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Abstract

We study the problem first introduced by Verma and Keller in 1984 of how to
taper a heavy rope such that its elongation is minimized. The problem is stated
as an optimization problem of a functional J [w]. Specifically we provide a proof
of optimality for the solution using traditional convex optimization techniques.
We also utilize the Legendre transformation when studying the Euler–Lagrange
equation — this is nice because it sheds some light on the structure of the
solution in a natural way. In the last section we consider a similar problem
but where the functional J is a function of itself; J = J [w, J ]. This problem is
unfortunately not solved but might be subject to future research.
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1 Introduction

This is a thesis about how to taper a heavy rope that’s hanging vertically (from
the ceiling) so that its elongation is minimized. The rope is being stretched by
a weight attached to its lower end as well as by its own weight. The initial (un-
deformed) length together with the total mass and density of the rope are known,
while the parameter we can adjust is the cross section area. The problem is
formulated and solved using the Calculus of Variations, and an optimality proof
for the solution is given exploiting the convexity of the problem. This problem
was originally stated in 1984 by Verma and Keller using a constant density and
a linear stress-strain relation (Hooke’s law) [6]. Later it was generalized to an
arbitrary density and a non-linear stress-strain relation by Negrón-Marrero [2]
and again revisited in 2018 by Overgaard [3]. The goals of this thesis are to

• Provide Negrón-Marreros solution with an optimality proof.

• Interpret the five assumptions made by Negrón-Marrero on the stress-
strain relation. We will do so in relation to the mechanics of materials
and to their relevance for the solution from a mathematical perspective.

• Give explicit solutions to interesting special cases of the model.

In the last section, we consider a different problem - ”The Rotating Load”
inspired by the original problem. Here, the ”rope” is rotating around an axis,
again with a weight attached to the outer end. The interesting case arises with
large deformations since stretching the rope changes the forces acting on it, the
centripetal force being proportional to the distance from the axis of rotation.
This problem is unfortunately not solved; however, my hope is to be able to shed
some light on some of the difficulties that have to be overcome, and present the
results I’ve found.

4



2 Background

2.1 The Standard Problem

The Standard Problem in the Calculus of Variations can be described as follows:
Given a function L(x1, x2, x3) : R3 → R, minimize the functional

J [y] =

ˆ b

a

L(x, y(x), y′(x))dx

over some admissible functions y, for example

y ∈ {C1[a, b]; y(a) = α, y(b) = β} = X

for given α and β. The integrand L(x1, x2, x3) is called the Lagrangian, or the
Lagrange function. We will assume it to have continuous partial derivatives.

To minimize J [y], the approach used is to assume we’ve found the minimizing
function y0(x), then add a variation εv(x) to it. Here v(x) is a variation to y0(x)
while ε ∈ R is used to scale this variation. We demand that v(a) = v(b) = 0 in
order for y(x) = y0(x) + εv(x) to satisfy the boundary conditions, y(a) = α and
y(b) = β.

Figure 1: Illustration of a simple variation to y0 (the straight line).

We now study the properties of the function

j(ε) = J [y0 + εv] =

ˆ b

a

L(x, y0(x) + εv(x), y′0(x) + εv′(x))dx.

Since y0 by assumption is a minimizer of J we know that j(ε) has a minimum
at j(0) = J [y0]. Since it has a minimum at ε = 0 we know that j′(0) = 0. Let’s
have a look at this term:

j′(ε) =
d

dε

ˆ b

a

L(x, y0 + εv, y′0 + εv′)dx =

=

ˆ b

a

Ly(x, y0 + εv, y′0 + εv′)v + Ly′(x, y0 + εv, y′0 + εv′)v′dx .

Here Ly and Ly′ denote the derivatives of the Lagrangian with respect to the
second and third argument of the Lagrangian. It will also be convenient to use
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the notation Ly0(x) = Ly(x, y0(x), y′0(x)) (and Ly′0(x) = Ly′(x, y0(x), y′0(x))).
That is the derivative of L with respect to the second (or third) variable, eval-
uated at (x, y0(x), y′0(x)). With ε = 0 in the expression above we get

j′(0) =

ˆ b

a

Ly(x, y0, y
′
0)v + Ly′(x, y0, y

′
0)v′dx.

Now we want to integrate the first term by parts. By letting the primitive
function of Ly0 be denoted by θ, such that θ′ = Ly0 , we then have

j′(0) =

ˆ b

a

θ′v + Ly′0v
′dx =

=
[
θv
]b
a

+

ˆ b

a

(−θ + Ly′0)v′dx = 0.

Since v(a) = v(b) = 0 =⇒ [θv]ba = 0 all that is left is

ˆ b

a

(−θ + Ly′0)v′dx = 0. (1)

Since v ∈ C1
0 [a, b], Ly′0 ∈ C[a, b] and θ is clearly continuous (it’s differen-

tiable), we can use the following lemma.

Lemma 1 (du Bois–Reymond). If N(x) ∈ C[a, b] and

ˆ b

a

N(x)v′(x)dx = 0

for all v ∈ C1
0 [a, b] then

N(x) = constant

We will postpone the proof of this lemma until the end of this section and
instead return to the integral in equation (1). The lemma states that

− θ + Ly′0 = c (2)

for some constant c. Since θ is differentiable (θ′ = Ly0) and Ly′0 = c+θ is the sum
of a constant and a differentiable function we conclude that Ly′0 is differentiable
as well. We differentiate equation (2) and arrive at the Euler–Lagrange equation

− Ly0 +
d

dx
Ly′0 = 0 (3)

where we used θ′ = Ly0 . This differential equation must be satisfied by any
minimizer of the functional J [y]. However, also maximizers and ”saddle points”
of J will satisfy this ODE. To find the solution to the minimizing problem we’ll
need something more.
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We’ll end this section with a proof of du Bois-Reymonds lemma.

