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Abstract

Our aim is to use clustering algorithms in order to compute support and resistance levels
within an intra-day trading setting. To achieve this we use a tick data set from the EUR-USD
exchange market during 2019 as a measure of market activity. Both the Gaussian Mixed
Model (GMM) and an altered form of Kmeans clustering will be used as clustering methods
where each method will be evaluated using a selection of common performance metrics. The
computed support and resistance levels will then be put to the test by initiating mock trades
during certain time windows from early 2019, which are specified by Century Analytics.

Both models that were used in this thesis managed to partition the data in a way that made
it possible to create support and resistance levels that are comparable to traditional methods
which do not rely on market activity. Although more research needs to be made the results
look promising and we can, with some confidence, say that market activity in the form of ticks
can be used as an indicator for support and resistance levels within the EUR-USD exchange
market.

The support and resistance levels computed using GMM and Kmeans were quite similar

but the GMM method performed better when examining the methods using mock trades.

The GMM could predict support and resistance ”bounces” with greater statistical significance

compared to the Kmeans method.

Keywords: Tick data, Support-and resistance levels, Clustering methods, Gaussian
mixture model, Kmeans, EUR-USD exchange rates, Clustering performance
metrics, Market activity
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1 Introduction

Interpreting big volumes of data has become increasingly important for companies
in the financial sector in order to make data driven decisions. More and more
companies are therefore looking into machine learning methods such as clustering
methods to aid them in their business.

In order for these companies to avoid risk and negate losses it is important to
take into consideration as many variables as possible. One of the variables that
have been used traditionally but perhaps not so much in a machine learning
setting is tick-data. Tick-data is a way of measuring activity on a market, be it
on the credit market or the currency exchange market.

In this thesis we want to examine if we can use clustering algorithms on provided
tick-data in order to partition the price of EUR-USD exchange rates with respect
to activity. The proposed setup of this thesis is shown in Figure 1.

This partitioning will then be used to investigate whether or not market activity
can be an indicator for support-and resistance levels.

Support-and resistance levels is a well established phenomenon in the financial
sector where a support level is a level which a price for an asset tend to stay
above and a resistance level is a level which the price for an asset tend to stay
below[1]. This is indicated by the price ”touching” these price levels but then
bouncing back up (in the case of support levels) or bounce down (in the case of
resistance levels). If clustering methods could be used to establish these levels
this would be a huge gain for anyone that works within the financial sector.
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Figure 1: Chart describing the proposed methodology for the method used in
this thesis in order to investigate the occurrence of support and resistance levels
in tick data and whether or not these levels can be found using a selection of
clustering methods with statistical significance.

The data used in this thesis comes from Century Analytics AB and consists of:

• tick data for EUR-USD exchange market.

• price data for EUR-USD exchange market.

These data sets are then used as described in Figure 1. There are however quite
a few difficulties when handling and performing clustering algorithms on these
types of data sets. Mainly:

• the volatile nature of the data.

• the problem of choosing a suitable number of clusters in an unsupervised
setting.

These difficulties combined make it hard to evaluate the clustering methods.
There are however some metrics that can be used to help this evaluation. A
selection of them are described later in this thesis.
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The clustering methods that will be used to solve this problem is a slightly
altered form of Kmeans clustering as well as Gaussian Mixture Models (GMM)
with Expectation Maximization (EM). These methods are well established and
will be discussed in greater detail in Section 7.

2 Problem setting

This thesis will effectively be divided into two separate parts that seek to answer
two different but connected questions:

1. Can clustering methods such as Kmeans and GMM be used to
partition tick data from EUR-USD exchanges efficiently?

2. Can this partitioning of tick data be used to establish support
and resistance levels for EUR-USD exchanges with any statistical
significance?

3 Technologies

Python has been used extensively throughout this thesis due to its simplicity and
its extensive library of useful packages. Most importantly the Pandas package
and the SciKit-Learn toolkit has been used.

Pandas was used because of its capabilities to handle and manipulate large data
sets in an efficient way.

SciKit-Learn was used since it contains many pre-made clustering algorithms
such as GMM and Kmeans as well as a big library of performance metrics which
have been used extensively throughout this thesis.

Jupyter notebook was used in order to run the Python code via a web browser.
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4 Conventional methods to determine support and

resistance levels
The use of support and resistance levels in intra-day trading is, to this day, of
interest for financial institutions when conducting technical analysis [2]. Financial
institutions such as foreign exchange trading companies publish technical data
daily as an aid for their customers so that they can make informed trading
decisions. Although these technical analysis reports vary from company to
company the majority of them contain information about support and resistance
levels [3]. Also, as Carol Osler describes in [3], the support and resistance
levels for the same time period can vary a bit between companies where some
companies appear to perform better than others. Perhaps indicating that the
methods they use to determine support and resistance vary.

The algorithms used to determine support and resistance levels are naturally
kept secret by these companies so we don’t exactly know if it is common to use
machine learning methods or not. On the other hand we do know that there
are a number of none-machine learning methods that can be used to calculate
support and resistance levels. Some of these methods include; Trendlines,
Moving averages and Fibonacci sequences/golden ratio [1].

Trendlines is a method where one simply looks at the historical data of the asset
of interest, for example EUR-USD exchange rates, and draws a line connecting
the lowest price points in order to create a support level and a line connecting
the highest price points to establish a resistance level [1].

Moving averages (MA) is a method which generates output based on an average
of subsets of historical data. This creates a lag in the price movement produced
by the MA and thus the output will act as a support level for price or exchange
rate trending up and a resistance level for price or exchange rate trending
downwards [4].

The Fibonacci method is, as the name suggests, based on Fibonacci sequences.
There are several forms of Fibonacci sequencing of financial data but they all
rely on Fibonaccis famous sequence of a progression of numbers where each
new number is the sum of the two previous. The idea behind the method is to
use the golden ratio which stems from the Fibonacci sequence of approximately
1.618 in order to produce support and resistance levels using the maximal and
minimal price from historical data as anchor points [5].

There have been attempts to use machine learning methods to define support
and resistance levels such as the one a user named "saturdayquant" on GitHub
has implemented. Here a mean shift method together with the elbow method
(which will be discussed later in this thesis) is used to determine support and
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resistance levels in rate data [6]. However that method is not used on tick data
but rather on rates.

