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Abstract

Traffic accidents are extremely rare, creating the need for surrogate methods for safety analysis that
makes efficient use of the information provided by traffic conflicts, which also are limited in availability.
The severity measure time-to-collision (TTC) in combination with extreme value theory have so far
been one of the primary measures used to infer traffic safety levels, but it relies on unrealistic assump-
tions that results in severity measures that do not always agree well with observed danger. Stochastic
TTC has been proposed as an alternative, which replaces the constant velocity trajectories used to
define collision course with naturalistic ones, resulting in a distribution of potential TTC values. The
main focus of this thesis is to find a way to mathematically model such data. Stochastic TTC is
conceptualized within the framework of mixed distributions, and equations allowing for extreme value
theory to be used in such a context are derived. A second point of focus is on presenting a new method
for estimating the collision probability, allowing for separate estimation of collisions that occurred with
and without attempts at evasive action. Also, the effects of data-transforms were investigated in a
simulation setting, which proved highly useful in reducing the tendency for underestimation which
seems to be a common problem when extreme value theory is applied to traffic data, and overall im-
proving accuracy. Stochastic TTC and the proposed methods were also tested in this simulated traffic
environment, which showed that stochastic TTC can work at least as well as regular TTC, but in
order for more significant differences to be seen, the simulation would have to contain more variable
road user behaviour and more curved trajectories.
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Chapter 1

Introduction and theoretical
background

1.1 Introduction

Traffic safety research is a field that is concerned with modeling road traffic and identifying relationships
between various measurable factors of traffic and rate of accidents in a given traffic location. The task
of estimating the expected number of collisions turns out to be a challenging problem, primarily due
to the fact that collisions are extremely rare [4], and the fact that the few accidents that do occur
sometimes go unreported, according to senior researcher A. Laureshyn at Lund University. Even when
it is practically feasible to collect sufficient amounts of crash data to produce a reliable empirical
estimate, this reactive approach runs contrary to the main purpose of traffic security research, which
is to identify dangerous traffic environments and prevent accidents before they occur. For this reason
there is a need to evaluate traffic safety levels based on the more frequently occurring traffic conflicts,
which are encounters similar to accidents in that they seem to be caused by similar factors, but do
not result in a collision [4]. Research has established that there is indeed a relationship between
rates of traffic conflicts and rates of traffic collisions [5]. This suggests that it should be possible to
predict the rates of collision based on the rates of conflicts, and much attention has been directed at
modeling this relationship. The desire to perform such extrapolation has led to a growing interest in
applying Extreme value theory (EVT) [7] to traffic security - an approach made possible due to the
apparent continuity along the severity-spectrum of road traffic [6]. One of the advantages to using
EVT is that it requires few modelling assumptions compared to other estimation methods, such as the
assumption of a fixed conflict to collision ratio [6]. It is supported by mathematical theory that ensures
asymptotic convergence under weak assumptions [2]. Also, it allows for severity to be measured by a
one-dimensional continuous variable, such as separation in time or space between road users [6].

In order to apply EVT to the problem of estimating crash frequency, a value is assigned to each moment
of each traffic conflict, according to some objective rule. This value acts as an indicator of its level of
severity, and is known as a severity measure, or safety surrogate measure. The word surrogate
refers to the fact that traffic conflicts acts as a surrogate for observing actual accidents. After a large
number of conflicts have been observed, and each has been associated with a value using the severity
measure of choice, EVT is then used to model the lower tail of the distribution of the resulting data,
which contains information about the frequency of the most dangerous traffic events, including the
events corresponding to collisions.

The selection of which severity measure to use is an important aspect of the accident-rate estimation
procedure. Two commonly used severity measures are time-to-collision (TTC) and post-encroachment-
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time (PET). TTC is defined as the time it would take for two road users to collide under the assumption
that they continue moving with constant velocity [4], that is with constant speed and direction. In
[4] PET is defined as ”the time measured from the moment the first road user leaves the potential
collision point to the moment the other road user enters this point”. A drawback of PET is that it it
fails to capture the severity of the situation when a collision is avoided by a road user breaking hard,
since this road user would then have to first accelerate after stopping before crossing the path of the
other road user, resulting in a misleadingly high PET value that gives no indication of the danger of
the encounter.

TTC does not suffer this drawback, but has instead a disadvantage in that it sometimes assigns a
severity rating based on an unrealistic assumption, as road users in many situations cannot by any
reasonable model be expected to continue forward with constant velocity. For instance, in an inter-
section, people will often decelerate out of habit, and have a certain trajectory in mind that they will
follow by default should there be no obstacles to react to. In the article [1] the authors demonstrate
how this concept fails when the vehicles moves along a curved path, such as in a roundabout. Fur-
thermore, TTC can miss-label certain situations as safe, when in fact they are not. For instance, if
two road users pass each other in an intersection with high constant velocities and miss each other
only by a few centimeters(for instance as a consequence of not seeing each other), this will be correctly
identified by an observer as a dangerous encounter that may very well be indicative of some ill-designed
feature of that intersection which contributes to the collision risk, such as a distraction in the traffic
environment or an obstacle obscuring vision. Despite this, TTC would indicate no danger, since the
drivers were by this definition never on collision course. Therefore, TTC can be somewhat wasteful of
the the data available, which is particularly problematic given how rare serious conflicts are.

One way to modify the concept of TTC to remedy this drawback, is to define TTC in terms of the
possible intended movements that are likely in a given situation, resulting in a distribution of possible
TTC values rather than a single deterministic TTC value. The paper [4] was one of the first to
investigate the application of a probabilistic framework to traffic safety analysis. In it, the authors
suggests redefining the idea of collision course as an interaction wherein there is a non-zero probability
of the interaction resulting in a collision. As an extension of this idea, researches at Lunds Transport
and Roads department have considered using the idea of a probability distribution of possible intended
paths to define a stochastic severity measure called stochastic TTC, essentially replacing TTC by a
probability distribution of potential TTC values. Each possible TTC value is computed by considering
every possible combination of potential intended paths for two road users that are in a conflict. The
potential intended paths are based on previously observed movements of road users rather than on
the assumption of constant movement, and should therefore provide a more realistic indication of a
situations safety-level. This approach of discretizing the space of possible future trajectories is similar
to that taken in articles [1] and [4].

To the knowledge of the author of this thesis, there has been no previous attempts to combine this sort
of data - namely data consisting of a collection of probability distributions rather than a collection of
data-points - with EVT. One of the main focuses of this thesis is therefore to derive the equations that
allows for this type of data to be used, provide motivation for why such an approach would make sense
mathematically, and what could be gained from it, at least in an idealized setting. The thesis also aims
to provide proof-of-concept of the presented equations and methods in the form of simulation testing.
In this simulation, stochastic TTC is tested in performance against two other severity measures: TTC
and minimum-distance, the latter of which is the minimum distance between the hulls of two road-users
at time C.

Some attention is also given to the effects of data-transformation, which was inspired by the use of a
data-transform 1/(X+G) in the article [8], where it was used to seemingly beneficial effect by producing
fewer zero-estimates of the collision probability. The outcome of obtaining a zero-estimate appears
to be a common problem when applying EVT to traffic data (see [5], [6], [7] and [8]), rendering the
estimate essentially useless in such cases. This is particularly problematic when the purpose of the
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collision-rate-estimate is to compare the safety levels of different traffic locations, for instance in order
to analyse the impact on safety levels of some aspect of traffic, such as differences in traffic lights,
traffic signs or road markings. We will investigate how data transformations could potentially decrease
the probability of obtaining a zero estimate.

Finally, we will present what is to the authors knowledge a novel method for estimating the probability
of collision using EVT. This approach is based on the notion of TTC-at-first-evasive-action which was
first introduced in the article [3], and allows for separate estimation of the collision probability for
two types of collision, namely collisions with and without attempts at evasive action. The idea is to
separate the set of observed encounters into those with and those without attempts at evasive action,
and collect different information from each set. This presents one way to get around an issue associated
with stochastic TTC, namely the difficulty of predicting intended movement that occurs when a road
user starts engaging in evasive maneuvering.

1.2 Overview of basic extreme value theory

Extreme value theory is a branch of mathematics that is concerned with prediction of the frequency
with which rare or extreme events occur. It can be considered a kind of extrapolation method that
allows us to make inference about the extreme parts of the probability distribution we have little or
few observations. It can be used whenever the data can reasonably be considered to be independent
and identically distributed, and sufficiently smooth to justify such extrapolation. This makes EVT
useful in applications of accident and disaster prevention, since waiting for sufficient amounts of data
to make meaningful empirical estimates is not an option. EVT is widely used in applications where
risk management is of importance, such as predicting the risk of floods, risk of structural failure in
structural-engineering, or risk of large insurance claims [2].

Two common ways for EVT to be applied are the block maxima and peaks over threshold methods,
both of which are motivated by asymptotic arguments. The block maxima method makes use of the
fact that the maximum "= of a sample of size = can - under weak conditions - be well approximated
within the three parameter family of distribution functions known as the Generalized extreme value
(GEV in short) family. This means that the data can be split up into blocks of size =, after which
the the maxima of each block is taken to produce a set of observations of "=. To these maxima,
we may then fit a GEV distribution using the maximum likelihood method. This process involves a
variance-bias trade-off, as smaller blocks means more data points (reduction in variance) but also less
accurate modelling assumptions (increase in bias) given that = is smaller.

