
Using Deep Learning to
Remove Computed
Tomography Artifacts due to
Hip Replacement

Adelina Zahirovic

Master’s thesis
2020:E23

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

Using Deep Learning to Remove
Computed Tomography Artifacts

due to Hip Replacement

Adelina Zahirovic

June 2019

Master’s Thesis
Faculty of Engineering
Centre of Mathematical Sciences
Mathematics

Supervisor at Lund University: Professor Kalle Åström
Supervisor at EXINI Diagnostics AB: Konrad Gjertsson
Examiner: Mikael Nilsson

1

Abstract

Computed Tomography (CT) is the most common diagnostic method for cancer
and prostate cancer is the most common cancer among men in Sweden. Some of
the patients that get scanned have hip replacements that cause artifacts in CT scans
that make the CT images unreadable for physicians. In this Master’s Thesis an
autoencoder model was implemented to reduce artifacts due to hip replacements in
CT images. The model was trained, validated and tested on CT images provided
by EXINI Diagnostics AB, Lund, Sweden.

The autoencoder was implemented using the deep learning framework Keras
in Python. Autoencoders have been used to reduce different types of noise in other
experiments and shown great results. The produced results show that the model is
a good start for further work to completely reduce artifacts due to hip replacement.

2

Sammanfattning

Computed Tomography (CT) är den vanligaste metoden för undersökning av
cancer och prostata cancer är den vanligaste cancerformen bland män i Sverige.
En del patienter som genomför en CT undersökning har höftimplantat som orsakar
artefakter och bidrar till att CT bilderna blir oläsliga för läkarna. I detta examen-
sarbete implementerades det en autoencoder modell för att reducera artefakterna i
CT bilder. Modellen tränades, validerades och testades på CT bilder framtagna av
EXINI Diagnostics AB i Lund, Sverige.

Autoencodern var implementerad med hjälp av Deep Learning bibliotek i Keras
i Python. I andra experiment har autoencoders visat sig vara en bra metod att
reducera olika sorters brus i bilder. Även i detta fall visar den goda resultat samt
möjligheter för vidare arbete för att reducera artefakterna helt.

3

Acknowledgements

I would like to thank EXINI Diagnostics AB and Progenics Pharmaceuticals
Inc. for giving me this opportunity to do my Master’s Thesis at EXINI in Lund and
allowing me to use their resources when training, validating and testing my model
constructed in this project. I would also thank my supervisor at Lund University
Professor Kalle Åström and my supervisor at EXINI Konrad Gjertsson for all the
guidance and advice they gave me during the project. I am very thankful that I was
introduced to the field of machine learning by Professor Kalle Åström and Kerstin
Johnsson, who also introduced EXINI.

Table of contents

List of Figures 6

List of Tables 9

1 Introduction 10
1.1 Aim of the Master’s Thesis . 11
1.2 Literature Survey . 12

2 Machine Learning 13
2.1 Supervised Learning . 14

2.1.1 Classification . 14
2.1.2 Regression . 16

2.2 Unsupervised Learning . 16
2.2.1 Clustering . 17
2.2.2 Association . 18
2.2.3 Dimensional reduction 18

2.3 Semi-Supervised Learning . 18
2.4 Reinforcement Learning . 19

3 Deep Learning 20
3.1 Artificial Neural Network . 21
3.2 Backpropagation . 22
3.3 Convolutional Neural Network 25

3.3.1 Convolutional Layer . 27
3.3.2 Pooling Layer . 29
3.3.3 Activation function . 30

3.4 AutoEncoder . 31
3.4.1 Denoising AutoEncoder 33

4 Software 34
4.1 Python . 34
4.2 Keras . 34

5 Data Material 35

4

TABLE OF CONTENTS 5

6 Model 39

7 Result 43
7.1 Proof of concept . 43
7.2 Reducing artifact . 45

8 Discussion 48

Bibliography 50

A Proof of concept 56

B Reducing artifact 59
B.1 Test set . 59
B.2 Slices of the test set . 61

List of Figures

2 Machine Learning 13
2.1 Sample of the handwritten digits in the MNIST dataset [19]. . . . 15
2.2 An example of a classification problem. The task is to classify if

Gene 1 and Gene 2 are healthy or have a disease. The training data
is used to learn and fit the model, decision boundary, that separates
the two classes. [20] . 15

2.3 An example of a regression problem where the task is to predict
how many years a cancer patient will survive [20]. 16

2.4 Illustration of two clusters, K = 2, identified from the source
dataset [24]. 17

2.5 Example of an association rule. 18

3 Deep Learning 20
3.1 A mathematical representation of a biological neuron - An artificial

neuron. 21
3.2 An concept graph of a fully connected ANN. The variable in each

node represents the output of the node. 22
3.3 An artificial neural network is defined as two or more perceptrons

that work together to approximate a function, where the simplest
only consists of two perceptrons [39]. This figure shows an exam-
ple of the simplest kind. The input i1 is multiplied with the weight
W1 which output is P1. The output P1 is then fed through a sig-
modial activation function. This makes now the first neuron in the
network. The output from the activation function is then the input
to the next artifical neuron where the same steps happens. The last
output of the multilayer perceptron O2 is compared to the label d
in error function E. 23

3.4 A computer sees an image like numbers where each number corre-
sponds to a pixel in the image [42]. 26

3.5 An example of a CNN organized in three dimensions — height,
width and depth — as seen in one of the layers [43]. 27

6

LIST OF FIGURES 7

3.6 Convoluting a 7 × 7 × 1 image with a 3 × 3 × 1 kernel and getting
a 5 × 5 × 1 convolved feature. 27

3.7 The movement of the kernel matrix across an image [40]. 28
3.8 Two of the most common pooling types are Max Pooling and Av-

erage Pooling. The input data is pooled with a kernel matrix (2×2)
consisting of only ones with stride 2. Max Pooling is returning the
maximum values of the region covered by the kernel, and Average
Pooling is returning the average values. [40] 29

3.9 Different types of activation functions [46]. 30
3.10 ReLU activation function. The function returns 0 if it receives a

negative value and for any positive value x it returns the same value
back [47]. 31

3.11 A general structure of an autoencoder. Mapping an input x to an
output r through an internal representation h. The autoencoder has
two components: The encoder f that maps x to h and the decoder
g that maps h to r. [51] . 31

3.12 Illustriation of how an autoencoder network looks like including a
bottleneck. 32

3.13 Illustration of a denoising autoencoder. Noise is added to the input
image before the image is fed into the autoencoder. The output
representation is then compared to the original input image and
losses are calculated. [52] . 33

5 Data Material 35
5.1 Two examples how a slice in the images can look like when it has

not any hip replacements (a) and how it can look when it has two
hip replacements (b). 36

5.2 Subfigures (a) – (b) are two randomly plotted CT images and labels
including only pelvic area from the dataset without artifacts. Each
CT image and label is plotted in axial, coronal and sagittal plane. . 37

5.3 Subfigures (a) – (b) are two randomly plotted CT images and labels
including artifacts. Each CT image and label is plotted in axial,
coronal and sagittal plane. 38

6 Model 39
6.1 One randomly generated CT images from the training set without

and with randomly applied hip replacements from the validation set. 41
6.2 Graphical illustration of the autoencoder model which has been

constructed and used in this Master’s Thesis. 42

7 Result 43

LIST OF FIGURES 8

7.1 A randomly plotted CT image and the reconstructed image by the
model. To the left the original image is plotted and to the right
the reconstructed image. The original image and the reconstructed
image is plotted in axial, coronal and sagittal plane. 44

7.2 The loss function during the training of the proof of concept. . . . 44
7.3 A CT image from the test set and its reconstructed image with the

model. To the left is the original image plotted and to the right the
reconstructed image. The original CT image and the reconstructed
CT image is plotted in axial, coronal and sagittal plane. 45

7.4 A CT image from the test set and its reconstructed image with the
model. To the left is the original image plotted and to the right the
reconstructed image. The original CT image and the reconstructed
CT image is plotted in axial, coronal and sagittal plane. 46

7.5 The loss function during the training when trying to reduce the
artifacts. 46

7.6 A slice of the original image and the corresponding slice in the
reconstructed image shown in Figure 7.3. 47

7.7 A slice of the original image and the corresponding slice in the
reconstructed image shown in Figure 7.4. 47

Appendix A 56
A.1 Subfigures (a) – (e) are six randomly plotted CT images and their

reconstructed image with the model. To the left in each image, is
the original image plotted and to the right the reconstructed image.
Each image and reconstructed image is plotted in axial, coronal
and sagittal plane. 58

Appendix B 59
B.0 Subfigures (a) – (d) are all of the CT images in the test set and their

reconstructed image with the model. To the left in each image, is
the original image plotted and to the right the reconstructed image.
Each image and reconstructed image is plotted in axial, coronal
and sagittal plane. 61

B.1 A slice of the original image and the corresponding slice in the
reconstructed image shown in Figure B.0a. 61

B.2 A slice of the original image and the corresponding slice in the
reconstructed image shown in Figure B.0b. 62

B.3 A slice of the original image and the corresponding slice in the
reconstructed image shown in Figure B.0c. 62

B.4 A slice of the original image and the corresponding slice in the
reconstructed image shown in Figure B.0d. 62

List of Tables

5 Data Material 35
5.1 Some approximate Hounsfield Units for CT images and what they

corresponds to. 36

9

Chapter 1

Introduction

Every year about 10.000 men in Sweden get prostate cancer and about 2.500 men
die of it each year. This makes prostate cancer the most common cancer among
men in Sweden [1]. The disease usually affects men that are over 50 years old and
is exceptionally rare among men under 40 years old.