Proof. To prove du Bois-Raymonds lemma above let’s consider a special varia-
tion

v(x) =

ˆ x

a

N(x̄)− µdx̄

where µ is the mean value of N(x) on [a, b]. This v(x) vanishes at x = a and
x = b, and is differentiable. By assumption

ˆ b

a

N(x)v′(x)dx = 0

holds for all v ∈ C1
0 [a, b], then it must hold for our constructed v, which implies

ˆ b

a

N(x)(N(x)− µ)dx = 0. (4)

Also, clearly

µ

ˆ b

a

(N(x)− µ)dx = 0. (5)

If we now subtract equation (5) from equation (4) we get

ˆ b

a

N(x)(N(x)− µ)dx− µ
ˆ b

a

N(x)− µdx = 0 ⇐⇒

ˆ b

a

(N(x)− µ)2dx = 0

which shows that N(x) = µ = constant.
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2.2 Convex functions and functionals

In this section we go through the definition of convex functions and function-
als, then provide a couple of theorems taken from [5] that will be used in the
optimality proof for our problem. We start with a formal definition of a convex
real valued function of one variable.

Definition 1. Let ϕ be a function defined on an interval D ⊆ R. The functiono
ϕ is called convex on D if it satisfies

(1− λ)ϕ(a) + λϕ(b) ≥ ϕ((1− λ)a+ λb), ∀λ ∈ [0, 1]

where a, b ∈ D. If we change the inequality to a strict inequality above and
λ ∈ (0, 1), we say that ϕ is strictly convex.

The definition says that if you connect two points on the graph of ϕ with a
straight line segment, then the line lies above the graph. Likewise, if we draw a
tangent to ϕ it touches the graph from below as seen in Figure 2.

Figure 2: A convex function. The dashed line connecting (a, ϕ(a)) with (b, ϕ(b))
lies above the graph of ϕ on (a, b).

From the figure we conclude that if ϕ is differentiable at x then

ϕ(x+ v)− ϕ(x) ≥ ϕ′(x)v (6)

Moving on to functions of n variables. Let D ⊆ Rn be a convex set. Then
ϕ : D → R is convex if and only if t 7→ ϕ(x+tv) is convex for all x ∈ D, v ∈ Rn
and all t ∈ R such that x + tv ∈ D. Hence, if ϕ is convex it is convex in every
direction v and we can write equation (6) as

ϕ(x + v)− ϕ(x) ≥ ∇ϕ(x) · v (7)

where ∇ϕ(x) · v is the directional derivative in the direction of v, (scaled with
the length of v). For strictly convex ϕ equality in equation (7) is only obtained
for v = 0.
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We would like to extend the concept of convexity to our functionals. As a
stepping stone we introduce

Definition 2 (The Gâteaux Variations). For J : X → R, we define

dJ(y; v) = lim
ε→0

J [y + εv]− J [y]

ε

where y, y + v ∈ X .

This is the directional derivative of J , just as ∇ϕ(x) · v was the directional
derivative of ϕ in equation (6). Also note that if

J [y] =

ˆ b

a

L(x, y, y′)dx

and we apply the Gâteaux Variation, we get the first variation j′(0), covered in
section 2.1:

dJ(y; v) =

ˆ b

a

Ly(x, y, y′)v + Ly′(x, y, y
′)v′dx.

This term equals zero for any y satisfying the Euler-Lagrange equation.
We define convexity of the functional J as

Definition 3. The functional

J : X 7→ R

is said to be convex on X if

J [y + v]− J [y] ≥ dJ(y; v)

for all y, y+v ∈ X . For strict convexity equality is obtained if and only if v = 0.

We now have a definition for convex functionals. The reason we want this
is that it makes it easy to show that solutions to minimization problems are
global and unique. If we have a convex functional J [y], then any y0 making
dJ(y0; v) = 0 for all v is a global minimizer of J . If J is strictly convex then
this y0 is also unique. On the next page, Theorem 1 gives us a condition that
guarantees J being strictly convex. After that, Theorem 2 states that any
function y0 satisfying dJ(y0; v) = 0 for all v and J strictly convex is indeed the
unique minimizer of J .
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Theorem 1. Let D be a convex domain in R2 and for given α, β, set

X = {y ∈ C1[a, b]; y(a) = α, y(b) = β; (y(x), y′(x)) ∈ D}
If L(x, y, z) : [a, b]×D → R satisfies

L(x, y + v, z + w)− L(x, y, z) ≥ Ly(x, y, z)v + Lz(x, y, z)w

for all (y,z) and (y+v,z+w) ∈ D, with equality at (x,y,z) if and only if either
v = 0 or w = 0, and L, Ly, Lz are continuous, then

J [y] =

ˆ b

a

L(x, y(x), y′(x))dx

is strictly convex on X .