Another case where a machine learning method was used to examine support
and resistance levels is described by an author under the user name ”judopro”
on the online publishing platform Medium [7] where a Kmeans (a clustering
model we will investigate further in this thesis) was used to classify rate data.
Again using the elbow method as performance metric for number of clusters.
The difference with this method compared to the ones described in this thesis
is once again the use of rate data rather than tick data.

5 Tick data and Timeseries

There are a few definitions and clarifications that have to be made before delving
deeper into the mathematical aspects of the problem.

Definition 5.1 ”Ask” is the price asked by the seller to be paid for a certain
asset

Definition 5.2 ”Bid” is the price offered by the buyer for a certain asset

5.1 Tick data

Tick data can have different meanings in different contexts, but in this thesis
tick data describes the flow of orders that are registered in what is called the
”order book”. This can be interpreted as the activity on the market.

An order book stores the time stamp, current bid-price and current ask-price for
the given asset whenever an order is received due to someone either wanting to
buy the asset or sell the asset. Note here that the tick value does not distinguish
between an order to sell and an order to buy, tick data can only be used as a
measure of total activity within a given time interval.

In this thesis we are especially focusing on what is known as top of book. Top
of book consists of two layers:

1. The lowest ask-level at the current time

2. The highest bid-level at the current time

These levels are also arguably the most interesting since they represent the price
levels for which a trade will be substantiated [8]. The difference between these
levels is known as the bid-ask spread and the average of the bid-ask spread is
what we will use as price throughout this thesis.
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5.1.1 Difference between ”Tick” and Pip”

The word ”tick” may in some cases refer to a minimal incremental change in
value of a security or a currency exchange. However this is not what is meant
in this thesis where the minimal incremental change of a currency exchange is
referred to as a ”pip” or even in some cases fractions of pips. Tick will instead
be used to describe activity on a market (as described in previous section).

In this thesis a pip has the value 0.0001 and we will mostly be working with
price changes in the range of 10 pips, i.e an incremental change in price of 0.001.

5.2 Time series

Time series data is data that is indexed with respect to time and these types
of data sets are very commonly used in order to spot trends in, for example,
financial data. In this master thesis the primary subject of investigation consists
of time series data of ticks that have been gathered during the first half of 2019
from the EUR-USD exchange market.

5.3 Target and stop loss

Target and stop loss are two terms that will be used extensively throughout this
thesis and they are connected to how traders operate when trading within short
time spans.

5.3.1 Target

If a trade is initiated where the trader aims to alter their position within a short
time he or she will want the price to reach a certain level before the position is
changed. An example would be if a trader buys an assets he or she might set
a level 0.01 price units higher than the purchase price, if the price then reaches
this target the trader sells the asset for a profit.

5.3.2 Stop loss

Stop loss (SL) represents the reversed case compared to target. If a trader
initiates a trade, for example buying an asset with the intention to sell later, he
or she might set a price level lower than the purchase price for which the asset
will be sold if that level is reached. If the price reaches this level the asset is
sold in order to avoid big losses.
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6 Correlation metrics

A quick and easy estimate to find any connection between two variables, for
example activity and price, is the cross-correlation metric. We chose to use
two different types of correlation metrics: Pearson correlation and Spearman
correlation. Pearson correlation is the more common of these two.

6.1 Pearson correlation

The Pearson correlation is named after Karl Pearson and is perhaps the more
common form of correlation measure between two variables X and Y. The
measure is defined as shown below,

ρX,Y =
cov(X,Y )

σXσY
=

E [(X − µX) (Y − µY )]

σXσY
. (1)

Where σ denotes the standard deviation of the variables and µ is the respective
mean.

This formula will produce a measure between −1 and +1 where a value of
−1 implies total negative correlation between the variables, i.e if one variable
increases in value the other variable decreases in value.

A value of +1 means that if one variable increases the other also increases and
a value close to zero indicates no correlation between the variables.

6.2 Spearman rank correlation

The Spearman correlation is based on a ranking system where variable values
are ranked from smallest to largest and the sum of the difference between these
ranks are measured and then normalized with respect to the sample size [9].
This is explained using clear examples in [10].

The formula for Spearman correlation differs slightly when having shared ranks
in Equation (2) versus having no shared ranks in Equation (3),

ρ = 1− 6
∑
d2i

n (n2 − 1)
, (2)

ρ =

∑
i (xi − x̄) (yi − ȳ)√∑

i (xi − x̄)
2∑

i (yi − ȳ)
2
. (3)

Here di describes the difference in paired ranks and i is the index of the paired
score [10].
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As was the case with Pearson correlation the ρ-value of the Spearman rank
correlation ranges in between −1 and +1. A −1 indicates negative correlation
while +1 indicates positive correlation and 0 indicates no correlation.

The difference between Pearson and Spearman-correlation is in essence that
Pearson only detects linear correlation between variables whereas the Spearman
correlation can detect more intricate, nonlinear relations. By using both methods
we can get a better insight in how activity and price movement correlates than
by just using one correlation metric.

7 Machine learning

7.1 Supervised versus unsupervised machine learning

Machine learning can be divided into several different types but the main two
classes are supervised and unsupervised methods. These two settings are quite
dissimilar even though there are algorithms that can work in both settings.

7.1.1 Supervised machine learning

Supervised machine learning indicates that we have some information about
parts of the data we are examining. One common example is the distinction
between pictures of cats and dogs. In such an example the AI must learn what
a dog or a cat looks like and thus needs to be fed training pictures where it is
also given the answer. This is achieved by labeling the data. This setting is
however not that common when trying to cluster data but rather when the goal
is to classify data.

7.1.2 Unsupervised machine learning

This setting is often used when we know nothing or very little about the
connection between data points. Since we don’t have all the information we
cannot set a label on certain data points and it is instead entirely up to the
algorithm to distinguish common features among the data points. This is why
clustering is often set in an unsupervised environment where it is up to the
algorithm to solve the problem on its own. This also means that this is a
conceptually harder problem to solve.

7.2 Clustering algorithms

A clustering algorithm is used to group data points together, hence the name
”clustering”. There are several clustering methods available and they can potentially
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work very differently, but the two methods chosen for this thesis are Kmeans-
clustering and Gaussian Mixture Models (using expectation maximization). The
Kmeans algorithm had to be slightly altered however in order to accommodate
the restrictions of this thesis (see Appendix A).

Both Kmeans and GMM:s need to have a hyperparameter pre-determined before
initializing the clustering. That hyperparameter is the number of clusters. A
crucial and often occurring problem using clustering algorithms, especially in
an unsupervised setting is that we typically don’t know the number of clusters.
This is why we need to test a range of numbers of clusters using certain metrics
in order to determine which is the optimal number of clusters (more about this
in Section 8).

