribution typically decreases to zero relatively

fast. However, the solid-like part does not necessarily do so, which causes

the integration in equation 2.23 to be computationally heavy. To simplify the

calculations, in the LEAPR module in NJOY, the Gaussian approximation in

equation 2.22 is decomposed and the solid-like and diffusion parts of St are

calculated separately and then convoluted together. To simplify the calculation

of the integral, the exponential eγ(t) is expanded in time in a phonon expansion,

e−αγ(t) = e−αλ
∞∑
n=0

1

n!
(α

∫ ∞
−∞

ρsolid(β)

2β sinh(β/2)
e−iβte−β/2dβ)n, (2.24)

where

λ =

∫ ∞
−∞

ρsolid(β)

2β sinh(β/2)
e−β/2dβ. (2.25)
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With this, the solid part of the translational TSL can be written as

St,solid(α, β) =e−αλ
∞∑
n=0

1

n!
αn

1

2π

∫ ∞
−∞

eiβt

(

∫ ∞
−∞

ρsolid(β
′)

2β′ sinh(β′/2)
e−iβ

′te−β
′/2dβ′)ndt.

(2.26)

This phonon expansion requires that the solid-like frequency spectrum behaves

like β2 when β → 0 [3, 20].

Diffusion component

The diffusion component in equation 2.21 is given by the Egelstaff and Schofield

diffusion model [19] as

ρdiff (β) =
4pwt
π

√
p2 + 0.25 sinh

(
β

2

)
K1(β

√
p2 + 0.25), (2.27)

where wt is the weight of the diffusion component, K1(x) is the modified Bessel

function of the second kind and

p =
mD

wth̄

is a dimensionless diffusion coefficient. D is the diffusion constant and can be

determined from experiment, or it can be calculated from molecular dynamics

results, as will be discussed in Chapter 3.

With this, it is shown [3] that the diffusion part of the translational TSL can

be written as

St,diff (α, β) =
2pwtα

π
e2p2wtα−β/2

√
p2 + 0.25√

β2 + 4p2w2
tα

2

K1(
√
p2 + 0.25

√
β2 + 4p2w2

tα
2).

(2.28)

2.2.3 Total self dynamics

The solid- and diffusion parts in equations 2.26 and 2.28 are then convoluted

together,

St = St,solid × St,diff , (2.29)
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and the total self part of the TSL is given by equations 2.17 and 2.20 as [3]

Ss(α, β) =
∑

J=0,2,4..

PJ
4π

σb
(a2
c

∑
J′=0,2,4...

+a2
i

∑
J′=1,3,5...

)

× St(wfα, β + βJ,J ′)

× (2J ′ + 1)

J′+J∑
l=|J′−J|

4j2
l (y)C2(JJ ′l : 00).

(2.30)

wf is here the translational weight factor, which for a hydrogen molecule is 0.5

and

βJ,J ′ =
EJ′ − EJ
kbT

is the energy transfer for a rotational transition.

2.2.4 Translational modes from molecular dynamics

A new method to simulate the translational dynamics using molecular dynamics

has been used by e.g. Márquez Damián et al. [7] to compute the scattering law

for water. They use molecular dynamics to compute a frequency spectrum to use

in the Gaussian approximation instead of the solid-like phonon distribution. A

detailed description of how to compute the frequency spectrum from molecular

dynamics is given in Chapter 3. The molecular dynamics simulations capture the

full translational dynamics of the scattering medium, including diffusion. Since

the diffusion and solid parts are decoupled in LEAPR, a diffusion component

calculated according to the Egelstaff and Schofield model in equation 2.27 is

subtracted from the full frequency spectrum in order to get a component to

replace the solid-like frequency spectrum in the input to LEAPR. This is because

the LEAPR module is not suited for taking the full translational frequency

spectrum as an input, and an equal diffusion part is subtracted as the diffusion

part added in NJOY. As such, the resulting scattering law should correspond

to one that is calculated from the full frequency spectrum. A future possible

upgrade to LEAPR is to instead take the full translational frequency spectrum

as input, avoiding the need to subtract a diffusion component.

Liquid hydrogen is a quantum liquid, and as such regular molecular dynamics is

not sufficient to model its dynamics. A similar method using quantum molecular

dynamics has been used by e.g. Guarini et al. [8] and Miller and Manolopoulos

[9] to calculate the frequency spectrum for liquid hydrogen. This method was

used in the present project and is described in detail in Chapter 3. Guarini et

al. [8] also calculate the total cross section directly from the molecular dynamics

results using the Gaussian approximation as well as the formalism of Young

and Koppel [16]. While this method avoids the approximation of the phonon
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expansion used in NJOY, for this project it is deemed too computationally

heavy. Instead, an attempt was made to incorporate the quantum molecular

dynamics used by Guarini et al. [8] and Miller and Manolopoulos [9] into the

method suggested by Márquez Damián et al. [7], using the standard tool for

calculating scattering kernels, NJOY.
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Chapter 3

Molecular dynamics

Molecular dynamics (MD) is a popular method to model a material to gain

information about its structure and dynamics on an atomic scale. The basic

idea behind MD is simple: A small scale sample of the material is initiated by

setting the positions and initial velocities of each atom, as well as the potential

with which the atoms interact with each other. The sample is then allowed to

evolve over a series of time steps, where in each step the total forces on the atoms

are calculated and Newton’s equations are solved to determine the movement

of the atoms. Global properties of the system such as pressure and temperature

can then be calculated from the motions of the atoms.

