

Department of Automatic Control

Automating the Evaluation Process
of Software Testing in Vehicles

Linh Nguyen Mai

MSc Thesis
TFRT-6098
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2020 by Linh Nguyen Mai. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2020

Abstract

The Safe Driving Test (SDT) is a software test performed in a real vehicle where the
software is flashed to an ECU and connected to the CAN network in the vehicle. The
test driver then conducts different driving scenarios according to the test instructions
of the SDT. All the data during testing is logged and then evaluated manually by a
test engineer. The entire process including testing, evaluating and fixing defects is
very time-consuming and ineffective, especially the evaluation. Therefore the pos-
sibility of automating the evaluation process in Safe Driving Tests was explored in
this master thesis.

The result of this work was a program containing an automatic evaluation process
for the test cases in the Safe Driving Test. The program takes log files of the test
cases as input and generates a report containing evaluations of each test case as
output. This program can be integrated into different projects at BorgWarner.

The conclusion of this work is that it is definitely possible to automate the evalua-
tion process and an automatic evaluation process will save time. However the test
results must still be verified manually by a test engineer since the evaluation can
only provide a pass or fail result and not the cause of the failed results.

3

Acknowledgements

This master thesis was done with support from BorgWarner in Landskrona. I would
like to express my gratitude to Måns Andersson, supervisor of the Software Testing
Department at BorgWarner, who came up with this thesis proposal and supported
me with technical information during the work. Thanks to Mattias Wonizak, my su-
pervisor at BorgWarner for his guidance and valuable input throughout the project.
Thanks to Karl-Erik Årzén, my supervisor at LTH, for his feedback and proofread-
ing. Thanks to Anton Cervin for being my examiner and for his feedback.

5

Contents

1. Introduction 9
1.1 BorgWarner . 9
1.2 Problem Formulation . 10
1.3 Objectives and Approach . 11
1.4 Delimitation . 12
1.5 Related Work . 12
1.6 Terminology . 14
1.7 Outline . 15

2. Background 16
2.1 Software Testing at BorgWarner 16

2.1.1 Software Testing in Simulated Environments 17
2.1.2 Software Testing in Real-world Environments 19

2.2 Safe Driving Test . 19
2.3 Front cross differential technology 20

3. Equipment 21
3.1 CANoe . 21
3.2 vTESTstudio . 22
3.3 CAPL . 22
3.4 Log file . 23
3.5 Vector Hardware . 23
3.6 Environment Setup . 23

4. Software Development 24
4.1 Approach . 24
4.2 Requirements . 25
4.3 Software Design . 27
4.4 Software Implementation . 28

4.4.1 Log File Preprocessing 28
4.4.2 Generic Solution for Customer-Specific Configurations . . 29
4.4.3 Algorithms . 30

Accelerator Pedal Lift Detection 36

7

Contents

Moving Average . 36
Delay Determination Between Signals 37
Similarity Comparison Between Signals 40

5. Verification and Result 42
5.1 Verification . 42

5.1.1 Evaluation Interval Detection 42
5.1.2 Evaluation Process . 46

5.2 Result . 49
6. Conclusion and Future Work 53
Bibliography 55

8

1
Introduction

Most vehicle systems nowadays are operated under control of software; therefore, it
is critical that the software is tested thoroughly to ensure that the software meets the
safety requirements and operates safely in real life driving. Software verification is
an indispensable part in vehicle software development. Since the software verifica-
tion is a time-consuming process BorgWarner has therefore put a lot of effort into
automating the tests as much as possible. Automation of test cases makes it possible
to run thousands of test cases in very short time and thus shortens the verification
time. The purpose of this master thesis is to automate the evaluation process of a
test conducted at BorgWarner.

This chapter provides an introduction to BorgWarner as a company and defines the
problem that will be solved along with the approach used to solve it. The works
related to this thesis will also be presented and discussed in this chapter.

1.1 BorgWarner

BorgWarner is a multinational corporation and a large supplier of components and
parts for the automotive industry. The company has a total of 68 facilities across
19 countries [BorgWarner, 2019]. Subsidiary companies of BorgWarner are divided
into two groups: Engine Group and Drivetrain Group. BorgWarner specializes in
powertrain products for different technologies such as combustion, hybrid and elec-
tric powertrains [BorgWarner, 2019].

The practical work of this thesis was conducted at BorgWarner PowerDrive Systems
(PDS) in Landskrona, the European headquarter of BorgWarner and one of their 21
locations with PDS operations.

9

Chapter 1. Introduction

1.2 Problem Formulation

A very important part of the overall vehicle system today consists of software and
other electronic components. As with any other part of the vehicle it is necessary to
test and verify that it can operate safely in real-life situations.

At BorgWarner the software is tested automatically and/or manually. Automatic
testing is testing that can run without any human interaction during the testing. In
automatic testing both test stimuli and evaluation are autonomous. Since everything
is automated the software is always tested in a simulated environment. Manual test-
ing is testing that requires the interaction of a test engineer during testing. The
interaction can be in the form of providing the required test stimuli or evaluating
the test result or both. Most of the testing at BorgWarner nowadays is automatic,
but there is still a small portion of manual testing.