7.2.1 Kmeans clustering

The arguably most common version of the Kmeans is a method originally used
in signal processing that is attributed to Stuart P. Lloyd who proposed the
method in 1957 but didn’t publish his findings until 1982 [11].

Kmeans is what is known as a hard clustering method meaning that it doesn’t
categorise each data point with a probability of belonging to a certain cluster
but rather that it strictly belongs to the cluster. This is a stricter way of
categorising data than soft clustering methods. The methodology proposed by
Lloyd is described in Algorithm 1.

Algorithm 1: Lloyd’s algorithm
Data: Dataset D, number of predetermined clusters k.
Result: Vector of cluster label for each data point.
Start by randomly initialize a set of k means {µ1

1,...,µ
1
k}.

while Assignment Sti 6= St−1i do
for each point xi ∈ D do

Sti =
{
xp : ‖xp − µti‖

2 ≤
∥∥xp − µtj∥∥2 ∀j, 1 ≤ j ≤ k

}
µti = |Sti |

−1∑
xj∈St

i
xj

end

end

Which in less mathematical terms can be boiled down to three steps where the
two last steps are repeated until convergence:

1. Initialize k number of agents called centroids randomly scattered among
the data points.

2. Assign each data point to its nearest centroid (i.e give all data points a
cluster label).
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3. Update the centroids position by calculating the mean of each data point
assigned to the centroid.

As mentioned the Lloyds algorithm isn’t entirely suitable for our problem setting
(an example shown in Section 10 will make it clear as to why this method proves
unsuitable) and a slightly altered version is instead used which is described in
Appendix A.

7.2.2 GMM (Gaussian Mixed Models) and Expectation Maximization

The GMM and EM algorithms has an underlying assumption that the data that
is clustered comes from a certain assumed distribution. When using GMM one
assumes, as the name suggests, a Gaussian distribution for the data points x,

f (xi) =
1

σ
√

2π
e−(xi−µ)2/2σ2

. (4)

However the mean µ and variance σ2 are generally unknown.

This problem of unknown variables could be solved quite easily if one knew
the labels of each data point, i.e from which distribution the points were drawn
from. But if we work in an unsupervised setting we don’t know which data point
belongs to which class, this is the whole point of our clustering algorithms.

Using the same reasoning but reversed it would be easy to figure out which
data point belonged to which class (i.e which distribution) if one would know
the mean and variance of the distributions.

This chicken-and-egg problem is what the EM-algorithm is designed to solve.

The algorithm used in this thesis for Expectation Maximization is often attributed
to A. P. Dempster, N. M. Laird and D. B. Rubin in a paper published in 1977
[12] and the basic outline of the algorithm is described in Algorithm 2.

Algorithm 2: Expectation maximization
Data: Dataset D, number of clusters k
Result: Vector of cluster labels for each data point.
Start by randomly initializing a set of parameters θk for each class K
while |θt+1

k − θtk| > ε do
for each point xi ∈ D do

Q(θk|θtk) = Exi|X,θtk [logL(θ;X,xi)]

θt+1
k = argmaxθtkQ(θk|θtk)

end

end

So the combination of GMM and EM means that the K different sets of model
parameters consists of the mean µ and the standard deviation σ used to define
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the PDF described in Equation (4), we denote these model parameters: θk =

{µk,σk} produced by Algorithm 2.

In simpler terms one can say that the GMM-EM algorithm initially guesses the
mean values µ1,...,µk and variances σ2

1 ,...,σ
2
k. Then the following two steps are

repeated until convergence:

1. The data points are each assigned a distribution that fits them best
based on the log-likelihood that the points are drawn from the specific
distribution.

2. The mean values µ1,...,µk and variances σ2
1 ,...,σ

2
k are then changed according

to the points that where assigned to each cluster/distribution.

8 Metrics for performance of clustering algorithms

We aim to use several different performance metrics in order to establish the
correct number of clusters (k). As described in Section 7 this is one of the
immediate problems when working with clustering algorithms in an unsupervised
environment and hopefully using different sorts of performance methods could
help distinguishing how many clusters to use for each data set and method.

8.1 General performance measures

The measures described in this subsection can be performed on both the GMM
method and the Kmeans method.

8.1.1 Silhouette score

Silhouette score is a score based on likeness between data points within the
cluster (cohesion) and the difference between data points from different clusters
(separation) and produces a measurement between −1 and +1 where a high
positive score is desired [13]. Cohesion is defined as the mean distance between
data points within a cluster according to,

a(i) =
1

nCi − 1

∑
j∈Ci,i6=j

d(i, j). (5)

Where Ci is the cluster in which the data point i resides and j is another data
point within the same cluster as i, d(i,j) is the Euclidean distance between i
and j and nCi

is the total number of data points in cluster Ci.

Note here that we divide by nCi
− 1 since we do not count the distance d(i,i).
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The separation b is defined as,

b(i) = min
Cl 6=Ci

1

nCl

∑
j∈Cl

d(i, j). (6)

Here the notation minl 6=i means that we are looking at the distance between
data points in the nearest cluster measured from the cluster center of cluster
Ci.

The Silhouette score for data point i is then calculated using the following
calculations,

s(i) =


1− a(i)/b(i), if a(i) < b(i),

0, if a(i) = b(i),

b(i)/a(i)− 1, if a(i) > b(i).

(7)

To get the final Silhouette score we then calculate the average score s(i) for all
data points.

