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Populärvetenskaplig sammanfattning 
Bröstcancer är den vanligaste cancerdiagnosen för kvinnor och årligen drabbas över 9000 i 
Sverige. För att hitta cancern i ett tidigt stadium genomförs regelbunden screening 
(massundersökning) med mammografi (bröströntgen) för kvinnor i åldern 40–74. Artificiell 
intelligens (AI) och mekanisk avbildning, Mechanical Imaging (MI), har använts i separata 
studier inom mammografi för att underlätta granskningen av mammografibilderna. 
Teknikerna har individuellt visat stor potential, men användningen av de två teknikerna 
tillsammans har aldrig utvärderats.  

AI-programmet som använts i den här studien är ett djupinlärningsprogram som hittar fynd 
utifrån misstänksamma mönster i mammografibilderna. Programmet poängsätter också 
fynden, vilka indikerar en nivå av misstänksamhet för bröstcancer. Mechanical Imaging är en 
mätning av trycket vid bröstets yta med hjälp av mekaniska sensorer då det komprimeras i 
samband med bildtagningen. Mätningen ger information om den underliggande vävnadens 
mekaniska strukturer och om det finns något styvt område i bröstet. Elakartade tumörer har 
påvisats vara styvare än godartade förändringar och tekniken skulle därför kunna användas 
som ett komplement vid screeningtillfället.  

I arbetet har mammografibilder med tillhörande tryckmätningar från 46 kvinnor använts för 
att analysera AI-fynd tillsammans med tryckbilderna. Av dessa kvinnor hade 12 cancer, 15 
hade benigna (godartade) tumörer och 19 hade diagnostiserats som friska. AI-programmet 
analyserar mammografibilder närmast som en radiolog. Det ger ett värde för hela 
mammografiundersökningen på en skala på 1–10 hur pass sannolikt det är att kvinnan har 
cancer, där 1 motsvarar en låg sannolikhet och 10 motsvarar hög sannolikhet för att kvinnan 
har cancer.  

Resultatet av studien visar att det finns tendenser till att ett ökat tryck över ett AI-fynd 
skiljer sig mellan sjuka och friska, och att metoderna tillsammans kan hitta oberoende 
markörer som båda sammanfaller i bröstcancer. Användbarheten av MI och AI tillsammans 
har därför stor potential att kunna minska andelen återkallade kvinnor, om metoden skulle 
införas vid screeningtillfället. Det här är första utvärderingen av MI och AI tillsammans, och 
vidare studier krävs för att utvärdera metodernas fulla potential.   
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Abstract 

Artificial intelligence (AI) and mechanical imaging (MI) have been used in separate studies 
in breast imaging. They have individually shown great possibilities within the field of 
mammography, but the use of the two techniques together have never been evaluated. The 
artificial intelligence application used in this work was Transpara, a deep learning 
convolutional neural network. It distinguishes patterns in the mammographic images and 
provides scores of individual findings and the whole mammographic examination, which 
indicates a level of suspicion for breast cancer. Mechanical imaging is a surface stress 
measurement, that provides information of the mechanical structure of the underlying tissue. 
Since malignant tumours often express a higher relative pressure compared to the surrounding 
tissue in the breast, mechanical imaging is comparable with palpation but could provide even 
more information of the mechanical structures.  

The purpose of this work was to study if the combination of the two methods could be used 
to directly detect breast cancer. Screening images of 118 women were analysed in Transpara, 
and the pressure distribution measurement of the same women was obtained from a previous 
study on MI. For 46 cases, there was compression pressure present over the AI-findings, and 
these were chosen to be included in the analysis. Locations of findings with the highest level 
of suspicion and the corresponding locations in the pressure measurement were used to 
calculate the mean relative pressure over a finding. The cases were divided into three groups 
by diagnosis; biopsy-proven cancer, biopsy-proven benign and non-biopsied, very likely 
benign. The increased pressure was then compared among these three groups and the two 
groups of cancer and healthy, to evaluate if the increased pressure over Transpara scores of 
women diagnosed with cancer was different from those diagnosed as healthy. The correlation 
between increased pressure and Transpara score was evaluated for each group, to evaluate if 
the two methods found the same indications for breast cancer.   

The results of this study indicated that there probably are differences in increased pressure 
between cases with breast cancer and healthy, but it remains to further evaluated for a larger 
material. A significant and relatively strong correlation between the relative pressure increase 
over an AI-finding and the Transpara scores was established in the group with cancer, but 
the other groups showed no correlation.  

This study indicates that MI combined with AI can potentially be used to improve the 
performance of mammography screening. It suggests that AI and MI find independent 
markers that coincide in breast cancer. Therefore, the two methods have the potential of 
lowering the recall rate in mammography, but this needs to be further evaluated. 