Proof. L satisfies

L(x, y + v, z + w)− L(x, y, z) ≥ Ly(x, y, z)v + Lz(x, y, z)w

with equality if and only if either v = 0 or w = 0. Then

L(x, y + v, y′ + v′)− L(x, y, y′) ≥ Ly(x, y, y′)v + Ly′(x, y, y
′)v′

must hold for all (y, y′), (y + v, y′ + v′) ∈ D, with equality if and only if v = 0
or v′ = 0. We integrate both sides and get

ˆ b

a

L(x, y + v, y′ + v′)− L(x, y, y′)dx ≥
ˆ b

a

Ly(x, y, y′)v + Ly′(x, y, y
′)v′dx

⇐⇒

J [y + v]− J [y] ≥ dJ(y; v) (8)

But if one of the functions v or v′ equals zero at x then the product vv′ must
also be zero at x. We integrate vv′ and get

ˆ

vv′dx =
v2

2
= c

for some constant c. Since v(0) = 0 we conclude that v = 0 on the whole interval
(and so is v′). We therefore have equality in equation (8) if and only if v = 0
and v′ = 0, making J strictly convex.
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Now to the uniqueness and optimality of the solution y0.

Theorem 2. If J is strictly convex on the convex set X , then each y0 ∈ X for
which

dJ(y0; v) = 0, ∀y0 + v ∈ X
minimizes J on X uniquely.

Proof. J is strictly convex so

J [y + v]− J [y] ≥ dJ(y; v), ∀y, y + v ∈ X

with equality if and only if v = 0. Insert y0 such that dJ(y0; v) = 0, ∀v; y0 +v ∈
X and get

J [y0 + v] ≥ J [y0]

with equality if and only if v = 0. This proves uniqueness and optimality of
y0.
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2.3 The Legendre Transformation

This presentation of the Legendre transform is influenced by the article Making
Sense of the Legendre transform [4]. My goal with this section is to give a brief
explanation on how to calculate the transform and show some properties of it.
While we’ve discussed the concept of convexity for many variables, we will only
need Legendre transformations in one variable.

Computing the transform

The Legendre transform takes a strictly convex and differentiable function ϕ(x)
and maps it to another function ϕ∗(s), containing the same information as ϕ,
but now as a function of the new variable s = ϕ′(x). The strict convexity of ϕ
is needed for this relation to be bijective. This will make ϕ′ strictly monotone
and invertible. In other words, for any s ∈ Range(ϕ′(x)), we can find a unique
x such that s = ϕ′(x). We now proceed with the definition.

Definition 4 (The Legendre Transform). Let ϕ∗(s) denote the Legendre trans-
formation of the convex function ϕ : D → R. Then

ϕ∗(s) := sup
x∈D
{sx− ϕ(x)}.

Since ϕ is strictly convex ( and −ϕ concave) the supremum is obtained when

d

dx
(sx− ϕ(x)) = 0 =⇒ s = ϕ′(x).

To calculate the transform we start off by defining the new variable

s := ϕ′(x).

Now we want to find the inverse of ϕ′(x), let us denote it by x(s). This function
takes the slope of ϕ as input argument and returns the x-value for which ϕ′(x) =
s. The transformed function is given by

ϕ∗(s) = sx(s)− ϕ(x(s)) (9)

12



Figure 3: In the case illustrated in the figure sx < 0 since clearly s = ϕ′(x) <
0. Please note that the transformed function ϕ∗(s) = sx − ϕ(x) is here also
negative.

There is a geometrical interpretation of the transformation. Please consult
Figure 3 above in what follows. We draw two lines from the point (x, ϕ(x)) to
the y-axis, creating a triangle. The base of this triangle, parallel to the x-axis,
obviously has length x. The hypotenuse should be parallel to the tangent of
ϕ at x. With s = ϕ′(x) we conclude that the height of the triangle is ±sx
(depending on the sign of s). The transform ϕ∗(s) is simply the difference
between the height of the triangle sx and ϕ(x).

The transform is its own inverse

If we perform the Legendre transform a second time we recover our original
function. Let’s do that. We define the new variable

y(s) =
d

ds
ϕ∗(s)

and invert the monotonic function y(s) to s(y). We now construct

ϕ∗∗(y) = ys(y)− ϕ∗(s(y))

If we now let ϕ∗∗ and ϕ∗ switch places and rename the variable y to x, since
the name doesn’t matter, we get

ϕ∗(s) = xs− ϕ∗∗(x)

Here we can identify ϕ∗∗ with ϕ by comparing this expression with equation
(9).

The variables s and x are called a conjugate pair and of course they are not
independent of each other.
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We now give an example

Example 1. Let’s transform ϕ(x) = 1
ax

a, x ≥ 0, a > 1. Let

s = ϕ′(x) = xa−1 ⇐⇒ x(s) = s
1

a−1

and

ϕ∗(s) = sx(s)− ϕ(x(s)) = s1+ 1
a−1 − 1

a
s

a
a−1 =

a− 1

a
s

a
a−1

We see that 1
ax

a transforms to 1
b s
b where b = a/(a−1). The numbers a and

b are also said to be conjugate to each other and they have the nice property

1

a
+

1

b
= 1.

Scaling properties of the Legendre transformation

Here follows a couple of scaling rules for the Legendre transform. We are only
considering functions on domains D that are scaling invariant. By this i mean
that D satisfy: x ∈ D =⇒ kx ∈ D, k > 0.