The prostate is a small gland in the pelvic, located near the bladder. Prostate
cancer means that the prostate gland is afflicted with a malignant tumor that is
usually located on the outer part of the prostate gland. It can often take a long
time before a patient get any symptoms of having been affected by prostate cancer.
When a tumor grows larger, problems can arise and symptoms can occur such as
difficulties during urination, weight loss and fatigue. However, some patients do
not have any symptoms at all until the cancer spreads outside the prostate gland
and on to the skeleton. [2]

Computed Tomography (CT scan) is a common test method for different types
of cancer. The term tomography comes from the Greek words tomos and graphein
which means a slice to write or record. A CT scan test is similar to a standard
X-Ray. The main differences are that CT scans:

– Shows bones, organs and soft tissue in the images more clearly than X-Ray
images.

– Can show a tumor and the shape, size, and location of it in the body.

– CT image slices are placed like layers on top of each other and makes a
3D-image in black and white. Most of the modern CT scan machines take
continuous pictures in a spiral form rather than taking slice by slice. The
described procedure results in lower acquisition time and higher quality im-
ages [3].

Due to the fact that CT images show bones, organs and soft tissue this makes it
possible to look at the organs without any surgery. Physician can directly view CT
images to detect cancer in the body, see the size of the tumors and locate them [4].

10

CHAPTER 1. INTRODUCTION 11

Artifacts are common in clinical CT images and may cause problems when
physician evaluating the scans. There are several different types of artifacts, such
as:

– Noise artifacts

– Motion artifacts

– Metal artifacts

Noise artifacts can cause different patterns in CT images. They are often caused
by the statistical error of low photon counts and can result in random thin bright
and dark streaks or random darker and brighter pixels similar to Gaussian noise.
Motion on the other hand, often causes blurry images, double images and similar
to noise artifacts, long streaks. If the patient is lying in one of the faster machines,
motion artifacts are reduced automatically because the patient has less time to move
during the acquisition. Metal artifacts are extremely common and are caused be-
cause of its high atomic number. Common metals with high atomic number used
to make implants are iron and platinum. [5]

These metal artifacts are making some big problems for the physicians due to
the fact that the CT images are worse when metal is scanned. Some of the patients
who get prostate cancer also have some type of hip replacement where either one
hip is replaced or both. The hip replacements cause artifacts in the scans and
making it difficult to see the organs and soft tissue in the pelvic area. Most of the
CT images are unreadable and are not giving any information at all in the pelvic
region in the body.

1.1 Aim of the Master’s Thesis

The primary goal of the Master’s Thesis is to implement an algorithm that reduces
or removes artifacts caused by hip replacements in a Computed Tomography (CT)
image. The approach has been to implement an AutoEncoder which is a type of an
Artificial Neural Network. All the CT images were provided by EXINI Diagnostics
AB.

The work was divided into two steps:

– The first step was the implementation of the artificial neural network, and use
it as a pure autoencoder used for reconstruction of CT images. Successful
image reconstruction validates the efficacy of the designed model and shows
its ability to capture the distribution of the data. In addition, reconstruction
lacks requirements of annotated data, which in practice meant the work could
commence before annotations were available.

– The final step was to train the model on training data that included artifacts in
the CT images and see if the model could remove the artifacts in test images.
Because of the small amount CT images, including artifacts, more images
with artifacts were needed to be generated before training the model.

CHAPTER 1. INTRODUCTION 12

1.2 Literature Survey

A lot of different studies have tackled the problem of artifact reduction in CT im-
ages. Studies [6,7] were reducing metal artifacts but with other methods than deep
learning and autoencoders and they were not that useful in this Master’s Thesis.
There were some studies however, where deep learning algorithms were utilized,
not to reduce and remove metal artifacts, but to reduce and remove noise in CT
images and other kinds of images [8–13]. Their approaches to reduce noise were
the first inspiration to how to build an autoencoder network that will learn how to,
at least, reduce and take away some noise in CT images and other kinds of images.
The only problem with these studies was that they were applying their models on
color images and most of them only on 2D-images. It was difficult to find studies
done on 3D-images were they use autoencoder or other deep learning methods to
reduce noise. But there was one [14] that reduced noise in 3D CT images. Their
3D network architecture was the inspiration to this Master’s Thesis and the model
used in this work were all based on their proposed architecture.

Chapter 2

Machine Learning

In traditional computer vision algorithms, the developers write the rules that they
want the program to follow. Each rule is based on a logical foundation and the
system grows, additional rules have to be incorporated. The program can quickly
become unsustainable to maintain and is difficult to write them as well as a data-
driven model. This is where data-driven machine learning models come into the
picture.

Often when somebody talks about Artificial Intelligence (AI) most of the times
they are talking about machine learning. The word explains it well; it is about
machines that learn from data. The machine learns how the input and output data
are correlated to each other and writes its rules by itself. There are no developers
needed to do this like in rule-based algorithms. The machine learns what it needs to
learn in a similar way like humans. Humans learn from experience and situations
that happens. When experiencing different situations we learn more and we grow
more adept in understanding our environment and extrapolate from the current.
We have a bigger chance to succeed with something we have been experiencing
than when we get into a new unknown situation. The same principles govern the
optimization procedures of data-driven machine learning models. The machine
makes a model that predicts the new, unknown inputs as well as it can [15].

Machine learning is commonly divided into a number of sub-fields, where each
field is characterized by the problem you want to solve depending on what kind of
data you have access to. The division is as follows:

– Supervised Learning

– Unsupervised Learning

– Semi-Supervised Learning

– Reinforcement Learning

where a brief description is offered of each sub-field in subsequent sections.

13

CHAPTER 2. MACHINE LEARNING 14

2.1 Supervised Learning

In supervised learning, the algorithm learns how to associate some input with an
associated output, where both input data and its annotation is provided to the model
during the training phase. Usually, the annotated labels are difficult to collect au-
tomatically, so a human has to provide them, i.e. the supervisor. This is also the
reason it is called supervised learning.

If the algorithm has an input variable X and an output variable y the algorithm
will learn the mapping function

y = f (X)

We already know the correct outputs, so the algorithm makes predictions on the
training data and is corrected by the supervisor. The main goal is to make this
approximation of the mapping function so that when a new input X is given its
output y can be predicted. [16]

Supervised learning can be divided into two different domains:

– Classification

– Regression

depending on what supervised machine learning problem has to be solved [17].
Both of these techniques are similar in nature. The only thing that separates them
is the format of the output. In sections 2.1.1 and 2.1.2 classification and regression
are explained and examples are given for each problem.

2.1.1 Classification

In classification, the output can be seen as a class label [17]. When working with
classification problems it is very important to have examples of objects we want to
classify (true examples) but it is also important to have examples of objects that do
not belong to that class (false examples). A famous example of the classification
problem is the MNIST dataset of handwritten digits. The goal with the classifica-
tion problem is to construct a model that can classify which number the handwritten
digit symbolizes. The MNIST dataset consists of 10 classes, the numbers 0−9, and
the images are black and white. The MNIST dataset consists of, 60.000 training
images and 10.000 test images taken from American Census Bureau employees
and American high school students [18].

As seen in Figure 2.1 far from all numbers are easy to identify, which makes
this a perfect task for machine learning algorithms.

Another example of a classification problem could be to determine if a gene is
healthy or has a disease like shown in Figure 2.2, where the points in the graph are
used to train a logistic regression model.

CHAPTER 2. MACHINE LEARNING 15

Figure 2.1: Sample of the handwritten digits in the MNIST dataset [19].

Figure 2.2: An example of a classification problem. The task is to classify if Gene 1 and
Gene 2 are healthy or have a disease. The training data is used to learn and fit the model,
decision boundary, that separates the two classes. [20]

CHAPTER 2. MACHINE LEARNING 16

2.1.2 Regression

In regression, the output consists of real values [17]. Unlike in the classification,
in regression the output value is tried to be approximated using machine learning
algorithms. The output value is generated by a function which could be anything
that outputs continuous values, for example, determine the life expectancy of can-
cer patients, as shown in Figure 2.3.

Figure 2.3: An example of a regression problem where the task is to predict how many
years a cancer patient will survive [20].

2.2 Unsupervised Learning

Contrary to models trained in a supervised fashion, unsupervised training does not
include annotations. This is the reason for the name, unsupervised learning - no
supervisor can give feedback to the model and show what behavior is desired for
each data point in X. The algorithm has no clear target of the learning to work
against. This is the type of learning which has been used in this project and has
resulted in this report.

Unsupervised learning can be divided into three different problems:

– Clustering

– Association

– Dimensional reduction

CHAPTER 2. MACHINE LEARNING 17

depending on which kind of problem is wanted to be solved [16]. In the following
sections clustering, association and dimensional reduction are explained and some
examples illustrated.

2.2.1 Clustering

In the clustering problem, similarities and differences are wanted to be found in the
data (e.g. images) and assign them in clusters [21]. By clustering images you can,
for example, find images with similar cars and identify different types of news [17].

One of the most popular examples of clustering in unsupervised learning is K-
means clustering [16]. In K-means clustering you define a target number K, which
represents how many clusters you want to divide the dataset into. The algorithm,
shown in Equation 2.1 [22], will generate K numbers of centroids that represent
the center of a cluster, like in Figure 2.4, with N different cases. The goal of
the algorithm is to minimize the difference within the clusters and maximize the
difference between the clusters [23]. The algorithm starts with randomly select
centroids, c, to build the first group of datasets, which corresponds to the starting
points for every cluster. After this, the algorithm performs repetitive calculations
to optimize the positions of the centroids to minimize the differences within the
clusters.

