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Abstract

This thesis regards the study of cellular automata, with an outlook on

biological systems. Cellular automata are non-linear discrete mathematical

models that are based on simple rules defining the evolution of a cell, de-

pending on its neighborhood. Cellular automata show surprisingly complex

behavior, hence these models are used to simulate complex systems where

spatial extension and non-linear relations are important, such as in a system

of living organisms. In this thesis, the scale invariance of cellular automata

is studied in relation to the physical concept of self-organized criticality. The

obtained power laws are then used to calculate the entropy of such systems and

thereby demonstrate their tendency to increase the entropy, with the intention

to increase the number of possible future available states. This finding is in

agreement with a new definition of entropic relations called causal entropy.
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List of Abbreviations

CA cellular automata.

GoL Game of Life.

SOC self-organized criticality.

2



Contents

1 Introduction 4

1.1 Cellular Automata and The Game of Life . . . . . . . . . . . . . . . . 4

1.1.1 Fractals in Nature and CA . . . . . . . . . . . . . . . . . . . . 7

1.2 Self-organized Criticality . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The Role of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Causal Entropic Forces . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Entropy Maximization and Intelligence . . . . . . . . . . . . . 13

2 Method 15

2.1 Self-organized Criticality in CA . . . . . . . . . . . . . . . . . . . . . 15

2.2 Power Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Causal Entropic Force . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Results 20

3.1 Self-organized Criticality . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Entropic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusions 27

Appendices 34

A Extra Data 34

A.1 Decreasing Activity CA . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 CA Density 20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.3 Power-Laws and Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 41

B List of Investigated Rules 45

3



1 Introduction

The concept of cellular automata (singular, automaton) dates back to the 1950s, but

it did not gain its widespread popularity until 20 years later. The sudden increase

in interest, undeniably arose in association with the discovery of periodic behavior

of certain configurations, in a specific cellular automaton [1].

A possible connection between cellular automata and life1 is supported by the fact

that life is a biological system in which spatial extensions are commonly involved to

some extent, e.g. through population distribution. Furthermore, in biological sys-

tems, spatial extensions would experience nonlinear local interactions between its

different components. In turn, these are likely to stimulate natural pattern forma-

tions (i.e. dynamic and static spatial patterns undergoing self-organization). This

kind of self-organization plays an essential role in both the functionality and structure

of biological systems [2], and it is also well described by cellular automata.

1.1 Cellular Automata and The Game of Life

The concept of cellular automata (CA) can be described as a lattice system, in which

the state of each lattice point is determined by local rules. Particularly, CA is a dis-

crete computational model that has been demonstrated to be feasible for modeling

a variety of complex systems, for instance, in physics and biology (such as the dy-

namical evolution of a society of living organisms) [3, 4]. The most popular is a

two-dimensional CA known as The Game of Life (GoL), introduced by mathemati-
1The term “life” here, in a biological sense, refers to the condition that distinguishes animals,

plants, and their composite, from inorganic matter. The term, in general, refers to an entity having

the ability to undergo e.g. reproduction and growth. In this thesis, ”life” may further be seen as

self-organizing autonomous entities, that is, including artificial and biological life.
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cian John Conway [5]. To further understand the concept of CA, it is convenient to

explain and consider a specific CA; due to the popularity of GoL, this is described

below.

Consider a square lattice system of indefinite size, where each lattice site can

attain one of two possible states, either ‘dead’ or ‘alive’ (as in the absence or presence

of an alive individual); for clarification see Figure 1 below. The definite state of each

lattice site is determined by a number of predefined sets of local rules. In GoL, the

local rules are defined in terms of the state of the nearest neighbors2 for each lattice

site. The rules are defined as follows: (i) A live site will ‘die’ if it has less than two

live neighbors (as if by ‘solitude’). (ii) A live site with two or three live neighbors

will live on (i.e. ‘survive’ to the next generation). (iii) A live site with more than

three live neighbors will die (overpopulation). (iv) A dead site with exactly three

live neighbors will become ‘born’.

Figure 1: Illustration of the square lattice system in GoL with a “glider”-pattern.

Each black lattice site represents a live site, while white represents dead sites. Note:

The specific pattern shown here is called a “glider” due to its distinct propagation

properties over time.

2Considering a square lattice, a lattice site’s “nearest neighbors” are the eight surrounding

squares which it is in direct contact with, i.e. not what is normally referred to as lattice distance.
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By starting with an initial pattern of live and dead sites, and by considering each

of the four rules above, timesteps can be taken in order to perform updates of the

system, see illustrations of the process in Figure 2 below.