 

Keywords: mammography, mechanical imaging, deep learning, computer-aided detection 
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Abbreviations 

2D - Two-dimensional 

3D - Three-dimensional 

AI - Artificial Intelligence 

AUC - Area under the ROC Curve 

CAD - Computer-assisted Detection 

CC - Craniocaudal 

CNN - Convolutional Neural Network 

DBT - Digital Breast Tomosynthesis 

DM - Digital Mammography 

MI - Mechanical Imaging 

MLO - Mediolateral Oblique 

MLP - Multi-layer Perceptron 

ROC - Receiver Operating Curve 
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1 Introduction 

1.1 Background 

In Sweden alone, over 9600 women are diagnosed with breast cancer every year. 
This corresponds to about 15 % of all cancer diagnoses in Sweden each year and 
is the most common cancer diagnosed for women [1]. To address this, a high 
emphasis has over the years been placed on detecting breast cancer at an early 
stage to improve treatment outcomes. Under the responsibility of the Swedish 
National Board of Health and Welfare, all women aged 40-74 are offered to take 
part in a voluntary screening every 18-24 months [2]. The gold standard method 
used for screening is digital mammography, DM. A more advanced derivative of 
DM was developed during the late 90’s, digital breast tomosynthesis, DBT [3, 4]. 
DBT uses the same basic technique as DM, but the x-ray tube moves around the 
breast in an arc (typically 15-50°). This allows the method to acquire several 2D-
projections that can be used to reconstruct 3D-volumes of the breast, instead of 
a single 2D-projection image. This technique makes it possible for the radiologist 
to study individual slices of the breast and compensate for the effect of 
overlapping breast tissue [3].  

The evaluation of the mammograms is performed by radiologists, that look for 
abnormalities and calcifications. Since the screening is offered every 18-24 months, 
the radiologists can compare the mammograms over time. With DBT the reading 
time increased 1-3 times compared to the reading time of DM examinations [5, 6]. 
Increased reading time is mainly caused by the increased number of images for 
the radiologists to review using DBT instead of the traditional DM [6]. To assist 
the radiologists, various Computer-Aided Detection, CAD, systems have been 
developed and evaluated. CAD systems have, however, been questionable in terms 
of assisting radiologists [7]. A large study with a reading of about 500,000 
mammograms showed that CAD does not improve the diagnostic accuracy [8]. 
Ever since artificial intelligence, AI, a new version of CAD trained by deep 
learning algorithms got its breakthrough around 2010, researchers have been 
trying to implement it in medical image analysis [9]. AI systems have shown great 
possibilities in screening mammography for aiding radiologists. One of the AI 
systems that has shown promising results is Transpara, a system developed by 
ScreenPoint Medical, Nijmegen, the Netherlands [10]. In a study regarding 



 
2 

	

detection performance, Receiver Operating Characteristics, ROC, was used. The 
Area Under the ROC Curve, AUC, was in this study slightly higher for the AI 
system compared to that of radiologists in a non-screening material [11]. 
Transpara is a system that searches through the mammographic images for 
specific patterns, calcifications and other features that indicate cancerous tissue, 
and marks these abnormalities with a risk score from 0-100 (15-95) [10].  

Another new technique, Mechanical Imaging, MI, has recently been developed 
and used in studies in breast imaging [12-14]. It is a unique technique for breasts 
that currently is a research field at the Department of Radiation Physics, Skåne 
University Hospital, Malmö. Pressure sensors measure the mechanical stress on 
the breast surface during compression in connection to the image acquisition. The 
technique could be useful since a pressure change relative to background pressure 
indicates that there may be a tumour present or at least some change in 
mechanical structure. Results from a study have shown that MI used in screening 
could lower the recall and the biopsy rates [13]. One of the major problems in 
breast cancer screening today is that most suspicious findings marked by 
radiologists and AI are false positives. The challenging problem, to distinguish 
healthy women from the ones with disease, is as important as finding those women 
who have the disease. The fact that MI could be used as a complement to find 
tumours and soft-tissue lesions is very useful and could together with AI be a 
powerful tool for lowering the recall rate and thus avoid worrying women 
unnecessarily.  
 
 

1.2 Research question and aims 

This study sets out to investigate ‘To what extent can MI combined with AI be 
used to improve the performance of mammography screening?’. 
The main aims of this thesis study are to 

i. Relate masses indicated by the AI application to pressure changes 
relative to background pressure. 

ii. Determine what role the relation plays in clinical mammography. 
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2 Theory 

2.1 Mammography  

Digital mammography (DM) is the current standard in screening for breast cancer 
in Sweden [15]. In screening, two views are typically used: craniocaudal, CC, and 
mediolateral oblique, MLO, visualized in Figure 1. The CC view is used to better 
visualize tumours and abnormalities that are located in the central part of the 
breast whereas the MLO view includes more tissue in the upper juxtathoracic 
portion of the breast [16]. The CC view is usually less affected by overlapping 
tissue than the MLO view. This makes it rational to include both views in a DM 
examination.  

  
Figure 1: Mammographic views, CC and MLO, used in screening [16].  

As a complement to DM, there are various other techniques used in the screening 
chain. This includes digital breast tomosynthesis (DBT), breast CT (BCT), 
ultrasound and breast magnetic resonance imaging (MRI) [17]. MRI is used for 
younger women with dense breasts. Additional imaging with DM in the latero-
medial (LM or ML) view and an ultrasound is usually performed when a woman 
is recalled from the initial DM screening [17]. In some cases, a DBT scan is 
performed to better visualize the breast volume and to reduce the impact of 
overlapping tissue.  