8.1.2 Calinski-Harabasz

Calinski-Harabasz (often denoted CH) is a method that is using the intra-cluster
variation (W) and inter-cluster variation (B) with respect to number of clusters
(k) to estimate the performance of a clustering method [14]. The formula used
to calculate this metric is shown below where a high CH value indicates a good
clustering,

CH(k) =
Bc(k)

(k − 1)
/
Wc(k)

(n− k)
. (8)

Here n is the total number of data points and Bc (the between-cluster sum of
squares) and Wc (the within-cluster sum of squares) are calculated as described
in Equation (9) and (10) respectively,

Bc =

K∑
k=1

nCk
‖Ck − x̄‖2 (9)

Wc =

K∑
k=1

n∑
i=1

wk,i
∥∥xi − Ck∥∥2 . (10)

Here K denotes the total number of classes (or clusters), nCk
is the total number

of data points in cluster Ck, xi denotes data points, Ck is the centroid of cluster
k and wk,i is an indicator function defined below,
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wk,i =

{
1, if xi ∈ cluster Ck
0, Otherwise

. (11)

8.1.3 Davies-Bouldin

The concept behind Davies-Bouldin score is that for a clustering to be considered
good the separation between clusters (dispersion) as well as the the homogenity
and compactness within the clusters should be high [15]. The dispersion (S) of
cluster Ci is defined in the following way,

Si =

(
1

nCi

∑
x∈Ci

|x− Ci|p
) 1

p

for p > 0. (12)

Where nCi is the total number of data points that lie within cluster Ci and Ci
is the position of cluster Ci:s center. The distance measure that was used in
our case was Euclidean distance, hence p = 2. The separation between cluster
Ci and Cj is defined as,

Dij =

(
d∑
l=1

∣∣Cil − Cjl∣∣t)
1
t

for t > 1. (13)

Where cluster centers i and j are denoted Cil and Cjl respectively. As was
the case for the dispersion we choose the Euclicdean distance between cluster
centers, hence t = 2 in our case.

The Davies-Bouldin score is then calculated using the following calculation,

VDB =
1

k

k∑
i=1

Ri, (14)

where k is the number of clusters and Ri is defined as,

Ri = max
i 6=j

Rij . (15)

Here Rij is calculated according to,

Rij =
Si + Sj
Dij

. (16)

The resulting metric is therefore considered better the lower it is since we want
a low within-cluster-variance and a high cluster separation.
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8.2 Kmeans-specific measures

The metrics described in this subsection were only used to establish the hyperparameter
number of clusters for the Kmeans method.

8.2.1 V-Measure

V-measure is based on the metric V-score which weighs homogenity and completeness
of the input data [16].

8.2.2 Homogenity h

Homogenity describes whether or not a cluster contains data points with different
labels. A cluster containing data points of solely one sort (one label) would be
considered completely homogeneous.

The homogenity (h) is calculated using the following formula,

h = 1− H(C,K)

H(C)
. (17)

Here H(C, K),

H(C,K) = −
K∑
k=1

C∑
c=1

ack
N

log

(
ack∑C
c=1 ack

)
. (18)

Where N is the total number of data points and aCK is the total number of
data points belonging to cluster K and class C. H(C) is defined as,

H(C) = −
C∑
c=1

∑K
k=1 ack
C

log

(∑K
k=1 ack
C

)
. (19)

8.2.3 Completeness c

Completeness on the other hand describes the methods ability to capture all the
data points of the same label. Meaning that if all the identically labelled data
points are within the same clusters the clustering has as high completeness as
possible.

The completeness c is calculated using the following formula and once again
aCK is the number of data points belonging to cluster K and class C,

c = 1− H(K,C)

H(K)
. (20)
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Here:

H(K,C) = −
C∑
c=1

K∑
k=1

ack
N

log

(
ack∑K
k=1, ack

)
(21)

and:

H(K) = −
K∑
k=1

∑C
c=1 ack
C

log

(∑C
c=1 ack
C

)
. (22)

8.2.4 V-score

The V-score is then given by the following equation:

Vβ =
(1 + β)hc

βh+ c
. (23)

β is a factor that can be altered in order to favour completeness or homogenity
(in our case we don’t favour either metric so β = 1).

The problem of using this method in our setting is that in order for the V-
measure to work we need to have an established ground truth (a set of correct
labels, this is what ”C” represents in (20)). Since we are working in an unsupervised
setting we don’t have a ground truth. This problem can be circumvented using
a small trick where we take the clustering partitioning done by the algorithm
and then ”scramble the edges” to get an artificial ground truth (see Appendix
B).

This means that we take the partitioning made by the Kmeans and look in small
intervals at the borders between two clusters. In this small interval we scramble
the data points so that some data points that were assigned to cluster x is now
assigned to cluster y and vice versa. This new partitioning of the data is what
we then use as our ground truth, meaning that we assume that this is in fact
the correct labelling of the data.

The interpretation of the V-score is that when the V-score levels out, i.e when
there is no clear advantage in increasing the number of clusters, we have found
the optimal number of clusters.

The V-score will generally increase when increasing the number of clusters so
the argument is that if the V-score starts to plateau we have found the optimal
number of clusters [16]. This concept is discussed using an example in Section
10.
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8.2.5 Elbow method

The elbow method is based either on a metric called distortion (d) or inertia [17,
18, 19]. Distortion is the metric chosen for this thesis and distortion measures
the average squared distance (here we use Euclidean distance) between each
data point and its respective cluster center (see the following Equation (24))
where N is total number of data points and µk is the cluster center closest to
data point xi,

d =
1

N

N∑
i=0

||xi − µk||2, µk = argminµ||xi − µ||. (24)

By calculating the sum of distortions for all the clusters we get a value that
shows how well the clusters describe the data. However adding another cluster
would presumably always decrease the distortion and therefore we are interested
in the point where adding another cluster does not give any significant decrease
in distortion.

The goal is therefore to test different numbers of clusters and extract the
distortion. Looking at a graph of the plotted distortions as a function of number
of clusters there should then be a point where adding another cluster does not
decrease the score by any significant amount. There will be what looks like
an ”elbow” in the graph and it is at this elbow where one assumes the optimal
number of clusters is (see Figure 24). Note that this is a heuristic approach,
which is why most people agree that there are more unambiguous methods that
are better to use when evaluating number of clusters.

Figure 2: Shows an illustration of how choosing number of clusters using the
elbow method might look like.
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8.3 GMM-specific measures

The metrics described in this subsection were only used to establish the hyperparameter
number of clusters for the GMM method.

8.3.1 Shapiro Wilks

The Shapiro-Wilks test was introduced by S.S. Shapiro and M.B. Wilks at
General Electric CO and Bell telephone Laboratories in order to test normality
in complete samples [20]. The metric is based on what they called theW statistic
which is defined as,

W =

(∑n
i=1 aix(i)

)2∑n
i=1 (xi − x̄)

2 . (25)

Here x(i) is called the order statistic and consists of the i:th smallest value in
the sample (if we have a sample set S = {2,3,6} the x(i):s would be x(1) = 2,
x(2) = 3 and x(3) = 6), not to be confused with xi which denotes each data
point. x is the sample mean and ai is the coefficients given as a row vector
below,

(a1,...,an) =
mTV −1

(mTV −1V −1m)1/2
. (26)

Where V is the covariance matrix between all order statistics andm = (m1,...,mn)T

where mn is the expected value of each order statistic sample independently
drawn from a standard normal distribution (4).