Figure 2: Illustration of four differently named initial patterns and their genera-

tional evolution. Each pattern here belongs in a certain category; from top: Still

life, Oscillator, Spaceship, and Methuselah (patterns that become stable after many

timesteps) [6]. Each arrow represents one timestep and the three dots indicate that

several timesteps have been taken. Note: The absence of borderlines in Gen 129 and

130, of the Diehard-pattern, indicates that the configuration is located in a different

area of the grid, relative to the initial pattern.

For a better understanding of the concept of CA and the evolution process of
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specific configurations, the reader is further encouraged to visit an online-based CA

simulator3 to try own patterns and study their evolution. At this point, it is also

worth mentioning that GoL does not represent any particular system of a real model,

rather it is supposed to be seen as a concept demonstrating the possibility of emerging

large-scale structures in complicated extended dynamical systems [4].

1.1.1 Fractals in Nature and CA

The essence of fractals is that the observed system sustains the same characteristics

on all scales, thus a major magnification of such a system should be comparable

(or identical) to the initial (non-magnified) system. This property is known as self-

similarity and is the characterization that differs fractals from Euclidean shapes [7, 8].

Examples of fractal patterns can be seen below in Figures 3 and 4, the figures depicts

artificially constructed and naturally occurring fractals; by studying these images

closer, it can be seen that all of the images illustrate the self-similarity characteriza-

tion. The existence of naturally occurring fractal geometry, similar to those simulated

by computers, is important evidence for the significant role which fractals play in

nature [7].
3Considering GoL, see for example https://playgameoflife.com/ [Retrieved 18th of February

2020]
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(a) (b)

Figure 3: Images of fractal patterns4, (a) known as the von Koch Snowflake and (b)

Romanesco broccoli.

(a) (b)

Figure 4: Images of fractal patterns, (a) known as Sierpinski Gasket4, and (b) a shell

of a snail5.

It has previously been described that a CA is constructed upon a simple set

of rules and, despite this, CA can generate varied and complex behavior [9]. For
4Images from https://mathigon.org/world/Fractals Accessed: 2020-02-18
5Image from http://www.gmilburn.ca/2009/07/16/i-see-sierpinski-shapes-by-the-se

a-shore/ Accessed: 2020-02-18

8

https://mathigon.org/world/Fractals
http://www.gmilburn.ca/2009/07/16/i-see-sierpinski-shapes-by-the-sea-shore/
http://www.gmilburn.ca/2009/07/16/i-see-sierpinski-shapes-by-the-sea-shore/


example, it has long been known that fractals can generate in CA [10] and it has

also been found in many different forms, in a variety of CA models [11, 12].

Consider a simple one-dimensional CA, which is using a sequence of sites with

two possible states (similar to GoL’s ’dead’ and ’alive’). The state of each site, after

every timestep, is deterministic and defined by a set of rules, which considers the state

of the nearest neighboring sites. By considering the specific set of rules known as

Rule 90 6, and giving the system a random initial configuration, the CA will generate

self-similar patterns as illustrated in Figure 5 below [13, 14]. The pattern is familiar

from Figure 4, i.e. this set of rules will generate the Sierpinski Gasket fractal.

Figure 5: Illustration7 of the outcome of Rule 90. Note: The used CA is one-

dimensional but the illustration of the result is two-dimensional, this is the case

since the generations are ’stacked’ on each other (similarly, GoL could be displayed

in three-dimensions, considering it as a simulation in time).

6See explicit explanation at https://mathworld.wolfram.com/Rule90.html Accessed: 2020-

06-05
7Illustration from https://www.johndcook.com/blog/2017/09/23/sierpinski-triangle-

strikes-again/ Accessed: 2020-02-18
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1.2 Self-organized Criticality

Self-organizing systems are commonly associated with life-like behavior and are con-

venient to consider in discussions regarding life [15]. In this thesis, self-organizing

systems are regarded in the context of self-organized criticality (SOC), a mechanism

that has been proposed to exist in nature and relates to systems’ natural evolution

into a self-organized critical structure, of a system state that could be perturbed by

a single perturbation. It has further been advocated as the underlying mechanism

of naturally occurring fractals, and the contingency in nature has been considered to

be an indication of its existence [4, 16].

