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Abstract
The search for prior art documents is an important, but time-consuming task for
the patent attorney. Today, these searches are carried out using keywords, which
is problematic since inventions often are described using abstract and general
terms in the patent applications. In addition, synonyms must be taken into ac-
count and formulated manually. This means a risk of relevant documents being
overlooked.

In this Master’s thesis, we investigated the use of natural language processing
(NLP) on a huge database of patent applications. The aim was to create a tool
that can find similar documents by comparing the title and abstract of a provided
document with existing documents in the database, thus removing the need to
manually extract keywords.

We investigated several machine learning models that transform text into nu-
merical representations, and applied them to the documents in the database.
These models include a number of recent, pre-trained, word embeddings and
sentence embeddings. We also developed a web application, which allows the
user to perform a search using patent application number or a short text de-
scribing an invention. Cosine similarity was used to compare the numerical rep-
resentations of documents. We also investigated the use of clustering as a way to
limit the search domain and speed up the process.

Patent associates helped us to evaluate the di�erent models on a set of test
queries. Among the models, Sentence-BERT (SBERT) outperformed the others,
reaching a mean average precision (MAP) of 0.7655 at finding relevant or very
relevant documents.

Keywords: natural language processing, patent search, document similarity, word em-
beddings, sentence embeddings, machine learning



2



Acknowledgements

There are a couple of persons we want to acknowledge for their contributions to this Master’s
thesis. First, we want to thank our supervisors at AWA and Mindified, Anders Fredriksson
and Henrik Benckert, both for giving us the opportunity, and for their support throughout
the project. A special thank you goes to Cathrin Johansson at AWA, for all the energy and
encouragement she has given us.

Then, we want to thank Pierre Nugues, our supervisor at the Faculty of Engineering at Lund
University. He has guided us through the process and provided us with feedback and lots of
ideas.

Also, a big thank you to the trainees at AWA for taking the time to evaluate the models.
Without them it would not have been possible to complete the project.

Lastly, we want to thank everyone else who in one way or another has been involved in this
project. Among those are the the people at Mindified, Henning Petzka at the Department of
Mathematics and our families and friends.

3



4



Glossary

Here we summarize the most commonly used abbreviations.

bi-gram A sequence of two tokens, for example two characters or two words
biLM Bidirectional language model
DAN Deep averaging network
EPO European Patent O�ce
LM Language model

LSTM Long short term memory, a neural network architecture
MAP Mean average precision

n-gram A sequence of n tokens
NLP Natural language processing
RNN Recurrent neural network
STS Semantic textual similarity. A collection of datasets used to benchmark NLP

models on sentence similarity
SQL Structured query language. A language used to access or manipulate data in a

relational database
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Chapter 1

Introduction

Ahard and time-consuming part of the patent attorney’s work is to domanual patent searches.
We have investigated if this is an area where the use of artificial intelligence (AI), specifically
natural language processing (NLP), can be of use. In this chapter we present the problem in
more detail together with our objectives. It also includes what resources we had available and
what limitations we had to make.

1.1 The Problem

Conducting patent searches is a significant part of a patent attorneys work. The search for
prior art, i.e. evidence of an invention already being publicly known, is relevant both when
deciding if something is patentable, or if a party is alleged for patent infringement. In the
latter case, a common strategy is to lodge a revocation action against the patent in question
to have it invalidated. This can be achieved by finding prior art to deprive the patent of its
novelty.

Manually searching for these prior art documents is a time-consuming project, while the risk
of relevant documents being overlooked is substantial. The reason is primarily that the search
today is limited to the use of keywords, which is a problem since patents often use abstract
and general terms to describe inventions. In addition, synonyms must be taken into account
and formulatedmanually. Therefore, improving the search process, for example with the help
of AI so that it can be carried out on entire pieces of text, would be desirable.

At our disposal we have access to a large database of world wide patent applications. This
amounts to about 55 million documents, written in English. Given the large size of the
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1. Introduction

database, the problem to be solved is to find a machine learning algorithm that can iden-
tify similar documents in reasonable time.

1.2 Previous Works

Natural language processing has previously been used on patent datasets to some extent.
Some systems using full text patent documents and others only abstracts, but as far as we
know, not to the extent of using a largeworldwide database covering all technical areas.

In a report by Helmers et al. (2019), full text patent documents are compared in order to
find inventions that are similar to each other. Good results were achieved by using so called
word embeddings (further described in Section 2.1.2) on a limited dataset of documents in
the patent classMedical or veterinary science and hygiene. As a future work, the authors suggest
using a larger dataset with documents from multiple patent classes.

A similar work was made by Andrabi (2015) in his Master’s thesis. The objective was to
create an intelligent search engine for internal documents describing inventions at a large
company. These documents contained a thorough description of the inventions, and are
therefore similar to patents. Already available software was used to index the documents and
compute similarities, but yet again the amount of data was limited.

1.3 Objectives

The aim of this thesis is to explore the possibility of using machine intelligence to speed up
and improve the search for prior art documents, and can be seen as a “proof of concept”. The
intention is to investigate and implement di�erent NLP models in order to be able to find
similar patents, and to compare how well the di�erent models perform. We also hope to
conclude whether abstracts and titles provide su�cient information for this purpose.

1.4 Structure of a Patent

To understand more about the problem to be solved, it is important to have some basic
knowledge about the structure of a patent application. There are many parts of a patent
application, of which the most obvious are title, inventor and filing date. There is usually an
abstract consisting of a few lines, describing the invention in short. Sometimes it is just a
summary of the first few claims.

The claims are the part of the application which describe the scope of the protection. A
patent can have several claims, where each one describes a certain part or feature of the
invention. They are structured so that the later claims go more and more into detail and
refer to earlier claims. Therefore, the first few claims usually give a general description of the
invention.

10



1.4 Structure of a Patent

Furthermore, the patent application contains a detailed description and background which de-
scribes the problem to be solved and how the invention does it. The application usually has
several figures of the invention. An example of the first page of a European patent application
is shown in Figure 1.1.

Figure 1.1: The first page of a European patent application. Biblio-
graphic information like filing date, application number, inventor,
etc. are presented at the top of the page. This is followed by the title
of the invention, and a short abstract describing it. A figure of the
invention can be seen at the bottom of the application.

11



1. Introduction

Table 1.1: Statistics of the EPO DOCDB database that we use as
corpus. Only documents with an English abstract are considered.

Number of documents 55 893 936
Average abstract length 143 words
Number of unique words 378 571

1.5 Resources

As corpus, we use a database from the European Patent O�ce (EPO) called EPO World-
wide Bibliographic database or EPO DOCDB for short.1 It contains bibliographic data (filing
date, inventors etc.) as well as abstracts, titles and citations, but no figures or full text such
as claims, description or background. Some statistics of the corpus are presented in Table
1.1.

The large amount of data called for large computational resources. For this reason Mindi-
fied AB provided us with a computer specially built for the purpose of machine learning. It
had a 24 core AMD Ryzen Threadripper CPU, an EVGA GeForce RTX 2080 Ti 11GB GPU
and 64GB of RAM. This was used to calculate the embeddings as well as hosting the web
application.

In hope of speeding up the process even more we requested access to Aurora, a computing
cluster at LUNARC, the center for scientific and technical computing at Lund University.
This was used for some computations but due to high demands of the computing nodes only
to a limited amount.

1.6 Limitations

Only the titles and abstracts of the patent applications are considered in this thesis. This
is due to a limitation in the EPO DOCDB database, which does not contain claims, back-
ground or description. Also, only applications that have an abstract written in English are
considered.

For the model evaluations, we used a limited dataset because of computational reasons. This
dataset consists of all the European (EP) patent applications available in the database, amount-
ing to about 1.8 million documents. Although this limits the amount of documents, the
spread among technical areas should be similar.

Since the aim was to develop a proof of concept, we limited ourselves to only investigate
pre-trained models. Training our own model would require large computational resources, a
lot of time and a training set which needs to be constructed by hand.