The basic idea behind the metric is that the sample is compared to a normal
distribution where a normal distribution and the sampling histogram are superimposed
and the overlapping percentage is calculated [21]. Here a high score is desirable
since it indicates similarity between the standard normal distribution and the
sample distribution.

8.3.2 Kolmogorov-Smirnov

The one sample Kolmogorov-Smirnov performance metric (which is the type of
K-S metric we are interested in this thesis) is based on the distance between the
samples empirical distribution function and the cumulative distribution function
of a reference distribution, in our case the normal distribution [22]. For the
Kolmogorov-Smirnov to produce a good score we need the maximal distance
(D) between the sample distribution and the theoretical distribution to be as
small as possible. Based on this distance metric and under the null hypothesis
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that the sample distribution and the theoretical distribution are the same the
K-S method compares the test statistic to a table [23]. Based on this table a
metric given which is considered better the higher it is. In our case the kstest
metric from the sklearn package computes this statistic automatically.

The test statistic D is defined according to,

Dn = sup
x
|Fn(x)− F (x)| . (27)

Here F (x) in our case is the cumulative distribution function for the normal
distribution and Fn(x) is the empirical distribution function based on an observation
Xi, see below,

Fn(x) =
1

n

n∑
i=1

I[−∞,x] (Xi) . (28)

Here I[−∞,x] is the indicator function defined as,

I[−∞,x] =

{
1, if Xi ≤ x,
0, otherwise.

(29)

In general Shapiro-Wilk seems to be the more powerful test compared to Kolmogorov-
Smirnov [24]. However when handling big sample sets as those we have in this
project, some argue that the Kolmogorov-Smirnov is the better choice [25].
Therefore we chose to examine both metrics in this thesis.
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9 Method to determine statistical significance

This statistical method is introduced in this thesis in order to evaluate the
second part of the thesis where we want to determine if the clustering methods
implemented actually can be used to find the support and resistance levels which
we are interested in. By using this test we can get an interpretation of how likely
it is that we actually have found what we are looking for.

9.1 P-value

In simple terms the P-value can be described as the probability of observing
a certain observation or an even more extreme one [26]. This explanation is
probably easier to understand using an illustration, see Figure 3.

Figure 3: Shows an illustration of how P-value should be interpreted. The dotted
line represents the observation, for example this could be the probability of getting
85 ”tails” when performing 100 coin flips, something that is quite rare. The P-
value would then the summation of probabilities of getting 85 tails + 86 tails ...
+ 100 tails.

Note here that we are using a so called one-tailed test which only examines
the probability of getting more extreme observations towards one end of the
spectrum (in the coin-tossing example we only examine the probability to get
more tails, not the probability to get more heads).

P-value can be used as a way of evaluating statistical significance of our results
based on the null hypothesis. The null hypothesis can in our case be defined as
in definition 9.1. One can draw parallels here to the coin-tossing example.
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Definition 9.1 Our Null hypothesis: The probability of reaching a target
and a SL is completely random and the likelihood of either case is equal.

This means that if we can reject our null hypothesis we can claim that there
is a statistical significance to our results. In order to simplify the investigation
we do in this instance assume that the distribution of the currency exchange
alteration is symmetric around the support/resistance levels. It is possible that
this isn’t the case but in order to keep the complexity down we chose to assume
a Gaussian distribution.
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10 The data and the process

The following section is meant to describe how we need to summarize our tick
data in order to make it cluster-friendly, to show the reasoning behind the cluster
selection process for both GMM and Kmeans and to show how we validate the
models using mock trades (see Appendix C). In order for the reader to get a
clearer picture of the process we will go through an example based on data
gathered during one week in January 2019.

As we mentioned before there is also a problem regarding the V-measure in our
particular setting and this problem will be addressed in this section as well.

10.1 Creating cluster friendly data

The data used for this thesis is as mentioned tick data, but tick data in and
of itself is not suitable to perform clustering methods on so the first step in
the process (see Figure 1) is to summarize this data in a way suitable for the
algorithms. This can be seen in Figure 4 where the ticks for one weeks worth of
data is depicted as a singular value for each price level.

Figure 4: Shows the number of ticks at each price level for the EUR-USD
exchange rates during one week (2019-01-06 to 2019-01-11).

By performing the clustering algorithms on the data set illustrated in Figure 4
we aim to partition the data with respect to price. This is needed since later
in the process there need to be clear distinctions between price levels as these
borders will determine the support and resistance levels.
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10.2 The problem with Lloyds Kmeans and how the different
Kmeans-versions partition our data

At a first stage the Lloyds Kmeans model from the scikit-learn package was used
to partition the data set shown in Figure 4 and this partition is shown in Figure
5

Figure 5: Shows how the sklearns Kmeans model (i.e Lloyds algorithm) partition
the tick data introduced in Figure 4. The red crosses represent cluster centers.

It is clear here that according to this method the optimal way to partition
the data is into horizontally aligned segments. However this is not desirable
when examining support-and resistance levels since there is no clear distinction
between price levels, as is evident in Figure 5 where all price levels contain all
classes specified by the method.

Instead another slight variation of the Kmeans model was designed in order to
only partition the data along the price dimension (see appendix A). The results
of the partition produced by this model is shown in Figure 6.
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Figure 6: Shows how the specialised Kmeans model described in appendix A
partition the tick data introduced in Figure 4. The red crosses represent cluster
centers.

Here we can see that the data is clearly grouped in vertical segments with a
distinct border in between price intervals which is what we need in order to
establish support and resistance levels.

We have in this example not motivated why we choose to divide our data into
exactly 6 clusters so we will therefore go through the metrics for this example
as well.

27



10.3 Choosing numbers of clusters for Kmeans

For Kmeans we have chosen five metrics to look at, the three general performance
metrics Silhouette score, Calinski-Harabasz and Davies-Bouldin and the two
Kmeans-specific metrics; V-Measure and Elbow method.

The performance metric for each number of clusters for each general performance
metric is shown in Figure 7 and the Kmeans specific metrics are shown in Figure
8.