In the context of GoL, it has been numerically shown that local configurations

can self-organize into a critical state. Considering SOC, a general mechanism for the

emergence of scale-free structures is provided and, consequently, possibly allows for

pioneering within the understanding of biological systems. This realization strength-

ens the importance of SOC in biological systems since there are no locally preserved

quantities in these systems [4]. Furthermore, in a large class of nonequilibrium sys-

tems, SOC could explain the dynamic origin of nontrivial scaling. The concept of

nontrivial scaling relates to self-similarity, which is possible to demonstrate in sys-

tems with well-defined individual events [17]. A remark regarding the general concept

of ‘self-organized’ is put in the following way by Bak et. al (1989) [4, p. 780]:

The idea of ’self-organized’ is that it is in the nature of nonlinear pro-

cesses to organize mathematical systems into structures that have order

on all length scales. If this tendency is generally present in such mathe-

matical systems, then we would also expect the natural world to contain

structures on all scales.

The argument emphasizes that it is likely for SOC (or self-organization) to apply to
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natural systems, e.g. biological. The reasoning is further supported by the fact that

studies on advanced mathematical models of biological systems, in particular co-

evolution8, have suggested that biology operates at a self-organized critical state [4].

Besides the many indications pointing towards an existing connection between

SOC and life, one main counter-argument is that there has been extensive debate on

whether a conservation law for SOC is a necessity. As previously mentioned, there

are no locally preserved quantities in a biological system, thus the debate is directly

connected to the discussion of the possibly existing connection between SOC and

biological systems. Furthermore, all SOC models demand an explicit introduction

of the system size in their definition; the system size has also been shown to have a

vital effect on the behavior of the observed scaling. This size restriction will cut off

large-scale features, and thus hinders the generality of SOC [4, 17].

1.3 The Role of Entropy

The word ’entropy’ is referring to the concept of ’disorder’, that is, entropy is a

measurement of the lack of knowledge or information, about a certain process or

system. Furthermore, entropy is one of the most important quantities in physics,

and it has been proven to be useful when describing the long term behavior of

chaotic and random processes. [18, 19, 20].

In thermodynamics, a process is said to be spontaneous if it, in an arbitrary time,

will occur without external influence from the outside of the considered system [21].

Coupled to this, is the second law of thermodynamics, which allows the outcome of

a process or system to be predicted. Specifically, the law states that:
8The term ’co-evolution’ refers to the process used to describe how two or more species recipro-

cally affect each other’s evolution, due to interactions between the species.
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During any spontaneous process, the total entropy of a system and its

surroundings must increase in time. [22]

To concertize the concept of entropy, it can be described as a measure of the

number of ways that some energy can be distributed in a system of molecules. In

order to do this, it is necessary to consider the microstates, Ω, available to these

molecules. In general, microstates are the instantaneous microscopic configuration

of a thermodynamical system, for example, the position of atoms in a gas, the energy

of each molecule in a system, or the individual elements in a sequence of numbers.

On the other hand, macrostates represent the global thermodynamical properties of

the system, therefore, e.g. the sum of all elements in the sequence of numbers would

be a macroscopic view of the sequence. [23, 24]

Since a microstate gives information about the individual conditions of the system

components, e.g. molecules, it is expected that the entropy somehow will be propor-

tional to the number of available microstates of the system. In fact, the entropy is

commonly defined as,

H = kB ln(Ω), (1)

where kB is the Boltzmann constant [25]. However, note that the entropy is com-

monly denoted by S, but in order to avoid confusion with the (later defined) cluster

size variable, S, the entropy is instead referred to as H in this thesis.

Furthermore, calculations of microstates in real systems easily become computa-

tionally heavy or very challenging to perform. Therefore, generally speaking, the en-

tropy will often be calculated in terms of measurable macroscopic quantities. [25, 26]

The role of entropy in this thesis is further discussed in Method-section 2.3, The

Causal Entropic Force.
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1.3.1 Causal Entropic Forces

To explain causal entropic forces, it is here divided into the concepts of entropic forces

and causal entropy. The concept of entropic forces has emerged from thermodynamic

systems’ tendency to maximize their entropy production. The array of macroscopic

variables describing the system tends to evolve from a state to one with higher

statistical probability. The entropic force will thus increase simultaneously with

an increasing vigorous thermal motion [27, 28]. The systems’ evolution, have been

observed to appear as being modulated by some kind of force (the entropic force).