If a random variable - satisfies the conditions allowing for approximation of "= within the GEV
family, then it turns out that the exceedences over a high threshold D are well approximated by the
generalized Pareto distribution (GPD in short) [2]. Specifically, if . = - − D |- > D, then

%(. ≤ H) ≈ 1 −
(
1 − f

b
H

)− 1
b

.

Note that the above approximation is asymptotically precise, i.e. it tends towards equality as D tends
towards the upper endpoint of the distribution of -. The case when b = 0 is obtained by taking the
limit as b approaches zero, and yields the exponential distribution with mean 1/f. When b < 0, the
support of the distribution is > < H < b/f, and when b > 0 the support is 0 < H. A way to estimate
the tail of the distribution of - then is to select a high threshold D, collect the data that exceeds this
threshold and compute for each exceedence the excess . , and finally fit a GPD to the excesses. After
this is done, we may estimate the probability %(- > G) by using
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%(- > G) =%(- − D > G − D) = %(- − D > G − D |- > D)%(- > D)

=

(
1 − f

b
(G − D)

)− 1
b

%(- > D)

where %(- > D) can be estimated by counting the number of exceedences, and b and f can be estimated
using the maximum likelihood method applied to the excesses. This is the peaks over threshold
method, or POT in short. Note that the same principle of trade off between variance and bias applies
here, as choosing a lower threshold means we get more exceedences and thus more data to estimate
the GPD parameters, but also less accurate modelling assumptions.

So far, everything has been formulated in terms of maxima and data points exceeding a threshold, but
the methods work equally well for investigating the behaviour of minima and data that falls below
a threshold D. To adjust for this, all we need to do is negate the data so that the sample minima
becomes the sample maxima, and the above methods can be applied.

In this thesis we will be using only the POT method. This is because we are focusing on application to
small data samples, and research has shown that in such cases POT is likely to outperform the block
maxima method [7].

1.2.1 Estimation of return levels

Above we described how one may use EVT to estimate the probability of the random variable exceeding
a high threshold. Another way to get a sense of the frequency of rare events is to look at the return
level associated with some return period <, denoted G<. G< is defined in terms of the equation

%(- > G<) =
1

<
.

One interpretation of this equation is that the <-observation return level G< is the level such that it
takes on average < observations before it gets exceeded once. Another way to think of it is as the
level that on average gets exceeded once per < observations. For example, if we are concerned with
the height of a wave, we might want to know the 10 year return level, which is then the wave height
that is exceeded on average once every 10 years.

If we are using POT method with threshold D, the <-observation return level is given by

G< =D +
f

b

[
(<ZD) b − 1

]
, when b ≠ 0

G< =D + f log(<ZD), when b = 0,

where ZD = %(- > D).

1.2.2 Diagnostic plots

As mentioned in the previous section, the selection of threshold represents a trade-off between variance
and bias. As we increase the threshold, eventually the reduction in bias is no longer worth the
corresponding increase in variance. Likewise, as we lower the threshold, eventually the decrease in
variance is is no longer worth the increase in bias. Thus, it is important to have diagnostic methods
for getting a sense of which threshold to use in order to get a reasonable balance between the two.
An often used method for selecting a threshold, is to estimate the shape and scale parameter for a
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range of thresholds, and select the lowest threshold for which the model assumptions appears to hold
reasonably well. One way to do this is to plot the estimated shape parameter for different thresholds
together with confidence intervals, and see for which thresholds the shape parameter looks reasonably
constant relative to the uncertainty indicated by the confidence intervals. This is an indicator of model
accuracy, because it can be shown that if the excesses are GPD for some threshold D, then increasing
the threshold further will not change the shape parameter [2].

Another indicator that the model assumptions are accurate is that the fitted distribution - or model
distribution, as it is sometimes called - is close to the empirical distribution function of the data. This
can be checked by plotting model and empirical distribution functions or density functions together to
see how well they agree. Also, we can estimate the quantiles using the order statistics G (8) , and plot
these against the model quantiles. The quantile plot consists of the points

{(
�̂−1 (8/(: + 1)), G (8) )

)
, for 8 = 1, 2, ..., :

}
,

where

�̂ (H) = 1 −
(
1 − f̂

b̂
H

)− 1

b̂

is the GPD fitted to the : excesses.

1.3 Definitions and modelling assumptions

In this section, the goal is to clarify some of the basic concepts and definitions that will be used
frequently throughout this thesis. We will also identify and motivate some of the underlying modeling
assumptions that are inevitable when attempting to estimate traffic safety, given the complex nature
of road traffic.

Let us begin with formulating the purpose of severity measures. Loosely formulated, the purpose of a
severity measure is to objectively measure the potential for an accident to occur in a given situation
during an encounter between two road users. In this context, situation refers to the state of the
traffic encounter at a fixed point in time, and is determined by a set of initial conditions containing
information about the state. These initial conditions are what allows the algorithms used in the
article [1] to classify each situation, and determine which previously observed situations are similar
enough to the current one so that they can provide information about possible future outcomes. The
number of initial conditions and what are what they are may vary, but the most important factors
include the speed, direction, and position of the road users. Note that initial position may also include
information relating to the ”past” and ”future”, such as whether a road user intends make a turn or
continue moving forward, and their previous positions. The more conditions that are included, the
fewer past observations of ”identical” situations will be available.

Mathematically, we define a severity measure to be any function that assigns to each situation a value
- in such a way that either - ≤ � or - ≥ � for some threshold value � is equivalent to the event of
a collision. In order for - to be useful in EVT however, we need to impose a further restriction. We
need the distribution function of - to be at least continuous, so that extrapolation from less extreme
events is justified.

Next, we need to clarify what is meant by ”potential for danger”. This formulation assumes that an
encounter involves some non-zero probability of resulting in an accident, at least if the road users are
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in some meaningful sense on a collision course. The notion of collision course is an important concept
here, and can be defined in several ways that typically rely on some extrapolation hypothesis regarding
future movement [4]. In this thesis, we will model traffic by assuming that every driver has at each
moment what we will refer to as intended path or default path, inspired by the article [4] and discussions
with A. Lauhrensyn and other researchers at Lunds Transport and Roads department. We define this
path as the motion a road user would follow if there were no other road users for them to potentially
collide with. Thus, we are assuming that each road user has a ”preferred” or ”characteristic” way
of moving through a given traffic environment, which they are sometimes forced to deviate from due
to the presence of other road users. The intended path can be thought of as representing a kind of
behavioural momentum, and conscious control and attention must be exerted in order to deviate from
this intended path to avoid collision when the intended paths of two road users results in a collision
course. A natural assumption to make, is that situations that require a greater amount of conscious
decision making in order to avoid an accident are more dangerous than those that require only a small
modification of habitual behaviour to avoid an accident.

The above discussion suggests that one component to ”danger” in a traffic situation is that there is
a collision course, i.e. the road users are in a position where modification of their intended paths is
required to avoid collision. Another component is the amount of time available to the road users to take
corrective action before a collision occurs, i.e. TTC. Here we are making the additional assumption
that the less time available to react to the collision course, the higher the risk for an interaction to
result in a collision, all other things being equal. To summarize, danger may be thought of as a function
of how much time is available to correct behaviour, and the amount of correction required.

1.3.1 EVT applied to deterministic TTC

A standard way to apply EVT within the context of traffic security, is for each encounter to be reduced
down to a single value indicating its degree of danger. To do this, each time-frame may be assigned a
severity rating using some severity measure such as TTC, after which we take the minimum of these
values as the representative for the encounter as a whole. In other words, the severity level of each
encounter is rated on the basis of its most dangerous moment. Once such values have been collected
for a large number of conflicts, we may apply for instance the POT method to estimate the probability
that the minimum TTC will fall bellow zero, which is equivalent to the event that a conflict resulted
in a collision.

1.3.2 Definition of stochastic TTC

The main idea behind stochastic TTC is to define the severity measure of a traffic situation as a
probability distribution rather than as a deterministic value. stochastic TTC differs from deterministic
TTC in two ways. First, collision course and TTC are defined in terms of trajectories that have been
observed, rather than on the assumption of continued constant motion. To determine what the intended
path of each road user is likely to be, we look at how road users behave in similar observed situations
where they were allowed to move freely. For instance, if we want to estimate the intended path of a left
turning vehicle with speed B, direction 3, we look at the history of observations of road users that have
been observed with such speed, velocity and destination (meaning that the space of possible situations
is discretized to produce categories containing more than one observation per situation), but under
circumstances where there were no other road users to collide with. This allows us to form an empirical
estimate of the distribution of the possible intended paths for road users in such a situation. When the
probability distribution has been computed for two road users at some time C, we can compute TTC
for each combination of intended paths. This then gives us an empirical estimate of the probability
distribution of TTC for that situation, where TTC is defined in terms of intended paths.

The above method seems reasonable when the road users have not yet started interacting. Once they
have started interacting however, the idea of predicting intended movement based on the behaviour

12



of road users that are free to move as they want does not make much sense. A way around this is to
define stochastic TTC only for the first moment where evasive action occurs, which can be considered
as the most dangerous non-interactive part of the encounter. This problem will be discussed in more
detail in Chapter 2.