The compression of the breast during mammography and breast tomosynthesis 
has three major benefits; reduction of absorbed dose, improved image quality and 
the fixation of the breast to counteract motion blur [12, 18]. Breast compression 
also has negative implications, and the most severe is pain. Pain is one of the 
main reasons why women do not participate in screening [19]. However, over 
recent years the technique has developed, although a study from 2012 indicates 
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that the pressure distribution in mammography is not always optimal [12]. Two 
types of compression paddles (rigid and flexible) were compared in a study, which 
suggested that the flexible compression paddle is superior as the experienced pain 
was the same for both paddles [20]. The flexible compression paddle could then 
be used either with the same level of discomfort, but with improved compression 
or with the same level of compression but with a probable reduction of discomfort 
[20]. 

Breast tissue consists mainly of two different components; adipose and 
fibroglandular tissue [20]. Adipose tissue consists mainly of fat and appears dark 
in the mammogram while fibroglandular tissue consists of various networks of 
glandular and fibrous tissue which appear light in the mammogram. Women with 
so-called 'dense breasts’ have breasts with a high proportion of fibroglandular 
tissue [12, 15].  

The World Health Organisation, WHO, has defined a histological classification of 
breast tumours which on a basic level can be divided into two groups; noninvasive 
and invasive carcinoma [21]. Noninvasive carcinoma has two main subgroups; 
ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). DCIS 
originate from the mammary ducts and LCIS involves the intralobular ducts. The 
most common cases of invasive carcinoma are invasive ductal carcinoma (IDC) 
and invasive lobular carcinoma (ILC) [21].  

 

2.2 Artificial intelligence and Deep learning 

In medical image analysis, convolutional neural networks, CNNs, are the most 
popular architectures for an artificial intelligence system [22]. CNN is a network 
that contains layers that transform the input data, e.g. images, with convolutional 
filters to output data, e.g. abnormalities present/absent. It is created such that 
patterns in images can be identified which makes CNNs very useful in image 
analysis. Compared to other networks such as a multi-layer perceptron, MLP, 
CNNs contains hidden layers called convolutional layers. The convolutional layers 
are layers that identify patterns by using several 𝐾 kernels 𝒲 = 𝑊&,𝑊(,… ,𝑊* 
and biases ℬ = 𝑏&, 𝑏(, … , 𝑏* that each specializes in one type of pattern, e.g. a 
specific shape or a calcification. Patterns are identified as the kernels are 
convolving over the input data, and the output from one hidden layer is then 
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generating a new feature map 𝑋*.  which is subjected to an element-wise non-linear 
transform 𝑡 ∙  [22, 23]. The process is repeated for every hidden layer 𝑙 before 
reaching the final output node: 

𝑋*. = 	𝑡(𝑊*
.4& ∙ 𝑋.4& + 𝑏*.4&) 

When a CNN is working with multiple layers, it is called a deep learning system. 
Another difference to MLP is that CNNs often have pooling layers which are used 
for dimensionality reduction. That means that pooling layers reduce the number 
of parameters. At the end of the network, a final layer is usually added, called a 
fully-connected layer, which does not use shared weights as a regular neural 
network layer or a MLP [22]. A basic 1D CNN is illustrated in Figure 2. 

 
Figure 2: Basic illustration of a node graph of 1D CNN, representation of a 
typical architecture. The blue, orange and green weighted connections also 
indicate shared weights within similar colours. 

	

2.3 Transpara 

The AI application used in this work is Transpara version 1.4.0 (ScreenPoint 
Medical, Nijmegen, the Netherlands). The AI application is a tool that assists 
radiologists with the reading of mammograms [24]. It implements deep learning 
through training CNNs to find and classify calcifications and soft-tissue lesions. 
By combining these features, suspicious regions can be identified. The suspicion 
is graded by values from 0 to 100 (15-95) where 100 indicates the highest level of 
suspicion (Figure 3). Even if each processed area by the AI system gets a score 
between 0 and 100, at the end scores below 15 are not shown to the radiologist 
because they lack relevance. Scores above 95 are capped to 95 because else it 
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might give the impression that the system is 100% convinced that something is 
cancer. The whole examination consists either of all four diagnostic images from 
the standard DM examination, which includes CC and MLO views of each breast, 
or if DBT was performed during recall, the views from the whole volume are 
included. Based on the suspicion values of findings in all mammographic 
examination for one case, another Transpara score is determined such that all 
examinations fall into different categories from 1 to 10. Transpara scores of 1 
equals lowest likelihood of cancer and 10 equals highest likelihood of cancer. The 
system is calibrated to sort cases into ten groups of roughly equal size, where most 
of the mammograms with cancerous tissue fall into category 10 (roughly 90 % of 
the cancers fall into category 10) and are the most likely to have cancer [10]. The 
remaining mammograms with cancerous tissue are very few and fall into lower 
categories, obtaining lower Transpara scores. The Transpara score therefore 
provides an alarming system for suspicious mammograms and reports normal 
mammograms with confidence [10, 24]. 