A convenient analog is the popular paradigm of polymers contracting in a warm

bath [29]. A more explicit definition of the entropic force can be seen in Section 2.3,

along with its mathematical definition in Eq. (8), also in Section 2.3. Causal entropy

can be defined ”on the set of possible future evolutions of a system within a finite

time” [30, p. 2]. Therefore, considering this definition, causal entropy is a quantity

connected to a systems’ diversity of future available options. In order to maximize

the diversity of options, to make the system attain non-restricted states, one talks

about causal entropy maximization [30].

1.3.2 Entropy Maximization and Intelligence

Several scholars have for more than 100 years been observing the connection between

intelligence and entropy [31, 32]. In a recent study by Wissner-Gross and Freer in

2013 [31], a first step was taken in quantitatively formulating such a connection using

a causal generalization of entropic forces. These forces were shown by Wissner-Gross

and Freer to “spontaneously induce remarkably sophisticated behaviors”, in simple

physical systems. Regarding these behaviors, the authors make comparisons to hu-

man characteristics, such as social cooperation between individuals and tool use.
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Furthermore, they argue that their results indicate a “potentially general thermody-

namic model of adaptive behavior as a nonequilibrium process in open systems”.

The importance of causal entropic forces, in the context of biology, is emphasized

by the essence that the understanding of concepts within nonequilibrium physical

systems, provides insight in numerous physical principles in a variety of biological

systems (e.g. evolution, ecosystems and cellular dynamics in general) [33]. Further-

more, in the article from 2019 where Fang, et al. [33] investigates nonequilibrium

physics in biological systems, the authors stress that apart from their findings, they

expect several fundamental insights related to the phenomenon of life to emerge in

the future. This reasoning is directly related to causal entropy since the preferred

feature of maximum instantaneous entropy production for nonequilibrium physical

systems [34] follows its evolution towards a higher-entropy macroscopic state [35].

However, despite the speculative connection between entropy maximization and in-

telligence, there has not yet been a formal formulation of any physical connection,

thus further studies are needed to establish the nature of this relationship [36].
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2 Method

2.1 Self-organized Criticality in CA

In the study of cellular automata behavior, most of the results are presented using

the distribution of a measured quantity or feature. This distribution is defined by

D(x) = occurrence of property x
total number of events (2)

Eq. (2) is used for x = S, A, t and r, where S is the cluster size, A is the total

momentary activity (number of state changes in the considered generation), t is the

time (i.e. the number of generations) it takes for a cluster to become static after

a perturbation was made, and r is the distance from the initial perturbation to a

specific site, z. Moreover, r is defined by

r =
√

(xp − xz)2 + (yp − yz)2, (3)

with index p referring to the perturbed site, and index z referring to the considered

active site.

Perturbations are here defined as the addition of an ’alive’ cell in the system,

i.e. one of the dead cells changes its state. If a perturbation is random, it implies

that it is added at a random location in the system. This random placement of the

perturbation may sometimes cause the system to be unaffected by the perturbation,

in this case, the random placement of the perturbation is remade until it interacts

with some other cells, i.e. causes the system to leave its static state.

In the measurements of activity in a single site, a, one site is regarded as active

(a = 1) if it changed its state from e.g. dead to alive, the activity over time is thus

measured by counting how many changes the site experienced within a given time

(i.e. over a number of generations). The total momentary activity A, of the system
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in each generation, represents the sum of the instant changes due to the last time

step, thus it is simply a sum of zeroes and ones, i.e.

A =
N∑
n=1

an , (4)

where subscript n represents each of the N different sites in the system.

Mathematically, the overall activity in one site, ag, is defined as

ag =


ag−1 + 1 if the state changed

ag−1 if the state was unchanged
(5)

and the total activity of the system, Ag, is given by

Ag =
N∑
n=1

(ag)n , (6)

where index g represents the generation and n ∈ [1, N ] represents each individual

site of the N different sites in the system.

2.2 Power Laws

A power law is described by the following equation

y = kxα, (7)

where y and x are the variables and k and α are constants.

Features that follow power laws can be seen in a variety of systems, both in

nature-driven systems such as physics and geography, but also in man-made systems

like economics. Systems with power law behavior are also commonly considered

as scale-free systems when α < −1 in Eq. (7). For example, many social systems

are weakly scale-free, while many biological systems appear strongly scale-free. A
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famous example of the essence of power laws and scale-freeness is the Pareto law (also

known as the 80/20-principle), this principle simply states the fact that e.g. roughly

20% of the citizens in a city possess 80% of the total wealth. The scale-freeness of

this relation is apparent since the same relation holds for every scale of the system;

instead of a city, it would be possible to consider a country, and yet find the same

relation. [37, 38]