1https://www.epo.org/searching-for-patents/data/bulk-data-sets/docdb.html
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Chapter 2

Theory

In this chapter, we present the underlying theory behind numerical representation of text
and the di�erent models that we investigated for this purpose. We also go into detail of how
the similarity between vectors can be calculated, and introduce an evaluation metric that
can be used to compare the results between the models. We also present some theory about
clustering.

2.1 Numerical Representation of Documents

Away to compare documents is to first encode the text into numerical vector representations.
These vectors can then be compared using mathematical methods. An important part of this
thesis is to find the best way to make this vectorization.

The most simple way to vectorize text is one hot encoding. This is a binary representation,
where each index corresponds to a word in the vocabulary. A vector representing a document
has the value 1 at the indices of the words that are present and 0 for those that are not. There
are however more advanced methods. In the following sections, we will explain a number of
di�erent ways to do the encoding, ranging from models that simply calculate the frequency
of words, to more advanced models that can capture semantic relationships and are context
aware.

13



2. Theory

2.1.1 TF-IDF

The Term Frequency (TF) representation generates a numerical vector for every document.
Each word w in the vocabulary of the entire corpus is given an unique index in the vector,
much like the one-hot encoding. The value at each index of the vector is then assigned the
term frequency according to

TF(w) =
occurrences ofw in document

number of words in the document
(2.1)

The problem with using TF for document comparison is that some words are very likely
to occur in many of the documents. The word invention for example, occurs in most of the
patent abstracts, and does not provide a lot of information about the actual content of the
document. A way to solve this is by introducing the inverse document frequency, IDF. The
inverse document frequency of a word w is defined as

IDF(w) = log
N
nw
, (2.2)

where N is the total number of documents in the corpus and nw is the number of documents
containing the word w. This means that the IDF is low for words that have a high frequency
throughout the corpus, and even zero for words that occur in all documents. Words that only
occur in a few documents have a high IDF.

By combining TF and IDF, the Term Frequency-Inverse Document Frequency (TF-IDF) is ob-
tained. The mathematical formula for TF-IDF is

TF-IDF(w) = TF(w) · IDF(w). (2.3)

This means that TF-IDF outputs a vector where words that should be significant to the doc-
ument, i.e. having a large frequency in the document but a low frequency in the corpus, get
large values. Words that are common in the corpus get small values, while words that are
missing from the document or occur in all documents are set to zero.

2.1.2 Word embeddings

Word embeddings are a type of models that represent individual words as real-valued vectors
in a pre-defined vector space. They are designed to quantify and categorize semantic relations
between similar words. For example, it finds that the relation between the word embeddings
of man and woman, is very similar as for king and queen.

Word embeddings provide a dense vector representation of words of a fixed length. The out-
put dimension is usually in the region of a few hundred. This can be compared to the hun-
dreds of thousands or more dimensions required by TF-IDF, depending of the corpus.

14



2.1 Numerical Representation of Documents

The simplest word embeddings can be seen as just a look up table of words in a vocabulary,
where all words have been assigned a pre-determined vector representation. An example of
this is the GloVe embeddings proposed by Pennington et al. (2014). The model was built by
the use of a word-to-word co-occurrence matrix, containing probabilities of how likely it is
for two words to occur in the same context. It works with the non-zero entries of this matrix
and concludes whether or not two words have some linguistic or semantic similarity based
on the statistics.

Since the word embedding models output a vector for every word, they need to be combined
in some way, in order to get a representation for an entire document. One simple way of
doing this is by averaging over the embeddings of all the words in a document.

A problem in NLP, and for anyone who learns a new language for that matter, is that a word
can have completely di�erent meaning depending on the context. For instance, the word
book could mean the thing you read or the thing you do when you have decided to take that
trip to Mallorca. This is called polysemy of words, and is something some models are able to
capture.

There are other ways of building word embedding models than to use the co-occurrences
statistics, for instance by making use of neural networks. And there are many di�erent pre-
trained word embedding models available. They can be grouped into two types of models.
The first are the static models, that work as look up tables, as mentioned above. Each word
gets the same embedding, regardless of where in a sentence it appears. Some examples of
static embedding models are GloVe and fastText. These word embeddings have a reasonably
small dimension and are fast to compute. The second type of word embeddings are more
advanced, and produce di�erent embeddings for a word depending on the other words that
surround it in a sentence. This is called context awareness, and should make the models able
to capture polysemy. Some examples of such models are Flair and ELMo. This type of model
is however computationally heavier.

Table 2.1 shows a schema over the considered embedding models with their properties. For
comparison, TF-IDF is also included, although it is not technically an embedding model.
Two sentence embedding models that are investigated below are also included in the table.
All embedding models will be presented thoroughly in the following sections, and later im-
plemented to evaluate their performance on the patent similarity task.

Table 2.1: Properties of di�erent embedding models.

Model Based on
Output

dimension
Word

similarity
Unseen
words

Context
sensitive

Type of
embedding

TF-IDF Word ”∞” No N/A No N/A
GloVe Word 25–300 Yes No No Word
fastText Sub-word 300 Yes Yes No Word
Flair Character 2148 Yes Yes Yes Word
ELMo Character 1536 Yes Yes Yes Word
USE Sub-word 512 Yes Yes No Sentence

SBERT Sub-word 768 Yes Yes Yes Sentence

15



2. Theory

The column Based on in Table 2.1 shows how the models treat words. It could be as complete
words, sub-words where the models splits the words into smaller parts, or on a character
level. The Output dimension is the length of the vector that the model outputs. For TF-IDF
we put “∞” because it is the same as the number of unique words, which could be however
large as possible. GloVe can have di�erent dimensions depending on the chosen model. The
Word similaritymeans whether or not the model returns similar vectors for similar words. For
instance, the embeddings for the words apple and pear would be more similar to each other
than the words apple and car. By Unseen wordswemean if the model can calculate embeddings
from words it has not seen during training. This is not applicable for TF-IDF since it is not
actually trained, but just applied on the whole corpus. The last two columns are simply if the
model is context sensitive or not, and if it’s a word or sentence embedding.

2.1.3 fastText

FastText is a word embedding proposed by Bojanowski et al. (2016). As the name suggest
it was created with fast text classification in mind. In their paper, they recognize the fact
that models based on deep neural networks have become increasingly popular, because of
their high performance on a variety of NLP tasks. However, they tend to be very heavy in
terms of both memory and computational resources, as well as taking long time to train and
evaluate. When dealing with small data sets, this might not be a problem, but since we are
dealing with a huge data set of over 55 million documents, this is certainly a factor to take
into account.

The proposed model, fastText, is a subword-based linear model. In contrast the models men-
tioned in the following sections, fastText contains predetermined embeddings for a set of
words. However it is not limited to these. It is based on a skipgram model proposed by
Mikolov et al. (2013) which is built on a vocabulary of words. It uses a log-linear classifier
to maximize the classification of surrounding words in a sentence. What this method fails
to do is capture the internal structures of words. What Bojanowski et al. (2016) propose is
a modified scoring function which takes this into account. It relies on the use of character
n-grams in the representation of words. What this means is that to get the representation of a
word, the models splits the word into so called character n-grams. N-grams within language
modeling is a contiguous sequence of n long items from a single sample. As an example, a
tri-gram of the word patent as Bojanowski describes would be

< pa, pat, ate, ten, ent, nt >,

where the padding characters < and > are added to mark the beginning and end of the words.
This is the reason why the model is said to be subword-based. The representation of this
word would then be constructed as the sum over the vector representations of its n-grams,
as well as the word itself.

The use of n-grams also allows for the method to output representations of words not already
in the vocabulary, since new words can be constructed of multiple n-grams. All vectors from
the fastText model have a length of 300.
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2.1 Numerical Representation of Documents

Figure 2.1: Visualization of the extraction of the word Washington.
Image from Akbik et al. (2018).