3.1 Interatomic potential

The choice of interatomic potential in the MD simulation is of importance since

it will govern the interaction between the atoms and as such, the dynamics of the

system as whole. For liquid para-hydrogen, a common choice of this potential

is the Silvera-Goldman potential [8, 9, 21], in which the interacting hydrogen

molecules are treated as sphere particles. This treatment is valid when the

hydrogen molecules are in their rotational ground state [21], which they are at

the low temperatures considered in the present report. The Silvera-Goldman

potential is given by

V (r) = eαc−βcr−γcr
2

− (
C6

r6
+
C8

r8
− C9

r9
+
C10

r10
)fc(r), (3.1)

where r is the distance between the spheres and

fc(r) = e−(rc/r−1)2

if r ≤ rc and fc(r) = 1 otherwise. The values used for the parameters are given

in table 3.1.

15



αc 1.713 C6 12.14

βc 1.5671 C8 215.2

γc 0.00993 C9 143.1

rc 8.32 C10 4812.9

Table 3.1: Parameters used in the Silvera-Goldman potential in equation 3.1.

All parameters are given in atomic units.

3.2 Initial configuration

To initiate the MD simulation, the density of the material is set by stating

the number of particles to simulate as well as the volume of a simulation box,

containing all the particles. The simulation box can be set to have periodic

boundary conditions, where a particle flying out of the box on one side will

reappear on the opposite side with the same velocity vector. In this way a

small simulation box can be approximated as a piece of a larger, interacting

system. Furthermore, the initial positions and velocities of the particles must

be set before starting the simulation. For a solid in a known crystal structure,

the initial positions of the particles are set to match the crystal structure.

For a liquid, in contrast, the real positions of the molecules are randomly

distributed throughout the volume. However, to initiate a MD system with

randomly distributed particles can be problematic, as there is a chance that two

particles will be initiated right on top of each other. Then when the interactions

are calculated in the first time step, the force between the particles will blow

up. This is problematic for two reasons. The first reason is that the total

energy of the system is conserved in the MD simulation, so if the initial system

has a very high potential energy, as time progresses, the kinetic energy of the

system will be increased, and since the kinetic energy of the system increasing,

so will the temperature. The second reason is that if the forces calculated

in the first time step are too large, the simulation might ’lose particles’ as

their velocities become too large for the simulation to handle. The typical

way to simulate a liquid system is instead to initiate the particles in a solid-

like, cubic crystal structure, and let the system ’melt’ into a liquid state. The

initial velocities of the particles will give the total kinetic energy of the system

which is related to the temperature of the system. A common way to set the

initial velocities is therefore to sample the velocities randomly from a Maxwell-

Boltzmann distribution at the desired initial temperature [22].
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Figure 3.1: Results from a typical equilibrium run. The

calculated quantities have been printed out from the

simulation at each 1000th time step and are plotted in

the figure. The units of the quantities are chosen as to

fit all graphs in the same figure.

3.3 Equilibrium run

When the system is initialised, the initial values are given for the positions and

velocities of the particles. In general, this initial state will not be in equilibrium

and there will be a drift in the calculated average quantities such as the potential

and kinetic energy, pressure and temperature of the system. Because of this,

the system has to go through an equilibrium simulation run for a number of

time steps until these average quantities stabilize. Typical results from such an

equilibrium run are seen in figure 3.1, where the potential and kinetic energies,

pressure and temperature of the system are plotted against the time of the

simulation. The quantities experience a drift from their initial values for the

first few time steps, after which they settle around an average value. There will

still be some fluctuations around this average value as the simulation progress,

however it is the average value that is considered constant in the system.

MD simulations are often carried out in the micro-canonical ensemble (NVE),

in which the number of particles (N), the volume (V) and the total energy (E)

are conserved in each time step. Often, however, a system is specified not by

the total energy but by the temperature. Trouble may then arise, as discussed

earlier, if the initial conditions are not set perfectly and the initial potential

energy due to the positions of the particles is too high or low. This will then
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carry over to the kinetic energy and hence the temperature of the system will

drift away from the intended value. A way to circumvent this problem is to run

the system through an equilibrium run in a canonical (NVT) ensemble, in which

the number of particles, volume and temperature (T) are conserved, instead of

the total energy. This is done by using a thermostat, introducing a new degree

of freedom of the system that represents an interaction with a larger system.

The larger system can then exchange excess energy with the simulated system

in order to keep the temperature constant [22]. As an example, a common type

of thermostat is the Langevin thermostat, in which the particles in the system

are considered moving through a continuum of smaller particles. The smaller

particles then create a damping force, or ’drag’, on the bigger particles as the

bigger particles move through the smaller ones, pushing them out of the way.