The occurrence of power laws in biological systems appear to be very common,

it has for example been found that power laws could identify real-life tree crown

construction processes in dynamic models that make use of structural features of

the trees’ crowns. Furthermore, scale-freeness has been found in complex biological

systems such as protein-, metabolic-, and gene-interaction (considering the distribu-

tion of the number of connections of the network nodes) [39, 40, 41]. Moreover, in a

study of power law distributions by Khanin R. and Wit E. [40], all of the 10 studied

datasets (corresponding to different biological interactions) were found to be coupled

to a power law distribution, to some extent. However, it has been emphasized by

Brodio A. D. and Clauset A. [37], that most scale-free structures do vary depending

on the chosen network domain.

2.3 The Causal Entropic Force

In a nonequilibrium physical system, the tendency to have a maximized instantaneous

entropy production can be coupled to the systems’ evolution toward higher-entropy

macroscopic states. This process is characterized by the formalism of entropic forces

F, (associated with a macro-state partition, {X}) of a canonical ensemble, which is

described by

F(X0) = T∇XH(X)|X0 , (8)
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where T is the reservoir temperature, H(X) is the entropy associated with macro-

state X, and X0 is the present macro-state. Specifically, this relates to partitioning

the system according to micro or macro statistical ensembles [31]. Explicitly, the

microstates here represent stable clusters, implying that the ensemble of the mi-

crostates is the set of all possible stable clusters. The macrostates are represented

by the collective CA state-variables, i.e. D(S), D(A), D(t), D(r) and the entropy.

A natural generalization of Eq. (8), with the aim of uniformly maximizing the

entropy production (with respect to the time between a future and present time),

could mean that the generalized entropic forces over the configuration space, instead

would go over paths through the configuration space. Microstates would be possible

to develop from instantaneous configurations to fixed-duration paths through config-

uration space. This as continuously partitioning these microstates into macrostates,

considering the initial coordinate of each path. For any open thermodynamic sys-

tem, phase-space paths taken by the system x(t), over some time interval, can be

treated as microstates. By partitioning these into macrostates {X}, using that

x(t) ∼ x′(t) ⇐⇒ x(0) = x′(0), every macrostate X is identified by a unique

system state x(0). Causal path entropy Hc, of a macrostate X with system state

x(0), can then be defined as a path-integral

Hc(X, t) = −kB
∫
x(t)

Pr(x(t)|x(0)) ln Pr(x(t)|x(0))Dx(t), (9)

where Pr is the conditional probability that a state evolves from an initial state to

another, which can be considered as the number of states in the system. [31]

Generally, the entropy is given by

H =
M∑
i

pi log pi, (10)

where pi is the probability for each of the M possible outcomes. However, note that

the minus sign normally seen in front of the summation is omitted, this is solely for
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illustrative purpose, with the intention to emphasize the later observed behaviour

of the entropy, see Figure 10. Furthermore, since the metric p does not exist in the

obvious sense in this case, the number of clusters, and their sizes can be used as a

proxy. Thus, the instant entropy, H, of the CA system can be calculated by

H ≈
N∑
i

Si
α log(Siα), (11)

where Si is the size of cluster i, N is the total number of clusters in the system at a

specific time, and α is the exponent from Eq. (7). The addition of the α-exponent is

motivated by results from simulations of the cluster distribution, D(S), (see below

in Section 3.1). In other words, the number of available states in the CA system is

here interpreted by using the number of clusters and their respective size.

The results from the D(S) measurements indicate that, for larger clusters, the

size distribution is less likely to be described by a given power law. Therefore, for the

specific set of rules, the same power law as found for D(S) (see for example Figure

9 (a) in the Results section) is needed to calculate the entropy properly. However,

the scaling factor in the power law for D(S) can be omitted since the general trend

of the entropy plot would be independent of this factor.

When investigating the behavior of the entropic force in the CA, Eq. (11) is used

to measure the entropy, which according to Eq. (8) is directly related to the entropic

force. In order to establish how the entropy behaves, the entropy (H0) of the first

stable state of a randomly initiated system, is plotted against the difference H1−H0,

where H1 is the entropy of the stabilized system after the addition of a randomly

placed perturbation. The main objective of this measurement is to investigate a

possible trend of increase in such a plot. In case of an observed entropy increase

after a perturbation, it has been shown that an entropic force is present in the CA;

otherwise, it just yields knowledge in how CA behaves from an entropic aspect.
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3 Results

In this thesis, we want to study how to quantify the emergence of complexity in

CA for given rules. An important parameter in this study is the activity (A), which

is a measurement of how much change there is between two generations (i.e. the

change caused by the deaths and births of cells due to one update of the system).