Lemma 2. (a) Let ϕ∗(s) be the Legendre transform of ϕ(x) defined on the
positive real axis. For k > 0 we have

ϕ(kx) 7→ ϕ∗(
s

k
) (10)

(b) Let ϕ∗(s) be the Legendre transform of ϕ(x) defined on the positive real axis.
For k > 0 we have

kϕ(x) 7→ kϕ∗(
s

k
)

Proof. (a) We have
ϕ∗(s) = sup

x∈R+

{sx− ϕ(x)}

and let
g(x) = ϕ(kx), k > 0.

Then

g∗(s) = sup
x∈R+

{sx− g(x)}

= sup
x∈R+

{sx− ϕ(kx)}

= sup
x∈R+

{ s
k
kx− ϕ(kx)}

= ϕ∗(
s

k
)
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Proof. (b) We let
g(x) = kϕ(x), k > 0 (11)

and
g′(x) = kϕ′(x). (12)

The transform of ϕ is

ϕ∗(s) = sx(s)− ϕ(x(s)) (13)

where x(s) is the inverse of ϕ′(x). Define

s = g′(x) = kϕ′(x) ⇐⇒ s

k
= ϕ′(x).

We see that the inverse of g′(x) is x(s/k), where x(·) is the inverse of ϕ′(·).
The transform of g is given by

g∗(s) = sx(s/k)− g(x(s/k)) =

= sx(s/k)− kf(x(s/k) =

= k
( s
k
x(s/k)− ϕ(x(s/k))

)
=

= kϕ∗(s/k).

(14)
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3 The hanging rope

Defining the problem

Consider an elastic rope hanging from a roof with a weight attached at the
bottom. The rope is of a fixed (undeformed) length L and a fixed mass m.
Further, the rope is under the influence of gravity giving rise to internal forces
that cause the rope to stretch. We would like to design this rope by shaping it
in such a way that its elongation is minimized. The only parameter that we can
adjust is the cross section area A(x). Lets set up a coordinate system aligning
the x-axis and the rope with each other. We denote the deformation of the rope
with y(x) and let the lower end of the rope be fixed at x = 0 (at all times).
What this means is that, in a deformed state the distance between the lower
end of the rope and the ”roof” will be L+ y(L).

Figure 4: Free body diagram of the undeformed rope, with a cut at x. The
bottom of the rope is fixed at x = 0

The internal force n(x) that arises due to the attached weight W and the
weight of the rope section that lies beneath x is given by

n(x) = W + g

ˆ x

0

ρ(x̄)A(x̄)dx̄ (15)

where g is the gravitational constant, ρ(x) is the density and A(x) is the cross
section area of the rope.

For elastic materials we have

n(x) = A(x)N̂(y′(x)) (16)
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where N̂ : (−1,∞) → R is the stress as a function of the strain, y′(x). Note
that when the strain y′ = −1 the rope elements are completely compressed.
Since we’re not considering compression at all we will limit the domain of N̂(·)
to the positive real axis. Negrón-Marerro makes five assumptions about N̂ in his
article [2], we’ll make almost the the same ones but with a small modification
to A3 (since we’re not considering compression). The assumptions are:

A1 N̂(·) is a strictly increasing differentiable function.

A2 N̂(ν)→∞ as ν →∞.

A3 N̂(0) = 0

It follows from A1 - A3 that N̂ : R+ → R+ has a differentiable inverse
ν̂ : R+ → R+. Further, we assume that this inverse satisfies the following
conditions:

A4 N 7→ N2ν̂′(N) is strictly increasing on R+.

A5 N2ν̂′(N)→∞ as N →∞.

The stress is given by

N̂(y′(x)) = A(x)−1
[
W + g

ˆ x

0

ρ(x̄)A(x̄)dx̄
]

(17)

We apply the inverse function of N̂ and get

y′(x) = ν̂
(
A(x)−1

[
W + g

ˆ x

0

ρ(x̄)A(x̄)dx̄
])

where ν̂ is the strain as a function of the stress. To get the total elongation we
integrate and get

y(L)− y(0) =

ˆ L

0

ν̂
(
A(x)−1

[
W + g

ˆ x

0

ρ(x̄)A(x̄)dx
])

dx (18)

where y(0) = 0.

We now want to state this as a problem of variational calculus. Let

B(x) :=
W

g
+

ˆ x

0

ρ(x̄)A(x̄)dx

B′(x) = ρ(x)A(x)

(19)

Equation (18) now reads

y(L) =

ˆ L

0

ν̂
(gρ(x)B(x)

B′(x)

)
dx =

ˆ L

0

ν̂
( gρ(x)

B′(x)/B(x)

)
dx

17



We notice that we have a derivative in the denominator, let w(x) = ln(B(x)) =⇒
w′(x) = B′(x)/B(x) and construct the functional

J [w] =

ˆ L

0

ν̂
(gρ(x)

w′(x)

)
dx. (20)

To get the boundary values of w we note that

w(x) = ln
(W
g

+

ˆ x

0

ρ(x̄)A(x̄)dx
)

from which it follows that

w(0) = ln
W

g

w(L) = ln(
W

g
+M)

where M is the total mass of the rope. We also note that

w′(x) =
ρ(x)A(x)

W/g +
´ x

0
ρ(x̄)A(x̄)dx

and demand that w′(x) > 0, ∀x ∈ [0, L], which is natural since we think of
both density and as positive quantities. Furthermore, we expect both the area
and density to be at least piecewise continuous. Let D1[0, L] denote the set of
continuous and piecewise continuously differentiable functions defined on the
interval [0, L]. Then the set of admissible functions X is then