When using deterministic TTC, we reduce the encounter as a whole down to a single value that
represents the encounter at its most dangerous moment. In the case of stochastic TTC, it is less
obvious how to do this. One suggestion is to use the distribution that is ”minimum” in the sense that
it supports the lowest TTC value to represent the encounter as a whole. We could attempt to try to
compute the distribution of the minimum TTC for the whole encounter, but this raises the question
of how to model the dependence between TTC values of each time frame of an encounter. It is not
clear how this would be done, even in theory. We will not pursue this question further in this thesis,
leave it as an open question to pursue in future research, and choose to get around this problem in a
different way which will be explained in Chapter 2.
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Chapter 2

Propositions for utilizing and
modelling stochastic TTC

2.1 Modeling traffic safety levels as a mixed distribution

In order to model stochastic TTC mathematically, we will consider it in terms of what is known as
a mixed distribution. A mixed distribution refers to any random variable - that may be sampled by
first drawing a random variable by some random mechanism, and then drawing an observation from
the distribution of that random variable. To summarize, we may sample from the distribution of - by
following the sampling scheme:

draw / from �/

draw - |/ from �- |/ .

Another way to think of this, is that we first randomize which distribution to draw from, and then
sample from that distribution.

To relate this to the idea of stochastic TTC, / would correspond the situation. Thus, we imagine
that the level of danger in a conflict is the result of two steps of randomization. First, the situation
is ”drawn” - that is, things like the position, velocity and destination (left turning, right turning etc.)
of each vehicle is determined. This then determines a distribution for possible intended movements
for each road user, and subsequently also a distribution of possible TTC values. Drawing from this
distribution corresponds to the second step of the sampling process outlined above, where we finally
obtain a TTC value. To be precise, we need to define which part of the encounter we are referring to
when we say that the situation is drawn. The situation may be referring to a predetermined part of a
conflict, such as the first moment of evasive action, or to the most dangerous moment (according to
some definition) during an interaction. For now we will assume that each encounter can be associated
with a single distribution of TTC values, whether it be a distribution of the minimum TTC of the
encounter as a whole, or the TTC at some specific part of the encounter.

With this in mind, we return to the general situation. Assume for the sake of simplicity that all
random variables are discrete. The situation we want to investigate is the following. Suppose that we
can sample from ?- |/ , and that the p.m.f. of -, %- = ?\ , has a known expression and depends on an
unknown parameter vector \ which we would like to estimate using the maximum likelihood method.
Suppose further that the distribution of / is unknown, and that we have as our data a sample of =
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observations of /: ` = {I1, I2, ..., I=}. The first question we will investigate is how to make a maximum
likelihood estimate of \ which best utilizes the data available to us.

One way to get an estimate is of course to simply generate a sample of - of size = by drawing one

sample G (1)
8

(the meaning of the index (1) will be become clear later) from each conditional distribution

%- |/8
, thus obtaining a sample which we denote ^ (1) = {G (1)1 , ..., G

(1)
= }. To simplify notation, define

?- |8 = ?- |/8
. We can then plug ^ (1) into the likelihood function and estimate \ in the usual way.

It seems however that we are getting an unnecessarily large variance due to the randomization that
occurs in the second sampling step, and that we may reduce this added variance by drawing a second

sample ^ (2) = {G (2)1 , ..., G
(2)
= } by drawing G

(2)
8

from %- |8, so that we have now observed in total two

observations from each conditional distribution %- |8. If we treat ^ (1) and ^ (2) to be approximately

independent, we have that the likelihood function for the combined sample (^ (1) , ^ (2) ) is

! (^ (1) , ^ (2) |\) =
=∏
8=1

?\ (G (1)8
)

=∏
8=1

?\ (G (2)8
).

We can continue this procedure, drawing # such samples, which then gives the likelihood function

! (^ (1) , ..., ^ (# ) |\) =
#∏
9=1

=∏
8=1

?\ (G ( 9)8
)

Since we expect to see variance reduction by increasing the number of samples #, a natural strategy is
to let # go to infinity and see if the above expressions converges (after some appropriate normalization)
in some sense. With this in mind, we introduce the notation

<
(# )
8, 9

= # times that G 9 was drawn from %- |8 after # samples drawn.

where G 9 is the 9 ’th value of the outcome space of %- |8, so that
∑∞

9=1 <
(# )
8, 9

= #, since we have drawn
a total of # observations from %- |8. Note that this notation assumes that ?- |8 has the same outcome
space for all 8. With this notation we can rewrite the likelihood fcn. as

! (^ (1) , ..., ^ (# ) |\) =
=∏
8=1

∞∏
9=1

?\ (G 9 )<
(# )
8, 9 . (2.1)

After normalizing by raising the expression to the power of 1/#, we get

! (^ (1) , ..., ^ (# ) |\)1/# =

=∏
8=1

∞∏
9=1

?\ (G 9 )<
(# )
8, 9
/#
.

Note that < (# )
8, 9

is a sum of # independent Bernoulli trials with probability of success equal to ?- |8 (G 9 ),
so by the Law of large numbers < (# )

8, 9
/# will converge in probability to ?- |8 (G 9 ). Hence we get that
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log
(
! (^ (1) , ..., ^ (# ) |\)1/#

)
→

=∑
8=1

∞∑
9=1

?- |8 (G 9 )log
(
?\ (G 9 )

)
=

=∑
8=1

∞∑
9=1

%(- = G 9 |/ = I8)log
(
?\ (G 9 )

)
(2.2)

where we see that that the ordinary 8’th term of the log-likelihood function gets replaced by a weighted
average of the possible values of the 8’th distribution.

The above argument can be used to motivate a similar expression in the case when each %- |8 is
continuous. For instance, one can approximate each %- |8 with a discrete distribution %̃- |8 by splitting
the support of %- |8 up into intervals � 9 of length XG, so that the probability of drawing an observation
G |8 from � 9 would be 5- |8 (b 9 )XG for some b 9 in � 9 , and with the support of %̃- |8 being {b1, b2, ...}.
With these discrete distributions we would then carry out the same argument as before, resulting in
a an expression similar to what we got in 2.2, but replacing ?- |8 (G 9 ) with 5- |8 (b 9 )XG, and ?\ (G 9 ) with

5\ (b 9 ). Note that < (# )
8, 9

now has the interpretation: number of times that we have drawn b 9 (i.e. drawn

a sample from the 9 ’th interval of %- |8) after sampling from %̃- |8 # times. If we let XG tend to zero,
we get that

log
(
! (^ (1) , ..., ^ (# ) |\)1/#

)
→

=∑
8=1

∞∑
9=1

5- |8 (b 9 )XG · log
(
5\ (b 9 )

)
→

=∑
8=1

∫
log ( 5\ (G)) 5- |\8 (G)3G as XG tends to 0

assuming that we are working with sufficiently ”nice” distributions. A more involved argument is
necessary to establish this convergence, but here we settle for a heuristic argument. In any case, we
are restricted to discrete approximations of continuous distributions in practice.

2.1.1 EVT and Mixed distributions

Now we imagine that we are in the situation where we do not know the distribution of / but also that
we do not have an expression for the distribution of -, and that we want to use the POT method to
model the tail of the distribution of - based on a sample of /. That is, we assume that the tail of -
can be modeled by

%(- > H + D |- > D) =
(
1 + b H

f

)− 1
b

= 5\ (H)

where \ = (f, b) is the parameter vector we wish to estimate.

The idea is to use the similar reasoning as above to form a likelihood function with which we can
estimate \. The only difference now is that when we re-sample we only include the samples that fall
above D in the likelihood function. The expression analogous to 2.1 is

! (^ (1) , ..., ^ (# ) |\) =
=∏
8=1

∏
{ 9 |b 9>D }

( 5\ (b 9 − D)3G)<
(# )
8, 9
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where the notation used is the one explained in the paragraph about continuous distributions. Letting
XG tend to zero we obtain

log
(
^ (1) , ..., ^ (# ) |\)1/#

)
→

=∑
8=1

∑
{ 9 |b 9>D }

5- |8 (b 9 )XG · log
(
5\ (b 9 − D)

)
→

=∑
8=1

∫ ∞

D

log ( 5\ (G − D)) 5- |8 (G)3G as XG tends to 0 (2.3)

which is the distribution we maximize w.r.t. \ in order to obtain our estimate. Again, we see that the
i’th term log( 5\ (G8 −D)) of the log-likelihood function - which is what we would have if only one sample
^ was used - is substituted by a weighted sum, with the weights determined by the i’th distribution.

2.2 Numerical example

Suppose

/ ∼ Beta(U, V), where U = 3, V = 1

- |/ ∼ Exp(/)

so that 1// is the mean of the conditional distribution of -. The probability distribution function of
- is

�- (C) =
∫ 1

0

%(- ≤ C |/ = I) Γ(U + V)
Γ(U)Γ(V) I

U−1 (1 − I)V−13I

=

∫ 1

0

(1 − 4C I) Γ(U + V)
Γ(U)Γ(V) I

U−1 (1 − I)V−13I

which we use to compute %(- > 15) = 0.00178, %(- > 20) = 0.000750 and %(- > 25) = 0.000384.

The estimated values, obtained by maximizing (2.3) w.r.t. \ with = = 1000, are %̂(- > 15) = 0.001436,
%̂(- > 20) = 0.000345 and %̂(- > 25) = 0.000083. The estimated parameter values are b̂ = 0,
f̂ = 3.503814. These estimates are obtained using a threshold D = 10, selected somewhat arbitrarily
after inspection of a sample of -.

The corresponding estimates obtained when estimating the probabilities based on a sample of = = 1000
obs. of - (using the software in2Extremes, with the same threshold D = 10) resulted in the estimates
%̂(- > 15) = 0.001531, %̂ = (- > 20)0.000392 and %̂ = (- > 25)0.000100. The estimated parameter
values in this case are b̂ = 7.819324 − 08, f̂ = 3.66885. Note that in both cases the true value of
%(- > D) was used in order to estimate these probabilities, as the only intention here was to provide
an example showing that we get reasonable results when using 2.3.