The reason for using fastText would mainly be the speed and relatively low memory require-
ment. Compared to other low-memory, low-computational power models such as GloVe
(Pennington et al., 2014), fastText can be used on out-of-vocabulary words.

2.1.4 Flair

Another recent word embedding is Flair embeddings proposed by Akbik et al. (2018). It is of
the type character basedmeaning it models words as a sequence of characters, as well as being
context-sensitive, meaning it can capture the polysemy of words. At the time of publication
the authors claim to have outperformed previous state-of-the-art works on several classic
sequence labeling tasks, i.e. the task of labeling words in a text with linguistic tags.

The architecture consists of a bidirectional character-level neural language model. It uses
a forward-backward LSTM recurrent neural network. The sentences are passed through
this network as sequences of characters and for each word a contextual string embedding
is retrieved. This embedding can then be used in any downstream NLP task (Akbik et al.,
2018).

Figure 2.1 visualizes how the model extracts the representation of the wordWashington from
a sentence. The forward feature extraction is shown in red. The output from each hidden
state is propagated forwards from the beginning of the sentence all the way up to the end
of the wordWashington. Similarly the backwards language model propagates its information
from the hidden state at the end of the sentence up to the first hidden state of the word. The
two outputs are then concatenated to receive the final embedding of the word.

Akbik et al. (2018) also suggest that combining di�erent types of embeddings by concate-
nating them might prove to give even better results. Combining the Flair embeddings with
GloVe embeddings, they managed to increase the F1 score on a name entity recognition (NER)
task from 91.97 to 93.07. The reason behind this as Akbik et al. (2018) suggest, is that the
classic word embeddings capture word-level semantics that complement the character-level
features captured by their proposed Flair embeddings.
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2. Theory

Following the recommendations of Akbik et al. (2018), the model we chose to implement is
the proposed forward and backward Flair embeddings together with GloVe as the classical
word-based embedding.

2.1.5 ELMo

Anothermethodwith similar characteristics as Flair is ELMo, proposed by Peters et al. (2018).
Much like Flair it is a context sensitive character basedmodel based on a bidirectional LSTM,
i.e. both a forward language model (LM) and a backward LM. They compute the probability of
tokens given the history and future respectively. However, unlike Flair andmany other previ-
ous works ELMo does not only use the top LSTM layer. Instead it learns a linear combination
of all the internal layers of the bidirectional language model (biLM).

The output vector of the final model presented by Peters et al. (2018) consists of three con-
catenated parts, one corresponding to a context insensitive token representation (i.e. a simple
word representation), followed by two LSTM layers. Peters et al. (2018) also suggest that im-
provements can be made by experimenting with settings, such as adding a simple pre-trained
word embedding like GloVe (Pennington et al., 2014) or adding dropout and/or layer nor-
malization.

2.1.6 Sentence embeddings

So far, we have only presented models that create embeddings for words. Some have a static
representation for each word, while others are context aware and create di�erent embeddings
for a word depending on the words surrounding it. In order to get a numerical representation
for an entire document, we explained that an average of the word embeddings for all the
words in the document could be used.

This approach can be problematic for static word embeddings, since information about the
sentence structure is lost. Two sentences containing the same words, but in di�erent order,
will get the same numerical representation. For example, the sentences

I will get a cookie, but he will not
He will get a cookie, but I will not

have completely di�erentmeaning, butwill get the same numerical representationwhen their
word embeddings are averaged. Context-aware models do not su�er from this problem, but
the question of which way to represent sentences or documents has been raised. This is still
an active research area.

In the last few years, newways of representing sentences or entire documents have been devel-
oped. For instance, several di�erent sentence embedding models have been developed. Unlike
word embeddings, they take entire sentences or paragraphs as input, process them through a
neural network, and output one embedding for an entire sentence. For this thesis we consider
two recent models, Sentence-BERT (SBERT) and Universal Sentence Encoder (USE).

18



2.1 Numerical Representation of Documents

2.1.7 BERT-based models

BERT

BERT stands for Bidirectional Encoder Representations from Transformers and was introduced
by Devlin et al. (2019). It is a method to pre-train a single language model that later can
be used for multiple di�erent downstream tasks, a processed called transfer learning. As the
name suggests, BERT learns bidirectional representations of text, meaning that the method
is context aware. The architecture behind BERT is the Transformer. This is an architecture
that has become a popular alternative to RNN-based models such as the LSTM, because
of its ability of process sequences in parallel. For further reading about the Transformer
architecture, we refer to Vaswani et al. (2017).

BERT uses a trained WordPiece model to create embeddings for all the words in a sentence.
TheWordPiece model breaks down longer words into subwords, and is therefore also able to
handle unseen words. This collection of word and subword embeddings – the token embed-
dings – are then used as input to the transformer network, but must first be combined with
two other types of embeddings.

Unlike RNNs and LSTMs, the transformer architecture has a non-sequential structure. In
order to capture information about sentence structure, a position embedding is needed for
each token in the input. BERT is also able to take two sentences as input, which can be useful
for some tasks. Therefore, it also has segment embeddings that identify to which sentence
each token belongs. This ability was however not used by us.

The token embedding, position embedding and segment embedding are added for each to-
ken. This becomes the input to the transformer network. See Figure 2.2 for a visualiza-
tion.

Sentence-BERT

Sentence-BERT (SBERT) by Reimers and Gurevych (2019) is a model based on BERT that
produces sentence embeddings. It adds a pooling layer to the end of the BERT network in
order to get sentence embeddings of fixed size. It is then fine-tuned to a specific task.

Several versions of the SBERT model exist, but the one selected for this thesis uses mean
pooling, which means taking the mean of all output vectors from BERT. It is first trained on
two natural language inference (NLI) datasets1. The model is then fine-tuned on the semantic
textual similarity (STS) benchmark2, with the objective to minimize the mean-squared-error
loss function of the cosine similarity between sentences. This should make the model partic-
ularly suitable for sentence comparison. The architecture of this SBERT model can bee seen
in Figure 2.3.

1https://github.com/UKPLab/sentence-transformers/blob/master/docs/
pretrained-models/nli-models.md

2http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

19

https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/nli-models.md
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/nli-models.md
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark


2. Theory

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input
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Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-
rectional cross attention between two sentences.

For each task, we simply plug in the task-
specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-∅ pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C ∈ RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W ∈
RK×H , whereK is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW T )).

7For example, the BERT SQuAD model can be trained in
around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

Figure 2.2: The input to the transformer network used in BERT. To-
ken embeddings are created from aWordPiece model, and are words
or subwords. Position embeddings capture information about the
sentence structure. Segment embeddings determine which sentence
each token belongs to, in case two sentences are used as input to
the model. The token embeddings, sentence embeddings and posi-
tion embeddings are added, and then become the input to the trans-
former network. Image from Devlin et al. (2019).

Sentence A Sentence B 

BERT BERT 

u v 

pooling pooling 

(u, v, |u-v|) 

Softmax classifier 

Figure 1: SBERT architecture with classification ob-
jective function, e.g., for fine-tuning on SNLI dataset.
The two BERT networks have tied weights (siamese
network structure).

computed candidate embeddings using attention.
This idea works for finding the highest scoring
sentence in a larger collection. However, poly-
encoders have the drawback that the score function
is not symmetric and the computational overhead
is too large for use-cases like clustering, which
would require O(n2) score computations.

Previous neural sentence embedding methods
started the training from a random initialization.
In this publication, we use the pre-trained BERT
and RoBERTa network and only fine-tune it to
yield useful sentence embeddings. This reduces
significantly the needed training time: SBERT can
be tuned in less than 20 minutes, while yielding
better results than comparable sentence embed-
ding methods.

3 Model

SBERT adds a pooling operation to the output
of BERT / RoBERTa to derive a fixed sized sen-
tence embedding. We experiment with three pool-
ing strategies: Using the output of the CLS-token,
computing the mean of all output vectors (MEAN-
strategy), and computing a max-over-time of the
output vectors (MAX-strategy). The default config-
uration is MEAN.