X = {w ∈ D1[0, L]; w(0) = ln(W/g), w(L) = ln(W/g +M), w′(x) > 0 ∀x}

We can now state our variational problem P as

P : min
w∈X

J [w] (21)
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3.1 Solution

Based on ν̂, we define the new function

h(ξ) := ν̂(
1

ξ
). (22)

If our Lagrange function is L(x,w,w′), then

L(x,w,w′) = h(
w′

gρ
)

which is independent of w. The function h also has the following nice property:

Lemma 3. The assumption

A4. N 7→ N2ν̂′(N)is strictly increasing on N ∈ [0,∞)

is equivalent with the statement

h(ξ) = ν̂(
1

ξ
) is strictly convex.

Proof. Let us denote the function in A4 by

g(N) = N2ν̂′(N)

We have

h′(ξ) = − 1

ξ2
ν̂′(1/ξ) = −g

(
1/ξ)

We let

N =
1

ξ

and note that
{
N is decreasing with increasing ξ

g is strictly increasing
=⇒ g(1/ξ) is strictly decreasing with increasing ξ

⇐⇒ −g(1/ξ) = h′(ξ) is strictly increasing with ξ

which means that h(ξ) is strictly convex.

Since h is strictly convex we conclude from Theorem 1 that

J [w] =

ˆ L

0

h(
w′

ρg
)dx

is strictly convex. Theorem 2 then states that any admissible solution to the
Euler–Lagrange equation is the unique minimizer of the problem.
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The Euler–Lagrange equation is given by

Lw(x,w,w′)− d

dx
Lw′(x,w,w

′) = 0 ⇐⇒ d

dx

( 1

gρ(x)
h′(

w′(x)

gρ(x)
)
)

= 0.

We integrate and rearrange to get

h′(
w′(x)

gρ(x)
) = c1ρ(x)

for some constant c1. We want to invert this expression and the inverse of h′(ξ)
is given by d

dsh∗(s) = h′∗(s), where h∗(s) is the Legendre transform of h(ξ).

w′(x)

gρ(x)
= h′∗(c1ρ(x)) ⇐⇒ w′(x) = gρ(x)h′∗(c1ρ(x)) =⇒

w(x) =

ˆ x

0

gρ(x̄)h′∗(c1ρ(x̄))dx+ c2.

We have
w(0) = ln(W/g) =⇒ c2 = ln(W/g)

and
w(L) = ln(W/g +M) =⇒

ln(W/g +M) =

ˆ L

0

gρ(x)h′∗(c1ρ(x))dx+ ln(W/g) ⇐⇒

ln(1 +Mg/W ) =

ˆ L

0

gρ(x)h′∗(c1ρ(x))dx. (23)

This equation can be solved for c1 which can be seen quite easily when thinking
about ”what h′∗(s) does” from the perspective of the Legendre transform. This
function takes the slope of h(ξ) (that is s = h′(ξ)), as its input argument and
returns the ξ for which h′(ξ) = s. Not only do we know that this ξ is unique
due to the strict convexity of h, we also know that the range of h′∗(s) equals the
domain of h(ξ) which is the positive real line. We saw in Lemma 3 that h′ < 0
for all ξ.What this means is that there exists a c1 < 0 (and ρ > 0) such that
h′∗(c1ρ) = c2 for any c2 ∈ R+. Also note that ln(1 +Mg/W ) > 0. By using the
mean value theorem equation (23) can be solved for c1.

Optimal Area

We include the expression for the optimal area for convenience sake. We have

B(x) = ew(x) =
W

g
exp

{ˆ x

0

gρ(x̄)h′∗(c1ρ(x̄))dx̄
}

and the optimal area is given by

A(x) = B′(x)/ρ(x) = Wh′∗(c1ρ(x)) exp
{ˆ x

0

gρ(x̄)h′∗(c1ρ(x̄))dx̄
}
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3.2 Special Cases

Homogeneous pairs

We solve the problem for stress-strain relations of the form

ν̂(N) = A1N
p, A1 > 0, p > 0

using the Legendre transform. This relation satisfies all our assumptions A1 –
A5.

We saw in the previous section that

B(x) =
W

g
exp

{ˆ x

0

gρ(x̄)h′∗(c1ρ(x̄))dx̄
}

where c1 satisfies equation (23). All we have to do is to find h′∗. Based on ν̂,
we define

h(ξ) := ν̂(
1

ξ
) = A1ξ

−p, ξ > 0

We now compute the Legendre transform of h(ξ) with ρ = g = 1, then use the
scaling rule of the Legendre transform to get our sought function. Let

s := h′(ξ) = −pA1ξ
−(p+1), s < 0 ⇐⇒

ξ(s) =
( (−s)
pA1

)− 1
p+1

and

h∗(s) = sξ(s)− h(ξ(s)) =

= −(−s)
( (−s)
pA1

)− 1
p+1 −A1

( (−s)
pA1

)(− 1
p+1 )(−p)

=

= ... =

= −(−s) p
p+1A

1
p+1

1 (p−
p

p+1 + p
1

p+1 ) =

= −(−s) p
p+1A

1
p+1

1 p−
p

p+1 (1 + p)