  
(a) (b) 

Figure 3: Examples of suspicion values for (a) a calcification and (b) a mass. 
Image courtesy of ScreenPoint Medical [24].  

Like other CNNs based on deep learning, Transpara requires extensive training 
on images. To work in the desired way, a database of images should provide the 
AI system with enough material to train, validate and test the system. The 
preferred database contains mammograms showing abnormalities and healthy 
mammograms. Transpara has been developed by using a database containing 9000 
cases of abnormalities and just as many cases of healthy mammograms [10]. The 
material in the database originates from different vendors such as Hologic, 
Siemens, GE Healthcare and Philips Healthcare.  
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2.4 Mechanical imaging 

Mechanical imaging as a medical modality was first described in the late 90’s [25]. 
Mechanical pressure sensors can be used to measure the force or the pressure 
distribution on the surface of a human body when a load is applied [26]. It has 
become a tool in the biomedical research field due to that many studies need the 
use of measuring contact areas and forces. Fuji Film and TekScan are two 
companies that have developed systems used for these measurements [26]. Both 
systems are not intended for MI, but pressure sensors from TekScan have been 
used for MI in studies at the Department of Radiation Physics, Skåne University 
Hospital, Malmö [12-14, 20, 27, 28].  

In breast examinations, the technique of MI makes it possible to find lesions or 
tumours without using ionizing radiation. The pressure distribution obtained with 
the mechanical sensors can indicate areas of increased pressure, which is otherwise 
detected by doctors examining the breast by hand searching for hard nodules. 
That examination is called palpation. Usually, palpation is an effective method 
for finding breast and prostate cancer, but mechanical imaging can provide the 
same or better information in a quantitative and automated fashion. However, all 
tumours cannot be detected by palpation alone due to different tumour structures, 
location of the tumour and the experience of the doctor. Through the mechanical 
information obtained in mechanical imaging, tumours that are not detected by 
palpation may be detected by mechanical imaging due to more subtle changes in 
mechanical structures [29, 30]. This was stated by Sarvazyan [29] and have later 
been supported by Egorov et al. [31] and Dustler [20]. 

The elastic properties of a material can be described according to Hooke’s law: 
𝜎 = 𝐸 ∙ 𝜖	

where E is the material constant of Young’s modulus, also called the elastic 
modulus, which is a property quantifying the stiffness of the material. The 
equation describes the relationship between mechanical stress, 𝜎, and mechanical 
strain 𝜖 [32]. Compressive stress is here called pressure, and it has a negative sign 
since the breast is subjected to a uniaxial load or force, F, in the axial direction 
on an area, A. The mechanical strain is dimensionless and describes the relative 
deformation of an object subjected to a stress (Figure 4), as the ratio between the 
deformed length	∆L	and the original length L:  
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𝜎 = −
F
A 	,													𝜖 = −

L − L∆	
L = −

∆L	
L  

 
 

 
Figure 4: Illustration of deformation of an elastic cubic shape. As the force F 
is applied to an area A the original length L turns into the deformed length L∆.  

As the breast is compressed during mammography, the applied compression force 
gives rise to surface stresses. This stress is measured with pressure sensors, and 
as the deformation (strain) is constant, the measured stress is proportional to the 
elastic modulus of the underlying tissue. When a material consisting of various 
components is subjected to a certain force the stresses varies due to the different 
elastic moduli [20]. Breasts consist of adipose and fibroglandular tissue, which 
means that the elastic modulus differs between the two tissues. The material 
modelling is based on the assumption that the material can be considered only 
experiencing stresses parallel to the applied force and free to deform orthogonally 
to the direction of the stress. The entire measurement is then the mean stress over 
a number of ‘cylinders’, where all the cylinders form the entire breast volume 
which is affected by surface stress. For more details on the formulation of the 
material model refer to [20]. The positioning of the pressure sensors on the 
mammographic compression paddle is seen in Figure 5. Egorov et al. have shown 
that MI can differentiate between benign and malignant tumours since malignant 
lesions express increased stiffness compared to benign lesions [31]. 
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Figure 5: Pressure sensor positioning on the mammography compression 
paddle [20]. 
	

Mechanical imaging itself is a non-ionizing technique as the pressure measurement 
does not require ionizing radiation. However, the sensors that are commercially 
produced are not radio-translucent. Since the pressure measurement is performed 
during another image acquisition, and not the diagnostic image acquisition, the 
mechanical image must be matched to a low-dose image (pre-exposure image) 
such that the two images can be compared. The two images are required due to 
possible difference in breast position, compression force and internal changes of 
the breast.   
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3 Materials and methods 

3.1 Data collection 

The mammographic images and the mechanical images were obtained from a 
previous prospective study by Dustler et al. [13]. The study used pressure 
distributions to evaluate the distribution patterns in the screening mammograms, 
and if any reduced compression force affected the mammographic examination. 
The authors concluded that the compression plates used did not provide the 
optimal compression for most women, while it was not caused by a lack of 
compression force.  The mammograms were collected from recalled screening 
examinations, which for every patient included DM and MI on a Siemens 
MAMMOMAT Inspiration system (Siemens Medical Systems, Erlangen, 
Germany).  