In order to fine-tune BERT / RoBERTa, we cre-
ate siamese and triplet networks (Schroff et al.,
2015) to update the weights such that the produced
sentence embeddings are semantically meaningful
and can be compared with cosine-similarity.

The network structure depends on the available

Sentence A Sentence B 

BERT BERT 

u v 

pooling pooling 

cosine-sim(u, v) 

-1 … 1 

Figure 2: SBERT architecture at inference, for exam-
ple, to compute similarity scores. This architecture is
also used with the regression objective function.

training data. We experiment with the following
structures and objective functions.

Classification Objective Function. We con-
catenate the sentence embeddings u and v with
the element-wise difference |u−v| and multiply it
with the trainable weight Wt ∈ R3n×k:

o = softmax(Wt(u, v, |u− v|))

where n is the dimension of the sentence em-
beddings and k the number of labels. We optimize
cross-entropy loss. This structure is depicted in
Figure 1.

Regression Objective Function. The cosine-
similarity between the two sentence embeddings
u and v is computed (Figure 2). We use mean-
squared-error loss as the objective function.

Triplet Objective Function. Given an anchor
sentence a, a positive sentence p, and a negative
sentence n, triplet loss tunes the network such that
the distance between a and p is smaller than the
distance between a and n. Mathematically, we
minimize the following loss function:

max(||sa − sp|| − ||sa − sn||+ ε, 0)

with sx the sentence embedding for a/n/p, || · ||
a distance metric and margin ε. Margin ε ensures
that sp is at least ε closer to sa than sn. As metric
we use Euclidean distance and we set ε = 1 in our
experiments.

3.1 Training Details
We train SBERT on the combination of the SNLI
(Bowman et al., 2015) and the Multi-Genre NLI

Figure 2.3: The SBERT architecture. The sentences A and B are sent
through a BERT network followed by a pooling layer, and output the
sentence embeddings u and v respectively. The embeddings can then be
compared, for example using cosine similarity. Image from Reimers and
Gurevych (2019).
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2.1 Numerical Representation of Documents

Figure 2.4: A two-layer deep averaging network. The input to the
network is the word embeddings for the string Predator is a master-
piece. The word embeddings are averaged and then passed to the two
hidden, nonlinear layers. Image from Iyyer et al. (2015).

2.1.8 Universal sentence encoder

The universal sentence encoder (USE) by Cer et al. (2018) is another method for producing
sentence embeddings. It has been shown to perform well several transfer learning tasks, for
example semantic textual similarity (STS).

USE is available in two di�erent versions: one transformer-based and one using a deep aver-
aging network (DAN). The authors claim that the DAN has “slightly reduced accuracy”, but
requires noticeably less computing resources. The transformer-based version does in fact
have complexity O(n2) in sentence length, while the DAN is O(n). The memory usage is also
O(n2) for the transformer model, but constant for the DAN. For these reasons, we choose to
only consider the DAN.

The deep averaging network was proposed by Iyyer et al. (2015), and is an unordered com-
position function for combining word embeddings into sentence embeddings. Similarly to
the above mentioned approach of averaging word embeddings to get sentence embeddings,
the first layer of the DAN is an average of the individual word embeddings for all the words
in the sentence. It is then followed by several non-linear layers, which are shown to be able
to capture subtle di�erences, for example negations, better than just averaging. See Figure
2.4 for a visualization of the DAN architecture. Here, f is an arbitrary activation function.
Although DAN does not take word order into account, it is able to compete with more ad-
vanced models that consider sentence structures.

The DAN used by USE averages embeddings for both words and bi-grams in the first layer
of the neural network. The network then outputs a sentence embedding of 512 dimen-
sions.
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2. Theory

𝜃
x

y

Figure 2.5: Two vectors x and y separated by an angle θ. The cosine
similarity between the two vectors is given by cos θ.

2.2 Document Similarity

The models described above are able to create numerical representations of documents by
using embeddings for words or sentences. In order to determine how similar two documents
are, their corresponding embeddings need to be compared. There are several ways of doing
this, for example by calculating the Euclidean distance or using cosine similarity. Cosine
similarity is one of the most common ways to do document comparison for embeddings, and
is the method that we consider in this thesis.

2.2.1 Cosine similarity

The cosine similarity is a way to measure the similarity between two n-dimensional vectors,
by comparing their direction from the origin. It can be derived from the definition of the
dot product between a vector x and a vector y according to

cos θ =
x · y
|x||y|

(2.4)

where θ is the angle between the two vectors. See Figure 2.5 for a visualization. The cosine
similarity is always between −1 and 1, where 1 means that the vectors point in exactly the
same direction, −1 means that the vectors point in opposite directions, and 0 means that the
vectors are perpendicular.

The cosine distance is defined as

1 − cos θ (2.5)

and is simply a transformation of the cosine similarity to the range [0, 2]. Note that unlike
cosine similarity, two vectors pointing in exactly the same direction will get a cosine distance
of 0. Just like for the Euclidean distance, a larger cosine distance means more dissimilarity
between the vectors. The cosine distance is however upper limited to the value of 2, while
the Euclidean distance is unbounded.
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2.3 Clustering

Figure 2.6: K-means clustering applied to a 2-dimensional data set,
with k = 4. Two of the clusters have a slight overlap, but are still
divided into two clusters because of the choice of k.

2.3 Clustering

Calculating the cosine similarity between two documents is a relatively e�cient operation.
However, when a huge number of documents, for example 55 million, are to be compared to
each other, this can take a couple of minutes. A way to speed up the process is to cluster the
document embeddings, and focus the search to only the closest clusters.

Clustering is an unsupervised learning method used to group data points into clusters. The
goal is that the data points within each cluster should be more similar to each other than to
points in other clusters.

2.3.1 K-means clustering

K-means clustering is a commonly used method to cluster data points into k di�erent clusters,
where k is a number decided before the algorithm starts. In K-means clustering, each cluster
has a centroid c ∈ C. The positions of the centroids are first initialized by randomly select-
ing k points from the data. The method then consists of two steps that are repeated until
convergence.

In the first step, each data point x ∈ X is assigned to the cluster of the closest centroid. The
second step then consists of updating the positions of the centroids. This is done by setting
each centroid to the mean value of all data points assigned to their clusters. Figure 2.6 shows
a 2-dimensional data set that has been clustered with K-means.
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2. Theory

Mathematically, K-means clustering can be seen as the optimization problem of choosing the
centroids c to minimize the objective function

min
c∈C

∑
x∈X

‖ f (C, x) − x‖2 , (2.6)

where f (C, x) is the centroid with shortest Euclidean distance to x (Sculley, 2010).

Mini batch K-means is a modified version of K-means that uses mini-batches to speed up the
clustering. It uses small randomly selected batches of data points so that they can be stored
in memory. In each iteration, a new, random batch is chosen and used to update the cluster
centroids. This is repeated until convergence, after which all data points are assigned to the
final centroids to obtain clustered data the same way as the ordinary K-means. Mini batch
K-means has been shown (Sculley, 2010) to be several orders of magnitude faster than regular
K-means on a large data set, while only producing slightly worse results.

Another way to improve the performance of K-means is to use the k-means++ initialization
method, instead of randomly choosing some of the data points as initial centroids. k-means++
still selects centroids randomly from the data points, but uses a weighted probability distri-
bution to do this. It is defined as follows (Arthur and Vassilvitskii, 2007):

1. Select the first centroid c1 randomly from the uniform distribution of the data points.

2. Let D(x) be the shortest Euclidean distance from the point x to a centroid that already
has been selected.

3. Now select centroid ci randomly from the remaining data points X − C, with proba-
bility

P(Ci = x) =
D(x)2∑

x∈X−C D(x)2 (2.7)

4. Repeat Step 3 until k initial centroids have been selected.

The creators of k-means++ have shown that it is faster than regular K-means, and also less
likely to converge to a local minimum.