And the derivative is

h′∗(s) = (−s)− 1
p+1A

1
p+1

1 p
1

p+1 , s < 0

We can now express the solution by using this h′∗ in the expression for B
above. Please note that there is no need for A1 and p to be constant on [0, L].
Recently it’s been more and more common to use functionally graded materials,
or FMGs, that are materials with variable properties such as elasticity and/or
density [1]. For example, in such material it could be of interest to optimize
over these properties instead of the area.
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Hooke’s Law, constant density

We now implement the previous solution for Hookes Law of elasticity. We want
to minimize

J [w] =

ˆ L

0

1

E

gρ

w′(x)
dx

subject to

w ∈ X = {w ∈ C[0, L]; w(0) = ln(W/g), w(L) = ln(W/g +M)}

where E is Young’s module of elasticity, M is the total mass of the rope, g is
the gravitational force per mass, ρ is the constant density and W is the weight
at the bottom of the rope. In the solution above we identify A1 = 1/E and
p = 1. That means h′∗(s) is given by

h′∗(s) = (−s)−1/2E−1/2

and

B(x) =
W

g
exp

{ˆ x

0

gρh′∗(c1ρ)dx̄
}

Note that
gρh′∗(c1ρ) = c2 = constant

so B(x) = W
g e

c2x. To find c2 we solve equation (23) and get

ln(1 +Mg/W ) =

ˆ L

0

gρh′∗(c1ρ)dx =

ˆ L

0

c2dx ⇐⇒

c2 =
ln(1 +Mg/W )

L

The area is given by A(x) = B′(x)/ρ

A(x) =
W

ρLg
ln(1 +Mg/W )(1 +Mg/W )x/L

which is the same result that Verma and Keller got in their original paper [6].
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4 The Rotating Load

We now consider a problem of a rotating rod with a weight attached in its outer
end. The rod has a natural length L, mass M and is fastened perpendicular
onto a rotating cylinder with radius r > 0. The distance between the center of
the cylinder and the outer edge of the rod is thus R0 = L + r when the rod is
undeformed, as seen in Figure 5.

Figure 5: The rod is fastened on a rotating cylinder with radius r, rotating with
an angular velocity of ω. The rod is perpendicular to the axis of rotation. We
set up the coordinates such that the outer edge of the undeformed rod is located
at x = 0 while the rod is fastened to the cylinder at x = L.

We will denote, as in the previous section, the displacement by y(x); however
we also introduce u(x) = x + y(x). This function takes positions x in the
undeformed rod and maps them to their deformed locations. We will have
slightly different boundary conditions on y(x) compared with the Hanging Rope.
This time we let x = L correspond to the point of contact between the cylinder
and the rod at all times. This means that y(L) = 0 and y(0) will be a negative
number. We let x = 0 correspond to the outer edge of the rod in its undeformed
state, but this time we set y(L) = 0. That is, the displacement is zero where
the rod is fastened to the cylinder. The distance between a point in the rod
and the point of rotation is given by R−u(x). Please note that these boundary
conditions make y(x) < 0 for x ∈ [0, L) when the rod is stretched. Specifically,
y(0) will be a negative number with the magnitude of the total elongation of
the rod. The reason I have chosen this coordinate system with these boundary
conditions is that it makes it straightforward to express the distance between
an element of the rod and the axis of rotation 1.

1This distance would have been R − x − y(L − x) if we would have used the boundary
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The centripetal force on a particle in circular motion is given by

F = ω2xm

where ω is the angular velocity, x the radius of the motion and m the mass of
the paricle. To find the normal force of the rod let us make a free body diagram.
We begin with slicing the rod up in N discrete elements, see Figure 6.

The bottom element is pulled outwards by the force from the weight, FW .
It’s also accelerating with acceleration a1, so the force inwards must be FW +F1,
where F1 = a1m1. The next element is pulled outward by this force FW +F1 and
is accelerated inwards by a2. The force inwards must therefore be FW +F1 +F2,
where F2 = a2m2. Proceeding in this fashion we see that element i is exposed
to a normal force

ni = FW +
i−1∑

j=1

Fj

which is stretching it and a force Fi = aimi accelerating it inward. The Fi : s
are given by

Fi = ω2(R− ui)mi

where ω is the angular velocity, R−ui the distance to the axis of rotation. The
mass is given by mi = ρiAi∆xi where ρi, Ai, ∆xi are the density, cross section
area and length of element i respectively. Putting it all together we get

ni = FW +
i−1∑

j=1

ω2(R− ui)ρiAi∆xi

and moving to the continuous case we get

n(x) = FW +

ˆ x

0

ω2(R− u(x̄))ρ(x̄)A(x̄)dx̄

For elastic materials the stress is given by

N̂(y′(x)) =
n(x)

A(x)
=

1

A(x)

(
FW +

ˆ x

0

ω2(R− u(x̄))ρ(x̄)A(x̄)dx̄
)
.

We will make the same assumptions A1 - A5 on the stress-strain relation as we
did in the first problem, see page 16. As before we denote the strain function
by ν̂(N). The strain is then given by

y′(x) = ν̂
[ 1

A(x)

(
FW +

ˆ x

0

ω2(R− u(x̄))ρ(x̄)A(x̄)dx̄
)]

(24)

The problem here is that u(x) = x + y(x) depends on A(x), which makes the
Lagrange function hard to handle. We will try to illustrate this in the following
section.

conditions y(0) = 0 and I didn’t want to work with the function y(L−x) when examining the
differential equations arising from this problem.
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Figure 6: Free body diagram of the elements of the undeformed rod.
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Large Deformations

We return to the strain given in equation (24), but this time writing u(x) =
x+ y(x):

y′(x) = ν̂
[ 1

A(x)

(
FW +

ˆ x

0

ω2(R− x̄− y(x̄))ρ(x̄)A(x̄)dx̄
)]
.