Figure 7: Shows the general performance metrics used on Kmeans partitioning
of the data set introduced in Figure 4 for different number of clusters. Top left
shows the Silhouette score for the partitioning, top right shows the Calinski-
Harabasz and bottom shows Davies Bouldin-score with all graphs having an
indication of what the optimal number of clusters appear to be (6,6 and 5).
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Figure 8: The left graph illustrates the distortion scores for different number of
clusters when Kmeans was used to partition the data introduced in Figure 4, here
we can see two suggestions of what the optimal number of clusters might be (6
and 9). The right graph shows the V-scores as a function of number of clusters
for the same setting. Here we can see that up to 50 clusters the performance
gets better. We chose to not test for higher number of clusters than 50 since
the convention is to have at most around half that many support and resistance
levels [3].

The interpretation of the general performance metrics is that 6 number of
clusters is probably a good choice. Looking at the Kmeans-specific methods
the elbow method appears to suggest either 6 our 9 clusters with subjectively 9
clusters being a slightly likelier choice.

What the V-measure shows us is that the cluster performance keeps increasing
with an increase in clusters at least up to 50 clusters. In order to get a definitive
result we would like to see some form of plateauing which isn’t happening in this
interval. What we can say is that the majority of the increase in performance
comes between 2-20 clusters, which to some extent motivates us to focus our
investigation on that interval. This is also what tends to happen in the financial
industry where the number of support and resistance levels that are specified
tend to be around 10 per day within a given time period [3].
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10.4 How GMM partition our data

In order to better visualise the GMM method we create a histogram for the data
points during our chosen week where tick counts and price is normalized (this
is needed for the GMM method to work properly). This histogram is shown in
Figure 9.

Figure 9: Shows a histogram of the tick data introduced in Figure 4 with
normalised price and tick counts.

Using sklearns GMM method on the same data as is depicted in Figure 9 we
get the distribution fitting shown in Figure 10. Here the label of each price level
corresponds to the distribution with the highest value at that price level.
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Figure 10: Shows how the GMM model partitions the tick data introduced in
Figure 4. Here each blue curve represents a Gaussian distribution designed to
fit over the histogram from Figure 9 using EM and 6 separate distributions.

Again we haven’t shown why 6 clusters appears to be a good choice as number
of clusters so therefore we go through the metrics in the same manner as we did
with the Kmeans.

10.5 Choosing numbers of clusters for GMM

The general performance metrics are the same as they were for Kmeans; Silhouette
score, Calinski-Harabasz andDavies-Bouldin, and the two GMM-specific metrics
are Shapiro-Wilks and Kolmogorov-Smirnov.

The performance metric for each number of clusters for each general performance
metric is shown in Figure 11 and the GMM specific metrics are shown in Figure
12.
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Figure 11: Shows the general performance metrics used on GMM partitioning
of the data set introduced in Figure 4 for different number of clusters. Top left
shows the Silhouette score for the partitioning, top right shows the Calinski-
Harabasz and bottom shows Davies Bouldin-score with all graphs having an
indication of what the optimal number of clusters appear to be.

Figure 12: The left graph illustrates the Shapiro-Wilk scores for different number
of clusters when GMM was used to partition the data introduced in Figure 4,
here we can see three suggestions of what the optimal number of clusters might
be (7 ,8 and 25). The right graph shows the Kolmogorov-Smirnov scores as a
function of number of clusters for the same setting. Here we can see that 6,15
and 20 clusters seems to be a good choice.

In contrast to the Kmeans model the general performance metrics can’t seem
to agree on a good choice for number of clusters. Looking at the GMM-specific
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metric they seem to point towards 5-6 clusters being a good choice of cluster
(which also agrees with the Calinski-Harabasz score in Figure 11). From theses
results we therefore choose 6 clusters for the GMM-method.

Now that we have chosen an optimal number of clusters to use for the two
different methods we want to investigate if the methods have actually found
support and resistance levels. We therefore initiate mock trades (see Appendix
C) where we pretend to initialise trades and then observe if we hit a support
and resistance level, and if so see if we bounce at that particular level. A bounce
would then count as a target and a breakthrough would count as a SL.

In order to have a comparing element we also tried to use a heuristic approach to
the problem. Meaning that we looked at the price curve and tried to determine
support and resistance levels by identifying price-levels for which the curve
bounces by eye. This is what is referred to as the Trendline-mehtod which
we described briefly in Section 4.
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11 Results

In this section we will go through the results from three different parts of the
project; Price-activity correlation, Support and resistance levels and target vs
stop loss.

11.1 Correlation

The results received when examining correlation is a good indication whether or
not activity has any effect on price, or at least if the two are linked in some way.
If there proves to be a high correlation between activity and price the chance is
higher to find useful information in the tick data. An example of one days worth
of data is depicted in Figure 13 where three sub graphs are shown illustrating
the variance of the price, activity and price over the same time period.

Figure 13: Shows the correlation between price-variance and activity in the form
of number of ticks over a given time period (entire day of 2019-01-02) as well
as the price curve during the same time period. One can observe here that the
peaks for activity and variance seem to match pretty well which indicates some
form of correlation between the variables. This is both expected and desirable in
order to extract information about price changes using tick data. Variance and
activity are both measured per minute.
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Amore quantifiable result is perhaps the correlation metrics described in Section
6, the results of which are shown in Table 1.

Correlation measure Result
Pearson 0.75126
Spearman 0.82789

Table 1: Shows the Pearson and Spearman correlations between activity (in the
form of ticks) and price-variance for the EUR-USD exchange rate-curve during
2019-01-02. We can see that there is a positive correlation between the variables
which means that if the number of ticks per minute increases the variance of the
price per minute increases.

We can observe that there does indeed appear to be some form of correlation
between the two variables.

11.2 Support and resistance levels

The results in this section shows the computed support and resistance levels for
the data set introduced in Figure 4 using both our altered Kmeans (Figure 14)
and GMM (Figure 15) and they will be compared to each other as well as to
the heuristic approach (Figure 17).

11.2.1 Kmeans

Figure 14: Shows the support and resistance levels superimposed over price data
from 2019-01-06 to 2019-01-11. The support and resistance levels are based on
the partitioning done by Kmeans as depicted in Figure 6.
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11.2.2 GMM

Figure 15: Shows the support and resistance levels superimposed over price data
from 2019-01-06 to 2019-01-11. The support and resistance levels are based on
the partitioning done by GMM as depicted in Figure 10.

11.2.3 Side-by-side comparison

In order to check if there are any significant differences between the support and
resistance levels determined by the different methods we look at a side by side
comparison between the results shown in Figure 14 and 15. This comparison is
shown in Figure 16.