The activity thus measures how active the system is. Considering the first update

(Gen 1 to Gen 2) of the top three configurations in Figure 2: the Block has A = 0,

the Blinker has A = 2 and the Lightweight spaceship has A = 9. In the study of

a system’s evolution, the activity over time is an important property to consider,

it tells how the system evolves and what parts of the system that are more active

than others. The activity over time is here studied in two different ways. Below in

Figure 6, the activity is illustrated using a method analogous to heat distribution.

The maps are color-coded, where the more vibrant colors correspond to high activity,

as seen on the color scale to the right of the activity maps.
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(a) (b)

Figure 6: Color-coded mapping of the activity in each site in a 70× 70 grid (a) and

a 200× 200 grid (b), both with periodic boundaries. The two different systems ran

for (a) 120 and (b) 100 generations. The more vibrant colors correspond to a higher

activity, for example, the sites with the most vibrant color in (b) have undergone a

total of about 30 changes during its 100 generations.

For Figure 6 (a), birth occurred when a cell had 3 or 6 live neighbors, and a cell

experienced death if it had 0, 1, 4, 7 or 8 live neighbors. The initial configuration of

live cells was a 3×3 square, with one dead cell in the middle; as seen in the figure, the

configuration results in a symmetric activity map. The rules used to obtain Figure 6

(b) are essentially based on the rules of GoL, however, it is here favorable to have 8

live neighbors (i.e. cells fulfilling this condition will remain static). These rules, in

combination with a grid of only live cells, except one dead in the middle of the grid,

results in the activity evolution seen in Figure 6 (b).

One other way to study the activity of a system is to measure the activity in each
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generation, this is illustrated below in Figure 7.

Figure 7: A plot of the activity between each generation. The plot corresponds to the

same system and data as Figure 6 (a) and thus have the same rules and properties.

The activity is observed to undergo an exponential increase, which is quantified by

the function A(g) = (1.52 · 1.016g − 1.52)102

By illustrating the activity in time, as in Figure 7, it can be seen if the system

becomes more or less active in time, the latter would cause the system to eventually

reach a static state (i.e. an activity of zero). The corresponding A(g)-plot for Figure 6

(b), was also observed to be exponentially increasing, this time by the function

A(g) = (6.95 · 1.01g − 7.51)103. Other CA like GoL and the one to be described in

Section 3.1, undergo exponentially decreasing activity, see Appendix A.1.

3.1 Self-organized Criticality

From the discussion about fractals in Section 1.1.1, the discussion about SOC in

Section 1.2, and the deep dive into power laws in Section 2.2, it can be concluded

that, if power law behavior is seen in specific features of a studied CA, the system is
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scale-free and will self-organize into a critical state. The features of interest, are the

distribution of cluster size D(S), the time until the perturbed system comes to rest

D(t), the activity caused by random perturbations D(A), and the distance from the

initially perturbed site to all affected sites D(r).

The following figures correspond to data gathered from a CA system based on

the following set of rules: A cell will die if it has 0, 1, 7 or 8 live neighbors, a cell will

be born if it has exactly 4 live neighbors, and for each other case a cell will remain

unchanged. Moreover, periodic boundaries were used along with an initial density of

20% of randomly distributed live cells, and a general feature for this specific set of

rules was that a variety of stable clusters were possible, making it favorable for the

measurement of stable cluster distribution. The data was obtained by studying the

clusters created by 1,000 random initial configurations, all with a density of 20% live

cells. In Figure 8 below, the first studied features of the above stated set of rules are

displayed.

(a) (b)

Figure 8: (a) Cluster size distribution in a log-log scale and (b) distribution of

generations needed to reach a static state after system-initialization, both in a 100×

100 grid.
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The plot in Figure 8 (b), depicts the number of generations that were needed

for the system to become static after initialization, i.e. this plot gives a good idea

of how the specific CA evolves in time. It can be seen that most systems, initiated

with the density of 20% live cells, will come to rest after roughly 20 generations.

This characteristic of the system implies that the studied CA is suitable for further

data collection; the rather low lifetime means that the data-gathering will be fast. If

the maximum of the plot was located at a larger generation, the used program (see

Reference [42]) would have to run for a long period of time to obtain a lot of data.