J =

K∑︁
j=1

N∑︁
i=1

‖x(j)
i − c j‖

2 (2.1)

Figure 2.4: Illustration of two clusters, K = 2, identified from the source dataset [24].

CHAPTER 2. MACHINE LEARNING 18

2.2.2 Association

The association rule problem is applied to problems where we want to find some
interesting relationships between the variables in a dataset [21]. An example of
an association derived from data examination is that people who buy a new house
often tend to also purchase new furniture.

Costumer byes item X Tend to by item Y

Figure 2.5: Example of an association rule.

2.2.3 Dimensional reduction

Dimensional reduction is a technique used to reduce number of features in datasets
without any negative effects on machine learning problems [25]. Dimensional re-
duction can both be linear or non-linear depending on which method is used. The
most common methods used in dimensional reduction are:

– Principal Component Analysis (PCA)

– Linear Discriminant Analysis (LDA)

– Generalized Discriminant Analysis (GDA)

By using dimensional reduction the computation time reduces, it helps the com-
pression of input data and reducing the storage space required [26].

A popular method used to reduce dimentional is an AutoEncoder. An autoen-
coder is a type of artificial neural network that aims to copy its input to their out-
put [27]. The autoencoder is more explained later on in section 3.4.

2.3 Semi-Supervised Learning

Semi-Supervised learning is a combination of supervised learning and unsuper-
vised learning that are described in section 2.1 and 2.2 respectively. In semi-
supervised learning, we have as usual input data x but we also have some labeled
output data Y . As mentioned in supervised learning all output data are labeled and
in unsupervised learning, no output is labeled, and in semi-supervised learning,
some of the output data are labeled and some do not have any labels.

Most of the real-world problems fall into this area. It takes time and money
to get labeled data and most of the time you do not get a lot of this type of data.
While unlabeled data, are easy to collect and cheap [16].

CHAPTER 2. MACHINE LEARNING 19

2.4 Reinforcement Learning

Reinforcement learning is a goal-oriented algorithm of how to achieve a complex
goal. It is a bit different in how it works compared to supervised and unsupervised
learning. In reinforcement learning the algorithm learns how to achieve a specific
goal by discovering an environment by itself.

Reinforcement learning algorithms make decisions sequentially, where deci-
sions are dependent on each other. To simplify the model, it can be explained that
the output depends on the state of the current input, and the next input depends on
the output of the previous input. Depending on which decision is made, the model
gets rewards. This means that the model acts in a certain way in the environment
depending on which type of rewarding it got from the previous action. The goal of
the model is to get a lot of positive rewards and as little negative rewards as possi-
ble. This is how the model learns the environment all by itself. It is exploring the
different decisions and what type of reward it gives [28]. This is a common model
used when a computer plays e.g. chess [29].

Chapter 3

Deep Learning

Deep learning is the main key technology of many items today, like driverless cars,
recognition of items like images, sound and voice control of phones, TVs, hands-
free speakers and so on. Thanks to deep learning today we can achieve results that
we could not do before.

Deep learning is a special form of machine learning technique that learns the
computer things that are natural for humans. Deep learning can be used to for
example, identify objects in an image, translate language and describing images
with text. It was in the 1980s deep learning was theorized [30], but it was not until
recently it became useful. The main reasons why it was not useful before are that
deep learning requires a large amount of labeled data and substantial computing
power. Now-days we have access to a much larger amount of data and much better
computers.

Deep learning methods use neural network architectures for modeling and
learns features directly from the data without the need for manual feature extrac-
tion. Before machine learning engineers had to go through all data to find features
by hand, which was fed into to complete the task, e.g. some form of classification.
This was and still is a time consuming and expensive process which often requires
highly specific knowledge. But this is not the only problem, it is very difficult to se-
lect which features actually contribute to the model performance. The methods in
deep learning, strives to perform a so-called end-to-end learning which means that
they automatically learn how to perform a given task based on available data [31].
Deep learning has been introduced with the goal to move machine learning closer
to one of its original goals - Artificial Intelligence (AI) [32].

The word deep is a technical term and refers to the number of layers in a net-
work. A deep network, usually has more than one hidden layer, because it is the
hidden layers that allow the deep neural network to learn a representation of the
data. Neural networks with many hidden layers allow the features to pass through
more mathematical operations than in networks with few layers. This is why these
networks with a lot of hidden layers are more intensive to train and need a lot of
computing power. [33]

20

CHAPTER 3. DEEP LEARNING 21

3.1 Artificial Neural Network

Artificial neural networks (ANNs) were introduced in 1943 [34] and represents a
type of machine learning model. Initially, the primary objective was to model the
biological neural system in our brain. Due to its complexity, the research split
into two parts. One part is actually focusing on trying to understand the biological
process of what happens in our brain, and the second part focuses on applications
of the ANNs.

It was not until 1974 that artificial neural networks with more than a single
hidden layer were trained successfully and not until 1986 the method got famous
[31] when the backpropagation algorithm was introduced. The backpropagation
algorithm is covered in further detail in section 3.2.

Initially, a single artificial neuron, called a perceptron, was used to model re-
lationships in the data until the scientists at the time realized that the human brain
has billions of neurons to do the processing when solving a problem. Instead of the
single perceptron, multiple artificial neurons were combined to create multilayer
perceptrons, i.e. artificial neural networks, in an attempt to more closely replicate
the structure and design of the human brain. Our biological computer is made up
of about 86 billion neurons [35] and all these neurons are connected to each other
through about 1015 synaptic connections [36] in complex structures. We have dif-
ferent kinds of neurons in our brain and all of them have their different properties,
but the basic structure is the same in all of the neurons. In Figure 3.1 the basic
biological neuron is represented by a mathematical model, i.e. an artificial neuron.

x2 w2
∑︀
i

wixi + b y = f (
∑︀
i

wixi + b)

Output

Axon

x1

Synapses

w1

Dendrites

x3

Inputs

w3

Weights

Cell Body

Figure 3.1: A mathematical representation of a biological neuron - An artificial neuron.

The biological neuron has three main parts, a cell body that has a nucleus, small
branches called dendrites and a bigger branch called an axon. All signals from
other neurons are passed into the cell body through receptors on the dendrites called
synapses. The synapses in the mathematical model in Figure 3.1 are represented
as the input data x1, x2 and x3. Before the signals come to the cell body, they are
either getting stronger or weaker in the dendrites, which means that the input data
is being weighted before coming to the artificial neuron. In machine learning, the
weighting process enhances specific signals and ignores others [37]. If the signal

CHAPTER 3. DEEP LEARNING 22

in the biological neuron is strong enough, it will be transformed through a complex
chemical process and be sent through the axon to the next neuron. But if it is weak
and not the right pattern in the signal nothing will happen. Because of this, the bias
term b is added to the sum in the artificial neuron before it is processed using an
activation function, as close as possible to the biological process.

x1

x2

Input layer

h(1)
1

h(1)
2

h(1)
3

h(1)
4

Hidden
layer 1

h(2)
1

h(2)
2

h(2)
3

h(2)
4

Hidden
layer 2

ŷ1

Output layer

Figure 3.2: An concept graph of a fully connected ANN. The variable in each node repre-
sents the output of the node.

As mentioned the structure in the human brain is very complex and it is im-
possible to model such complex structures. But with careful observations of the
biological axons and their communications, the researchers have found more orga-
nized versions of the biological neural networks to create artificial neural networks
that can represent this. A simple concept graph of a fully connected artificial neural
network is visualized in Figure 3.2.

3.2 Backpropagation

As previously mentioned, the backpropagation algorithm was introduced in 1970s,
but it was not until 1986 its importance was fully discovered when the paper by
David Rumelhart, Geoffrey Hinton and Ronald Williams got famous. In the paper,
they talked about how backpropagation works much faster than earlier approaches
to learning and this made it possible to solve problems, which had been insoluble,
by using neural nets. [31]

It is thanks to the backpropagation algorithm the artificial neural network is
the powerful machine learning model it is today. The backpropagation algorithm
calculates the gradients by using the chain rule and propagates the gradients of
the loss function back through the network without any overlapping calculations
needed. The chain rule is a formula that tells us how to find the derivative of the
composition of two or more functions. A function is composite if it can be written
as a function of a function, F(x) = f (g(x)). The chain rule shows then that the
composition function F(x) can be calculated as:

F′(x) = f ′(g(x)) · g′(x)

CHAPTER 3. DEEP LEARNING 23

The chain rule can also be expressed as a product of derivatives if we assume that
g(x) = y and F(x) = z, then it can be expressed as

∂z
∂x

=
∂z
∂y
∂y
∂x

To make the backpropagation algorithm easier to understand, it will be demon-
strated by an example. The example will be constructed as in [38] shown in Figure
3.3.

× ×
P1 i2

O1

P2i1

W1

O2

W2

Figure 3.3: An artificial neural network is defined as two or more perceptrons that work
together to approximate a function, where the simplest only consists of two perceptrons
[39]. This figure shows an example of the simplest kind. The input i1 is multiplied with
the weight W1 which output is P1. The output P1 is then fed through a sigmodial activation
function. This makes now the first neuron in the network. The output from the activation
function is then the input to the next artifical neuron where the same steps happens. The
last output of the multilayer perceptron O2 is compared to the label d in error function E.