The smaller particles also have thermal (kinetic) energy and will give random

’kicks’ to the bigger particles. The Langevin equation is then a modification to

the Newton equation [22] ,

m
d2~r

dt2
= ~F − γ d~r

dt
+ ~Frand(t), (3.2)

where ~F is the normal interatomic force term, F = −∇·V , with the interatomic

potential V , γ is the drag coefficient and ~Frand(t) is the force term from the

random kicks from the thermal motion of the small particles, usually referred

to as noise. The damping force and the random force combined puts the system

in the canonical ensemble.

3.4 Trajectory run

After the system is equilibrated, the system is moved over to the micro-canonical

ensemble, keeping the energy of the system constant, and the trajectories of the

particles are collected in order to calculate the velocity auto-correlation function.

This is typically done a number of times and an average is taken in order to get

a statistically reliable result.

3.5 Calculating the static structure factor

The static structure factor, S(Q), is given as an input for LEAPR as it is

needed in the implementation of the Sköld and Vinyard approximations. The

static structure factor can be determined by neutron scattering experiments, see

for example [23, 24], but it can also be calculated from the radial distribution

function, g(r), through the Fourier transform

S(Q) = 1 +
4πρ

Q

∫ ∞
0

r sin(Qr)h(r)dr, (3.3)

18



Figure 3.2: Simple sketch to illustrate the radial

distribution function. At each distance r from the centre

of the particle, the number of surrounding particles with

their centres at a distance r + dr is counted.

where h(r) = g(r) − 1 and ρ is the density. The radial distribution function

describes the probability of, from a certain particle, finding another particle

at a distance r from the first particle. It therefore gives information about the

structure of a material. For a gas this function is expected to be constant, related

to the density of the gas, while for a solid in a crystal structure for example, it

is expected to have a clear pattern in the radial distribution function, related to

the structure of the crystal lattice. For a liquid the radial distribution function

is expected to show some structure for short distances, r, as the particles will

bundle together somewhat uniformly around each other, as is illustrated in figure

3.2. However at larger distances, the function will average out to the density of

the liquid.

In a homogeneous and isotropic system of N particles, g(r) is calculated as

g(r) =
〈
∑N
i6=j δ(r − |~ri − ~rj |)〉

ρ
, (3.4)

where ~r gives the position vector of the particle and 〈...〉 indicates the average

[11]. The function is normalised by the density so that it converges to one

for large distances r. The radial distribution function can be calculated from

the output trajectories of a molecular dynamics simulation. In practice, the
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calculations of equation 3.4 are done by looping over all the particles, and

for each creating a histogram containing how many other particles are found

within a spherical slice with radius r+dr from the particle. The histograms are

then summed together and normalised by the number of particles, the density

and the volume of the slices. The range of the radial distribution function

calculated from a molecular dynamics simulation is fundamentally limited by

the dimensions of the simulation box. However, for the integral in equation 3.3

to fully converge, often g(r) must be extrapolated smoothly to larger r values.

This is done with the function

h(r) =
A0

r
e−

r
r0 sin

(
r

r1

)
, (3.5)

in which the parameters A0, r0 and r1 are found by fitting the function to the

calculated g(r)− 1 from around the third zero [23].

3.6 The velocity auto-correlation function

The velocity auto-correlation function, u(t) or VACF, describes how the velocity

of a particle in a material at a time t0 + t is correlated to its velocity at the time

t0. It is calculated according to equation 3.6 [22] where the velocity of the i-th

atom is denoted as #»v i and the brackets indicate the average over N atoms and

over a number of initial times, t0.

u(t) = 〈 #»v i(t+ t0) · #»v i(t0)〉 =
∑
t0

N−1∑
i=0

#»v i(t+ t0) · #»v i(t0) (3.6)

For t = 0 the VACF can be written in terms of the scalar velocity, v, as

〈 #»v i(t0) · #»v i(t0)〉 = 〈v2〉,

where 〈v2〉 is related to the average kinetic energy, 〈K〉, and hence the temperature,

T , by

〈K〉 = m〈v2〉/2 = 3kbT/2

or

〈v2〉 = 3kbT/m.

In the limit case of t → ∞ it will, for a gas, be equal to 0 as there is no

correlation between velocities in a gas in thermal equilibrium and no flow. In a

gas the atoms collide with each other with typical collision times τ and at each

collision the single atom will ’forget’ its initial velocity. The VACF for a gas

is therefore expected to decay exponentially to 0 with the exponential constant
1
τ . In a solid material, the atoms are vibrating around an equilibrium position

and therefore its VACF will be given by a superposition of sinusoidal curves
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with eigenfrequencies corresponding to the atoms’ phonons. A liquid can be

seen as a middle way between a gas and a solid, with the VACF showing some

phonon curves before diffusing out to 0. The frequency distribution, ρ(ω), gives

information about the translational motion of the atoms and is given by the

Fourier transform of the VACF as

ρ(ω) =
1

2π

∫ ∞
−∞

u(t)e−iωtdt. (3.7)

3.7 Quantum molecular dynamics

In some cases such as liquid hydrogen, when quantum mechanical effects should

be taken into account, a modification to the classical MD is needed to simulate

the system. Such modifications, called quantum molecular dynamics (QMD),

have been developed that use different methods to take into account the quantum

mechanical effects. One QMD method is the path integral molecular dynamics

(PIMD) in which the nucleus of each atom is replaced by a number of fictional

”beads” connected by springs forming a polymer ring. The Hamiltonian of the

nucleus is then derived from the Feynman path integral of the beads.