Below in Figure 9, all the previously mentioned distributions are displayed in

log-log plots. To each of the obtained plots, a power law has been fitted according to

Eq. (7), to approximately describe the behavior of the observed data. The simulated

CA is based on the same rules that yielded the results in Figure 8, however, here a

density of 30% live cells was used in the random initial configurations. Moreover,

the distributions are calculated using Eq. (2), and the data in Figure 9 (b) - (d)

are from randomly perturbed static systems. More results from the same CA, but

with a density of 20% live cells in the random initial configurations, can be seen in

Appendix A.2.
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(a) Data corresponding to 12,483 studied clus-

ters, 371 of unique size. The cluster size distri-

bution is described by D(S) = 0.696S−1.35.

(b) Data corresponding to 103,170 measured ac-

tivities, whereof 488 were unique. The activity

distribution is described by D(A) = 0.668A−1.51.

(c) The data corresponds a total of 167,076 mea-

sured times, t, whereof 76 were unique. The be-

havior is approximated by D(t) = 0.665t−1.63.

(d) Data corresponding to 1,461,293 measured

distances, whereof 335 were unique. The trend

is approximated to D(r) = 0.139r−1.38.

Figure 9: The data (blue dots) in (a) corresponds to 1,020 random initial configura-

tions in a system of size 100× 100, while (b), (c) and (d) corresponds to data from

380 randomly initiated systems of size 30×30. The red-dashed lines are approximate

power laws that describes the behavior of respective system.

There is an obvious trend of power law behavior in all of the above distribution

plots. This indicates that the CA is scale-free, and as discussed previously, this power

law behavior is a promising sign of similarities to biological systems. Other sets of
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rules, than the one described here, were found to yield similar results as above (i.e.

could be represented by power laws). The data from some other sets of rules can be

found in Appendix A. Furthermore, according to the previous discussion in Section

1.2, these findings demonstrate the existence of SOC in CA, for these specific sets of

rules. The results also seem to agree well with previous studies on the specific cellular

automaton ”Game of Life”, which also has been proven to possess SOC [4, 43, 44, 45].

3.2 Entropic Force

In section 3.1 it was discovered that the CA-rule described there, created a system

of clusters that could be described by the function D(S) = 0.696S−1.35, see Figure

9 (a) or in Appendix A.2, Figure A.5 . Considering the same system, the exponent

in the power law for D(S), α = −1.35, can be inserted in Eq. (11) and the entropy

change after a perturbation can be measured. Displayed in Figure 10 below, is the

result for this specific set of rules applied in a grid of size 100× 100.

Figure 10: Entropy change caused by random perturbations of 2,560 systems, ini-

tialized with a random distribution of 20% of live cells.
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4 Conclusions

It has been proven that SOC exists in all of the studied CA, this follows by the

evident power law behavior seen in both Figure 9, Appendix A.1, A.2 and A.3.

However, there is a recurring deviation from the power law behavior, seen in all of

the approximated power laws. The origin of these large-value deviations is most

certainly due to the finite sizes of the systems, in which the simulations were done.

Therefore, with this realization, the finite system-size deviations can be disregarding

when concluding that power laws are able to describe certain CA-behavior. Along

with previous discussions about SOC and its relationship to biological systems, these

are promising findings in before considering the last studied feature of CA in this

thesis, namely entropy maximization.

The data in Figure 10 clearly showed an obvious entropy change, specifically,

there is an increase of entropy corresponding to an increase in the possible number

of states (i.e. cluster-count and cluster sizes). According to the reasoning in Section

2.3, this property of the entropy can be coupled with the entropic force via Eq. (8).

By considering the discussion regarding entropy maximization and intelligence in

Section 1.3.2, this finding suggests that CA-systems possibly share a deep connection

with intelligent life-like systems. A similar result was also found for another set of

rules, see Figure A.12 in Appendix A.3. This finding of intelligence traits in CA (via

entropy maximization) appears to be previously unobserved and is thus considered

a new finding. Therefore, this is the major contribution of this thesis towards a

possible future formulation of a relation between CA and life-like systems.
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Outlook

Future studies within this subject are a matter of course since the findings in this

thesis indicate that there is a very clear sign of causal entropy in various cellular au-

tomata. The idea that life and various biological systems can be described by simple

sets of rules, just like CA, yields many interesting opportunities for future studies.