Before starting the calculation of the gradients the error function E and the
activation function S has to be defined. To make it simple, we define the error
function E as the mean squared error:

E =
(d − z)2

2

where d is the true label and z is the output of the network. And the activation
function S will be defined as the sigmoid function

S (x) =
1

1 + e−x

where x is the input value to the neuron.
Now when we have defined the error function E and the activation function S

we can start to find the gradient of the error with respect to the weights W1 and W2.
The gradients are found by using the chain rule backward through the network.
This means that we want to start with finding:

∂E
∂W2

and then
∂E
∂W1

CHAPTER 3. DEEP LEARNING 24

But first we have to find
∂E
∂O2

since O2 is the only variable that has a direct dependence on our error function E.
To find it we start to express it by the chain rule:

∂E
∂W2

=
∂E
∂O2
×
∂O2

∂W2
=

∂E
∂O2
×
∂O2

∂P2
×
∂P2

∂W2
(3.1)

where
∂E
∂O2

=
∂

∂z
(
(d − z)2

2
) = z − d,

∂P2

∂W2
=
∂(i2W2)
∂W2

= i2

and the last part ∂O2
∂P2

have a dependence on x in the activation function S . The
derivation of the activation function is calculated:

∂S
∂x

=
∂

∂x
(

1
1 + e−x) =

∂

∂x
(1 + e−x)−1 = (−(1 + e−x)−2)(−e−x) =

(
1

1 + e−x)(
e−x

1 + e−x) = S (x)(1 − S (x)) = z(1 − z)
(3.2)

where z is the output from the activation function. Equation 3.2 gives us the last
part we need to find the gradient of the error for the weight of W2.

∂E
∂W2

= (z − d)z(1 − z)i2 ⇔
∂E
∂W2

= (O2 − d)O2(1 − O2)i2 (3.3)

Now we can find the gradient of the error respect to the weight W1:

∂E
∂W1

=
∂E
∂O2
×
∂O2

∂W1

=
∂E
∂O2
×
∂O2

∂P2
×
∂P2

∂W1

=
∂E
∂O2
×
∂O2

∂P2
×
∂P2

∂O1
×
∂O1

∂W1

=
∂E
∂O2
×
∂O2

∂P2
×
∂P2

∂O1
×
∂O1

∂P1
×
∂O1

∂W1

(3.4)

where we already know:

∂E
∂O2

= O2 − d,
∂O2

∂P2
= O2(1 − O2)

The rest of the partial derivatives are:

∂P2

∂O1
= W2,

∂O1

∂P1
= O1(1 − O1),

∂O1

∂W1
= i1

This gives the gradient of the error respect to the weight W1:

∂E
∂W1

= (O2 − d)O2(1 − O2)W2O1(1 − O1)i1 (3.5)

CHAPTER 3. DEEP LEARNING 25

If we simplify Equation 3.5 and say that the part we got from Equation 3.3 is
δ2 = (O2 − d)O2(1−O2) and δ1 = W2O1(1−O1)δ2 gives us simple expressions for
our gradients as functions of the input to the neuron:

∂E
∂W2

= δ2 × i2

∂E
∂W1

= δ1 × i1

With these gradient functions the weights are updated according to:

W+
1 = W1 − η

∂E
∂W1

W+
2 = W2 − η

∂E
∂W2

If more neurons add on to the left the computation just repeats by computing
the delta for the new layer and the input to that layer. The final formulas will
always only consist of known values and the values that have been calculated in
the previous steps of the backpropagation algorithm. [38]

3.3 Convolutional Neural Network

A convolutional neural network (ConvNet or CNN) is a deep learning algorithm
which can take an image as an input, define the importance in the image and be able
to differentiate the image from other images [40]. CNN takes biological inspiration
from the visual cortex. The visual cortex has small regions of cells that are sensitive
to specific regions of the field. It was explained by D.H Hubel and T.N Wiesel in
1962 with an experiment where they showed that some neuronal cells in the brain
responded only the vertical edges, some others on horizontal edges and so on. It
was only specific neuronal cells that responded on a specific orientation of an edge.
D.H Hubel and T.N Wiesel also found out that all of these neurons were organized
in a specific way and that they together produced visual perception. This is also the
basis of convolutional neural networks, and all the components in the model have
a specific task to complete in the machine. [41]

When we teach children to recognize what is what and how something looks
like we need to show them a lot of pictures and that is the same thing we have to
do to teach a CNN algorithm to recognize something. The difference in how we
see pictures and how a computer sees it, is that the computer only sees numbers. If
you have a 2D-image the computer will see the image like a 2D-array consisting of
numbers, shown in Figure 3.4. Each number corresponds to a pixel. The fact that
a machine sees images different from us humans does not mean that the machine
is not able to be trained to recognize things. We only have to think that the image
looks slightly different for computers.

CHAPTER 3. DEEP LEARNING 26

Figure 3.4: A computer sees an image like numbers where each number corresponds to a
pixel in the image [42].

Convolutional neural networks have a bit different architecture compared to a
regular feed forward neural network. A feed forward artificial neural network looks
like Figure 3.2 and transforms an input by putting it through hidden layers. Each
layer consists of a set of neurons where each layer is connected to all neurons in
the previous layer. In the end, there is an output layer that represents a prediction.
CNN is a bit different. The main differences are:

1. The layers in the CNN are organized in dimensions. How many dimensions
the CNN consists of depends on the components that make up a layer, which
maintain the spatial dimensions of the image. For example, in Figure 3.5 the
neurons are organized in three dimensions - height, width, and depth.

2. The neurons in one layer do not connect to all of the neurons in the next
layer, but only a small part of it.

CHAPTER 3. DEEP LEARNING 27

Figure 3.5: An example of a CNN organized in three dimensions — height, width and
depth — as seen in one of the layers [43].

In convolutional neural network there are three main components:

– Convolutional Layer

– Pooling Layer

– Activation function

where a brief description is offered of each main component in subsequent sections.

3.3.1 Convolutional Layer

The convolutional layer is the main building block in the convolutional neural net-
work. It is the convolutional layer that carries the main portion of the computational
load. The layer performs a dot product between two matrices which are:

1. The set of learnable parameters, known as a kernel

2. The restricted portion of the receptive field.

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

1 0 1
0 1 0
1 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Image (7 × 7 × 1) Kernel (3 × 3 × 1) Image × Kernel

Figure 3.6: Convoluting a 7 × 7 × 1 image with a 3 × 3 × 1 kernel and getting a 5 × 5 × 1
convolved feature.

As seen in Figure 3.6 the kernel matrix is smaller than the image. During the
forward pass, the kernel slides to the right with a certain sliding size called stride till

CHAPTER 3. DEEP LEARNING 28

it passes the whole width. The kernel matrix is producing the image representation
of that receptive region. Each spatial position of the image gives a response at the
kernel and produces the activation map [44]. When the width is passed the kernel
matrix moves down and starts the same procedure again until the whole image is
traversed. The movement of the kernel matrix across an image is visualized in
Figure 3.7. The whole process is called convolution.

Figure 3.7: The movement of the kernel matrix across an image [40].

The output volume of the image can be calculated by Equation 3.6, where W
is the height or width depending on which one you want to calculate Wout for, F is
the spatial size of the kernel with stride S and P is the amount of padding.

Wout =
W − F + 2P

S
+ 1 (3.6)

If the input image has size W ×W × D then the output volume will be of size
Wout ×Wout × Dout [44], where Dout is the number of filters.

CHAPTER 3. DEEP LEARNING 29

3.3.2 Pooling Layer

Usually, when constructing a convolutional neural network pooling layers are in-
serted between the convolutional layers. Pooling layers reduces the spatial size of
the data which decreases the computational cost. The two most common pooling
types are:

1. Max Pooling: Return the maximum value of the region covered by the ker-
nel.

2. Average Pooling: Return the average value of the region covered by the
kernel.

No matter which type of pooling is used, they have the same goal to achieve.
Just like in convolutional layers, the kernel is smaller than the image. The kernel
matrix will move from the left top, across the whole width, moving down a step
and start over till the whole image is pooled. Depending on which type of pooling
layer is used, different values are given. In Figure 3.8 we see an image that is
pooled with Max Pooling and Average Pooling with stride 2. This means that the
image is reduced by a factor 4 for a 2D-image.

Figure 3.8: Two of the most common pooling types are Max Pooling and Average Pooling.
The input data is pooled with a kernel matrix (2 × 2) consisting of only ones with stride
2. Max Pooling is returning the maximum values of the region covered by the kernel, and
Average Pooling is returning the average values. [40]

CHAPTER 3. DEEP LEARNING 30

Usually, the Max Pooling layer is used as a layer between the convolutional
layers. The Equation 3.7 is giving the output volume you get after using max
pooling on an image, where W are width or height depending on which one is
calculated, F is the spatial size of the kernel and S is the stride. [44]

Wout =
W − F

S
+ 1 (3.7)

3.3.3 Activation function

In a convolutional neural network, the activation function is responsible for helping
to decide if the neuron will fire or not [46]. There are a lot of different types of
activation functions and some of them are shown in Figure 3.9.

Figure 3.9: Different types of activation functions [46].