As we can see, we have the function y present in both the left and right hand
side, differentiated on the left side and in an integral on the right. Let’s define
the B-function again

B(x) := FW +

ˆ x

0

ω2(R− u(x̄))ρ(x̄)A(x̄)dx̄

B′(x) = ω2(R− u(x))ρ(x)A(x)

with

B(0) = FW
ˆ L

0

B′(x)

ω2(R− u(x))
dx = M

Remember that u(x) = x+ y(x), where y(x) =
´ x

0
L(x̄, B(x̄), B′(x̄))dx̄. We

can now see the recursive feature of the Lagrangian

L(x,B(x), B′(x)) = ν̂
(ω2(R− x−

´ x

0
L(x̄, B(x̄), B′(x̄))d¯̄x)ρ(x)B(x)

B′(x)

)

If we add a variation εv(x) to B(x) and B′(x), then differentiate with respect
to ε, we would start an infinite regress.
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Small Deformations

We consider the case of small deformations where y(x)� x. We simply approx-
imate u(x) = x+ y(x) with x. Again we introduce the help function

B(x) := FW +

ˆ x

0

ω2(R− x̄)ρ(x̄)A(x̄)dx̄

B′(x) = ω2(R− x)ρ(x)A(x)

and can now write

y′(x) = ν̂
[ω2(R− x)ρ(x)B(x)

B′(x)

]
= ν̂

[ω2(R− x)ρ(x)

B′(x)/B(x)

]

Note that

B(0) = FW
ˆ L

0

B′(x)/(ω2(R− x))dx = M
(25)

where M is the total mass of the rod. Again we introduce

w(x) := lnB(x)

w′(x) = B′(x)/B(x)

and define our Lagrangian

L(x,w(x), w′(x)) := ν̂
[ω2(R− x)ρ(x)

w′(x)

]

We can now state the optimization problem on standard form

min
w∈X

ˆ L

0

L(x,w(x), w′(x))dx (26)

where X is the set of all admissible functions, meaning they satisfy equation
(25), and w′(x) > 0 on x ∈ [0, L]. We still assume A1 - A5, stated in the first
problem. It follows that L is convex in w′ and that any admissible function
satisfying the Euler-Lagrange equation is the unique solution for this problem.

We would like to solve this for Hooks law, ν̂(N(x)) = N(x)
E(x) , where E(x) is

Youngs modulus of elasticity.

Solution

Define

h(ξ) :=
1

ξ

Our Lagrangian can now be written as

L(x,w(x), w′(x)) = h(
w′(x)

k(x)
)
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where k(x) = ω2(R− x)ρ(x)/E(x). We’ve seen that the Legendre transform of
h is given by

h∗(s) = −2(−s)1/2, s < 0

and
h′∗(s) = −(−s)−1/2

The Euler-Lagrange equation is given by

Lw −
d

dx
Lw′ = 0 ⇐⇒ d

dx

( 1

k(x)
h′(

w′(x)

k(x)
)
)

= 0

Integrating and rearranging we get

h′(
w′(x)

k(x)
) = −ck(x)

for some constant c > 0. The inverse of h′ is given by h′∗(s) = −(−s)−1/2. We
apply this and get

w′(x)

k(x)
= −

(
ck(x)

)−1/2

⇐⇒ w′(x) = c1k(x)1/2

for some constant c1 = −c−1/2 < 0.

w(x) = c1

ˆ x

0

k(x)1/2 + c2

We have B(x) = ew(x), and

B(x) = exp
{
c1

ˆ x

0

k(x̄)1/2dx̄+ c2

}

We use the conditions from equation (25), the first one stating B(0) = ec2 =
FW =⇒ c2 = lnFW . The second condition implies

ˆ L

0

B′(x)/(ω2(R− x))dx = M ⇐⇒

⇐⇒
ˆ L

0

c1FW
ω2

√
ρ(x)

(R− x)E(x)
exp

{
c1

ˆ x

0

√
(R− x̄)ρ(x̄)/E(x̄)dx̄

}
dx = M

which needs to be solved numerically. The optimal area is given by

A(x) =
B′(x)

ω2(R− x)ρ(x)
=

B′(x)

k(x)E(x)
=

= FW k(x)−1/2E(x)−1 exp
{
c1

ˆ x

0

k(x̄)1/2dx̄
}
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Let’s calculate the strain, given by equation (24), but with u(x) ≈ x. Note
that ω2(R− x)ρ(x) = E(x)k(x).

y′(x) =
1

E(x)A(x)

[
FW +

ˆ x

0

E(x̄)k(x̄)A(x̄)dx
]

=

= F−1
W k(x)1/2 exp

{
−c1
ˆ x

0

k(x̄)1/2dx̄
}[
FW+

ˆ x

0

FW k(x̄)1/2 exp
{
c1

ˆ x̄

0

k(¯̄x)1/2d¯̄x
}

dx̄
]

=

(intgrate last term, cancel FW )