For MI, the TekScan Iscan 9801 (TekScan, Boston, MA) pressure sensor was used. 
The pressure sensor elements are oriented as 6 columns with 16 elements in each 
column (Figure 6). The spatial resolution of the pressure sensor is 12.7 mm. Each 
column is divided into four parts, each part having four elements that are 
connected to one common circuit. Two pressure sensors were used for each 
measurement to cover the whole image detector (Figure 5), resulting in 192 sensor 
elements.  

 
Figure 6: Basic illustration of one TekScan Iscan 9801 pressure sensor. 
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The AI data was obtained by sending screening images to the software Transpara. 
The mechanical images were created by writing a script in MATLAB release 
2018b (The MathWorks, Inc., Natick, MA), where the pressure matrices for every 
breast were merged with the low-dose x-ray image. The mean pressure within the 
breast volume and the mean pressure over the Transpara finding were calculated 
using Microsoft Excel.  

 
 

3.2 Suspicious lesion analysis 

Screening images of 118 women were analysed in the artificial intelligence software 
Transpara. Before analysing the images, the name of each image was saved in a 
specific list of images. The images were put in a folder ‘Send to Transpara’ and 
then a .bat file started the processing of images through Transpara. It takes some 
time for Transpara to process the images, usually around a few hours with this 
number of images (472 diagnostic images). When the images were processed, the 
results were saved in an Excel file. The Excel file contains all data from all images 
run in Transpara for those cases where findings were present.  

The features found by Transpara were in this work separated into three categories; 
masses, calcifications, and soft-tissue lesions. Each feature was presented with a 
certain colour, indicating the type of feature. Red findings represent masses found 
by Transpara, yellow findings represent calcifications found by Transpara and 
blue findings represent soft-tissue lesions found by Transpara. Examples of 
findings are presented in Figure 7.  
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Figure 7: Examples of Transpara findings found in three different cases, 
showing masses (red), soft-tissue lesions (blue) and calcifications (yellow). 

For cases with multiple findings, the finding with the highest score was chosen to 
be analysed. For those cases where the finding with the highest score was close to 
the juxtathoracic part of the breast or close to the edges, the next highest finding 
was chosen instead. 

The mechanical images were created by writing a script in MATLAB release 
2018b (The MathWorks, Inc., Natick, MA), where the pressure matrices for every 
breast were merged with the low-dose x-ray image. The mean pressure within the 
breast volume and the mean pressure over the Transpara finding were calculated 
using Microsoft Excel. 

 

3.3 Mechanical imaging analysis 

The mechanical images were acquired and processed by writing a script in 
MATLAB, release 2018b (The MathWorks, Inc., Natick, MA), where functions 
already used in a previous study by Dustler et al. was used [13]. The mechanical 
image was overlayed on the low-dose mammogram of each breast for every woman. 
The mechanical pressure data was collected as a .asf file and the pressure was 
extracted through a function that returns the pressure values in a 16x6 matrix 
(one for each pressure sensor). Since two pressure sensors were used, the two 
matrices were added together and formed the entire pressure matrix of 16x12 
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elements. The script merged the new image of the pressure distribution of the 
breast with the low-dose mammogram.  
The mechanical image is a pattern of squares with different colours, representing 
the relative pressure. The colour scale of the relative pressure ranges from dark 
blue (low relative pressure) to dark red (high relative pressure). As the pressure 
sensors are not radio-translucent they are visible in the low-dose mammogram. 
Visualization of the merged low-dose x-ray image and the mechanical image with 
a colour scale is presented in Figure 8(a).  

The pressure distribution also showed that a higher pressure was subjected to the 
juxtathoracic part of the breast, seen in Figure 8(a). To visualize the relative 
pressure distribution within the breast volume, the most inner row and any other 
pressure value outside the breast volume was removed, see Figure 8(b).  

Figure 8: (a) The merged image of the low-dose mammogram and the 
pressure distribution with a colour scale ranging from dark blue (low relative 
pressure) to dark red (high relative pressure). (b) Transformation of the 
’raw’ pressure distribution data to the modified pressure distribution, which 
represents the pressure distribution within the breast volume instead of all 
pressure data in the whole sensor matrix.  

 
 

(a) (b) 
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The mean pressure within the breast volume was then calculated. The mean 
pressure over a Transpara finding was calculated by taking the mean value of the 
nine pixels that represents the location of the finding. The mean pressure over a 
Transpara finding was then compared to the mean pressure of the breast, by 
calculation of the relative increase in pressure at the location of the finding. The 
method for choosing an area for each measurement of the mean pressure within 
the breast volume and over a Transpara finding is visualized and described in 
Figure 9. 

 
(a) (b) (c) 

 

Figure 9: The pressure distribution matrix elements used in the calculation of 
(a) the mean pressure within the breast volume and (b) the mean pressure over 
a Transpara finding for a single case. The corresponding region of interest of 
nine elements from (b) is showed in the diagnostic image with the findings in 
(c). 