2.3 Empirical distribution function for stochastic TTC

We mentioned previously that a way to evaluate goodness of fit is to compare the empirical distribution
to the model distribution. If we want to model traffic safety levels using the framework of mixed
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distributions, how do we define the empirical distribution? We will in this section derive an expression
for the empirical distribution function associated with a sample of distributions.

The empirical distribution function of �= (G) = of a sample {G1, G2, ..., G=} is defined by the equation

�= (G) =
# {G8 ≤ G; 8 = 1, 2..., =}

=

which is equivalent to

�= (G) = %(-∗ ≤ G) (2.4)

where -∗ is is a random variable drawn with uniform probability from the sample G1, G2, ..., G=. To
generalize this definition to the situation where we have a sample of distributions corresponding to
` = {I1, I2, ..., I=}, we define -∗ to be the random variable obtained by first drawing /∗ with uniform
probability from the sample `, and then drawing an observation from %- |/ ∗ . We may then define the
empirical distribution function of the sample by equation 2.4.

Next we consider the empirical distribution function of the excesses above some threshold D, i.e. we
want to know the distribution of
. ∗ := -∗ − D |-∗ > D. Note that we may draw an observation from the distribution of . ∗ by drawing -∗

repeatedly until we get an observation that exceeds D, after which we subtract D to get the observation
of . ∗. Before deriving the distribution of . ∗, we pause to introduce some notation.

Let Z8 = %(-∗ > D |/∗ = I8) for some threshold D arbitrary but fixed. Furthermore, define �8 (H) to be
the distribution function of . ∗ |/∗ = I8, i.e. the distribution of the excesses when they are obtained by
drawing from %- |8. We assume that the threshold is low enough so that at least one Z8 > 0.

Let � be the number of draws before before -∗ > D happens for the first time, and let � denote the
index of the distribution from which the first exceedence is drawn. Note that the probability of failing
to draw an exceedence when drawing an observation of -∗ is

%(fail to draw exceedence) =
=∑
8=1

%(-∗ ≤ D |/∗ = I8)%(/∗ = I8)

=

=∑
8=1

(1 − Z8)
1

=
= 1 − 1

=

=∑
8=1

Z8 .

Using this result, we get that the distribution of � is given by

%(� = :) =
∞∑
;=1

%(� = :, � = ;)

=

=∑
;=1

%(fail ; − 1 times to draw exceedence)%(-∗ > D |/∗ = I: )%(/∗ = I: )

=

∞∑
;=1

{
1 − 1

=

=∑
8=1

Z8

};−1

Z: ·
1

=
=
Z:

=

∞∑
;=0

{
1 − 1

=

=∑
8=1

Z8

};

=

=
Z:

=
· 1

1 −
{
1 − 1

=

∑=
8=1 Z8

} = Z:∑=
8=1 Z8
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from which it follows that

%(. ∗ ≤ H) =
=∑

:=1

%(. ∗ ≤ H |� = :)%(� = :) =
=∑

:=1

�: (H)%(� = :)

=

=∑
:=1

�: (H)
Z:∑=
8=1 Z8

.

This equation shows that the empirical distribution function of the excesses is a weighted sum of the
distribution functions of the excesses for each distribution %- |/8

, with the i’th weight proportional
to the probability of threshold exceedence for the i’th distribution. Note that if %- |I8 is a discrete
distribution that places equal probability mass on the points {G1, G2, ..., G<}, then

�: (H) =
# {D < G8 ≤ D + H; 8 = 1, 2..., <}

# {D < G8; 8 = 1, 2..., <} .

.

2.4 Data-separation method: A novel way of estimating the
collision probability

We mentioned earlier that a difficulty when using stochastic TTC is the problem of predicting intended
movement when the road users have started interacting. One way to get around this, is to compute
stochastic TTC only at the moment of first evasive action, which will sometimes be referred to as FEA.
In this section we will investigate which quantity such a random variable can be used to estimate.
Furthermore, we will introduce the concept of maximum-danger-during-evasive action, which we will
show to also be of potential use.

To proceed with this idea, we will need to introduce some notation. An encounter will be classified
as either interactive or non-interactive encounters, IE and NIE in short. Interactive here means that
either evasive action was taken or a collision occurred, and non-interactive that there was no evasive
action and no collision. Furthermore, an encounter will be classified as type EA (evasive action) if
evasive action was taken during the encounter, and type NEA (no evasive action) if no evasive action
was taken. Defining these two sets of categories might seem a little excessive as they only differ in
their classification when a collision with no evasive action happens, but they are defined in order to
avoid ill defined mathematical expressions. With these definitions, we proceed to define some random
variables (safety-surrogate-measures) that are defined in terms of the above categories.

Firstly, for type IE encounters, we make use of the notion of danger-at-first-interactive-action, in short
DAFIA (note that in the following, ”danger” refers to any severity measure, such as TTC). This random
variable measures - for each interactive encounter - the danger at the first moment of interactive action.
In practical application this moment is taken to be the last frame before interaction occurs, or the first
frame for which there is collision. Note that the first interaction can either be an attempt at evasive
action, or a collision, in other words it is the first behavioural or physical interaction.

Secondly, for encounters of type EA, we introduce maximum-danger-during-evasive-Action, in short
MDEA. MDEA takes its value at the moment of maximum danger over the duration of time for which
evasive action was attempted. This value is recorded by observing each time-frame of a conflict for
which at least one road user is actively attempting to avoid the other, recording the severity measure
at each such frame, and finally taking the minimum (if using say TTC) of those values. In other words,
we are recording the maximum degree of danger reached during the attempt of (at least one of) the
road users to resolve the conflict, given that there was such an attempt.
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Finally, for encounters of type NEA, we define MDNEA (short for maximum-danger during encounter
of type NEA) simply as the maximum level of danger over the duration of the encounter.

Now we consider how these measures can be used to estimate the probability of an encounter resulting
in collision, which we will simply denote with P(C). Note that P(C) = P(C,EA) + P(C,NEA), so the
task of estimating P(C) can broken down into the tasks of estimating each term.

Having broken the problem down into estimating two terms, lets see how the different types of mea-
surements can be used to estimate them. For simplicity, assume that we are using TTC as severity
measure so that TTC ≤ 0 is equivalent to the event of a collision. First we consider the task of
estimating the probability of collision in which neither road user reacted to the other, i.e. P(C,NEA).
Note that the event ”C, NEA” ⇔ ”MDNEA≤ 0, NEA”, hence

P(C, NEA) = P(MDNEA≤0, NEA) =P(MDNEA≤ 0| NEA)P(NEA).

P(MDNEA≤ 0| NEA) can be estimated by applying EVT to the sample of MDDNEA coming from the
encounters of type NEA, and P(NEA) is estimated by counting the number of encounters for which
there was evasive action.

Another way to estimate P(C, NEA) comes from observing that ”C, NEA”⇔ ”IE, DAFIA≤0”, hence

P(C, NEA) = P(DAFIA ≤ 0, IE) = P(DAFIA ≤ 0| IE)P(IE),

where P(DAFIA ≤ 0| IE) can be estimated by applying EVT to the sample of DAFIA. We see that
both MDNEA and DAFIA can be used to estimate P(C, NEA); the estimate based on DAFIA uses
data from encounters with interaction, and the estimator based on MDNEA uses data from encounters
with no interaction. Using only one of them would arguably be wasteful as we would be using data
from only one type of encounter. One way to deal with this - if reasonable amounts of data exists
for both types of encounter - is to take as our estimate a weighted average of both estimates, where
the weights are based on how confident we are in each estimate, for instance by letting them be equal
to the fraction of the data that is of type IE and NIE respectively. Another approach is to focus
our efforts only on encounters of type �� . The potential downside of this approach is that we might
potentially exclude interesting encounters.

To estimate P(C, EA) we can note that ”C, EA” ⇔ ”MDDEA≤0, EA”, hence

P(C, EA) = P(MDDEA≤0, EA) = P(MDDEA≤ 0| EA)P(EA) ,

and as above we can estimate P(MDDEA≤ 0| EA) by applying EVT to the sample of MDDEA.

An alternative way to estimate P(C, NEA) is to combine DAFIA and MD into one random variable

/ =

{
DAFIA, if encounter is of type EA

MDNEA, if encounter is of type NEA.

This random variable is defined for all types of encounters, and / ≤ 0 ⇔ C, NEA. To see this, note
that / ≤ 0 certainly implies collision, so to show ”⇒” we only need to show that / ≤ 0⇒ NEA. If the
encounter was of type EA then Z = DAFIA, which would then have to be greater than zero in order
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for the encounter to be classified as type EA, which is a contradiction. ”⇐” follows immediately since
C ⇒ / ≤ 0.

A concern which may arise when applying EVT to a random variable defined this way is that the
distribution function may no longer have properties that allows for EVT to be applied. However, as
long as the DAFIA and MD have smooth distribution functions, the distribution function of / will be
smooth as well. This follows since P(Z ≤ G) = P(Z ≤ G |EA)P(EA) + P(Z ≤ G | NEA)P(NEA), which
is a linear combination of smooth functions.