The Rectified Linear Unit (ReLU) is the most common one in deep learning
models, and also used in this project. The function returns 0 if it receives a negative
value and for any positive value x it returns the same value. So its function can be
written as:

f (x) = max(0, x)

and its graph looks like Figure 3.10. This means that when the ReLU function
gets an output that is negative the neuron does not get activated. This makes it
more computational effective as few neurons are activated each time. It does not
saturate the positive region. In practice ReLU converges about 6 times faster than
sigmoid activation function [46]. Its fast convergence and that its linear means that
the slope does not have a plateau when x gets larger. Thanks to this the ReLU
activation function does not have a vanishing gradient problem like the activation
functions sigmoid or tanh have.

CHAPTER 3. DEEP LEARNING 31

Figure 3.10: ReLU activation function. The function returns 0 if it receives a negative
value and for any positive value x it returns the same value back [47].

3.4 AutoEncoder

An autoencoder is an unsupervised deep learning model that does not use any la-
beled data [50]. An autoencoder is trained to attempt to copy its input to its output.
An autoeconder consists of two parts, as shown in Figure 3.11:

1. An encoder function h = f (x)

2. A decoder function that produces the reconstruction r = g(h)

Figure 3.11: A general structure of an autoencoder. Mapping an input x to an output r
through an internal representation h. The autoencoder has two components: The encoder
f that maps x to h and the decoder g that maps h to r. [51]

If an autoencoder succeeds to learn to set g(f (x)) = x everywhere, then the
autoencoder is not really useful. Autoencoders are designed to be unable to learn
how to copy something perfectly. They are restricted in ways that only allow them

CHAPTER 3. DEEP LEARNING 32

to copy approximately and only copy inputs that are similar to the training data.
The model is forced to prioritize what should be copied into the input and this is
the reason why it often learns useful properties of the data. [51]

Autoencoders are designed similarly to neural networks with a bottleneck, like
in Figure 3.12, in the network, which gives a compressed representation of the orig-
inal image. The network takes an unlabeled dataset as an input and a reconstruction
x̂ of the original input x is made. The network can be trained by minimizing the
reconstruction error

ℒ =| x − x̂ | (3.8)

which measures the differences between the original input and the reconstruction.
The bottleneck is really important in the network. Without the bottleneck, the net-
work could learn to memorize the input values and directly passing them forward
in the network. The important information that is needed to force learning of the
input data is in the bottleneck [52].

x1

x2

x3

x4

x5

x6

Input layer

a1

a2

a3

Hidden
”bottleneck”

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Output layer

Figure 3.12: Illustriation of how an autoencoder network looks like including a bottleneck.

The idea of autoencoders has been a part of the neural networks for decades
[51]. Traditionally autoencoders were used to reduce the dimensionality. It was not
until recently autoencoders that were started to use for other things like denoising
images.

CHAPTER 3. DEEP LEARNING 33

3.4.1 Denoising AutoEncoder

As shown in the previous section an ordinary autoencoder minimizes some function

ℒ = (x, g(f (x))) (3.9)

This function encourages g · f learn to be like an identity function if there is
capacity to do so.

A denoising autoencoder minimizes instead:

ℒ = (x, g(f (x̃))) (3.10)

where x̃ is a copy of input x that has been damaged by some form of noise. Denois-
ing autoencoders have to take away the noise rather than just copy the inputs [51].
The whole approach of the denoising autoencoder is to train a model that can take
a corrupted input, but still maintain the uncurrupted data as its output, like shown
in Figure 3.13. The model is not able to memorize the training data because of the
bottleneck in the network.

Figure 3.13: Illustration of a denoising autoencoder. Noise is added to the input image
before the image is fed into the autoencoder. The output representation is then compared
to the original input image and losses are calculated. [52]

Chapter 4

Software

In this chapter a short description of the used programming language Python and
the used deep learning framework Keras will be presented.

4.1 Python

Python is an open source high-level programming language which was developed
and created by Guido van Rossum in 1989 [53]. Python is a powerful, flexible
and ”easy-to-learn” language. It is used in many different fields by many compa-
nies because of the large amount of packages that are freely available for everyone.
Thanks to all the libraries and special commands in Python, Python is a very pow-
erful tool [54]. In this Master’s Thesis the Python v.3.7.1 was used.

4.2 Keras

Keras is one of many deep learning frameworks that are available today. Keras is
easy to learn and use, so it allows the user to be more productive and test different
ideas. Keras has the ability to work on top of TensorFlow with GPU support [55].
Thanks to the functional API in Keras it gives the opportunity to create more com-
plex models and gives a lot of flexibility [56]. In this Master’s Thesis the Keras
v.2.2.4 was used.

34

Chapter 5

Data Material

All of the data used in this Master’s Thesis have been provided by EXINI Diagnos-
tics AB, Lund, Sweden. The dataset contains of 126 Computed Tomography (CT)
images, where 19 of the images contains artifacts due to hip replacement. The CT
images were split into two sets according to:

– CT images without artifacts: 107 CT images

– CT images with artifacts: 19 CT images

Further on the dataset with artifacts were split into two sets according to:

– CT images with artifacts used to make more training data including artifacts:
13 CT images

– CT images with artifacts used as final test set: 6 CT images

The dataset without artifacts containing 107 CT images and the dataset includ-
ing artifacts containing 13 CT images were used during the training to construct
the model and evaluate it. The small dataset including artifacts containing 6 CT
images was only used at the end to evaluate the final model.

All of the CT images used had the size (91, 146, 251), were black and white
and were cropped to only include the pelvis area. Due to that there was only 19
of the CT images that included artifacts caused by hip replacement, and 6 of them
were excluded during the training procedure so they could be used as a final test
set, so we had to make more data that included artifacts so the training could be
done right. The dataset with artifacts containing 13 CT images was used to make
more data including artifacts.

35

CHAPTER 5. DATA MATERIAL 36

(a) (b)

Figure 5.1: Two examples how a slice in the images can look like when it has not any hip
replacements (a) and how it can look when it has two hip replacements (b).

A CT image attenuation values are expressed as Hounsfield Units (HU) that
is a linear density scale. The name Hounsfield Units is given after the inventor
of CT scanning Sir Godfrey Newbold Hounsfield. [57] In Hounsfield scale water
corresponds to 0 HU and all other CT values can be calculated by equation 5.1.

HU = 1000 ×
µTissue − µH2O

µH2O
(5.1)

In Table 5.1 some examples of different HU are given for different things in a CT
image.

Hounsfield Units, HU Tissue
−1000 Air

−700 to −600 Lung
−120 to −90 Fat

0 Water
−700 to 900 Soft tissue

30 Kidney
10 to 50 Muscle
> 1000 Bone, Calcium, Metal

Table 5.1: Some approximate Hounsfield Units for CT images and what they corresponds
to.

In Figure 5.2 two randomly plotted CT images and labels from the dataset
without artifacts are visualized. The CT images including artifacts, were at the
beginning in different sizes, before they were cropped to include only pelvic area.
Two randomly plotted CT images and labels from the dataset including artifacts
are shown in Figure 5.3.

CHAPTER 5. DATA MATERIAL 37

(a)

(b)

Figure 5.2: Subfigures (a) – (b) are two randomly plotted CT images and labels including
only pelvic area from the dataset without artifacts. Each CT image and label is plotted in
axial, coronal and sagittal plane.

CHAPTER 5. DATA MATERIAL 38

(a)

(b)

Figure 5.3: Subfigures (a) – (b) are two randomly plotted CT images and labels including
artifacts. Each CT image and label is plotted in axial, coronal and sagittal plane.

Chapter 6

Model

The first data set that EXINI Diagnostics AB provided had the size (91, 146, 251)
and did not include any artifacts. This was the starting dataset for the model setup.
The inspiration for the model setup came from [14]. All of the images were
cropped, so that only pelvic area were included. In Figure 5.2 some of the first
dataset images and corresponding labels were randomly plotted. Each CT image
and label is plotted in three different planes: axial, coronal and sagittal plane.

The model was constructed for input images with size (91, 146, 251), so when
the second dataset was given that included different kinds of hip replacements,
they needed to be cropped into the right size. The second dataset including hip
replacements and artifacts were in different size - (274, 512, 512), (574, 512, 512)
and (324, 512, 512). All of the images included the whole upper body and some
also included a part of the legs. There were also some pictures that also included the
whole legs, as shown in Figure 5.3 where some of the CT images with artifacts and
corresponding label were randomly plotted. All the images in the second dataset
needed to be cropped into the same size as the first dataset, (91, 146, 251), including
only pelvic area.

Due to the small amount of images with hip replacements and artifacts, only 19
CT images in total and 6 of them were the test set, more images needed be gener-
ated whom includes hip replacements and artifacts. Hip replacements from the 13
CT images, including artifacts, were taken to generate more CT images including
hip replacements and artifacts. To achieve this the dataset including 13 CT images
with artifacts were all threshed with a threshold of 1400, where all of the pixels
with an intensity higher than 1400 were kept with their actually intensity and at the
same place in the CT image and the rest pixels were set to zero. Each threshold
CT image, including hip replacements and artifacts were randomly applied on the
dataset without any artifacts in the training set. When applying the hip replace-
ments and artifacts, each pixel with an intensity higher than 0 in the threshed CT
image were inserted at their current location but in the CT image without any arti-
facts. In Figure 6.1 two random CT images and its labels from the training set are
plotted in different planes to illustrate how a training image could look like without

39

CHAPTER 6. MODEL 40

and with a hip replacement randomly applied.
The model represented in Figure 6.2 was normalized trained on the training set

with randomly applied hip replacements and artifacts. As mentioned the inspiration
of the model came from [14] where they reduce noise in 3D images. The model
is constructed as an autoencoder with three branches. Each branch first uses a
convolutional layer which consists of 25 filter kernels of size 5 × 5 × 5. These 25
filters corresponds to the elements that the model seeks to learn. The obtained 25
feature maps are threshold by using the ReLU function.