Figure 16: Shows a comparison of the support and resistance levels established
by the altered Kmeans and the GMM method respectively based on tick data from
2019-01-06 to 2019-01-11.

We can see that there are some marginal differences in the support and resistance
levels between the two models.
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11.2.4 Heuristic approach to support and resistance levels

We also did a heuristic approach using the Trendline-method to determine
support and resistance levels by looking at the price data and drawing support
and resistance levels by hand. The results for this approach are presented in
Figure 17.

Figure 17: Shows the support and resistance levels superimposed over price data
from 2019-01-06 to 2019-01-11. The support and resistance levels are based on
an heuristic approach called Trendlines where the support and resistance levels
have been determined by hand.

11.3 Target vs stop loss

The results in this section comes from initiating mock trades within certain
time windows specified by Century Analytics. Since these windows constitute
possibly lucrative information we are not allowed to show or discuss the actual
windows in this thesis. We can however show how many of these trades that
were initiated during the first 5 months of 2019 and whether or not these trades
resulted in a target-score, a SL-score or a noscore (see Appendix C how this
investigation was made) and the results are shown in Table 2.
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Month GMM Kmeans

Jan
target SL noscore
47 50 6

target SL noscore
48 45 10

Feb
target SL noscore
42 40 7

target SL noscore
42 44 3

Mar
target SL noscore
43 31 6

target SL noscore
42 33 5

Apr
target SL noscore
29 18 10

target SL noscore
23 26 8

May
target SL noscore
32 39 10

target SL noscore
34 39 8

Total
target SL noscore
193 178 39

target SL noscore
189 187 34

Total (%)
target SL noscore
47.1 43.4 9.5

target SL noscore
46.1 45.6 8.3

Table 2: Shows the results of the mock trades initiated during the first five
months of 2019. The methodology behind this investigation is exemplified in
Appendix C.
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11.4 Statistical significance

In order to evaluate the statistical significance for the ”target vs stop loss”-results
shown in Table 2 a P-value test was performed. The P-value was examined both
for the entire 5 months investigated as well as for each month separately. The
results for P-values are shown in Table 3.

Month P-val. GMM P-val. Kmeans
Jan 0.6576 0.4179
Feb 0.4561 0.6267
Mar 0.1003 0.1778
Apr 0.0719 0.7159
May 0.8288 0.7586

Total 0.2337 0.4794

Table 3: Shows the results of the P-value investigation for each method and
month during the first five months in 2019 as well as a combined P-value score
for the whole five months.
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12 Discussion

In this section we will go through the significance of each result from Section
11, discuss which model between the GMM and the Kmeans that seemed to
perform the best and try to answer the primary questions put fourth in the
problem setting (Section 2). Some proposals for further studies based on the
results in this thesis will also be discussed.

12.1 Significance of the results

In this section we will go through the significance of the three main investigations
that were made in this thesis; Correlation, Support/resistance levels and the
target vs stop loss investigation.

12.1.1 Correlation

Looking at the correlation plot in Figure 13 it does appear that activity and
variance correlates to each other. This is pretty much what we expected but it
is a reassurance that there might be valuable information to gather from tick
data. The results depicted in Table 1 reinforces what we see in Figure 13, maybe
with the additional indication that the relation between activity and variance
isn’t strictly linear, which is shown by the Spearman correlation being slightly
higher than the Pearson correlation. Note however that the difference is so small
that we can probably not draw any definitive conclusions whether or not the
correlation is linear.

12.1.2 Support and resistance levels

Looking at Figures 14-16 it does appear that the partitioning finds some form
of support and resistance levels that, at least to the eye, looks reasonable.
Particularly interesting is the fact that both methods produced quite similar
results (see Figure 16) which is some form of indication that using activity as a
marker for support and resistance levels is a reproducible technique.

What is not shown in these results however but that are important to address
is that since the cluster selection process for GMM versus Kmeans are different
it means that they may not agree on how many clusters to use for a given data
set. This is most likely the reason behind why we see a discrepancy between
the results in target vs stop loss in Table 2. One clear example of this is the
results for April where the difference in P-value is very big between GMM and
Kmeans.
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Looking at the differences between the both clustering methods using tick data
compared to the heuristic approach based on Trendlines we can see that the
results are markedly different. This does in some aspect support the idea of
using clustering methods instead of relying on a human since the clustering
methods seem to find information that a human would miss.

Preferably one would need to to the same kind of experiment as we did in this
thesis where the results were tested using mock trades, however this would mean
going through around 400 price curves and propose support and resistance levels
for each one, this might be feasible but certainly not desirable.

12.1.3 Target vs stop loss and statistical significance

If we start by looking at Table 2 one could argue that since the percentage of
times we hit target is higher than the percentage of times we hit stop loss we
have succeeded in making a profitable model in both cases (GMM and Kmeans).
However if we look at the results in Table 3 we get the notion that this might
not be the case. What Table 3 says is that, especially in the case of the Kmeans
model, the results might as well be random. In the case of the GMM the
results are a bit more intriguing. When using P-value to determine statistical
significance one usually assigns a cut-off threshold of for example 5 or 10%,
meaning that if the P-value is smaller than say 10% we assume that we can
reject the null hypothesis (in our case we want to reject the null hypothesis that
the outcome of the target vs stop loss-results are random). The GMM method
produces a P-value for the entire time period of approximately 20%, meaning
that we probably cannot reject the null hypothesis, but we are in a bit of a
Gray area. Especially interesting is that some months during 2019 the P-value
is as low as 7%, however these values are based on quite a small number of data
points so it could potentially be hazardous to draw any strong conclusions from
these results.

12.2 GMM or Kmeans as a method to establish support
and resistance levels

Based on the results from this thesis we would probably pick GMM as the
potentially more viable clustering method for this problem. This is mostly
backed up by the statistical significance shown by the GMM model in Table 3
where the results point towards the target versus stop loss being less likely to
be a random outcome compared to the Kmeans model.

The reason to why GMM seems to perform better might be difficult to answer,
but one reason could be that the data that the model is fed (see Figure 4) is
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more suitable to be modelled using a Gaussian distribution rather than using
centroids. Looking at Figure 4 one could argue that the peaks look suitable to
model a Gaussian distribution after. This conclusion might be further motivated
by the fact that we needed to introduce constraints to the Lloyds kmeans (i.e
create our own Kmeans) in order to partition the data correctly. The original
Kmeans would rather partition the data introduced in Figure 4 in vertical
segments (as in Figure 5) rather than horizontal (see Figure 6), leading us to
believe that the data in reality may not be entirely suitable to perform Kmeans
clustering on.