 

3.4 Statistical analysis 

To evaluate if there is a significant difference between the increased pressure over 
a Transpara finding within the three groups (cancer, benign, non-specific) 
statistical analysis was performed using SPSS version 25.0 (IBM Corp, Armonk, 
NY). The three groups were statistically analysed to answer the first aim in this 
study: ‘Relate masses indicated by the AI application to pressure changes relative 



 
15 

	

to background pressure’. The data of relative increased pressure and the two 
setups of Transpara scores were tested individually to determine if the residuals 
were normally distributed. This was tested by performing Shapiro-Wilks test with 
the null-hypothesis ‘The data of increased pressure, total Transpara score and 
individual Transpara score are normally distributed’ with α=0.05 for each group. 
Based on the result from the Shapiro-Wilks test further tests were carried out 
with a suitable test for analysis of variance.  
Furthermore, the correlation coefficient between the increased pressure and the 
Transpara scores was tested for each group of cancer, benign and non-specific. 
This was tested by performing a correlation analysis and to answer the second 
aim of this study; ‘Determine what role the relation plays in clinical 
mammography’. The non-parametric Spearman’s rank order correlation was 
measured using SPSS, since Spearman’s coefficient is appropriate for continuous 
variables and can describe the relationship as a monotonic function instead of a 
linear as in Pearson’s correlation coefficient.   
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4 Results 

Of the 118 recalled women, findings from Transpara were present for all 118 
women in at least one view. Twenty-six women were excluded because the findings 
were not present in the same view as the pressure distribution view or the pressure 
distribution was not available.  
Of the 92 remaining women, 59 women had findings in both breasts, resulting in 
a total number of 152 CC images with Transpara findings and pressure 
distributions. Nineteen masses were found by Transpara in the CC view.  

Of the 92 remaining women, 15 had confirmed breast cancer, 35 had benign 
findings (confirmed by biopsy) and 42 were classified as non-specific. The 42 non-
specific cases were not biopsied and diagnosed as healthy. A summary of all cases 
and their diagnoses are presented in Table 1. 

Table 1: The number of cases for each diagnosis, evaluated by a 
radiologist. One of the women had both IDC and ILC and is 
therefore listed in both rows. 

Diagnose Number of 
cases 

(women) 

 

Cancer (total) 
   DCIS 
   IDC  
   ILC  
   Other 

(15) 
2 
7  
4 
3 

 
 
 

Benign  35  
Non-spec 42  
Total number of cases 92  

 

Among the cases with confirmed cancer, masses were found in Transpara in eight 
of them. The other eleven masses found by Transpara were discovered among 
women with benign findings (4) and non-specific (7).   
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The pressure distribution and Transpara findings of a single case are presented in 
Figure 10. Despite the increased pressure indicating malignancy the woman was 
diagnosed with a benign finding which was not shown in any of the images. 
Transpara findings in the right image got scores between 27-37.  

  
Figure 10: The pressure distribution and Transpara findings of a single 
case. The most inner row and any other pressure value outside the breast 
volume has been removed, such that the mean pressure within the breast 
can be calculated. 

 
The mean pressure over the breast and the mean pressure over a Transpara 
finding were calculated and saved in an Excel file. The pressure increase over a 
finding was calculated for all three groups. Of the 15 women with confirmed 
cancer, only 12 had a sufficient pressure distribution over the AI-finding or the 
whole breast. Among women with benign findings, 15 cases could be used. Of the 
non-specific cases, 19 had a sufficient pressure distribution over the Transpara 
findings or the whole breast. Example images from the group diagnosed with 
cancer are presented in Figure 11, of benign findings in Figure 12, non-specific in 
Figure 13. 
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(a)    (b)       (c) 

Figure 11: Pressure distribution and Transpara findings of various cases, 
all diagnosed with breast cancer.  

	

 
(a)                  (b)                  (c) 

Figure 12: Pressure distribution and Transpara findings of various 
cases, all diagnosed with benign abnormalities. 

	

Figure 13: Pressure distribution and Transpara findings of various 
cases, all diagnosed as healthy. 

	

	 	 	
      (a)       (b)     (c) 
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A histogram of the pressure difference for all 46 cases is presented in Figure 14, 
where the cases are 46 women with each one CC image analysed. The histogram 
shows that for most of the cases, an increase in pressure is present at the location 
of a Transpara finding, and for some there is actually a decrease in pressure at 
the location of a finding.  

Figure 14: Histogram of the pressure difference for all 46 cases used in 
the statistical analysis. 

The 46 cases analysed were categorized by Transpara, where each mammographic 
examination got the Transpara Score that describes the likelihood of cancer (1-
10). The distribution of Transpara Scores among all cases analysed are presented 
in figure 15.  