Each branch in the model operates on the same input image, but in different
sizes. The MaxPooling layer is reducing the size of the input CT image in two of
the branches before the branch use convolutional layer. In each branch a bottleneck
is constructed and at the end the decoded CT images are added. The added CT
image is given as an output of the model.

The loss of the model is optimized with the Adam optimizer from Keras [58]
and mean squared error (MSE) function. The used loss is optimized with a modi-
fied Adam optimizer according to:

– lr = 1 × 10−6 (learning rate)

– beta1= 0.995

– beta2 = 0.999

– epsilon = 1 × 10−8

and a written mean squared error function (Equation 6.1).

MS E =
1
n

n∑︁
i=1

(xi − x̂i)2 (6.1)

CHAPTER 6. MODEL 41

(a) CT image without applied hip replacement.

(b) CT image with applied hip replacement.

Figure 6.1: One randomly generated CT images from the training set without and with
randomly applied hip replacements from the validation set.

CHAPTER 6. MODEL 42

Figure 6.2: Graphical illustration of the autoencoder model which has been constructed
and used in this Master’s Thesis.

Chapter 7

Result

In this chapter, the result of the two steps in the work will be represented. The first
step is a proof of concept, and the final one is to actually reduce artifacts due to hip
replacements in CT images.

7.1 Proof of concept

The proof of concept is a validation part to see that the model is able to encode
relevant information from which it may reconstruct the original input. See if the
model can reconstruct the CT images. In Figure 7.1 a randomly selected image,
including the original image and the reconstructed image from the model can be
viewed. Some more figures of this result can be viewed in Appendix A. The im-
ages to the left in each image is the original CT image plotted in axial, coronal
and sagittal plane and to the right the reconstructed CT image plotted in the same
planes. In Figure 7.2 the loss is shown. The dataset was divided according to:

– Training set: 80% of the dataset

– Validation set: 20% of the dataset

The loss in Figure 7.2 is optimized with the modified Adam optimizer de-
scribed in the previous chapter 6, and with the same mean squared error function
shown in equation 6.1. The model is run for 200 epochs.

In Figure 7.2 the loss function is the loss value is getting smaller and smaller
for each epoch. This means the model learns by the training and the predictions is
not so different to the actual image. The small value of loss value is the reason why
the reconstructed CT images are very similar to the original CT images.

43

CHAPTER 7. RESULT 44

Figure 7.1: A randomly plotted CT image and the reconstructed image by the model. To
the left the original image is plotted and to the right the reconstructed image. The original
image and the reconstructed image is plotted in axial, coronal and sagittal plane.

Figure 7.2: The loss function during the training of the proof of concept.

CHAPTER 7. RESULT 45

7.2 Reducing artifact

In Figure 7.3 and Figure 7.4 two test images from the test set is visualized, and the
rest of the images from the test set can be viewed in Appendix B.1. None of the
test images were shown to the produced network prior the test phase. The images
include the original test images to the left and the reconstructed images with the
model to the right in different planes. In Figure 7.5 the loss of the model is shown.

The loss in Figure 7.5 is optimized with the same modified Adam optimizer as
for the proof of concept in the previous section, and with the same mean squared
error function shown in equation 6.1. The model is run for 400 epochs.

In Figure 7.5 the loss function values are much higher than the values of the
loss function for our proof of concept, Figure 7.2. The values are much higher in
this case due to the fact that the reconstructed images are different from the original
test images. The reconstructed images has lost most of the hip replacements and
artifacts.

Figure 7.3: A CT image from the test set and its reconstructed image with the model. To
the left is the original image plotted and to the right the reconstructed image. The original
CT image and the reconstructed CT image is plotted in axial, coronal and sagittal plane.

CHAPTER 7. RESULT 46

Figure 7.4: A CT image from the test set and its reconstructed image with the model. To
the left is the original image plotted and to the right the reconstructed image. The original
CT image and the reconstructed CT image is plotted in axial, coronal and sagittal plane.

Figure 7.5: The loss function during the training when trying to reduce the artifacts.

CHAPTER 7. RESULT 47

In Figure 7.6 and Figure 7.7 slices from two CT images are shown from the
original test image and the corresponding slice in the reconstructed CT image.
In these images the results are shown more clearly than in the previous images
plotted in different planes. The hip replacements are nearly completely gone and
the artifacts are reduced. More images of the slices can be found in Appendix B.2.

(a) A slice in the original image. (b) The corresponding slice in the recon-
structed image.

Figure 7.6: A slice of the original image and the corresponding slice in the reconstructed
image shown in Figure 7.3.

(a) A slice in the original image. (b) The corresponding slice in the recon-
structed image.

Figure 7.7: A slice of the original image and the corresponding slice in the reconstructed
image shown in Figure 7.4.

Chapter 8

Discussion

We have successfully implemented an autoencoder that reduces artifacts due to hip
replacements in a CT image.

The first part of the work was just a proof of concept part to show that the
constructed model actually works and is able to reconstruct an input image. By
showing that the model is able to reconstruct CT images, we could say that the
constructed model works as a pure autoencoder for the reconstruction of images.
The first dataset did not include any artifacts, so this part was done before the
second dataset was available. Looking at the result of the Proof of concept part
in section 7.1 the result is good. The reconstructed image looks nearly exactly the
same as the original image. There are some differences at the edges, but looking at
the whole CT image in the different planes the images look good and similar to the
originals. These differences at the edges in the plane-images could be avoided by
changing the parameters, e.g. learning rate or beta1, used in the Adam optimizer
and changing little in the constructed model.

Due to the fact that our proof of concept was good, we could draw the con-
clusion that our model was good enough and could be used in the final part trying
to reduce artifacts due to hip replacements. This part was the biggest part of this
Master’s Thesis. Looking at the result of the reducing artifacts part in section 7.2
the result is quite good. The reconstructed images have some differences close to
the edges, but the main goal of trying to reduce the artifacts is beginning to reach.
The artifacts are starting to disappear from the CT images, if the reconstructed and
the original image is compared. This is even better viewed in the slice images.
Some artifacts have nearly completely disappeared, and some are not. The model
is also trying to remove the hip replacements. This result is quite good compared to
how difficult this task is and how many different approaches, there are to handling
this type of problem, but also how little amount of data was used to complete this
task. To improve this result, there is a need for a larger amount of data to train the
model on and a larger amount of data including artifacts. The lack of data is a com-
mon problem when working with medical data, e.g. CT images and PET/SPECT
images. It is difficult to get this type of data, probably because of the rights to

48

CHAPTER 8. DISCUSSION 49

anonymity. This is maybe something companies want to work with and develop a
model that can reduce the features in a face and make all faces smooth or deformed
so it is impossible to recognize the person in e.g. a CT image.

In our model, the result was quite good but can get better. There are several
improvements that can be done, and one of them is already mentioned - a bigger
dataset. Next improvement is a hard one to improve, but it is a problem in this case
- remake an artifact. It is easy to extract a hip replacement from a CT image to put
it into another to make a larger dataset with hip replacements, but the artifacts due
to hip replacements are hard to extract from an image. The difficulties to extract
artifacts in CT images are because its HU values are similar to the bone value and
some are even similar to the soft tissue values. If the artifacts could be simulated
in some way this would probably improve the model a lot. The best solution of
this problem would be to take a CT image before putting the implant into a person
and take another CT image after, so there is a ground truth how the person actually
looks. But this is impossible.

Another thing that could be improved is to reduce the differences there are now
towards the edges in the reconstructed images. The differences towards the edges
are certainly caused due to that the branches in the model operate on images of
different sizes. In the reconstruction faze of these images in different sizes, some
information is lost and the differences appear in the reconstructed images. By
chancing the reshaped sizes of the original image in the model the reconstructed
image could give a better result.

Overall the implemented autoencoder model in this Master’s Thesis is quite
good and a good starting point for further work for reducing artifacts and remove
hip replacements in CT images.

Bibliography

[1] Redaktionen. 2015. Prostatacancer [Prostate Cancer]. Doctorn. 02-23.
https://www.doktorn.com/artikel/prostatacancer (Accessed on
05/14/2019)

[2] Bratt Ola Professor i urologi vid Sahlgrenska akademin, Göteborgs univer-
sitet. 2018. Prostatacancer [Prostate Cancer].Cancerfonden. 6 April.
https://www.cancerfonden.se/om-cancer/prostatacancer (Ac-
cessed on 05/14/2019)

[3] National Cancer Institute at the National Institutes of Health. 2013. Com-
puted Tomography (CT) Scans and Cancer. National Cancer Institute. July
16.
https://www.cancer.gov/about-cancer/diagnosis-staging/
ct-scans-fact-sheet (Accessed 06/12/2019)

[4] The American Cancer Society medical and editorial content team. 2015. CT
Scan for Cancer. American Cancer Society. 30 November.
https://www.cancer.org/treatment/understanding-your-diagnosis/
tests/ct-scan-for-cancer.html (Accessed 06/12/2019)

[5] F Edward Boas and Dominik Fleischmann. CT artifacts: Causes and reduc-
tion techniques. Stanford University School of Medicine, Department of Ra-
diology. 300 Pasteur Drive. Stanford USA. CA 94305.