3.7.1 Path integral molecular dynamics

The following derivations of the path integral molecular dynamics formalism

are based on [25]. The path integral is a method used to describe a process in

which a particle moves unobserved between an initial positional state, |x〉, and

a final state, |x′〉. (The initial and final states are here written in the bra-ket

notation). The exact path the particle takes between the two states is unknown,

but the amplitude, or probability of finding the particle in the second state can

be calculated as the integral over the possible paths it could have taken. The

amplitude, A, is given by

A = 〈x′| e−iĤt/h̄ |x〉 , (3.8)

where e−iĤt/h̄ is the propagator with Ĥ being the Hamiltonian operator. A

general state vector at time t, |Ψ(t)〉, is given by the propagator acting on

the initial state |Ψ(0)〉. Projecting this into the positional basis, with the

completeness relation over the states |x〉,

I =

∫
|x〉 〈x| dx, (3.9)

the general state at time t and position x′, Ψ(x′, t), is given by
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Ψ(x′, t) = 〈x′|Ψ(t)〉 = 〈x′| e−iĤt/h̄ |Ψ(0)〉

=

∫
dx 〈x′| e−iĤt/h̄ |x〉 〈x|Ψ(0)〉

=

∫
dxAΨ(x, 0).

(3.10)

The Hamiltonian operator Ĥ is the sum of the kinetic energy operator, T̂ , and

the potential energy operator, Û , as Ĥ = T̂ + Û . The operators T̂ and Û do

generally not commute but according to the Trotter theorem [25], the following

relation holds,

e−βiH = e−βi(T̂+Û) = lim
P→∞

(e−
βi
2P Ûe−

βi
P T̂ e−

βi
2P Û )P . (3.11)

With this, and with the variable change, t = −iβih̄, equation 3.8 is written as

A = lim
P→∞

〈x′| (e−
βi
2P Ûe−

βi
P T̂ e−

βi
2P Û )P |x〉 dx = lim

P→∞
〈x′|ΩP |x〉 , (3.12)

where the variable,

Ω = e−
βi
2P Ûe−

βi
P T̂ e−

βi
2P Û ,

has been introduced to simplify. Now if the completeness relation from equation

3.9 is inserted between each factor Ω and denoting each set x by xn with n =

2...P , equation 3.12 becomes

A = lim
P→∞

〈x′|ΩP |x〉

= lim
P→∞

∫
〈x′|Ω |x2〉 〈x2|Ω |x3〉 ... 〈xP |Ω |x〉 dx2dx3...dxP .

(3.13)

Now, considering each of the matrix elements, written in a general way as

〈xk|Ω |xk+1〉 = 〈xk| e−
β

2P Ûe−
βi
P T̂ e−

βi
2P Û |xk+1〉 . (3.14)

The potential operator Û = U(x̂) is a function of the position operator and the

position eigenvectors |xk〉 are then also eigenvectors of e−
βi
2P Û with eigenvalues

e−
βi
2P U(xk). The matrix elements can then be simplified as

〈xk|Ω |xk+1〉 = e−
βi
2P U(xk) 〈xk| e−

βi
P T̂ |xk+1〉 e−

βi
2P U(kk+1). (3.15)

To evaluate the kinetic operator, a complete set of momentum eigenstates, |p〉,
is introduced and the completeness relation

I =

∫
|p〉 〈p| dp, (3.16)
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is inserted in the kinetic part of equation 3.15, which can then be written as

〈xk| e−
βi
P T̂ |xk+1〉 =

∫
dp 〈xk| e−

βi
P T̂ |p〉 〈p|xk+1〉 . (3.17)

The kinetic operator now acts on the momentum eigenvector to yield the eigenstate

e−
βip

2

2mP and since

〈x|p〉 =
1√
2πh̄

e
ipx
h̄

[25], equation 3.17 can be written as

〈xk| e−
βi
P T̂ |xk+1〉 =

1

2πh̄

∫
dpe−

βip
2

2mP e
ip(xk−xk+1)

h̄ . (3.18)

The integral in equation 3.18 is a Gaussian integral and is evaluated in [25].