2.4 Evaluation Method

In order to determine how good an embedding model is at finding similar documents, some
kind of evaluation metric is needed. One way of doing the evaluation, is to take the best
matches for a given document, ordered by cosine similarity, andmanually label them as either
similar or not similar. By doing this for a test set of documents, the labeled data can then be
used to calculate a metric of how good the model is. In this section, we present two general
evaluation metrics, and a specific metric used to evaluate ordered results in a top list.
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2.4 Evaluation Method

Figure 2.7: Visualization of the concepts true positives, false positives,
false negatives and true negatives. Image from Wikimedia Commons
(2014).

Precision and recall are two important evaluation metrics in machine learning. They are de-
fined as

precision =
t p

tp + f p
(2.8)

recall =
t p

tp + f n
(2.9)

where t p is the number of true positives, f p is the number of false positives, and f n is the
number of false negatives. These concepts are visualized in Figure 2.7. Both the precision
and the recall are relevant when evaluating a model, and there is a trade-o� between the two
measures (Zhu, 2004).

A variant of the precision called average precision (AP) is often used in the area of information
retrieval, where the order of the results also is important, and needs to be taken into account
in the evaluation. The average precision penalizes models that return false positives in the
top of the list. It can also be calculated for just the top k results in a list, meaning that all
results do not need to be labeled. It is then called the average precision at k.

For a search query that presents k documents (q1, . . . , qk) ∈ Q ordered by their relevance,
the average precision at k is defined as

AP@k(Q) =
∑k

i=1 rel(qi) · P@i(Q)∑k
i=1 rel(qi)

(2.10)
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where rel(qi) = 1 if document qi is relevant, and 0 otherwise (Teufel, 2007). P@i is the
precision as defined by (2.8) if only the first i documents are considered.

After N such queries, the mean average precision (MAP) at k can be calculated as,

MAP =
1
N

N∑
i=1

AP@k(Qi). (2.11)

If the same queries are run using the di�erent models, the MAP can be used as a measure
to evaluate the performance of the models. The higher the value, the better the model is at
finding relevant documents.
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Chapter 3

Approach

This chapter describes the implementation of the algorithms and the overall pipeline of the
resulting web application. This includes preprocessing of the data, interaction with the
database, development and features of the user interface and details of model implemen-
tations. The code for the implementation was written in Python, utilizing the large number
of machine learning and NLP libraries available for that language.

We used the PostgreSQL relational database to store all the data needed for the project,
including the original DOCDB files, extracted abstracts, titles and the calculated word em-
beddings.

3.1 Pipeline

The general pipeline is presented in Figure 3.1. The pipeline can be divided into two parts. A
preparation part which is run only once and a runtime part which is run for each new query.
The details are presented in the following sections.

The preparation part begun with preprocessing both of the database and the data. The data
was then fed forward to calculate the embeddings of the five di�erent models. The embed-
dings were then saved to the database, where they later could be collected and used to com-
pare documents. To avoid comparing against all documents, the embeddings were clustered
using the mini batch K-means described in Section 2.3.1.

The runtime part of the pipeline describes what was done for each query. First the embedding
of a target document was either retrieved or computed. This was compared to the centroids
to find the n closest clusters. The embeddings of all documents in the n clusters were retrieved
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Figure 3.1: Illustration of the pipeline. Blue boxes represent the
database, green computations and orange input and output.

from the database, and then compared to the target document using cosine similarity. Finally
the results were presented in a list ordered by the cosine similarity score.

3.2 Preprocessing the Data

An important part in all machine learning tasks is the preprocessing of the data. For this
project, preprocessing was done at two places: in the database, to extract needed data from
the patent applications, and in the Python code just before calculating any embeddings.

3.2.1 Preprocessing of the database

The SQL database that was provided contained the original EPO DOCDB data as a table
of XML-files. Some preprocessing had already been done to extract abstracts and titles into
separate tables in the database. New tables were also created to store the resulting word
embeddings, cluster centroids and cluster assignments.

In order to speed up lookup and data retrieval, SQL indexes were created for the most im-
portant tables (e.g. abstracts and titles). Non-English documents were removed from the
tables.
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3.2.2 Preprocessing of the data

Before calculating any embeddings, the data needs to be preprocessed to fit and make sense
for the models. This can be divided into two parts.

The first part is related to cleaning the data, and is the same for every model. The available
data consists of titles and abstracts from the EPO database. These texts contain a lot of
figure references, HTML tags and other numbers which don’t make sense to include when
calculating the embeddings. Theywere therefore removed. All characters were also converted
to lower case.

The second part is regarding the structure of the data. Each model has di�erent requirements
when it comes to the data it receives as input.

FastText is the only non context aware word embedding model that we used separately. For
this model the sentences are broken down into words with the help of the Natural Language
Toolkit (NLTK). Also, commonwords such as the, a, is and are, which are known as stop words,
are removed, since they are present in almost all documents and therefore don’t contribute to
the uniqueness of them. We used the list of stop words as defined in the NLTK library.

The remaining models are all either context sensitive or sentence embeddings, meaning the
sentence structure needs to be kept in someway. Because they are significant to the semantics,
the stop words are not removed, as with fastText. The ELMo and Flair embeddings were
both implemented through the Flair framework, which allows the input to be a string of the
whole document. This is a bit di�erent from USE and SBERT, which require the words to be
grouped into lists representing the sentences.

3.3 Implementation Details

The implementation details for themodels and the clustering are presented below. It includes
the sources of the models and what libraries were used. An often used library is Scikit-learn
(sklearn) which provides both a cosine similarity method and the mini-batch K-means algo-
rithm.

As mentioned above one way of obtaining document embeddings from word embedding
models is to average over the word embeddings of the document. This was the chosenmethod
for all word embedding models that were used. For the sentence embedding models, the
entire abstracts were input as one single paragraph. This meant no averaging was needed to
obtain a document embedding.

TF-IDF

We used the sklearn library to implement TF-IDF. However, it quickly occurred to us that
having more than 55 million documents would result in a huge amount of unique words,
making TF-IDF a bad choice memory wise. TF-IDF was therefore discarded, and not used in
the following evaluation.
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fastText
For the implementation of fastText, the model was collected from the fastText website1. This
model has been trained on both the Common Crawl andWikipedia datasets using CBOWwith
character n-grams of length 5. The output vectors are of size 300. (Grave et al., 2018)

The fastText implementation from the Gensim framework2 was then used in the code. It is a
widely used software framework for topic modeling with large corpora (Řehůřek and Sojka,
2010).

Flair
The Flair embeddings were implemented through the simple-to-use Flair framework.3 As
mentioned in Section 2.1.4, the chosen model is a combination of both the forward and back-
ward Flair embeddings as well as GloVe. This results in an output dimension of 2148; 1024
for each Flair embedding and 100 for the GloVe embedding. The model has been trained on
a corpus of 1 billion words proposed by Chelba et al. (2013).

ELMo
The ELMo embeddings were also implemented through the Flair framework. Themodel used
was the medium sized one with output dimension 1536, collected from the creators website.4

It has been trained on the same dataset as Flair.

USE
The USE embeddings were implemented using TensorFlow Hub.5 The chosen model is the
one trained using the DAN architecture with output vectors of dimension 512.

SBERT
The SBERT model was implemented using UKPLabs SentenceTransformer library.6 The bert-
base-nli-stsb-mean-tokensmodel was chosen because of it’s high score on STS tasks. It produces
an output vector of dimension 768.

Clustering
As mentioned above, we clustered the embeddings of each model to avoid having to compare
against all documents in every search query. For this, themini batch k-means implementation
of the sklearn library was used. The centroids were initialized using the k-means++ method
described in Section 2.3.1. The number of clusters was set to 37, which should give about 50
000 documents in each cluster.