	
Figure 15: Histogram of the Transpara Scores for all 46 cases divided into the 
three groups of cancer, benign and non-specific.  
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For the statistical analysis, data from these three groups of 12, 15 and 19 women 
respectively were acquired. The Shapiro Wilks test rejected the null hypothesis 
for all three variables as seen in Table 2, meaning that the data were probably 
not normally distributed in any case. The variable ‘Score’ represents the 
Transpara scores of the whole examination (1-10), the variable ‘Score2’ represents 
the Transpara scores of each finding (0-100) in which the increased pressure is 
calculated for and the variable ‘Increase’ represents the increased pressure over 
one finding.  

Table 2: Results of the test of normality among the three variables 
‘Pressure diff.’, ‘Total Score’ and ‘Ind. Score’. As all p-values were 
below the significance level, the variables were probably not normally 
distributed. 
 Pressure diff. Total Score 

(1-10) 
Ind. Score  
(1-100) 

Statistic 0.911 0.925 0.733 
df 46 46 46 
p 0.002* 0.006* 0.000* 
*significant at the 0.05 level 

 

Since the data was continuous, unpaired and based on the Shapiro-Wilks test also 
not normally distributed, a non-parametric test with no distributional assumption 
was used for the analysis of variance. The Kruskal-Wallis rank test was performed 
with α=0.05 to evaluate if the mean ranks of the data were significantly different 
between the groups. The null-hypothesis used was ‘The mean ranks of the groups 
are the same’ which means that the mean ranks for each variable ‘Pressure diff.’, 
‘Total Score’ and ‘Ind. Score’ were compared among the three groups of cancer, 
benign and non-specific. The results of the Kruskal-Wallis test are presented in 
Table 3 and as box-plots in Figure 16. The test showed that there was a significant 
difference in mean ranks between the variables ‘Total Score’ and ‘Ind. Score’, 
meaning that the mean ranks of both types of Transpara scores differed between 
groups. The difference in the mean pressure difference between the groups was 
not significant on the 0.05 level (p=0.076). However, the results indicate that the 
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increase in pressure is higher for the group with cancer as it is significant on the 
0.10 level.  

Table 3: Results of the Kruskal-Wallis test for the variables 
‘Pressure diff.’, ‘Total Score’ and ‘Ind. Score’. 

 Pressure diff. Total Score 
(1-10) 

Ind. Score  
(1-100) 

Kruskal-Wallis H 5.145 10.587 7.443 
df 2 2 2 
p 0.076 0.005* 0.024* 
*significant at the 0.05 level 

 

  
     (a)      (b) 

 
      (c) 

Figure 16: Results of the Kruskal-Wallis test. The null hypothesis was 
rejected for the variables (a) ‘Total Score’ and (b) ‘Ind. Score’, but 
remained for the variable (c) ‘Pressure diff.’.  
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Results of the Spearman’s rank correlation between increased pressure and 
individual Transpara scores in each group, presented in Table 4, showed that the 
correlation was significant only in one case at the 0.05 level.  

 

Table 4: Results of the Spearman’s rank order correlation test between 
increased pressure and individual Transpara score for the three groups of 
cancer, benign and non-specific abnormalities. 

 Cancer Benign Non-specific 
N 12 15 19 
Spearman’s rho 0.592 -0.142 0.242 
p 0.043* 0.614 0.317 
*correlation is significant at the 0.05 level (2-tailed) 

 

The Spearman’s rho correlation coefficient is 0.592 and significant at the 0.05 
level for the group diagnosed with cancer, indicating that the two variables of 
pressure difference and Transpara score are correlated. For the groups diagnosed 
with benign and non-specific abnormalities the correlation coefficients are -0.142 
and 0.242 but both correlations are not significant at the 0.05 level.  
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5 Discussion 

MI combined with AI can potentially be used to improve the performance of 
mammography screening, but further evaluation is needed. It has here been shown 
that an increase in pressure over a finding found by the AI application, tends to 
be higher for cases with breast cancer. The correlation between increased pressure 
and Transpara score was found to be strong and significant only for the group 
diagnosed with cancer. This result suggests that AI and MI find independent 
markers for breast cancer. How this relationship can be used in clinical 
mammography remains to be fully investigated.  
 
One of the main limitations of this study is the positioning of the breast between 
image acquisitions. The mammogram analysed with Transpara is acquired about 
two weeks before the pressure map is created when the woman is recalled, which 
makes a comparison between the two modalities difficult. The breast may be 
positioned in a quite different way between the image acquisitions for example 
because different radiographers met the woman during screening and recall. The 
reposition of the breast between the diagnostic image acquisition and the pressure 
measurement contributes to another major source of error. The pressure sensors 
are currently mobile and tend to not always be in the same position for every 
woman. That means that for one woman, the pressure sensors might be slightly 
tilted in one direction which then is difficult to correct for during the merge in 
MATLAB. This can also be a source of error in the evaluation of overlap. Ideally, 
the pressure sensors would be radio-translucent and built-in in the mammography 
unit.  

As seen in Figure 9, the Transpara score of interest is not exactly in the middle 
of the region of interest. This is often the case, mainly because of the spatial 
resolution of the pressure distribution data, but also because of the difference in 
breast positioning during the two image acquisitions. Another impact is how the 
pressure is distributed in the z-direction, since it is not certain that it will be right 
above the finding. 