Using their result and multiplying all P matrix elements from equation 3.13

together, the amplitude is given by

A = lim
P→∞

(
mP

2πβih̄
2 )P/2

∫
dx2...dxP

e
− 1
h̄

∑P
k=1( mP2βih̄

(xk−xk+1)2+
βih̄

2P (U(xk)+U(xk+1)))
,

(3.19)

where x1 = x and xP+1 = x′. The amplitude describes the propagation of a

particle between an initial state, x, and a final state x′. The integration over each

xi in equation 3.19 can then be interpreted as the summing of all the possible

paths the propagation can take. If the particle is confined to a certain interval,

x ∈ [0, L], the integrations will also be restricted to this interval. The canonical

partition function, Z(L, T ), can be used to describe a system in thermodynamic

equilibrium. It is calculated as

Z(L, T ) =

∫ L

0

dx 〈x| e−βiĤ |x〉 , (3.20)

which can be calculated by equation 3.19 by setting x1 = xP+1 = x. This

restricts the integrations to paths that begin and end in the same point. If the

limit is removed from equation 3.19 in order to consider a finite number P , it is

shown in [25] that the partition function for finite P, ZP (L, T ), can be written

as

ZP (L, T ) = (
mP

2πβih̄
2 )P/2

∫ L

0

dx2...dxP

e
− 1
h̄

∑P
k=1( mP2βih̄

(xk−xk+1)2+
βih̄

P (U(xk)))
.

(3.21)

It is further shown that equation 3.21 can be modified to resemble the canonical

partition function of a cyclic polymer chain of P beads, moving in a classical
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potential U(x)/P . This is done by replacing the factor ( mP
2πβih̄2 )P/2 by a set of

Gaussian integrals over variables p1, ..., pP , which are introduced to resemble

the momentum. The modified expression is given by

ZP (L, T ) =

∫
dp1...dpP

∫ L

0

dx2...dxP

e−βi
∑P
k=1(

p2
i

2m′+
mω2

P
2 (xk−xk+1)2+ 1

P (U(xk))),

(3.22)

where variable m′ is introduced and is given by

m′ =
mP

(2πh̄)2
.

However, it is shown that this factor does not affect any of the thermodynamic

averages and can be set as a free parameter. The frequency ωP is also introduced,

given by

ωP =

√
P

βih̄
.

This frequency is interpreted as the frequency of the harmonic coupling between

the closest neighbours in the cyclic chain. With this result, the partition function

for a finite number P is found to be equal to that of a classical polymer chain

of P beads, moving in a potential, U(x)/P , and connected with each other by

springs with spring constants, k = mω2
P . Note that this is an approximation of

the system, and that the exact quantum partition function is found in the limit

P →∞. The validity of the approximation is in other words dependent on the

number of beads, P , which is also referred to as the Trotter number, due to it’s

origin from the Trotter theorem.

The polymer chains propagate in imaginary time, βi = ith̄, and it can be shown

that in a system with many interacting particles, each being represented by

a polymer chain, that the individual beads only interact with corresponding

beads with the same imaginary time index, k [25]. This is illustrated in figure

3.3. In this way a system of N quantum particles can be simulated as P parallel

systems, each with N classical particles, where the systems are connected by

springs. The velocity auto-correlation is related to the the partition function and

while it is possible to compute it directly from the PIMD formalism, the method

is numerically difficult. To simplify the calculations of the correlation functions,

two approximate variants of the PIMD method commonly used are centroid

molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD)

[25]. The main differences between the methods lie in the masses used for

the beads and the use of thermostats [26]. In RPMD the masses for the beads

are taken as the real masses of the particles, m′ = m. Studies have been

made to compare the methods. For example, Hone, et al. [21] showed that
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CMD compared slightly better to the results from the PIMD than RPMD when

calculating the kinetic energy for para-hydrogen at 14 K. When comparing

the VACF and frequency spectrum, results of importance for this study, the

difference between the methods is almost not noticeable. Furthermore, RPMD

is less computationally demanding than CMD [21]. In the present work, the

RPMD method was used.

Figure 3.3: Simple sketch to illustrate two interacting

polymer chains. Only beads with the same index

interact with each other.

3.7.2 Canonical velocity auto-correlation function

From RPMD the Kubo-transformed, or canonical, velocity auto-correlation

function, uc(t), can be calculated as [9]

uc(t) =
1

(2πh̄)3NPZP

∫ ∫ N∏
j=1

P∏
k=1

dp
(k)
j dr

(k)
j

e−
βT
P HP (p

(k)
j ,r

(k)
j ) 1

Nm2

N∑
i=1

p̄i(0) · p̄i(t),

(3.23)

where p̄i(t) is the momentum of the centroid of the ith polymer chain at time

t, and βT being the inverted temperature, βT = 1/(kbT ). The Hamiltonian,

Hn(pkj , r
k
j ) is given by

HP (pkj , r
k
j ) =

N∑
j=1

P∑
k=1

(
(p

(k)
j )2

2m
+

1

2
mω2

P (r
(k)
j − r

(k−1)
j )2)

+

P∑
k=1

U(r
(k)
1 , ...r

(k)
N ).

(3.24)

The canonical VACF is related to the normal VACF through a Kubo-transformation

of its frequency distribution [8],
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ρ(ω) = ρc(ω)
βT h̄ω

1− e−βT h̄ω
, (3.25)

where ρ(ω) is the frequency distribution of the normal VACF, given by equation

3.7. ρc(ω) is the canonical frequency distribution, calculated in a similar way

using the canonical VACF,

ρc(ω) =
1

2π

∫ ∞
−∞

uc(t)e
−iωtdt. (3.26)

It is given by Guarini et al. [8] that for a quantum liquid like para-hydrogen,

the canonical frequency distribution from equation 3.26 can be related to a

frequency spectrum, f(ω), as

f(ω) =
2mβT

3
ρc(ω) =

mβT
3π

∫ ∞
−∞

uc(t)e
−iωtdt. (3.27)

This frequency spectrum can then be used in the Gaussian approximation in

equation 2.22 to calculate the TSL.