= k1/2 exp
{
− c1

ˆ x

0

k(x̄)1/2dx̄
}[

1 +
1

c1
exp

{
c1

ˆ x

0

k(x̄)1/2dx̄
}]

=

= k(x)1/2
(

exp
{
− c1

ˆ x

0

k(x̄)1/2dx̄
}

+
1

c1

)
= y′(x)

which integrate nicely to

y(x) = − 1

c1
exp

{
− c1

ˆ x

0

k(x̄)1/2dx̄
}

+
1

c1

ˆ x

0

k(x̄)1/2dx̄+ c2

where c2 satisfies the boundary condition y(L) = 0.
I’ve provided a plot of A(x) for three different values of ω. The other pa-

rameters were set to ρ = 1 ,m = 1 , ω ∈ {1, 10, 100} , FW = 10ω ,L = 10 , R =
L+ r = 10, 5, E = 1.

Figure 7: Solutions for three different values of ω.
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Future work

What if we instead solve the problem for

y′(x) = ν̂
[ 1

A(x)

(
FW +

ˆ x

0

a(x̄)ρ(x̄)A(x̄)dx̄
)]

(27)

where a(x) > 0 is an arbitrary acceleration? This problem is equivalent with
the hanging rope so we have in fact already solved it. However, we have new
boundary conditions this time around in need of some special attention. Let us
introduce the function k(x) = a(x)ρ(x) > 0 and write

B(x) = FW +

ˆ x

0

k(x̄)A(x̄)dx̄

B′(x) = k(x)A(x)

where the boundary conditions are given by

B(0) = FW (28)
ˆ L

0

B′(x)/a(x)dx = M (29)

where FW is some positive number that might depend on the solution and M
is the total mass of the rope. We now have

y′(x) = ν̂
[k(x)B(x)

B′(x)

]

Again, we introduce the help function

w(x) = lnB(x)

w′(x) = B′(x)/B(x)

and construct the Lagrangian

L(x,w,w′) = ν̂
[ k(x)

w′(x)

]

The Lagrangian is convex in w′ and so any solution to the Euler-Lagrange
equation is a unique solution to the minimization problem

min
w∈X

ˆ L

0

L(x,w,w′)dx

where X is the set of admissible functions.
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If we follow the solution on page 18 we see that the optimal area is given by

A(x) = FWh
′
∗(c1k(x)) exp

{ˆ x

0

k(x̄)h′∗(c1k(x̄)dx̄
}

where h∗ is the Legendre transform of h(ξ) = ν̂(1/ξ) and c1 is some integration
constant. We now have

y′(x) = ν̂
[ 1

A(x)
(FW +

ˆ x

0

k(x̄)A(x̄)dx̄)
]

(30)

where

k(x)A(x) = FW k(x)h′∗(c1k(x)) exp
{ ˆ x

0

k(x̄)h′∗(c1k(x̄))dx̄
}
.

This function can be easily integrated to

ˆ x

0

k(x̄)A(x̄)dx̄ = FW exp
{ˆ x

0

k(x̄)h′∗(c1k(x̄))dx̄
}

+ c2.

We can now write equation (30) as

y′(x) = ν̂
[FW (1 + exp

{
´ x

0
k(x̄)h′∗(c1k(x̄))dx̄

}
) + c2

A(x)

]

Simplifying this we get (with a new value for c2)

y′(x) = ν̂
[ 1

h′∗(c1k(x))

(
1 + c2 exp

{
−
ˆ x

0

k(x̄)h′∗(c1k(x̄)dx̄
})]

If we now let k(x) = ω2(R − x − y(x))ρ(x) we get a third order ordinary
differential equation for y(x). This will give rise to three more integration con-
stants giving a total of 5 unknowns. We have given two boundary conditions in
equations (28) and (29), furthermore we have an additional boundary condition
y(L) = 0. This leaves us wanting for two more equations, unfortunately this
problem has not yet been solved.

31



References

[1] Isaac Harari Bingbing San, Haim Waisman. Analytical and Numerical Shape
Optimization of a Class of Structures under Mass Constraints and Self-
Weight. American Society of Civil Engingeers, 2019. https://doi.org/

10.1061/(ASCE)EM.1943-7889.0001693/.

[2] Pablo V. Negrón-Marrero. The Hanging Rope of Minimum Elongation for a
Nonlinear Stress-Strain Relation, Journal of Elasticity. Journal of Elasticity,
Kluwer Academic Publishers 71: pp. 133–155, 2003.

[3] Niels Chr. Overgaard. Designing for Minimum Elongation. Mathematics
Magazine, 91:1, pp. 52–61, 2018.

[4] Susan R. McKay R. K. P. Zia, Edward F. Redish. Making sense of the
Legendre transform. American Journal of Physics 77, pp. 614, 2009. https:
//doi.org/10.1119/1.3119512.

[5] John L. Troutman. Variational Calculus and Optimal Control: Optimization
with Elementary Convexity, 2nd Edition. Undergraduate Texts in Mathe-
matics, Springer Verlag, 1996.

[6] Ghasi R. Verma and Joseph B. Keller. Hanging Rope of Minimum Elonga-
tion. SIAM Review, Vol. 26, No 4, pp. 569–571, 1984.

32







Master’s Theses in Mathematical Sciences 2020:E21
ISSN 1404-6342

LUTFMA-3405-2020

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