Another concern is that if MDNEA and DAFIA have distributions that are significantly different in the
location of their distributions, then this could make the tail too irregular for EVT to be useful. As an
example to illustrate this, consider what happens when we take a weighted average of the probability
densities of the distributions exp(1) and N(10,1), so that we sample from each with say probability
1/2. The resulting probability density would have a ”hump” at x=10, so to get a decent GPD fit to
the tail we have to select a threshold larger than 10; thresholds lower than that would result in too
much bias. If we restrict ourselves to a sample of size of say 200, and we select a threshold u=11, it is
likely that all observations falling above the threshold would come from the normal distribution, and
in terms of the above discussion this would be analogous to utilizing only one type of data.
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Chapter 3

Traffic encounter simulation
experiment

As a first test of the performance of stochastic-TTC as a safety surrogate measure, we constructed
an algorithm which simulates traffic encounters between two vehicles heading in opposite directions.
This is intended to give us an idea of well stochastic TTC could potentially perform on real life data
relative to other methods. Furthermore, we investigate the effects of data-transformations to see if
they can improve performance, and if so, how might one predict such performance improvements based
on various diagnostics. finally, we want to compare the performance of the data-separation method
described in the previous section in performance against the method of taking minimum-TTC for each
encounter.

The simulator is not intended to be hyper-realistic, but the vehicles are programmed to act somewhat
reasonably, for instance by trying to avoid collision once a dangerous situation has occurred by turning
away from the predicted path of the other vehicle. The simulation also implements a rudimentary
form of momentum, both in terms of speed and direction, so that late-detection events have a higher
risk of collision than early-detection events. Note that an encounter in this setting is defined simply
as two vehicles passing each other by, regardless of its level of danger.

3.1 Description of simulation

A simulated encounter begins with both vehicles being randomly assigned initial positions in a co-
ordinate system. Specifically, the initial y-components are drawn from a normal distribution while
the initial x-components are fixed. With each iteration - or time-frame, as they will be referred to -
they are allowed to take one step, the length of which is sampled by adding some random noise to
the length of the previous step. The step is taken in a direction given by a step-angle sampled in a
similar way, thereby adding a kind of momentum to the behaviour of the vehicles. Both step-angle
and step-size are sampled in a way that discourages odd behaviour, such as a vehicle moving straight
upwards or downwards (corresponding to a car leaving the road) or otherwise deviate unrealistically
from horizontal movement. The initial step-sizes and step-angles are sampled from gamma and normal
distributions respectively.

At any point in time the encounter can be in one of two states: regular, where the the vehicles
move freely without consideration of the other, and collision-avoidance-mode where they modify their
behaviour in order to avoid collision, with the amount of behaviour modification being a function
of factors indicating closeness to collision. For each moment in time, the algorithm rolls a random
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number to determine if collision-avoidance-mode should be initiated. The likelihood of this state
being entered is determined by a probability which depends on both total separation distance and
vertical separation distance between the vehicles in such a way that it goes to 1 as either of these
approach 0. The reason for the latter variable being included is that as long as the movement of
the vehicles is approximately parallel to the horizontal axis, the vertical distance can be used to
discourage unnecessary and unrealistic evasive action, intended to mimic how two cars heading in
opposite directions may be quite close to each other in terms of absolute distance, and yet not taking
any evasive action. It is of course not very realistic that both vehicles always start engaging in evasive
action at the same time, but for the sake of simplicity we decided to stick to this simplification.

The moment the vehicles has entered collision-avoidance-mode, the simulation of the encounter pauses
to simulate a fixed number of random walks using each vehicle’s current position, speed, and direction
as initial values. The walks are simulated according to the rules of non-evasive behaviour, i.e. without
attempting to avoid collision. For each simulated walk, TTC is computed. If no collision occurs during
a simulation, TTC is set to ∞. If collision already has occurred, no walks are simulated (in this case
the TTC-distribution is a point mass, since only one thing can happen), and TTC is computed by
”reversing” time to the first moment of contact, with the collision then being indicated by a TTC value
less than or equal to 0. In addition to sampling TTC, the minimum distance between the hulls of the
vehicles is computed and stored as an alternative safety surrogate measure for that time-frame. This
severity measure will be referred to as minimum-distance, or separation-distance when necessary to
avoid confusion.

After collision-avoidance-mode has been engaged, the minimum distance and TTC is computed for
each time-frame until the vehicles have either collided, or they have passed each other. The vehicles
are defined to have passed when the x-coordinates of the vehicles have changed order, and this will also
be used as the criteria for conflict resolution. After the vehicles have resolved the conflict or collided,
the minimum value of TTC and SD of the interaction-frames are computed and stored.

Other than computing severity measures at FEA and during the attempt to avoid collision, the algo-
rithm also computes minimum TTC and minimum separation distance for the encounter as a whole.

3.2 Design of simulation experiment

The experiments for testing the performance of stochastic-TTC and various methods takes the form
of simulating 500 data sets of encounters, where each set consists of 500 encounters. For each such
data set we estimate the collision probabilities and other quantities of interest. Some of the statistical
properties of the estimators are investigated, and their accuracy judged by comparing with empirical
estimates that are computed using data from 2 million simulated encounters.

In order to test the ability of different estimators on their ability to compare and rank-order the safety
levels of different traffic locations - which we will refer to as ability to infer relative safety levels - we
will compare estimates from two different simulated environments. One of these represents the more
dangerous traffic location, as it is set to have a slightly lower probability for the vehicles to engage in
evasive action. For each sample of encounters, the estimated collision-probabilities are used to predict
which intersection has the lower collision-frequency. Then the fraction of correct and incorrect guesses
is computed, and this fraction will be referred to as the success rate and fail rate respectively.

3.3 Indicators of performance

An important issue to discuss when talking about performance is what constitutes good performance,
and how to quantify it. For reasons discussed in a previous section, a very basic requirement for an
estimator to be said to perform well is for it to have a low probability of yielding a zero-estimate. This
aspect of an estimator will be measured by looking at the percentage of estimates that are greater
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than or equal to zero, which will be denoted by P(NZE), or referred to as the NZE-rate. We would
of course like the estimator to be accurate and reliable beyond just producing non-zero estimates. The
Root Mean square error (RMSE) is an often used measure of accuracy, but it will not be used here
as the method of performance comparison. This is because it does not sufficiently penalize estimators
that frequently underestimate the collision probability, or estimates it to be zero. To illustrate this
point, consider an estimator that always returns zero as the collision estimate. This estimator will
have a RMSE equal to the probability itself, which - given that the probability is so small - will result
in this estimator appearing to be quite good relative to more reasonable estimators, despite the fact
that it is obviously useless for practical purposes. Also, the error of overestimating danger is a less
serious error than the error of underestimating it, given that the purpose is to prevent serious accidents
from occurring. For this reason, the measure of accuracy that will be used is the probability that the
estimate will deviate from the true value by less than a given percentage - which will be referred to as
the cut-off value. That way, estimators that often return zero-estimates are penalized more heavily.
We will be using a cut-off value of 50%. This is somewhat arbitrary, but note that different cut-of
values were tested to ensure that the conclusions are not sensitive to the particular choice of cut-off
value. This measure of accuracy will be referred to as the accuracy rating.

Another measure of performance comes from the desire to be able to compare and order the safety levels
of different traffic locations. To this end, we will look at the probability of correctly inferring which
out of two simulated traffic locations is the safest based on the estimated collision probabilities, as this
is one of the intended uses of EVT in traffic security. Note that the result might be indeterminate, as
will be the case when both probabilities are zero. As a method of comparison, we will also use return
levels as a basis for making this inference. This is motivated by a suggestion made in the article [7],
where the authors refer to the lower variance as a reason why return levels might be a better tool for
comparing safety levels, and for estimating safety levels in general.

In addition to scoring high on the above mentioned measures of performance, we want estimators that
are robust with regards to the subjective choices that go into the estimation process. An estimator
that is less sensitive to choice of threshold will be considered better, when all other things are equal.
Also, it is important that a method that performs well can actually be identified without knowing the
true value of the estimand, since it is possible for a method to perform well essentially by chance. For
instance, an estimator of a distribution function could fit poorly over large parts of the support, but
may never the less have zero bias at one particular point if the expected value of the estimator and
the true value of the distribution function intersect at some point. These are all much more subjective
indicators of performance than the above mentioned ones, but they are still important to consider. A
strong performance result is not very meaningful unless we can extract from it some rule for how to
make good modelling decisions under circumstances where we do not know the correct answers. The
primary methods for evaluating goodness of fit will be visual inspection of qq-plots, plots of empirical
vs model distribution functions, and shape-parameter stability plots.

3.4 Data transforms

The data transforms used in this thesis are

)4G? (G) = exp(−?(G − 2))

)8=E (G) =
1

(G − 3.5) ?

which will be referred to as the exponential and inverse transform respectively. The location param-
eters are admittedly fairly arbitrary, and were arrived at through after some brief experimentation.
The parameter ? will be referred to as the power parameter.
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3.5 Selection of power-parameter and threshold

Threshold selection plays an important role in EVT, and it often relies on choices that are inevitably
going to be somewhat subjective. Choices are often based on visual inspection of diagnostic plots
indicating goodness of fit and validity of model assumptions. Manually selecting a threshold in each
and every case would be both too time-consuming and too subjective. Therefore, in order to compare
performance, all estimates are computed over a range of 10 thresholds that are selected to cover the
thresholds that would be considered relevant in practice. The thresholds are selected so that the lowest
(after negation of the data) threshold includes about 80% of the data, and the highest includes about
6% of the data. The remaining thresholds are spaced equidistantly between these two thresholds. For
the data-transformation methods, all the thresholds are transformed as well, so that each threshold
uses the same amount of the data regardless of the transformation used. When the data is of the
form stochastic TTC, the minimum of each encounter is selected as the data-point to represent each
distribution, after which the above rule is applied to the minima to select the range of thresholds.