In the present work, a molecular dynamics software called i-PI [27] is used to

simulate a system of liquid hydrogen. An example module in the code exists

that implements the RPMD method to calculate the canonical VACF. The code

is further modified in this work to be able to apply it to a variety of systems.

3.7.3 The diffusion constant

The diffusion constant, D, in equation 2.27 can be determined by experiment.

However it can also be calculated from the velocity auto-correlation function

from an MD simulation. The exact quantum mechanical diffusion constant for

liquid para-hydrogen is calculated from the canonical VACF [9] as

D =
1

3

∫ ∞
0

uc(t)dt. (3.28)

It is noted by Miller and Manolopoulos [9], that the RPMD approximation of

the diffusion constant becomes dependent on the dimensions of the system. This

effect is not investigated in detail in the present work, but should be included

in future development of the method.
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Chapter 4

Results and discussion

For all the RPMD simulations, a cubic simulation box with periodic boundary

conditions was used. The system was initiated in a cubic crystal structure and

velocities sampled from a Boltzmann distribution. The system was equilibrated

in an NVT ensemble for a number of time-steps until an equilibrium state was

assured. The system was then put in an NVE ensemble and the trajectories were

collected for a number of 1.5 ps simulations. The Kubo-transformed VACF was

then calculated as the average over these trajectories. The static structure factor

was calculated from trajectories from the equilibrium run, after equilibrium

had set in. This was done to save time, as the big system size needed for a

statistically reliable result meant long simulation times.

4.1 Static structure factor

To find the static structure factor, S(Q), equation 3.3 was used, where the

radial distribution function, g(r), was calculated from the centroid trajectories

output from the molecular dynamics simulation. In order to get higher statistical

certainty of the results, a system of 8000 molecules was simulated at 17.1 K.

The trotter number was taken as 16 to allow for a faster simulation time. Two

smaller systems were investigated with 16 and 32 beads and no significant

difference was seen in the radial distribution function. Hence 16 beads were

deemed sufficient. At 15.7 K, a system of 4096 molecules was simulated. To

improve the statistics, the systems were sampled a number of times during the

equilibrium run and an average was taken for the radial distribution function

over the number of sampled points. For 17.1 K this number of points was 50 and

for 15.7 K, 117 points were used. The radial distribution function was calculated

using the method described earlier and fitted to the function in equation 3.5.

The radial distribution function at 17.1 K was fitted between approximately 6

and 13 ångström and at 15.7 K it was fitted between approximately 8 and 11
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ångström. The radial distribution functions together with their fits are plotted

in figures 4.1a and 4.2a. The data was replaced from the start of the fit by the

fitted function, which was extended further in r. The extended pair distribution

functions are shown in figures 4.1b and 4.2b. The static structure factor at 17.1

K is plotted in figure 4.3 and at 15.7 K in figure 4.4 together with experimental

data points by Celli and Dawidowski, digitised from [23]. The low Q behaviour

of the static structure factor was seen to be highly dependent on the fitting of the

function in equation 3.5. To see what effect the fitting parameters would have,

the total cross section was computed using a couple different fitting parameters

for the static structure factor and only a minor effect was seen. Because the

effect was deemed small, and there was no physical reasoning for one choice

of fitting parameters over the other, the parameters were calibrated under two

conditions: To resemble the experimental data digitised from [23] and that

(S(Q)− 1) > −1.

(a) 17.1 K (b) 17.1 K, extended

Figure 4.1: Radial distribution function at 17.1 K computed from RPMD,

plotted together with fitted function from equation 3.5 (left) and extended onto

a longer interval in r by the fitted function (right).
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(a) 15.7 K (b) 15.7 K, extended

Figure 4.2: Radial distribution function at 15.7 K computed from RPMD,

plotted together with fitted function from equation 3.5 (left) and extended onto

a longer interval in r by the fitted function (right).

Figure 4.3: Static structure factor at T = 17.1 K, n =

22.95 nm−3 calculated from RPMD (line), compared to

experimental data points digitised from [23], from the

measurement by Celli et al. at T = 17.1 K, n = 22.95

nm−3 (green dots).
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Figure 4.4: Static structure factor at T = 15.7 K, n =

22.53 nm−3 calculated from RPMD (line), compared to

experimental data points digitised from [23], from the

measurement by Dawidowski et al. at T = 15.2 K,

n = 22.71 nm−3 (orange dots).