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://github.com/RaRe-Technologies/gensim
3https://github.com/zalandoresearch/flair
4https://allennlp.org/elmo
5https://tfhub.dev/google/universal-sentence-encoder/3
6https://github.com/UKPLab/sentence-transformers#pretrained-models
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3.4 Graphical User Interface

The goal was not to create a perfect clustering, but to filter out documents that would be too
dissimilar, and thereby speed up the search process. Therefore, documents in the 8 closest
clusters of the target document were retrieved and compared using cosine similarity. For
every search, about 1/5 of the documents in the database would then need to be fetched.

Other parameters used in the clustering is a maximum number of iterations of 500 and a
batch size of 100 000.

3.4 Graphical User Interface

We also created a graphical user interface in the form of a web application, in order to make
a patent search tool that was portable and easy to use. This was done in Python using the
Flask7 framework for web applications, which made it easy to integrate with the machine
learning code. We used HTML partials to produce the actual content to be displayed to the
user, together with CSS for styling and some JavaScript for dynamic features.

A visualization of the web application can bee seen in Figure 3.2. As shown in Figure 3.2a
the user is able to perform a search for similar patent documents by entering either a patent
application number or free text. The embedding model to be used can also be selected. The
user also has the option of displaying the cited documents of the target patent, and limit the
results to only contain patent applications with earlier filing dates, since newer ones could
not act as prior art.

Figure 3.2b shows how the results are presented with the target document at the top. It is
followed by a list of documents sorted by their cosine similarity with the target document,
in descending order. Information like title, abstract, applicant and filing date are presented
for all the documents. A link to the complete patent document on Espacenet is also pro-
vided.

3.5 Evaluation Procedure

The fivemodels fastText, ELMo, Flair, USE and SBERTwere all used to compute embeddings
for a set of documents. The idea was then to compare the results to find out if they could be
used for the intended purpose, and which model would be most suitable.

Due to limitation in time and computational power the number of documents used in the
evaluation of the methods had to be limited. A subset of the complete database of patents
filedwith EPOwas chosen for this reason. This subset contained about 1.8million documents
within a variety of subject areas. This was thought to be representative to using the complete
dataset, in contrast to previous works where instead a certain patent class has been chosen
to limit the data. Choosing only the European patents (EP) also removed the case of duplicate
patents occurring because of patents being filed in multiple countries.

7https://github.com/pallets/flask
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(a) The search form of the web application.
The user can select one of the implemented
models and perform a search using either a
patent application number as in the upper
search form, or by entering free text in the
lower search form.
When a search is done on patent applica-

tion number, it is possible to list the doc-
uments cited in the application. It is also
possible to ignore any documents after the
filing date of the application.

(b)The search results. The target document
(entered patent application or free text) is
displayed at the top. It is followed by a list
of documents, sorted according to their co-
sine similarity to the target document.
Title, abstract, applicant, application

number and priority date are presented for
all documents.
The compare button displays a window

where the most similar sentences between
the target document and the selected doc-
ument are highlighted. There is also a link
to the document on Espacenet, where more
data about the application can be found.

Figure 3.2: The web application created to evaluate the models.
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3.5 Evaluation Procedure

As mentioned in Section 2.4, search results need to be labeled as either “relevant” or “not
relevant” to be able to calculate theMAP. In the case of text similarity it is hard to accomplish
this in any other way than to do it manually. But to evaluate search results on a large number
of documents for five di�erent methods is a very time consuming process for two people.
In order to do this within the limited time frame of this thesis, we had the help of trainee
associates at AWA.

The trainees were instructed to make searches on 3 di�erent documents each, using all five
models. They would then score the top five results on a scale from 1–5 according to Table 3.1,
where 1 was not at all relevant and 5 was very relevant. We chose this ranking system since
it made it easier for both us and the trainees to separate the di�erent levels of relevance,
compared to using a larger scale of e.g. 1–10. The opposite case of using a smaller scale, for
instance a binary scale of just relevant and not relevant was also dismissed. The reason being
that it could give more uncertain results for borderline cases.

To reduce the human factor of some finding a document relevant which others don’t, we
assigned three trainees to the same three documents. Their results were then combined by
taking the highest scores for each document. This was done because only one person finding
a patent relevant should be su�cient reason to investigate that patent further in order to
minimize the number of false negatives. The detailed instructions provided for the trainees
can be found in Appendix A.

Table 3.1: The scoring system that was used by the trainees to eval-
uate the search results for the di�erent models.

Score Ranking Explanation

1 Not at all relevant The patents are covering completely di�erent subjects

2 Not relevant I can see why the model thought it was similar, but wrong subject

3 Could be relevant The patents seem to cover the same area but not really the same
thing

4 Relevant The patents cover pretty much the same area, could be useful if
investigated further

5 Very relevant The patents cover the same area and just from the abstracts are
very similar

In order to calculate the MAP according to Section 2.4, the scores must be converted to bi-
nary representations as relevant or not relevant. We did this in two di�erent ways, producing
two di�erent MAP values. First, all documents with a score of 4 or 5 were considered rel-
evant, while all other documents were considered irrelevant. This was used to calculate the
MAP4,5 result. Then, only documents with a score of 5 were considered relevant, leading to
the MAP5 value.

We also evaluated the clustering, to make sure it did not have a large negative impact on the
search results. This was done separately for each model, and could be made automatically,
without the need of any human input. As a test set, ten random documents were chosen
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from each cluster. The embedding of each such document was then used to search for similar
documents using cosine similarity. This was done in two di�erent ways.

First, the embeddingwas compared to the embeddings of all other documents in the database.
A list of the top n most similar documents, in descending order, was returned. Then, only
documents in the 8 closest clusters were considered – just like in the search tool used by the
trainees – and another top list was returned. In the ideal case, both these lists should consist
of the same documents. A bad clustering would however cause documents to be missed. This
evaluation was done for n = 50 and n = 10. The number of missed documents and the recall
between the two lists could then be calculated.
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Chapter 4

Evaluation

This chapter begins with a presentation of the results from the evaluation. This includes
di�erent MAP scores, individual rankings of the models and an evaluation of the clustering.
This if followed by a discussion of the results as well as sources of errors. Finally, the chapter
ends with some suggestions of future work.

4.1 Results

Out of the 17 trainees at AWA who received the task of evaluating the models, 8 people with
at least one from every group replied with answers. The results are presented below.

Tables 4.1 and 4.2 present the mean average precision, as well as the number of true positives
and false positives for the di�erent models. For Table 4.1, documents were considered rele-
vant if they were given a score of 4 or 5 by the trainees. For Table 4.2, only documents that
received a score of 5 were considered relevant.

The highest mean average precision was reached by Sentence-BERT, with a MAP4,5 score of
0.7655 and MAP5 score of 0.5391. Sentence-BERT was also the model that managed to find
the most true positives in both cases.
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Table 4.1: The Mean Average Precision (MAP), number of true pos-
itives (TP) and number of false positives (FP) for the di�erent em-
bedding methods. Here, a document is considered relevant if it was
given a score of 4 or 5.

Model MAP4,5 TP4,5 FP4,5

fastText 0.5996 32 58
Flair 0.3324 16 74
ELMo 0.5222 26 64
USE 0.6318 41 49
SBERT 0.7655 52 38

Table 4.2: The Mean Average Precision (MAP), number of true pos-
itives (TP) and number of false positives (FP) for the di�erent em-
bedding methods. Here, a document is considered relevant if it was
given a score of 5.

Model MAP5 TP5 FP5

fastText 0.3843 13 77
Flair 0.2685 10 80
ELMo 0.2907 11 79
USE 0.4250 18 72
SBERT 0.5391 28 62

In Table 4.3 the individual ranking results are presented. They are based on the average score
each person has given to all documents for each model. In the case of equal average scores
the number of 5’s and 4’s decide the ranking, where more is better. Persons C and D as well
as G and H were assigned to the same groups of patent applications. All remaining persons
represented their own groups.

The overall position is based on the average position from all persons. Flair and ELMo has
the same number of 3rd, 4th and 5th places therefore they share the 4th place.