[6] S. Shellikeri, E. Girard, R. Setser, J. Bao, A.M. Cahill. Metal artefact re-
duction algorithm for correction of bone biopsy needle artefact in paediatric
C-arm CT images: a qualitative and quantitative assessment. Clinical Radi-
ology. 71 (2016) 925e931.

[7] Lifeng Yu, PhD, Hua Li, PhD, Jan Mueller, MS, James M. Kofler, PhD, Xin
Liu, PhD, Andrew N. Primak, PhD, Joel G. Fletcher, MD, Luis S. Guimaraes,
MD, Thanila Macedo, MD, and Cynthia H. McCollough, PhD. 2009. Metal
Artifact Reduction From Reformatted Projections for Hip Prostheses in Mul-
tislice Helical Computed Tomography. Health of National Institutes. Novem-
ber. 44(11): 691–696. doi:10.1097/RLI.0b013e3181b0a2f9.

50

https://www.doktorn.com/artikel/prostatacancer
https://www.cancerfonden.se/om-cancer/prostatacancer
https://www.cancer.gov/about-cancer/diagnosis-staging/ct-scans-fact-sheet
https://www.cancer.gov/about-cancer/diagnosis-staging/ct-scans-fact-sheet
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/ct-scan-for-cancer.html
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/ct-scan-for-cancer.html

BIBLIOGRAPHY 51

[8] Mizuho Nishio, Chihiro Nagashima, Saori Hirabayashi, Akinori Ohnishi,
Kaori Sasaki, Tomoyuki Sagawa, Masayuki Hamada, Tatsuo Yamashita. Con-
volutional auto-encoder for image denoising of ultra-low-dose CT. Heliyon 3.
(2017) e00393. doi: 10.1016/j.heliyon.2017. e00393

[9] Heyi Li and Klaus Mueller. Low-Dose CT Streak Artifacts Removal us-
ing Deep Residual Neural Network. Xi’an. (June 2017). Stony Brook, NY
11794–2424.

[10] Hu Chen, Yi Zhang, Mannudeep K. Kalra, Feng Lin, Yang Chen, Peixo Liao,
Jiliu Zhou and Ge Wang. Low-Dose CT with a Residual Encoder-Decoder
Convolutional Neural Network (RED-CNN). IEEE

[11] Dufan Wu, Kyungsang Kim, Georges El Fakhri and Quanzheng Li. A Cas-
caded Convolutional Nerual Network for X-ray Low-dose CT Image Denois-
ing. (28 Aug 2017). arXiv:1705.04267v2 [cs.CV]

[12] HU CHEN, YI ZHANG, WEIHUA ZHANG, PEIXI LIAO, KE LI, JILIU
ZHOU AND GE WANG. Low-dose CT via convolutional neural network.
BIOMEDICAL OPTICS EXPRESS 679. Vol. 8, No. 2. 1 Feb 2017.

[13] Lei Xiang, Yu Qiao, Dong Nie, Le An, Weili Lin, Qian Wang, Ding-
gang Shen. Deep auto-context convolutional neural networks for standard-
dose PET image estimation from low-dose PET/MRI. Neurocomputing 267.
(2017) 406–416.

[14] Katrin Mentl, Boris Mailhe, Florin C. Ghesu, Frank Schebesch, Tino Hader-
lein, Andreas Maier, Mariappan S. Nadar. NOISE REDUCTION IN LOW-
DOSE CT USING A 3D MULTISCALE SPARSE DENOISING AUTOEN-
CODER. 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE
LEARNING FOR SIGNAL PROCESSING. SEPT. 25–28. 2017. TOKYO
JAPAN.

[15] Machine Learning Tutorial for Beginners. Guru99.
https://www.guru99.com/machine-learning-tutorial.html (Ac-
cessed on 06/05/2019)

[16] Browniee Jason. 2016. Supervised and Unsupervised Machine Learning
Algorithms. Machine Learning Mastery. March 16.
https://machinelearningmastery.com/
supervised-and-unsupervised-machine-learning-algorithms/
(Accessed on 05/31/2019)

[17] Mrukwa Grzegorz. 2018. Types of Machine Learning Algorithms: Super-
vised and Unsupervised Learning. Netguru. Oct 16.
https://www.netguru.com/blog/types-of-machine-learning-/
algorithms-supervised-and-unsupervised-learning (Accessed on
05/31/2019)

https://www.guru99.com/machine-learning-tutorial.html
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://www.netguru.com/blog/types-of-machine-learning-/algorithms-supervised-and-unsupervised-learning
https://www.netguru.com/blog/types-of-machine-learning-/algorithms-supervised-and-unsupervised-learning

BIBLIOGRAPHY 52

[18] Orhan Gazi Yalcin. 2018. Image Classification in 10 Minutes with MNIST
Dataset. Towards Data Science. Aug 18.
https://towardsdatascience.com/image-classification-in-10-/
minutes-with-mnist-dataset-54c35b77a38d (Accessed on
05/31/2019)

[19] Katariya Yash. 2017. Applying Convolutional Neural Network on the
MNIST dataset. GitHub. April 15.
https://yashk2810.github.io/Applying-Convolutional-Neural-/
Network-on-the-MNIST-dataset/ (Accessed on 05/31/2019)

[20] Hariharan Ashwin. 2018. How to Use Machine Learning to Predict the
Quality of Wines. freeCodeCamp. 7 February.
https://www.freecodecamp.org/news/
using-machine-learning-to-predict-the-quality-of-wines-9e2e13d7480d/
(Accessed on 05/31/2019)

[21] Amnah Khatun. 2018. Let’s know Supervised and Unsupervised in an easy
way. Chatbots Magazine. Jul 10.
https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised/
-in-an-easy-way-9168363e06ab?gi=38b16dbee382 (Accessed on
05/31/2019)

[22] DataFlair Team. 2019. Data Science K-means Clustering – In-depth Tutorial
with Example. DataFlair. May 3.
https://data-flair.training/blogs/
k-means-clustering-tutorial/ (Accessed on 04/24/2020)

[23] Czar Yobero. 2018. K-Means Clustering Tutorial. RPubs. January 2.
https://rpubs.com/cyobero/k-means (Accessed on 05/31/2019)

[24] Kaushik Raghupathi. 2018. 10 Interesting Use Cases for the K-Means
Algorithm. DZone. March 27.
https://dzone.com/articles/10-interesting-use-cases-for-the-k-means/
-algorithm (Accessed on 05/31/2019)

[25] Rejat S. 2019. Understanding Dimensionality Reduction for Machine
Learning. Towards Data Science. Nov 30.
https://towardsdatascience.com/understanding-dimensionality-reduction-/
for-machine-learning-ad9a3811bd89 (Accessed on 04/24/2020)

[26] Rinu Gour. 2019. Dimensionality Reduction in Machine Learning. Medium.
Apr 8.
https://medium.com/@rinu.gour123/dimensionality-reduction-in-machine-/
learning-dad03dd46a9e (Accessed on 04/24/2020)

https://towardsdatascience.com/image-classification-in-10-/minutes-with-mnist-dataset-54c35b77a38d
https://towardsdatascience.com/image-classification-in-10-/minutes-with-mnist-dataset-54c35b77a38d
https://yashk2810.github.io/Applying-Convolutional-Neural-/Network-on-the-MNIST-dataset/
https://yashk2810.github.io/Applying-Convolutional-Neural-/Network-on-the-MNIST-dataset/
https://www.freecodecamp.org/news/using-machine-learning-to-predict-the-quality-of-wines-9e2e13d7480d/
https://www.freecodecamp.org/news/using-machine-learning-to-predict-the-quality-of-wines-9e2e13d7480d/
https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised/-in-an-easy-way-9168363e06ab?gi=38b16dbee382
https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised/-in-an-easy-way-9168363e06ab?gi=38b16dbee382
https://data-flair.training/blogs/k-means-clustering-tutorial/
https://data-flair.training/blogs/k-means-clustering-tutorial/
https://rpubs.com/cyobero/k-means
https://dzone.com/articles/10-interesting-use-cases-for-the-k-means/-algorithm
https://dzone.com/articles/10-interesting-use-cases-for-the-k-means/-algorithm
https://towardsdatascience.com/understanding-dimensionality-reduction-/for-machine-learning-ad9a3811bd89
https://towardsdatascience.com/understanding-dimensionality-reduction-/for-machine-learning-ad9a3811bd89
https://medium.com/@rinu.gour123/dimensionality-reduction-in-machine-/learning-dad03dd46a9e
https://medium.com/@rinu.gour123/dimensionality-reduction-in-machine-/learning-dad03dd46a9e

BIBLIOGRAPHY 53

[27] Judy T Raj. 2019. A beginner’s guide to dimensionality reduction in Machine
Learning. Towards Data Science. Mar 11.
https://towardsdatascience.com/dimensionality-reduction-for-/
machine-learning-80a46c2ebb7e (Accessed on 04/24/2020)

[28] A.I. Wiki. A Beginner’s Guide to Deep Reinforcement Learning. Skymind.
https://skymind.ai/wiki/deep-reinforcement-learning (Ac-
cessed on 06/03/2019)

[29] Prateek Bajaj. Reinforcement learning. GeeksforGeeks.
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
(Accessed on 06/16/2019)

[30] Deep Learning. What Is Deep Learning?. MathWorks.
https://www.mathworks.com/discovery/deep-learning.html (Ac-
cessed on 05/13/2019)

[31] Michael A. Nielsen. Neural Network and Deep Learning. Determination
Press. 2015.