4.2 Velocity auto-correlation function

The Kubo-transformed, or canonical, VACF was computed for 61 trajectories

of 15 ps and an average canonical VACF was taken. This was done for a system

of 256 molecules with a Trotter number of 64. The canonical VACF can be

seen in figure 4.5 compared to the canonical VACF computed by Guarini et

al. using CMD [8]. There are some slight differences, which could because

of differences between the RPMD and CMD methods. As Hone et al. discuss

in [21], some small differences in the canonical VACF from RPMD and CMD are

expected. However, it could also be related to the statistics used in computing

the canonical VACF. Some variations in the computed canonical VACF were

seen depending on the number of trajectories used to calculate the average

canonical VACF. Test runs with a lower Trotter number were conducted with

more trajectories in which there seemed to be a convergence after around 300

trajectories. The higher Trotter number used for 15.7 K means a higher computational

load and only 61 trajectories could be used. In an ideal case, more trajectories

would be computed and the overall results could be improved. However, for this

project the agreement was considered to be reasonable and the statistics could

be improved in the future if deemed necessary.
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Figure 4.5: Kubo-transformed velocity auto-correlation

function at T = 15.7 K, n = 22.53 nm−3 calculated from

RPMD, compared to digitised results from Guarini et

al. [8] using CMD for the same temperature and density.

To validate the method used to compute the canonical VACF using RPMD,

bench-marking of the canonical VACF against other literature at other temperatures

was also conducted. Miller and Manolopoulos [9] also used RPMD to compute

the canonical VACF, and in figure 4.6 their result is digitised and plotted against

the result of the present work at 14 K. The results from this project are seen to

be comparable to their results. It is also noted that Miller and Manolopoulos [9]

evaluated a system of 864 molecules while in the present work, a smaller system

of 108 molecules were used at this temperature.
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Figure 4.6: Kubo-transformed velocity auto-correlation

function at T = 14 K, n = 25.6 nm−3 calculated from

RPMD (blue line), compared to digitised results from

Miller and Manolopoulos [9] using RPMD for the same

temperature and density.

4.3 Frequency distribution

The canonical frequency distribution, ρc(ω), was calculated from the VACF

using equation 3.26 and the frequency distribution, ρ(ω), was then calculated

by equation 3.25. The frequency spectrum, f(ω) was calculated with equation

3.27. The method to calculate the frequency distribution was also bench-marked

against the literature. In figures 4.7 and 4.8 ρ(ω) is compared to the results of

a RPMD simulation conducted by Hone et al. [21] for T = 14 K and T = 25 K.

The small deviations seen in our result compared to Hone could be an artefact

of the lower statistics used for our data. Hone points out that in order to get

a statistically significant result, 500 trajectories were sampled to calculate the

average VACF. For the results presented here, only 80 trajectories were used

at 14 K and 300 trajectories at 25 K, due to computational limitations. As a

test, the frequency spectrum at 25 K was also computed using less trajectories

and as expected, the deviations became more pronounced. In figure 4.9, the

canonical frequency spectrum is plotted together with a diffusion component,

calculated from equation 2.27. The diffusion component is subtracted from the

frequency spectrum to get the ’solid-like’ phonon distribution, ρsolid(ω), that is

used as an input to LEAPR. This phonon distribution is plotted in figure 4.10.
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Figure 4.7: Frequency spectrum of the VACF computed

from the canonical spectrum with equation 3.25 at T =

14 K, compared to results from Hone et al. [21] at the

same temperature.

Figure 4.8: Frequency spectrum of the VACF computed

from the canonical spectrum with equation 3.25 at T =

25 K, compared to results from Hone et al. [21] at the

same temperature.
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Figure 4.9: Frequency spectrum, f(ω), at T = 15.7 K.

Computed from RPMD by equation 3.27. Also plotted

is the diffusion component calculated from equation

2.27.

Figure 4.10: The solid-like phonon distribution,

ρsolid(ω), computed as the difference of the full

frequency spectrum and the diffusion component from

figure 4.9
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Temperature 14 K 25 K

Present work, N=108 0.25 Å2/ps 1.37 Å2/ps

Miller, N=108 0.25 Å2/ps 1.38 Å2/ps

Table 4.1: Diffusion constants, D, calculated from RPMD in the present work,

compared to Miller and Manolopoulos [9]. Calculated for a system of N = 108

molecules.

4.3.1 Diffusion component

The diffusion component is plotted in figure 4.9. To calculate the diffusion

component, the dimensionless diffusion coefficient p was calculated from the

diffusion constant, D, calculated from the canonical VACF using equation 3.28.

The diffusion constant is compared to the diffusion constants calculated by

Miller and Manolopoulos [9] in table 4.1. The results of the present work were

shown to be comparable to [9] for a system of 108 molecules. However, it is

noted by Miller and Manolopoulos [9], that there is a system size dependence

of the diffusion constant computed from RPMD. The effect of this dependence

on the total cross section was tested in the present work by scaling the diffusion

constant and the frequency spectrum by a factor similar to [9], and no effect was

seen. However, a future upgrade of the method could be to further investigate

this dependence.

The dimensionless diffusion coefficient is given as an input variable in LEAPR.