Not all AI-findings analysed have the highest score for each case, as earlier 
mentioned in section 3.2. This is because of lack of pressure data in those regions 
of the location of the finding or because the finding is located close to the 
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juxtathoracic portion of the breast. Since the highest individual score is not used 
in some cases it also affects the analysis by providing an evaluation of the relative 
increased pressure over an AI-finding which then is not the most suspicious finding 
of that case.  

The results presented in Figure 14 show that most of the 46 women included in 
the analysis have an increase in pressure over an AI-finding in the breast. These 
results can sometimes be misleading because of various reasons. In many cases, 
pressure data is not present throughout the whole breast volume as visualized in 
Figure 11, Figure 12 and Figure 13, resulting in zero-pressure values in the 
pressure images. This affects the calculation of mean pressure over the breast 
volume as well as the calculation of the increase in pressure.  

Trends can be seen among the different groups of women, such as that the increase 
in pressure is present among all cancer cases except 8.3 %. Among the benign 
cases, 13.3 % have a decrease in pressure over the finding and among the non-
specific cases 21.1 % have a decrease in pressure over the AI-finding. Although 
the cases with the highest increase in pressure are mostly among the cases with 
confirmed cancer, the statistical analysis did not show a significant difference in 
ranks of the increase in pressure among the groups (p=0.076) on the 0.05 level 
(Table 2). This study is on relatively low sample size and it is therefore difficult 
to state anything statistically based on groups of N=12, N=15 and N=19. A 
previous similar study has shown that there is a difference in increased pressure 
between cases of cancer and cases of benign lesions [13]. However, the findings in 
that study were found by radiologists, not by an AI application. As the 
performance of the AI application Transpara is comparable to the radiologists, 
the increased pressure is expected to be different between the groups.  

The Kruskal-Wallis test was also used to test the difference between mean ranks 
among groups for the variables ‘Total Score’ and ‘Ind. Score’ (Figure 16, Table 
3). The variable ‘Total Score’, representing the Transpara score on the whole 
examination of the woman, was significantly different between the three groups 
(p=0.005). The variable ‘Ind. Score’, representing the score in the specific finding 
analysed, was also significantly different between the three groups (p=0.024). This 
result is expected as a previous study evaluated the performance of Transpara 
compared to the performance of radiologists, and concluded that it has a detection 
accuracy compared to the radiologists [11].  
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The Spearman’s rho correlation coefficients for the three groups showed that there 
was a strong correlation between the increased pressure and the Transpara score 
for one group, namely the cases with cancer. The correlation coefficient of 
increased pressure and Transpara score is expected to be weak because the MI 
and AI are investigating two different aspects of breasts. The AI system is working 
basically as a radiologist looking for suspicious findings whereas MI is 
investigating the mechanical properties of the surface of the breast. Since it does 
not correlate with other AI-findings (present in healthy cases) this result indicates 
that both methods find independent markers that coincide in cancer. However, it 
would also be interesting to examine whether the AI-findings among all groups 
evaluated here correspond to the same findings as the radiologists based on their 
diagnosis. 

For some cases, Transpara classified findings as masses (often resulting in a total 
Transpara score of 10) but the pressure difference was not noticeably large, seen 
in Figure 12(b). The diagnosis was biopsy-proven benign, which indicates that 
the combination of the two techniques could be useful, and maybe has the 
potential of lowering the recall and biopsy rate.  

Measurements of the mechanical stress patterns is also an approximation, since 
small, multiple cylinders form the breast volume. The stress is calculated as the 
average pressure over the whole individual cylinder, a potential stiffness within 
one cylinder increase the average stress over the actual cylinder. It would be 
interesting for some individual cases to make additional tests or finite element 
calculations, to investigate whether the approximation is sufficient. 
 
 

5.1 Future prospects 

To make the method easier and more useful on a larger scale, a new radio-
translucent pressure sensor should be manufactured. It would also be preferable 
for it to be built into the mammography equipment. Then the MI can be 
performed at the same time as the image acquisition of the mammogram. The 
benefit is then that the positioning of the breast is the same between the two 
modalities, and AI findings from the mammogram are easier compared with areas 
of different pressure compared to surrounding breast pressure on the MI. Another 
benefit is that the women receive a lower radiation dose if both modalities can be 
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used at the same time, as there is no need for a low-dose image at the same time 
as the MI.  

It would be interesting to study the relation of MI and AI with the new pressure 
sensor TekScan BPMS 5350 which is used in the clinic today, as it has a better 
spatial resolution (10.0 mm) and it is more flexible than the TekScan Iscan 9801 
pressure sensors. Future studies regarding MI and AI together should investigate 
the aims of this study with the new pressure sensors.   
 
 

6 Conclusions 

Although it seems like the increased pressure is slightly higher for those cases in 
the group diagnosed with cancer, the difference is not statistically significant in 
this study. A material providing larger sample sizes would be needed to further 
evaluate whether there is a difference.  

The correlation found between increased pressure and Transpara score suggests 
that both MI and AI find independent risk markers that coincide in cancer, and 
could therefore probably lower the recall rate in mammography screening. 
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