[32] Gulcehre Caglar. 2015. Welcome to Deep Learning. Deep Learning. Decem-
ber 1.
http://deeplearning.net (Accessed on 05/13/2019)

[33] A.I Wiki. Artificial Intelligence (AI) vs. Machine Learning vs. Deep Learn-
ing. skymind.
https://skymind.ai/wiki/ai-vs-machine-learning-vs-deep-learning
(Accessed on 05/21/2019)

[34] McCulloch WS. 1943. A Logical Calculus of the Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biophysics 5.

[35] Azevedo FA. 2009. Equal numbers of neuronal and nonneuronal cells make
the human brain an isometrically scaled-up primate brain. The Journal of
comparative neurology 5. DOI: 10.1002/cne.21974.

[36] EX-job proposal. 2003. Matematiskt-Neurobiologiskt examensarbete
[Mathematical-Neurobiological degree project]. Chalmers Tekniska
Högskola. 02 March.

[37] Dang Johnny. 2016. Classification in Bone Scintigraphy Inages Using Con-
volutional Neural Network. Lund University.

[38] 6.034 Artificial Intelligence. MIT - Massachusetts Institute of Technology
http://web.mit.edu/6.034/wwwbob/recit-nets.pdf (Accessed on
05/20/2019)

[39] Gjertsson Konrad. 2017. Segmentation in Skeletal Scintigraphy Images using
Convolutional Neural Networks. Lund University.

https://towardsdatascience.com/dimensionality-reduction-for-/machine-learning-80a46c2ebb7e
https://towardsdatascience.com/dimensionality-reduction-for-/machine-learning-80a46c2ebb7e
https://skymind.ai/wiki/deep-reinforcement-learning
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.mathworks.com/discovery/deep-learning.html
http://deeplearning.net
https://skymind.ai/wiki/ai-vs-machine-learning-vs-deep-learning
http://web.mit.edu/6.034/wwwbob/recit-nets.pdf

BIBLIOGRAPHY 54

[40] Saha Sumit. 2018. A Comprehensive Guide to Convolutional Neural Net-
works—the ELI5 way. Towards Data Science. Dec 15.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-/
neural-networks-the-eli5-way-3bd2b1164a53 (Accessed on
06/06/2019)

[41] Adit Deshpande. 2016. A Beginner’s Guide To Understanding Convolutional
Neural Networks. GitHub. July 20.
https://adeshpande3.github.io/A-Beginner%
27s-Guide-To-Understanding-Convolutional-Neural-Networks/
(Accessed on 06/06/2019)

[42] Machine Learning. 2018. An intuitive guide to Convolutional Neural Net-
works. freeCodeCamp. 24 April.
https://www.freecodecamp.org/news/
an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
(Accessed on 06/06/2019)

[43] cs231n. Convolutional Neural Networks (CNNs / ConvNets). GitHub.
http://cs231n.github.io/convolutional-networks/ (Accessed
06/06/2019)

[44] Mayank Mishra. 2019. Convolutional Neural Networks, Explained. Learn
Data Science. March 7.
https://www.datascience.com/blog/convolutional-neural-network
(Accessed 06/06/2019)

[45] SuperDataScience Team. 2018. Convolutional Neural Networks (CNN): Step
4 - Full Connection. SuperDataScience. Aug 18.
https://www.superdatascience.com/blogs/
convolutional-neural-networks-cnn-step-4-full-connection
(Accessed 06/10/2019)

[46] Udeme Udofia. 2018. Basic Overview of Convolutional Neural Network
(CNN). Medium. Feb 13.
https://medium.com/@udemeudofia01/
basic-overview-of-convolutional-neural-network-cnn-4fcc7dbb4f17
(Accessed 06/10/2019)

[47] Dan B. 2018. Rectified Linear Units (ReLU) in Deep Learning. kaggle.
https://www.kaggle.com/dansbecker/
rectified-linear-units-relu-in-deep-learning (Accessed
06/10/2019)

[48] Danqing Liu. 2017. A Practical Guide to ReLU. TyniMind. 30 nov.
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7
(Accessed on 06/11/2019)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-/neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-/neural-networks-the-eli5-way-3bd2b1164a53
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
http://cs231n.github.io/convolutional-networks/
https://www.datascience.com/blog/convolutional-neural-network
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection
https://medium.com/@udemeudofia01/basic-overview-of-convolutional-neural-network-cnn-4fcc7dbb4f17
https://medium.com/@udemeudofia01/basic-overview-of-convolutional-neural-network-cnn-4fcc7dbb4f17
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

BIBLIOGRAPHY 55

[49] Eddins Steve. 2018. Defining Your Own Network Layer. MathWorks. 27 Sep.
https://blogs.mathworks.com/deep-learning/2018/01/05/
defining-your-own-network-layer/ (Accessed on 06/11/2019)

[50] Renu Khandelwal. 2018. Deep Learning Autoencoders. Medium. Dec 2.
https://medium.com/datadriveninvestor/
deep-learning-autoencoders-db265359943e (Accessed on
06/12/2019)

[51] Ian Goodfellow and Yoshua Bengio and Aaron Courville. 2016. Deep Learn-
ing. MIT Press. Goodfellow-et-al-2016.

[52] Jordan Jeremy. 2018. Introduction to autoencoders. 19 March.
https://www.jeremyjordan.me/autoencoders/ (Accessed on
06/12/2019)

[53] Sharwood Simon. 2018. Python creator Guido van Rossum sys.exit()s as
language overlord. The Register. 13 July.
https://www.theregister.co.uk/2018/07/13/python_creator_
guido_van_rossum_quits/ (Accessed on 05/13/2019)

[54] Computer History Museeum. 2018. Guido van Rossum.
https://www.computerhistory.org/fellowawards/hall/
guido-van-rossum/ (Accessed on 05/13/2019)

[55] Keras Documentation.
https://keras.io/why-use-keras/ (Accessed on 05/13/2019)

[56] Browniee Jason. 2017. How to Use the Keras Functional API for Deep
Learning. Machine Learning Mastery. October 27.
https://machinelearningmastery.com/
keras-functional-api-deep-learning/ (Accessed on 05/13/2019)

[57] M. H. Lev and R. G. Gonzalez. CT Angiography and CT Perfusion Imag-
ing. Department o f Radiology, Massachusetts General Hospital and Harvard
Medical School. Boston, Massachusetts 02114.

[58] Keras Documentation. Usage of optimizers.
https://keras.io/optimizers/ (Accessed on 06/16/2019)

[59] Keras Documentation. Usage of loss functions.
https://keras.io/losses/ (Accessed on 06/16/2019)

https://blogs.mathworks.com/deep-learning/2018/01/05/defining-your-own-network-layer/
https://blogs.mathworks.com/deep-learning/2018/01/05/defining-your-own-network-layer/
https://medium.com/datadriveninvestor/deep-learning-autoencoders-db265359943e
https://medium.com/datadriveninvestor/deep-learning-autoencoders-db265359943e
https://www.jeremyjordan.me/autoencoders/
https://www.theregister.co.uk/2018/07/13/python_creator_guido_van_rossum_quits/
https://www.theregister.co.uk/2018/07/13/python_creator_guido_van_rossum_quits/
https://www.computerhistory.org/fellowawards/hall/guido-van-rossum/
https://www.computerhistory.org/fellowawards/hall/guido-van-rossum/
https://keras.io/why-use-keras/
https://machinelearningmastery.com/keras-functional-api-deep-learning/
https://machinelearningmastery.com/keras-functional-api-deep-learning/
https://keras.io/optimizers/
https://keras.io/losses/

Appendix A

Proof of concept

Some more randomly plotted results of the proof of concept.

(a)

56

APPENDIX A. PROOF OF CONCEPT 57

(b)

(c)

APPENDIX A. PROOF OF CONCEPT 58

(d)

(e)

Figure A.1: Subfigures (a) – (e) are six randomly plotted CT images and their reconstructed
image with the model. To the left in each image, is the original image plotted and to the
right the reconstructed image. Each image and reconstructed image is plotted in axial,
coronal and sagittal plane.

Appendix B

Reducing artifact

B.1 Test set

(a)

59

APPENDIX B. REDUCING ARTIFACT 60

(b)

(c)

APPENDIX B. REDUCING ARTIFACT 61

(d)

Figure B.0: Subfigures (a) – (d) are all of the CT images in the test set and their recon-
structed image with the model. To the left in each image, is the original image plotted
and to the right the reconstructed image. Each image and reconstructed image is plotted in
axial, coronal and sagittal plane.

B.2 Slices of the test set

(a) A slice in the original image. (b) The corresponding slice in the recon-
structed image.

Figure B.1: A slice of the original image and the corresponding slice in the reconstructed
image shown in Figure B.0a.

APPENDIX B. REDUCING ARTIFACT 62

(a) A slice in the original image. (b) The corresponding slice in the recon-
structed image.

Figure B.2: A slice of the original image and the corresponding slice in the reconstructed
image shown in Figure B.0b.

(a) A slice in the original image. (b) The corresponding slice in the recon-
structed image.

Figure B.3: A slice of the original image and the corresponding slice in the reconstructed
image shown in Figure B.0c.

(a) A slice in the original image. (b) The corresponding slice in the recon-
structed image.

Figure B.4: A slice of the original image and the corresponding slice in the reconstructed
image shown in Figure B.0d.

Master’s Theses in Mathematical Sciences 2020:E23
ISSN 1404-6342

LUTFMA-3406-2020

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