It is important in the present method that the coefficient is updated to be the

same as the one used to calculate the diffusion component of equation 2.27 that

is subtracted from the frequency spectrum. Note that in the NJOY manual [3]

this variable is called c instead of p. For T = 15.7 K, the dimensionless diffusion

coefficient is calculated as p = 5.08 and for T = 20 K, p = 7.78. These results

are comparable to the value, p = 6.3, used by Granada and Gillete [6] in their

evaluation of para-hydrogen at 15 K and 20 K.

The phonon expansion requires that the solid-like part of the phonon distribution

behaves like ω2 when ω → 0. However, after the subtraction of the diffusion

component, a fitting of the first five points in the frequency spectrum to an ω2-

like function showed no notable difference in the final calculated cross section.

Therefore it is assumed that the frequency spectrum, after subtracting the

diffusion component, already exhibits an ω2-like behaviour as ω → 0 that is

good enough for the phonon expansion in LEAPR. Further investigation of this

ω2-like condition could be of interest in the future, to test it’s limits and the

effect on the total cross section.
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4.4 Total inelastic cross section

The total inelastic cross section is calculated in NJOY with the input frequency

distribution and static structure factor from the molecular dynamics simulations.

The cross section is calculated in the H2D2-model with the Sköld approximation.

The free atom scattering cross section, σf , contained in the input variable spr

is given by equation 2.12. With σb = 82.03 for hydrogen, taken from NIST [12],

the input parameter is given by spr = 20.505. The coherent fraction, given

in the variable cfrac is calculated taking σb = 82.03 and σcoh = 1.7583 from

NIST, as cfrac = 0.021. The parameter twt, containing the weight factor

for the diffusion part (also mentioned as wt in the present report) is taken

as twt = 0.0125 according to [6], leaving the weight for the solid-like part,

tbeta = 0.4875.

Using these input parameters, the total inelastic cross section for three energy

ranges is plotted in figures 4.11, 4.12 and 4.13 compared to the simulation results

from Guarini et al. [8] and experimental data by Celli et al. [29], Grammer et

al. [30] and Seiffert [31], digitised from [8]. With these results, it is shown

that the method can be used to produce a total cross section from quantum

molecular dynamics with similar results to available experimental data. Some

differences are seen between the results from this thesis and the results of the

simulations by Guarini et al. [8]. These observed differences may be related to

the implementation of the Egelstaff-Schofield diffusion component in LEAPR.

This could be explored further by, for instance, adjusting the diffusion weight

in equation 2.27, as this parameter was seen to have an effect on the total cross

section. It would also be interesting to see in the future if the LEAPR code could

be updated to give an option to skip the Egelstaff-Schofield diffusion component.

Then the full frequency distribution given by MD simulations could be used as

an input and perhaps the cross section compares better to the experimental data.

In the high energy range in figure 4.13, some differences are seen between the

present results and the Guarini et al. [8] CMD+GA model. However, these

differences were not investigated in detail in the present work.

In the low energy range in figure 4.11, a difference is also seen between our

result and the Guarini CMD+GA model [8]. Since this is the energy range in

which the Sköld approximation is used to account for the coherent scattering,

a possible reason could be related to the use of the RPMD calculated static

structure factor, S(Q), instead of one based on experimental data, as used

in Guarini et al. [8]. A suggestion for future development of the method is to

further investigate the use of experimental data for S(Q) to see if the agreement

to Guarini et al. [8] improves.
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Guarini et al. [8] calculates the cross section directly from the molecular dynamics

results, without the use of the NJOY code. An effort to follow the same

calculations was made during this project. However, the integration in the

Gaussian approximation was too numerically heavy for the scope of this project.

With a better understanding of numerical integration, a further study could be

to calculate the cross section directly from the molecular dynamics results to

find out if the differences in the cross section comes from the molecular dynamics

or from the implementations in NJOY.

Figure 4.11: The total inelastic cross section at T = 15.7

K in the low energy range between 0-16 meV. Results

from NJOY using the inputs from RPMD compared to

experimental data and simulation results digitised from

Guarini et al. [8].
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Figure 4.12: The total inelastic cross section at T =

15.7 K in the medium energy range between 10-60

meV. Results from NJOY using the inputs from RPMD

compared to experimental data and simulation results

digitised from Guarini et al. [8].

Figure 4.13: The total inelastic cross section at T = 15.7

K in the high energy range between 60-900 meV. Results

from NJOY using the inputs from RPMD compared to

experimental data and simulation results digitised from

Guarini et al. [8].
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Chapter 5

Conclusions

In the present report, it has been shown that the new method of calculating

the scattering kernels using inputs from QMD can be implemented and give

results comparable to existing literature. It is noted that the differences from

this method compared to previous work based solely on QMD, could be related

to a number of different sources. These include for example, the usage of the

QMD calculated static structure factor as opposed to one based on measured

data, the statistics of the simulation results, and effects related to the diffusion

model used in NJOY. For future upgrades of the method, it would be of interest

to take further advantage of modern parallel programming techniques, to not

only increase statistics, but to also possibly update NJOY to avoid the usage of

the phonon expansion, thereby using directly results from molecular dynamics

simulations. Overall the method worked as intended and could be used in future

scattering kernel calculations at the ESS.
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