For example, the possibility of investigating nearest-neighbor rules in systems of,

say, unicellular organisms, or even the neurons and their networks in the human

brain. Moreover, in a recent study of a CA with continuous spacetime-state, the

author states that CA ”could give answers to life, the universe, and everything.” [46,

p. 2]. This, perhaps extravagant, statement is given even more background, now

considering that causal entropy has been found in CA.
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Appendices

A Extra Data

The figure below is a result from the same system as for Figure 9 (b), however, the

data here corresponds to a smaller simulation.

Figure A.1: The plot shows data from 30 different initial conditions, which resulted

in a total of 3,969 measured activities, whereof 88 were unique. The distribution is

described by D(A) = 1.35A−1.96.
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A.1 Decreasing Activity CA

Figure A.2: A plot of the activity between each generation. The data is gathered

from a GoL system with a size of 100×100. The activity is exponentially decreasing

according to the function A(g) = (18.8 · 0.985g + 3.51)102
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Figure A.3: A plot of the activity between each generation. The data is gathered

from a 100× 100-system, driven by the rules described in Section 3.1. The activity

is exponentially decreasing according to the function A(g) = 1.58 · 0.807g · 103

36



A.2 CA Density 20%

Figure A.4: Data from Figure 8 (a) with a power law fit. The red dashed line

corresponds to the power law D(S) = 0.722S−1.35
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Figure A.5: Data from 1,200 different initial conditions in a 30 × 30-system, which

resulted in 236,922 measured activities, whereof 295 were unique. The activity dis-

tribution is described by the power law D(A) = 1.86t−2.16.
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Figure A.6: The data corresponds to 1,200 different initial conditions in a system of

size 30× 30, and a total of 137,252 measured times, t. The approximated power law

function is given by D(t) = 6.67t−2.55
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Figure A.7: Data corresponding to 15 different initial conditions in a system of grid-

size 100 × 100, the number of distances measured was 155,160, whereof 144 were

unique. The trend is approximated by the power law D(r) = 0.494r−2.043.
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A.3 Power-Laws and Entropy

The following five figures are based on data gathered using the rules: A cell will die

if it has 0, 1 or 7 live neighbors, a cell will be born if it has 4 or 8 live neighbors,

and for each other case a cell will remain unchanged. The measured quantities were

D(S), D(A), D(t), D(r), and the entropy change (H1 −H0), all data were collected

from a system of size 70× 70 with an initial density of 30% live cells.

Figure A.8: Behavior described by D(S) = 3.65S−2.23. Data from 6,100 different

initial conditions, which resulted in 315,619 measured clusters whereof 93 unique.
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Figure A.9: Measured data is roughly following the power law D(A) = 10.05A−3.83.

The data corresponds 50 randomly initialized systems, which resulted in 7,145 mea-

sured activities whereof 29 unique.

42



Figure A.10: Data described by D(t) = 57.8t−4.11. From 50 randomly initiated

systems, 169,609 times were measured, whereof 14 unique
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Figure A.11: The data roughly follows D(r) = 2.11r−3.71, and corresponds to 17,527

measured distances, whereof 17 unique.

Figure A.12: Entropy change from 1,578 randomly perturbed systems. A clear

increase in entropy is observed.
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B List of Investigated Rules

On the next page, some of the more thoroughly investigated CA-rules are shown.

The conditions were written in a .xlsx-file, and its content was directly read by the

CA-program, a link to the program can be found in Reference [42].

The first column (A) represents the dimension of the system, specifically, the

system is a grid of squares, thus a Grid dim of 40 means that the system contains

a total of 40 × 40 = 1, 600 cells. The parameter in column B corresponds to the

visualized size of each square cell, a higher value gives larger cells. Column C takes

a True or False argument on whether or not closed-/absorbing boundaries should

be used; if set to False, periodic boundaries will be used. Columns D and E take

the lists of the number of neighbors needed for a cell to experience any of the two

changes. Column F takes the density for the initial random distribution of live cells,

the density should be given in decimal-form. Columns G and H are for when it

would be interesting to observe the activity in a specific region of the system; if Loc.

act is set to True, the coordinates of the corners should be inserted according to

x1, y1, x2, y2, where the top left corner of the system has coordinates (x1, y1) = (1, 1)

and bottom right corner has coordinate (x1, y1) = (dim, dim). Column I and H

are for the user’s notes on the specific system, column I is mainly for noting initial

configurations (other than the random ones) that yielded interesting patterns, or

peculiar evolution of the system. In H, notes from observations or system specific

features were written down. Furthermore, the main sets of rules investigated in this

thesis are the ones in displayed row 13 and 18, and in row 1 and 2 are the rules for

Game of life.
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