Similar considerations have to be made in terms of which transformation parameter values to include
in the analysis. We want to include the parameters that yield peak performance for each transforma-
tion type, and also include the values that allows us to capture the overall effects of increasing and
lowering the transformation parameter. With this method it is not possible to completely eliminate all
dependence on subjective choices, but it is still possible to get an overall sense of how the parameter
and transform choice influences the estimates. One more thing to note on this topic is that for each
transformation type, the location parameter is fixed, and only the power parameter is allowed to vary.
This of course opens up the possibility for other combinations of parameter values to perform better
than those covered here, but due to the large increase in complexity that this would entail, we settled
for varying only the power parameter.
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Chapter 4

Results and discussion

4.1 Results

The probability P(C, NEA) and P(C,EA) were empirically estimated (with 95% confidence intervals)
to be 5.35e-5 ± 1.0137e-5 and 1.265e-4 ± 1.5587e-5 respectively. P(C) is estimated to be 1.8e-4 ±
1.8592e-5. The simulated environment with higher safety levels, P(C) was empirically estimated to be
3.3800e-4 ± 2.5475e-5.

Figure 4.9 and 4.10 shows accuracy plots comparing the data separation method against the benchmark
method of taking minimum TTC over each encounter, with and without use of inverse data transform.
For this comparison, deterministic TTC was used as severity measure. Without the use data transform,
the data separation method significantly outperformed minimum-TTC, by as much as an ≈ 18%
difference. After the transform, the benchmark method has a higher peak performance - a difference
of about 13%.

In Figure 4.1 we can see from the accuracy plots that stochastic and deterministic TTC seems to have
negligible difference in performance, with regards to accuracy. Separation distance has a significantly
higher peak performance than the other two severity measures, with a peak accuracy rating at about
12.5%, which is roughly twice the peak performance of the other two severity measures. The difference
in performance is largest at the lower thresholds, and for higher thresholds the difference between all
three severity-measures becomes small.

In Figure 4.2 and 4.3 we can see that applying either data transform can very significantly improve
the performance of the estimator when using stochastic TTC. The plots also suggest that the inverse
transform is more suitable than the exponential transform in this case, as the peak performance for
the parameters considered is approximately 20% and 37% respectively, which is an increase in peak
performance by approximately 14% and 31% relative to that of the untransformed data.

In Figure 4.4 and 4.5 we can see that the transforms are not as effective at improving accuracy when
using minimum distance as they were in the case of either TTC measure. Some improvement can
be argued for in the case of the inverse transform, as the peak performance there was 20.8%, to be
compared against the peak performance of 12.6% when not using a transform. For the exponential
transform, in particular when using the higher power parameters, there is a performance improvement
at the lowest thresholds, but possibly also a slight decrease at some of the higher thresholds. Note
that for minimum distance, the lowest threshold corresponds to using 85% of the data rather than the
80% that was used in all other cases, to be able to better capture the peak performance.

Figure 4.6, 4.7, 4.8 and 4.11 and 4.12 shows the effects of increasing the power parameter on expected
value, standard deviation and P(NZE), where the transformations are applied to stochastic TTC at
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first evasive action. By increasing the power parameter, we increase the expected value - and eventually
bias - as well as the NZE rate. The expected value appears to grow faster as the power parameter
increases, whereas the NZE rate grows more slowly as the power parameter increases. For the the
exponential transform, the standard deviation increases with the power parameter. We see a similar
behaviour for the inverse transform, but for threshold 8 and higher we see a reversal of this trend, with
higher power parameter resulting in slight decrease in standard deviation.

In Figure 4.18, 4.19 and 4.20 shows the success and failure plots based on estimated collision probability
and return levels respectively. In each case the inverse transform was used. In Figure 4.18 we see that
the use of the data-transform significantly improved the rate of correct guesses, by as much as much as
60%. In Figure 4.19 and 4.20 we see that increasing the return rate results in significant reduction in
prediction success, and that when using a return period of 10, we reach near 100% prediction success
rate.
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Figure 4.1: Comparison of accuracy of estima-
tors using different severity measures at FEA,
without any transforms used. The plots indi-
cate how well each severity measure performed
in terms of estimating P(C, NEA).

Figure 4.2: Accuracy plots of estimators that
use the inverse transform applied to stochas-
tic TTC at FEA for various choices of power
parameter. The plots indicate performance in
terms of estimating P(C, NEA).

Figure 4.3: Accuracy plots of estimators
that use the exponential transform applied to
stochastic TTC at FEA for various choices of
power parameter. The plots indicate perfor-
mance in terms of estimating P(C, NEA).

Figure 4.4: Accuracy plots of estimators that
use the exponential transform applied to min-
imum distance at FEA for various choices of
power parameter. The plots indicate how well
each severity measure performed in terms of
estimating P(C, NEA).
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Figure 4.5: Accuracy plots of estimators that
use the inverse transform applied to minimum
distance at FEA for various choices of power
parameter. The plots indicate how well each
severity measure performed in terms of esti-
mating P(C, NEA).

Figure 4.6: Mean value plots of estimators
that use the exponential transform applied to
stochastic TTC at FEA for various choices of
power parameter.

Figure 4.7: Mean value plots of estimators
that use the inverse transform applied to
stochastic TTC at FEA for various choices of
power parameter.

Figure 4.8: Plots shows estimated standard de-
viation of estimators that use the exponential
transform (upper) or inverse transform (lower)
applied to stochastic TTC at FEA for various
choices of power parameter.
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Figure 4.9: Plots shows accuracy plots for
data-separation method vs minimum-TTC,
where the minimum is taken over all frames of
an encounter. Both methods use regular TTC
to estimate P(C). Cut-off value is 50%.

Figure 4.10: Plots shows accuracy plots for
data-separation method vs minimum-TTC -
both using inverse data transform - where the
minimum is taken over all frames of an en-
counter. Both methods use regular TTC to
estimate P(C). Cut-off value is 50%.

Figure 4.11: Plots shows estimated P(NZE) of
estimators that use the exponential transform
applied to stochastic TTC at FEA for various
choices of power parameter.

Figure 4.12: Plots shows estimated P(NZE) of
estimators that use the inverse transform ap-
plied to stochastic TTC at FEA for various
choices of power parameter.
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Model vs empirical dist. function, stoch. TTC and min. distance

Figure 4.13: Example of model (red) and empirical (blue) distribution function for minimum distance
and stochastic TTC. Threshold 3 is used in each case.
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Example of diagnostic plots, with and without data transform

Figure 4.14: Example of model and empirical distribution function (top) and qq-plots (bottom) with
and without transformation. Threshold 3 is used in each case, and the transformation used is the
inverse transform with power parameter 3.5.
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Example of diagnostic plots with different power parameter.

Figure 4.15: Example of model and empirical distribution function (top) and qq-plots (bottom) with
different power parameters used. Threshold 3 is used in each case, and in both cases the exponential
transform is used on stochastic TTC at FEA.
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Example of diagnostic plots with different power parameter.

Figure 4.16: Example of shape parameter stability plot for power parameter 0.1 (top) and 0.2 (bottom).
Threshold 3 is used in each case, and in both cases the exponential transform is used on stochastic
TTC at FEA.

35



Example of diagnostic plots with different power parameter.

Figure 4.17: Example of model and empirical distribution function (top) and qq-plots (bottom) with
different transformations used. In the left-side plots, inverse transform is used, and in the right-side
plots the exponential transform is used. Threshold 3 is used in each case
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Figure 4.18: The plots shows the estimated
probability of correctly (top) and incorrectly
(bottom) predicting which simulated traffic lo-
cation was safest when the prediction is based
on estimated collision probability. The data
used is minimum TTC of each encounter, with
the inverse transform applied.

Figure 4.19: The plots shows the estimated
probability of correctly (top) and incorrectly
(bottom) predicting which simulated traffic lo-
cation was safest when the prediction is based
on return levels with return period 10. The
data used is minimum TTC for each encounter.

Figure 4.20: The plots shows the estimated
probability of correctly (top) and incorrectly
(bottom) predicting which simulated traffic lo-
cation was safest when the prediction is based
on return levels with return period 500. The
data used is minimum TTC.
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4.2 Discussion

4.2.1 Advantages of stochastic TTC

We have assumed the existence of an intended path, which we use to define collision course and TTC.
However, this information is not necessarily known to us, and this makes the danger of the situation
uncertain. Consider, for instance an encounter between two road users - denote them driver A and
driver B - crossing paths in an intersection. Suppose we are concerned with the task of evaluating the
level of danger at the moment when driver A or B first reacts to the presence of the other driver, after
which that driver engages in corrective behaviour. By the assumptions outlined above, the degree to
which this is a dangerous situation depends on how each road user would have driven had the other
not been present. Consider for instance, if driver A habitually slows down significantly in the middle
of the intersection regardless of the traffic situation, i.e. safe driving is driver A’s default behaviour.
then the situation might be quite safe, because even if driver A does not notice driver B, driver A
will still slow down out of habit, thus allowing driver B more time to get out of the collision course.
However, if driver A habitually maintains constant speed when driving through the intersection, then
there is greater potential for danger. The consequence of driver A not noticing driver B is now more
severe, as in this case there is less time for driver B to get out of the collision course, and the margin
for error in the decision making is smaller.

The above example illustrates that there is inevitably going to be uncertainty in the degree to which a
situation is dangerous, and this uncertainty should be accounted for by the severity measure. This is a
strong argument in favour of using stochastic TTC over deterministic TTC. By using stochastic TTC
we are incorporating naturalistic behaviour to compute the possible future motions of the drivers, and
we are accounting for the frequency with each type of behaviour occurs.