So to answer the two questions stated in the beginning of this thesis:

1. Can clustering methods such as Kmeans and GMM be used to
partition tick data from EUR-USD exchanges efficiently?

- Yes, the clustering part of this thesis is quite straight forward and it
is possible to divide tick data using an altered form of Kmeans as well as
GMM. The word efficiently is subjective, but looking at Figures 10 and 6
one could argue that the results of the clustering of both GMM and Kmeans
look reasonable.

2. Can this partitioning of tick data be used to establish support
and resistance levels for EUR-USD exchanges with any statistical
significance?

- The answer to the first part of this question is yes, it is possible to
create support and resistance levels that looks reasonable, such as the ones
produced in Figure 14 and 15. The second part of the question is more
of a Gray area but the answer is probably: no, not quite. However there
are indications that show that with a bit more investigation and further
studies there might be ways to make the model more viable, some of these
are discussed in the ”proposed further study”-section.

12.3 Proposed further study

During this thesis we have realised that there are many areas whitin this thesis
that could benefit from further analysis. Most of the improvements and new
areas of interest are connected to the mock trades and how these are specified.

12.3.1 Pip-limits

One such example is the pip limits used to define target and stop loss scores (see
Appendix C). We opted to use 10 pips to define the target and SL-limits after
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discussions with the team at Century Analytics. One could however choose
to have pip limit of 20 or 30 pips and then the results could be significantly
different due to the data being so volatile.

12.3.2 Intra week vs intra day

Another example is the data windows that were used. In this thesis we only
looked at trading windows that could be as short as one hour and this means
that in some cases when initiating mock trades the price would not have time
to move into a support and resistance level. This is why there are quite a few
noscores in Table 2. Having fewer noscores could potentially give a better insight
in whether or not the results we got are statistically significant.

12.3.3 Having ’soft’ support and resistance levels

One interesting investigation would be if one could use soft support and resistance
levels. In some cases we found that the price would approach a support an
resistance level but bounce back just before it hit. In our setting this would
count as the price not reaching the support and resistance level and thus would
not initiate a target vs stop loss investigation. If one instead would use a setting
where coming near a support and resistance level would count then we could
potentially get fewer noscores.

An interesting addition to this investigation would also be to have a gliding
trading scale, meaning that the closer the price came to the support and resistance
level the more a trader would invest. This would create a more dynamic system
than having a hard limit where we do all the investment as is the case in our
setting.
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A Altered Kmeans

The initial parts of the altered Kmeans are the same as for Lloyd’s algorithm but
the way that the cluster centers (centroids) positions are updated differs. Lloyd’s
algorithm uses euclidean distance to identify the middle point of a cluster, but
the algorithm we used for this thesis is based on the calculations of center of
mass using distances and point masses shown in 30, with xcm being the center of
mass in the x-dimension, M is the total mass and xi and mi is the x-coordinate
and mass of data point i.

xcm =

∑N
i=0 ximi

M
, M =

N∑
i=0

mi (30)

Where in our case mass m is instead activity and length x is instead price.

Algorithm 3: Altered Lloyds
Data: Dataset D containing price x and activity a, number of clusters k.
Result: Vector of cluster label for each data point.
Start by randomly initialize a set of k means {µ1

1,...,µ
1
k} along the

price-axis.
while Assignment Sti 6= St−1i do

for each point xi ∈ D do

Sti =
{
xp : ‖xp − µti‖

2 ≤
∥∥xp − µtj∥∥2 ∀j, 1 ≤ j ≤ k

}
µti = xi0 + |Ati|

−1∑
xj∈St

i
xjaj Ati =

∑
aj∈St

i
aj , xi0 = minx{Sti}

end

end

In layman’s terms we could say that we are looking for the ”centers of mass”
along one dimension.
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B Scrambling edges for V-measure

Figure 18 shows an example using data taken from an arbitrarily chosen day
from 2019 where a Kmeans method has been used to initially partition the data

Figure 18: Shows how the Kmeans partitioning looks before and after scrambling
of edges when looking at a data set extracted from 2019-02-04 to 2019-02-05.
One can see in the borders in between neighbouring clusters in the bottom figure
that they overlap to some extent.

Here the bottom illustration in Figure 18 is what is considered the ”ground
truth”. The reasoning behind this method is that we assume that the Kmeans
partition the data almost entirely ”correct” but that it miss classifies some data
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points in the border in between clusters.

Using this scrambled partition of the data as the ”truth” and the originally
partition as the ”guess” we can then produce a V-score using the equations
described in Section 8. By repeating this process for many different number of
clusters we can get a graph such as the one in Figure 8.
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C Mock trades

In order to simplify for the reader we will only go through two examples produced
by initiating mock trades when having used GMM to partition data. One where
we reach a target result and one where we reach a stop loss result. To further
facilitate for the reader we do not add any additional data and instead use the
same data set as in Section 10.

The target and SL scores are here defined by a range of 10 pips. So if we
initiate a trade which turns out to reach a support and resistance level we then
set two separate levels above and below this ”collision” point. One target level
and one SL level. Depending on if we move down in order to reach a support
and resistance level the target is set at a price 10 pips above the current price
and the SL is defined at a price 10 pips below the current price. This is then
reversed if we move up into a support and resistance level.

When using real data we would use a training set which consists of data before
the specified time window to establish support and resistance levels and then use
a prediction set (which consists of the window specified by Century Analytics)
wherein the mock trades are initiated.

If we have a case where a support and resistance level is not reached within the
time window we count that as a noscore.

C.1 Example of target score

Figure 19 shows an example where a trade is initiated and a target score is
achieved.

Figure 19: Shows an example of a mock trade which resulted in a target score
initiated in a setting defined by support and resistance levels computed using a
GMM method. The left graph shows the whole data interval which is used in the
investigation with all data before the dotted line being defined as the training set
(on which the clustering is made) and the data after the dotted line represents
the prediction set. The right graph shows snippet of the right graph where we
have zoomed in on the prediction set
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C.2 Example of SL score

Figure 20: Shows an example of a mock trade which resulted in a SL score
initiated in a setting defined by support and resistance levels computed using a
GMM method. The left graph shows the whole data interval which is used in the
investigation with all data before the dotted line being defined as the training set
and the data after the dotted line represents the prediction set. The right graph
shows snippet of the right graph where we have zoomed in on the prediction set
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