Table 4.3: Individual ranking of the models based on the average
score.

fastText Flair ELMo USE SBERT
Person A 3rd 5th 4th 1st 2nd
Person B 2nd 4th 5th 3rd 1st
Person C 1st 4th 5th 3rd 2nd
Person D 1st 3rd 5th 2nd 4th
Person E 2nd 3rd 5th 4th 1st
Person F 3rd 5th 4th 2nd 1st
Person G 4th 5th 3rd 1st 2nd
Person H 4th 5th 3rd 2nd 1st

Overall position 3rd 4th 4th 2nd 1st
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The evaluation of the clustering for each model can be seen in Table 4.4. The result is pre-
sented as mean recall of the 370 (10 documents times 37 clusters) search queries, together
with worst recall. This is done for both the top 10 documents and the top 50 documents,
according to cosine similarity.

Table 4.4: The results of the clustering evaluation, both when the
top 10 and the top 50 documents of each search query were consid-
ered. For each model, the mean recall of the 370 search queries is
presented, together with the worst recall.

Top 10 Top 50

Model Mean recall Worst recall Mean recall Worst recall
fastText 0.9851 0.5000 0.9848 0.7000
Flair 0.9851 0.6000 0.9841 0.6200
ELMo 0.9973 0.6000 0.9974 0.8200
USE 0.9843 0.4000 0.9783 0.5200
SBERT 0.9805 0.6000 0.9874 0.6800

4.2 Discussion

Aquick look at the results gives a hint of that machine intelligence can indeed be used for this
application. Keep in mind that one relevant hit really is all it takes to deprive an invention of
its novelty. So if just one out of five results are relevant it is still very good. This would mean
that all methods could be used since they all found at least some documents of the score 5.
That being said, of course the more relevant hits a model produces, the more likely it is to
find just the right document.

Another thing to keep in mind is that a “bad” search result of very few relevant documents
is not necessarily due to the model. It could very well be that the invention is the first of its
kind and that it therefore could be patentable/not be revoked. This search result would then
be an “good” result. The most dangerous part of a model used for this application would be
to give too many false negatives, i.e. missing relevant documents. This is hard to identify but
the risk can be reduced by presenting a large list of top results, at the cost of an increased
amount of false positives.

4.2.1 Embedding models

Looking at the MAP of both Table 4.1 and Table 4.2 it is clear that the two sentence embed-
ding models outperform the word embedding models when it comes to identifying similari-
ties between patent documents. Not even the newer word embedding models like ELMo and
Flair, that have reach state-of-the-art performance on several NLP tasks, were able to come
close to the results of the sentence embeddings. In fact, they performed worse than the much
simpler fastText model.
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Table 4.3 shows the same trend. SBERT is ranked either as the best or second best model
by almost every person, while Flair and ELMo was never better than third best. The table
was created because of the reason that some people would consequently rank the documents
relatively low, while others would rank them relatively high. By looking at the average scores
given by each person you can rank the methods for each person individually. Worth to men-
tion is that in the case of Person D Flair, USE and SBERT all had the same average score. So
the ranking came down to which had the most 4’s and 5’s. Flair had the most, and SBERT
the fewest, but it was very close. The 4th rank of SBERT is therefore not as strong outlier as
it seems.

The method of simply averaging word embeddings into document embeddings is probably
the main reason for the low results of the word embedding models. This approach does
not take word order or sentence structure into account, and actually performs quite well
considering these limitations. There are other alternatives to averaging, for instance using
power-mean (Rücklé et al., 2018) or the so called Smooth Inverse Frequency (SIF) proposed by
Arora et al. (2017) which takes weighted averages of word embeddings and modifying them
via singular value decomposition. Another alternative is to use neural networks to combine
the embeddings. There is an RNN based implementation of this in the Flair framework, but
this requires fine-tuning of the model.

Considering that SBERT is a context aware model, that has been trained on STS to produce
good sentence embeddings for cosine similarity, it is not really surprising that it achieved the
best results in our evaluation. This is not the case for the other models, and it is possible that
fine-tuning them on STS for cosine similarity usage could lead to better results.

USE was the second best model, even though the simpler version based on the DAN archi-
tecture was used. It is impressive how well this method performed, considering its speed —
it was possible to calculate the embeddings for all 55 million documents in less than 3 hours,
compared to several days for SBERT. The DAN version of USE is however not context aware,
which could explain why it performed worse than SBERT. It would be interesting to do a
comparison between SBERT and the larger, transformer based version of USE.

FastText is the oldest and simplest model that we evaluated. It is very e�cient, both when
it comes to computation and storage; the output dimension being just 300. Despite this, it
showed descent results, close behind USE in both MAP evaluations. However, as with USE
it lacks the feature of being context aware. It could however be that context awareness is not
that important when working with short texts as in this case. A possible use case for fastText
could be in combination with another model, like GloVe was used together with Flair. For
instance combining fastText andUSEwould still result in a reasonable small dimension, close
to that of SBERT, but far from the sizes of Flair and ELMo.

When it comes to ELMo and Flair, both models output high-dimensional embeddings com-
pared to the other models. This can be a problem when word embeddings are averaged and
compared using cosine similarity. This phenomenon is called the curse of dimensionality, and
is common when dealing with high dimensional spaces in machine learning. A possible so-
lution is to concatenate the forward and backward embeddings of these methods, which has
been suggested on the GitHub page of the flair framework. However, there are no reports
that proves if this helps or not.
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It is also possible that ELMo and Flair produce word embeddings that are unsuitable for doc-
ument comparison using cosine similarity. The embeddings have not been trained or bench-
marked using a dataset like STS. Instead, they are often used as a first layer in a larger neural
network. Building a sentence embedding network using these models, and fine-tuning it on a
STS task, like mention above, could perhaps increase the performance of these models.

Another thing that the creators of ELMo suggests on their GitHub (AllenAI, 2019) is to
experiment with some hyper-parameters. One could for instance add dropout layers, weight
regularization or layer normalization. One could even add a classical pre-trained embedding
model such as GloVe. However there is no way to know beforehand what works best for a
certain task. The only way is to experiment and compare results. Since this is hard and time
consuming for a text similarity task, it could not be done within the scope of this thesis. On
the same GitHub page the creators also mention that due to the way ELMo was trained, it is
not completely deterministic. Running the same text several times will give slightly di�erent
embeddings each time. Furthermore the first few batches after loading the model will be
negatively impacted. They suggest to run a few batches before hand to warm up the model.
These are all reasons to why ELMo did not perform that well.

4.2.2 Clustering

The evaluation of the clustering showed that most of the time, the clustering did not have a
large impact on the returned search results. The mean recall for all of the models was at least
0.97, both when the top 10 and the top 50 results were considered. This means that almost
the same documents were returned as for a complete database search, without the clustering.
This also proves that our method of clustering the embeddings, and only using documents in
the nearest clusters for cosine similarity, is successful in speeding up the search process. It is
therefore possible to have a large database of patent applications, and still search for relevant
documents in a relatively short time.

K-means clustering uses the Euclidean distance to group data points into clusters, see the
optimization problem in equation (2.6). This may not be ideal for our use case, since we want
points in the same cluster to have a high cosine similarity, not a short Euclidean distance. An
alternative clustering method that could be used is Spherical K-means clustering, a modified
version of K-means that uses the cosine distance instead of the Euclidean (Hornik et al., 2012).
It is possible that Spherical K-means would provide even better clustering results with higher
recall, but this would need to be investigated further.

4.2.3 Sources of errors

A limitation we had to do was to let the trainees only look at the top five results when eval-
uating the models. The reason to which was the time constraint. This limitation however
entails a problem. The di�erence between the documents in the top five and the documents
in the top ten is sometimes very small. Relevant documents could very well be found in the
top 10, top 20 or even further down. Since they are missed there could be a case of inaccurate
results.
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Another source of error is the clustering. Limiting the set of which the target document is
compared to of course entails a risk of missing relevant documents which might have ended
up in a di�erent cluster. To minimize this risk, the 8 closest clusters were included, but no
matter how well one evaluates the clustering, it is a source of error which one can’t elimi-
nate.