The more realistic definition of collision course that is implicit when using stochastic TTC together
with the above discussion on inherent uncertainty with regards to safety levels suggests that it is a more
appropriate severity measure to use than deterministic TTC. It allows us to incorporate information
about how road users are likely to behave in the traffic environment in question, and restricts attention
to only the movements that are realistic. It is of little interest or relevance that two cars are defined
to be on collision course if the collision course in question has zero probability of being realized. There
are infinitely many ways that two cars could conceivably move in terms of what is physically possible,
but only a small subset of all such trajectories are of interest when trying to determine the potential
for collision in a given situation. For instance, we could have a situation where a car is in the process
of turning left and crossing over the lane of an approaching vehicle, and is on collision course with the
approaching car if defined in terms of current speed and velocity. But we know that the probability of
this path being realized is for all intents and purposes equal to zero, even if there were no other road
user to react to. For one thing, the driver already has the wheel rotated into a position that forces
the car to continue turning. Furthermore, we know that the act of maneuvering a vehicle in traffic to
some extent becomes automated and habitual over time, so that the driver would not have realized the
constant-motion trajectory regardless of the presence of other vehicles. In other words, deterministic
TTC is in this case based on a trajectory that is irrelevant.

4.2.2 Severity measure performance comparison

The comparison between the data-separation method and the benchmark method yielded mixed results.
It is however ensuring to see that the method has performance comparable to the benchmark method.
One possible explanation as to why minimum-TTC performed better in terms of peak performance
after an optimal transform was used, is that minimum TTC always uses information from all 500
encounters, wheres the data separation method only uses data from encounters where interaction
occurred, so that on average it effectively uses information from only ≈ 420 encounters.

The fact that minimum distance performed better at the lower thresholds can be better understood by
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looking at Figure 4.13, showing representative examples of plots comparing the empirical and model
distribution function for minimum distance and stochastic TTC at the third threshold. These plots
suggests that the modelling assumption - namely that the exceedences are GPD - is more accurate
for minimum distance than for stochastic TTC at the lower thresholds, which is consistent with the
observation that minimum distance performs better at these thresholds.

Stochastic TTC was nearly indistinguishable in performance from regular TTC. On one hand, this
demonstrates that it works about as well as the benchmark comparison under ideal circumstances;
that is, when we do not have to deal with the real life complications such as those associated with
assigning a TTC-distribution to each moment of an encounter. On the other hand, an improvement -
or at least a difference - in performance was expected, which raises the question of why this did not
happen. The reason for this result seems to be that there was very little difference in TTC between the
simulated trajectories at first moment of evasive action, so that the distributions were close to being
point masses, i.e. they were highly concentrated around single points. Since assigning deterministic
TTC is equivalent to assigning a point mass distribution at a particular value, the difference between
the severity measures was small. Put differently, the behaviour of the vehicles was too homogeneous
in order for stochastic TTC to make much difference. Also, the vehicles were not following curved
trajectories, which is the situation were we expect stochastic TTC to significantly improve upon
deterministic TTC.

Initially, it was somewhat surprising that minimum distance ended up performing better than any of
the TTC measures when no transforms were used, given that TTC seems like a much better measure
of the danger of a traffic situation. However, this reaction comes from the assumption that the key
feature defining a good severity measure is how well it captures the danger of a situation. This might
be a fairly reasonable statement when taking real world concerns into consideration, but within the
setting of the simulation, the only purpose of the severity measure is to allow for extrapolation beyond
the range of observed data. A key feature of a good severity measure from this point of view is that
observations in the non-extreme range contains information about the behaviour of the process at the
tail of the distribution, that is to say the frequency of rare events. Based on this criteria, it becomes
less surprising that minimum distance performed well, since more close encounters - in the minimum
distance sense - does imply more collisions within this fairly simple simulated environment. It is not
clear that the same can be said about real life traffic however, as it is not obvious that there is such
a strong connection between rate of spatially close encounters and rate of collisions; extreme spatial
closeness during an encounter can happen for reasons that have nothing to do with the factors that
causes accidents. It may have simply been the case that the road users were driving extremely slowly,
in which case the spatial proximity may be deceptive, and the situation may still be well within the
comfort zone of each road user.

Even if there was such a connection between rate of spatially close encounters and rate of accidents,
There are still other drawbacks to consider that relates to the application of the severity measure. In
traffic security, the primary interest is in events that involve potential for harm to road-users, and
not necessarily collisions or close encounters in general. For instance, if an intersection has a high
rate of low impact collisions resulting only in light vehicle damage due to low speeds and high traffic
volume, it might still not be as urgent of a problem as an intersection where collisions happen less
often, but are very serious when they do occur. If we were to use comparison of return levels - with
minimum distance as the severity measure - as a method for inferring which out of the two traffic
locations is more dangerous, we would likely conclude incorrectly that it was the former. In other
words, it would falsely signal that ”dangerous” encounters occur at a high rate. TTC does suffer
from the same disadvantage to some extent, as it too can incorrectly label non-dangerous situations as
dangerous(encounters with low speed, but close proximity), but it is arguably less likely to miss-label
actually dangerous situations as non dangerous, and as such still seems like a more reasonable severity
measure to use. In any case, this drawback should be eliminated by using stochastic TTC implemented
using empirically determined trajectories.
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4.2.3 Effect of data transforms

An important effect of increasing the power parameter is to increase the expected value of the es-
timators. The results of the simulation suggests that estimators that perform well tend to be over-
estimators. In addition to increased performance in terms of increased accuracy, we might prefer
estimators that over rather than under estimate in any case since the consequence of under estima-
tion of danger-levels is arguably worse than the consequence of overestimation when considering the
application.

Figure 4.14 shows a representative example of diagnostic plots for the third threshold when using
stochastic TTC, with and without use of an inverse transform respectively. These figures indicate that
the modelling assumption - i.e. that the exceedences are GPD - is more accurate at this threshold
after applying the transform. This is consistent with the result that the inverse transform significantly
improved performance, in particular at the lower thresholds. Similar results were observed in the case
of the exponential transform. Note that good fits being obtained at lower threshold effectively allows
us to use more of the data in the estimates, potentially reducing variance.

The fact that the transformations had more of an effect on performance for the TTC measures than
for minimum distance is possibly due to the fact that, in the case of minimum distance, the fit is quite
good already at lower thresholds without a transformation, see Figure 4.13, and so there is perhaps
less to gain by applying a transformation in order to improve the model fit.

In Figure 4.11 and 4.6 we see a much higher NZE rate and expected value after applying the transfor-
mation, and the hit-rate increases from around 30% to 100% at the lower thresholds when changing the
power parameter from 0.1 to 0.25. Since %(Accurate estimate) = %(Accurate estimate|NZE)%(NZE),
this will result in an increase in accuracy if %0.1 (Accurate estimate|NZE) ≈ %0.25(Accurate estimate|NZE).
So, one way to explain the performance increase is to note that the large increase in %(NZE) compen-
sates for the small decrease in %(Accurate estimate|NZE) that results from the increased bias.

The above discussion suggests decomposing the effect of increasing the power parameter into a negative
and a positive effect on performance. On one hand, increasing the power parameter seems to increase
%(NZE). On the other hand, %(Accurate estimate|NZE) will eventually start decreasing due to increase
in bias and variance. A way to think of this then, is as a trade-off between these two effects, with the
optimal parameter choice (for a fixed threshold) being reached once the performance gain produced by
the increase in P(NZE) can no longer compensate for the performance loss resulting from the increase
in bias and variance. Figures 4.6 and 4.11 strongly suggest that there is such an optimal point, since
the bias grows more rapidly with the power parameter as it gets larger, whereas the %(NZE) on the
other hand quickly reaches strongly diminishing returns, especially for 0.1< ? < 0.2.

In the case of the exponential transform applied to the TTC data, we see that there is very poor
performance at the low thresholds when using a high power parameter. This poor performance can be
predicted by the diagnostic plots, as is illustrated by Figure 4.15 where we see an example of diagnostic
plots of p=0.25 and p = 0.5 respectively, using threshold 3. The strong bias we see in Figure 4.6 at
threshold 2 is indicated by the poor fits observed in both of these plots. In particular, we can predict
that p=0.5 is likely to result in overestimation as the model distribution is significantly below the
empirical distribution towards the right end tail of the distribution.

Smaller differences in performance is harder to predict and explain. In Figure 4.16 there is arguably
indication of slightly more bias for p=0.2 at the lower thresholds. In hindsight, we know that it is
worthwhile to accept this slight increase in bias in return for the large increase in P(NZE). Without
this knowledge however, it is hard to make such a decision. It is not clear how to reliably infer from the
visual indication of bias in the diagnostic plots the actual bias of the estimator itself, or which amount
of bias results in the optimal trade off. A suggestion for how to approach the problem is to plot the
probability estimates over a range of thresholds for different values of the power parameter, and then
select - if possible - the power parameter that produces both non-zero estimates as well as reaching
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reasonable stability in the diagnostic plots, reflecting our goal to strike a good balance between bias
and higher NZE rate. To simultaneously satisfy the condition of stability as well as the condition of
getting non-zero estimates is not guaranteed however, as we might sometimes have to tune the power
parameter up a lot before non-zero estimates are obtained, resulting in large bias, and stability plots
from which it is hard to select an non-arbitrary threshold. More research is needed to make more
definitive statements about how such choices should be made, and under what circumstances this type
of procedure could result in performance improvements.

4.2.4 Performance difference between transforms

A more difficult result to explain is why the inverse transform performed better than the exponen-
tial transform, as there was not an obvious visual difference in goodness of fit when considering the
diagnostic plots of the transformation parameters that performed best. In Figure 4.17 we see an exam-
ple comparison of diagnostic plots for the exponential transform with parameter 0.25 and the inverse
transform with parameter 4.5, both applied to stochastic TTC at first evasive action. Both fits looks
quite good, and it is not obvious from these plots that the inverse 4.5 performs best. Furthermore,
figures 4.6 and 4.7 show that the exp 0.25 transform has a slightly lower bias than the inv 4.5 trans-
form, and the P(NZE) in both cases are close to 100% percent over the first few thresholds, so these
factors do not seem like they can explain the performance difference. It appears that it is the much
lower standard deviation of the inverse transform - about 5 times smaller than that of the exponential
transform at threshold 3 - that is the main reason for the performance difference, see Figure 4.8. If this
difference in variance can be reliably inferred from a single sample of observations, then it can be used
as a basis for deciding which transform to use in the cases when such a choice it not made obvious
from the diagnostic plots. By using standard bootstrapping for estimating the standard deviation,
with 200 bootstrap samples for each estimate, it turns out that this estimator will correctly indicate
which estimator has the lower variance about 95.5, 97.5, 94.0, 89.5 and 88.5 percent of the time for the
5 lowest thresholds. For higher thresholds, the variance estimate becomes less reliable. Perhaps then
the estimated variance could act as a tie breaker when there are otherwise no clear reasons to prefer
one transform over the other.

4.2.5 Suggestions for choice of transformation type and parameter

The discussion so far suggests - at least in this particular simulated setting - selecting transform type
and parameter according to the following tentative rules of thumb. Pick a transform if it improves
the fits according to the diagnostic plots, in particular when it improves the fits at lower thresholds
so that more data can be used efficiently. Also, consider the effect on the variance of the estimand,
keeping in mind that the variance estimates at the lower thresholds are more reliable than those at
the higher thresholds. In other words, try to find a combination of transformation type and parameter
that offers improved goodness of fit and low variance. Also, as previously mentioned, increase the
power parameter until both estimation stability and non-zero estimates are obtained, if possible. Note
that these are suggestions that are made in hindsight after seeing which methods performed well, and
as such they should be viewed as speculations that need to be tested further to see if they generalize,
and if so - to which situations.

4.2.6 Viability of data-transformation when applied to traffic data

There are a couple of points that needs to be made with regards to the above suggestions. First of all,
it is likely that these rules fail to offer benefits under circumstances when the data is not as ”smooth”
and suitable for extrapolation as the data dealt with in this simulation experiment. As mentioned,
the results overall seems to indicate that good performance was associated with estimators for which
there were good fits achieved already at low thresholds, allowing for more of the data to be used.
However, using lower thresholds essentially means we are extrapolating from data that is less extreme,
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and in doing so, we are assuming that this data contains information about the extreme part of the
distribution. Otherwise, it is hard to see why using this data for extrapolation should reliably improve
results. To translate this into terms of a practical situation, it would be similar to assuming that fairly
regular traffic, i.e. what we would consider as non dangerous situations, contains information about the
rate at which collisions occur. Although there is research establishing a relationship between the rate
of traffic conflicts with the rate of collisions [ref], it is not clear at what point along the traffic severity
spectrum that the encounters start providing information about the rate of collisions. Therefore, it is
not obvious that the suggested methods of this thesis would offer benefits to traffic data, or to what
extent one should attempt to include more ”regular” traffic data in the estimation of safety levels.

4.2.7 Performance in ability to infer relative safety levels

The fact that the data transforms improve the inference success rate can be largely attributed to the
fact that they increase P(NZE), as this reduces the risk of getting an inconclusive outcome. Also,
as mentioned above, some of the transforms allows us to use more of the data in the inference, thus
reducing the variance of the estimates. We saw that this may come at the cost of increased bias, but
this need not be a problem as long as the bias is the same for each traffic location. To illustrate this
point, if we were to instead use mean value of minimum TTC, -̄, as an indicator to base our inference
on, we could just as well use -̄ + 1, and it would make no difference to the inference, despite the fact
that we would be using a biased statistic. This reasoning is also likely to explain why performance
was highest at the lowest threshold, as overestimation does not hurt performance in this case.

Based on how reliably the return levels correctly indicated which traffic location was safer, especially
relative to the estimator of the collision probability, it is tempting to conclude that one should always
use return levels as a basis for such inference. It may be the case that they would be better to use in
some cases due to the higher robustness, but it is important to keep in mind the conditions required
for them to work. We are relying on the assumption that higher return levels imply higher (assuming
inverted data) probability of collision. This need not be true however. For instance, consider two GPD
distributions with scale and shape parameters (1.8, 0.08) and (1.5, 0.15) respectively. the 100th return
levels are 10.0224 and 9.9526 respectively. But if the threshold corresponding to collision is say 30,
then the collision probabilities would be 2.5136e-05 and 9.6887e-05 respectively. In this scenario, the
100th return levels would then on average indicate (assuming unbiased estimator) the wrong conclusion
with regard to collision frequency. To use return levels for inference then, ideally requires investigation
into whether or not it is true that a higher return level implies higher collision probability. So, to
some extent, the increase in performance w.r.t. this kind of inference is due to the fact that we got
lucky, since a precondition for the method to work happened to hold. It may also be the case that
for instance the mean value of minimum TTC could indicate with high reliability the safest traffic
location, but the same conclusions would hold for such a statistic.

The fact that performance increased as we used return levels with lower return periods can be explained
by the fact that we are essentially basing inference on a more robust statistic. The return levels
associated with low return periods provide us with information about the less extreme behaviour of
the process in study, and so it is not too surprising that they might result in more reliable predictions,
as they will naturally have lower variance. However, using lower return levels for this inference involves
problems similar to those discussed above, as it means assuming that the frequency of non-extreme
events is predictive of the frequency of extreme events, and this assumption may of course not hold,
especially not in a system as complex as road traffic. The topic of which statistics to use for inferring
relative safety levels is a topic that warrants further research.

4.2.8 Suggestions for future work

In order to make conclusions that can be confidently generalized, more research is needed. A first step
could be to use the discussed methods on data generated by different distributions, such as the gamma,
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beta, chi square and normal distributions, under blind conditions where the true value of the ”collision
probability” is unknown. This was done to some extent on the aforementioned distributions with what
seemed to be similar and promising results, but it would need to be tested more systematically to make
any conclusions. In addition, it is desirable to study these questions in a more mathematically rigorous
manner, beyond simulation testing. For instance, the results seems to strongly indicate that the effect
of increasing the power parameter for either transform has the effect of increasing the expected value
of the estimator. It would be interesting to see under what circumstances this happens. That is, which
properties of the transform and data being transformed are essential to get such an effect. Perhaps
this occurs when using any monotonically decreasing and strictly convex transformation on a random
variable that has a smooth and convex left tail, such as the above mentioned distributions.

A suggestion for a follow up to this simulation experiment - in order to hopefully make better use of the
idea of stochastic TTC - is to introduce the concept of driver types. At the beginning of each encounter,
randomly draw the type of each driver, where the type determines the rules dictating the statistical
behaviour of the road user. Then at the moment of first evasive action, simulate trajectories as usual
in order to estimate the TTC distribution, with the exception that another layer of randomization is
added by drawing the type of each road user before each walk is initiated. This is similar to asking the
question ”How dangerous would this situation have been if road user A and B was of type X and Y?”
and including the answer in the estimate of the danger of the situation. As a very simple example, we
could have two types of road users, one which has a lot of angular momentum and little variability in
terms of the step-angle, and one which has much lower angular momentum and can change direction
more quickly.

4.3 Conclusions

Stochastic TTC performed about as well as regular TTC in the simulation experiment. More features
need to be added to the simulation to make the vehicle behavior more variable and realistic before the
two methods can be expected to deliver significantly different results. Despite the results not being
significantly different from the main benchmark method, the simulation offers a first proof of concept,
and overall encourages continued research.

Similarly, the data-separation method performed comparably to the benchmark method. This encour-
ages application to actual traffic data to see how well it performs under such circumstances. It offers
a way to use stochastic TTC in practice, but it remains to investigate how to most optimally measure
the severity levels during the attempt to resolve the conflict. Even if we can measure P(C,NEA) (the
probability of collision where no attempt at evasive action was made) well by virtue of using stochastic
TTC, this gain might be negligible if we still have large error in the estimate P(C,EA) (probability of
collision where evasive action was attempted).

Data transformations proved to be highly useful in improving performance results, especially when
applied to the TTC data. A common theme that emerged from the results was that the estimators
that performed well were the estimators for which there seems to be a good GPD fit achieved already at
lower thresholds, allowing for more efficient use of the data and a reduction of variance. The improved
fit appears to be one of the main reason as to why the transformation improved performance. Another
reason for improved performance seems to be the increase in expected value, resulting in an increased
probability for the tail of the fitted distribution to cover the collision-threshold, at the expense of
increased bias.

Although suggestions were made for how performance improvement might be predicted from the diag-
nostic plots, it still remains to be properly demonstrated that suitable choice of transformation type
and parameter can be reliably predicted without knowledge of the true collision probability. Also, it
remains to investigate under what conditions the suggested methods can offer improvements, and in
particular if the benefits extends to traffic data.
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