4.2.4 Improvements and future work

The evaluated models have all been trained on di�erent datasets and on di�erent tasks. None
of them has specifically been trained on patent texts or with this application in mind. Doing
this could give better results. But to train the models from scratch is a very heavy task in
almost every aspect. Instead of doing this one could fine-tune the models. This is something
we would suggest as a future work.

Another thing that proved to be problematic is how to combine individual word embeddings
to represent a document. In this thesis, a simple averaging was used, but there are other
alternatives as discussed above, of which the so called power mean is one.

The data we had available were abstracts and titles. Howwell these describe an invention dif-
fers a lot from patent to patent. Also if one really wants to go into the scope of the protection
of a patent one needs to look at the claims, as described in section 1.4. As a continuation of
our work it would be interesting to see what having the full text documents available, could
mean for the results.
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Chapter 5

Conclusions

The aim of this thesis was to investigate the possibility of using artificial intelligence to im-
prove the search for prior art within the patent industry. Also to find out what method
performs the best and develop a working tool as a proof of concept.

We tested five di�erent models, all of which proved to be able to find at least some relevant
hits. This itself could be seen as proof of AI being useful for this use case. To evaluate the
models further we let a group of people knowledgeable within the patent system perform
search queries and rank the results. The results from this, presented in Section 4.1, indicated
that the model SBERT with the highest MAP score of 0.7655 would be the most suitable
for this application. The reason was thought to be a good balance between complexity and
dimension, as well as it being a sentence embeddingwhich proved to be suitable for document
representation.

To develop this tool further, we presented numerous suggestions of future work. The main
thing is to investigate what would be the results of using full text documents instead of just
abstracts and titles. It would essentially be just longer documents containing more infor-
mation which would require even more from the models to capture the meaning in a single
vector representation. One could imagine that word embedding of low dimensions like fast-
Text would struggle because of this, and the sentence embeddings USE and SBERT prove to
be even better.

Another suggestion of future work is more related to the models. Firstly there is the choice
of fine tuning the models on patent texts, to make them more specialized on this type of
corpus. Secondly one could combine di�erent models together in the hope of them being
good at capturing di�erent features.

In the end the aim of providing a proof of concept can be seen as successfully achieved.
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Appendix A

Evaluation Instructions

Background

We have as our master thesis investigated the possibility of applying AI on patent data. The
idea is to aid in the search for prior art by using natural language processing (NLP) to compare
the abstracts of patent applications in order to find similar documents. This can hopefully
be an alternative to di�cult and time consuming keyword searches.

We have implemented a couple of di�erent NLPmethods, andwe now need your help to eval-
uate how these methods perform on existing patent applications. This will be done through
a web application we call PatHawk, where you enter an application number and get a list of
the abstracts the method finds to be most similar to the entered application.

Due to limit in computational power, only European patent applications (EP) have been fully
processed for all methods. Therefore all application numbers we provide to you are European,
and the search results will only consist of European applications.1

Usage

The search form is shown in Figure A.1 with some comments. One can search using either an
application number or free text. You also have the choice of di�erent methods and some dis-
play settings such as showing citations and ignoring documents with a later filing date.

1The method ”USE, complete database” can be selected to run the method USE on the entire database.
Feel free to try it if you want, but it is not a part of the evaluation.
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Figure A.1: Search form.

Figure A.2: Search results.
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For the evaluation you will use the methods FastText, Flair, ELMo, USE, and S-BERT on ap-
plication number search.

The search results are presented like in Figure A.2. The 50 most similar documents are pre-
sented in descending order. Note that the scores are not comparable between the di�erent
methods, just between the di�erent documents using the same method. So don’t use this as
an evaluation metric.

Procedure

What we would like your help with is to run three di�erent searches each, using the five
di�erent methods. Then rate the search result based on how similar/relevant they are. We
estimate it to take about 2 hours and you don’t have to go deeper than to look at the abstracts
to evaluate the similarity.

Please note that it is the underlying methods themselves we want you to evaluate, not the
tool as such. But if you have any feedback on the user interface or other improvements we
are happy to receive them.

Method

1. Log in to PatHawk and press Search in the menu.

2. Choose a method.

3. Search for an application number in the Excel list which your group has been assigned.
Note: It may take up to 2 minutes for the search to finish.

4. Rate the top five results on a scale of 1-5 using the provided Excel sheet. Feel free to
look at the full documents in Espacenet if you want.

5. If a search result is an obvious duplicate, please skip it and rate the following document
instead. Duplicates can for example occur because of di�erent kind codes (A1, A2, etc).

6. Repeat for the remaining two numbers of your group, and the other methods.

7. When you are done, please send the Excel sheet to the email address below.

Good luck and thank you very much for your help!
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Appendix B

List of Evaluation Documents

The patent applications used to evaluate the di�erent embeddingmodels are listed below.

Group Patent application number
Group 1 EP2036750A2
Person B EP2589282A1

EP2117077A1
Group 2 EP1757721A1
Person C, D EP2353677A2

EP2182246A1
Group 3 EP2127577A1
Person F EP0054730A1

EP2239105A2
Group 4 EP1803857A2
Person E EP1785977A1

EP2942611A1
Group 5 EP1375913A1
Person A EP3133150A2

EP1332845A2
Group 6 EP0343381A1
Person G, H EP1475172A1

EP1942472A1
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Smart patentsökning med hjälp av AI

POPULÄRVETENSKAPLIG SAMMANFATTNING Hannes Jansson, Jakob Navrozidis

Kan artificiell intelligens (AI) användas för att hitta liknande uppfinningar i en stor
patentdatabas? Vi har utvecklat ett verktyg som lyckas med detta genom att rep-
resentera dokument matematiskt med hjälp av AI. Detta kan vara till stor nytta för
patentombudet, som ofta behöver göra krävande sökningar manuellt.

Sökandet efter prior art, d.v.s. bevis på att
en uppfinnig är ny eller inte, är en viktig men
tidskrävande process för ett patentombud. I
dagsläget görs dessa sökningar manuellt med hjälp
av nyckelord, vilket är problematiskt eftersom
uppfinningarna ofta beskrivs med abstrakta och
generella termer. Dessutom behöver man ta hän-
syn till synonymer. Detta innebär en risk för att
relevanta dokument missas.

Vi har tagit fram en metod för att hitta liknande
patentansökningar med hjälp av AI. Metoden har
utvärderats av flera personer med kunskaper inom
patent, och har visat sig ge lovande resultat. I
de flesta fall lyckas metoden hitta ansökningar för
liknande eller väldigt liknande uppfinningar.
Metoden vi använt oss av är baserad på att rep-

resentera dokument matematiskt i form av vek-
torer. Det finns flera olika modeller för att göra
detta. Ett vanligt sätt är att använda så kallade
word embeddings, där en unik vektor tas fram för
varje ord. För att representera ett helt dokument
på detta sätt kan man ta medelvärdet av vektor-
erna för alla ord som förekommer. För att avgöra
hur lika två dokument är kan man helt enkelt jäm-
föra dessa vektorer. Vi undersökte även modeller
som arbetar med hela meningar istället för ord, så
kallade sentence embeddings.
För att snabba upp sökningen användes klus-

tring, ett sätt att gruppera dokument som liknar
varandra. På så sätt kan man begränsa sökningen
till närliggande kluster.
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I figuren visas ett schema över vårt verktyg. Det
består av en förberedelsedel som bara görs en gång
för varje modell. Här beräknas och klustras em-
beddings innan de sparas till en databas. I den
andra delen kan man sedan skicka in en patentan-
sökan och söka upp liknande dokument bland de
i databasen.
Till vårt förfogande hade vi en databas över

ett stort antal patentansökningar. Dessa innehöll
bland annat titel och sammanfattningar, vilka vi
använde för att jämföra dokumenten.
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