In addition to performing automatic testing of the software in a simulated environ-
ment, the Software Testing Department at BorgWarner also tests software in real and
dynamic driving environments to cover test cases that cannot be covered by auto-
matic testing. Tests conducted in real driving environments are called Safe Driving
Tests (SDTs) and the usual test procedure of the SDTs is as follows:

• The software to be tested is uploaded to an ECU (Electric Control Unit),
which is then installed in a car. The car is then taken to a test track where every
test case is performed manually. The test results are not analysed thoroughly
during the test, but all measured signals from the car are logged.

• Proper analysis of relevant signals such as the speed of the motor, the acceler-
ation, the control angles, the signals from the electronic stability program etc.
is done later by a software evaluation engineer and, the results are evaluated
thoroughly.

Normally, it takes three to five days to perform the analysis and summarize the test
report. If any defects are found, the software is sent back to the developers to be
fixed, and then the whole procedure will be repeated again until the software is
approved (see Figure 1.1). The entire process, including performing the test cases,
evaluating and fixing defects, takes approximately two weeks. Besides the cost in
terms of time taken for evaluation, the company must also pay other expenses such
as renting a test track, wear and tear in the car, risk that something happens during
testing and so on. However, the most important factor is that in the manual evalua-
tion the result depends a lot on the experience, opinion and accuracy of evaluator.

BorgWarner wants to improve the workflow in the described process above with the
help of automatic analysis and a simulated model of the car. By testing the software

10

1.3 Objectives and Approach

thoroughly with the help of the simulated model before testing in a real vehicle some
problems can be excluded, such as the software is not working at all when it is time
to test in the real driving situation. Automating the evaluation process would also
reduce the time and cost of the testing process and simplify the process of finding
out the cause of unexpected results. With automatic evaluation all the test results
will be assessed in the same way regardless of the evaluator.

Figure 1.1: Overview of the present workflow.

Figure 1.2: Overview of the new planed workflow.

1.3 Objectives and Approach

The main purpose of this master thesis is to implement a software evaluation pro-
gram which analyses and evaluates vehicle software automatically based on data
logged during testing. The logged data can be produced either from a simulation or
from a test performed on a test track.

Using the software evaluation program together with the vehicle simulation will
transform the current workflow in the SDT (see Figure 1.2). Before performing the
tests on a test track the software will first be tested with the help of a simulated

11

Chapter 1. Introduction

vehicle model until all found defects are fixed. After that the software will be tested
in a test track for a final evaluation.

If successful, this would improve the efficiency of the analysis significantly. The
software evaluation program therefore has two purposes: analyzing the test results
from the simulation and analyzing the test results from the test track.

The successful project should be able to answer the following questions:

• Does BorgWarner save time by automating the analysis process?

• Can BorgWarner rely on the test result provided by the evaluation program?

• Does BorgWarner get the same test result from automatic evaluation vs man-
ual evaluation?

The overall approach consists of the following parts:

• Get a good understanding of how the manual analytic work is performed.

• Investigate how the manual analytic work can be automated.

• Investigate how the software should be designed to maximize the reusability
of the evaluation program in different projects.

• Design and implement the evaluation process for each test case.

• Evaluate the accuracy and reliability of the evaluation program.

1.4 Delimitation

Although the future vision of BorgWarner is to automate the SDT using the sim-
ulated vehicle model together with the evaluation program, this master thesis is
limited to the implementation of the evaluation program. It is not within the scope
of this master thesis to develop the simulated vehicle model or evaluate test results
provided by the simulated vehicle model. There is already a complete implementa-
tion of a simulated vehicle model developed by BorgWarner[Espfors, 2018].

1.5 Related Work

Since this master thesis is about automating the evaluation process, the related
works that have been considered are those that fall into the category of automatic

12

1.5 Related Work

testing and evaluation. Automatic testing and evaluation of software is neither a
new concept in software development in general nor in software development in the
automotive industry. It has been widely applied in software development and there-
fore there are already a lot of research and many applications done in this area. The
related works that have been done at BorgWarner and two related works conducted
outside BorgWarner, which are considered as most relevant to the master thesis, will
be reviewed in this chapter.

The software testing department at BorgWarner has made a huge effort in test au-
tomation. Approximately 95 percent of the test cases are automated and conducted
in a simulated environment. Despite the high percentage of automated test cases,
attempts to automate the evaluation of test results from real world testing have not
been explored yet. The reason is probably the difference between test stimuli pro-
vided in simulated environment and test stimuli provided in real world. In a simu-
lated environment the test stimuli are mainly static, meaning that the test conditions
are the same throughout the test. An example of static test stimuli can be setting the
wheel speed to 20 km/h. The wheel speed in a simulated environment will always
have the same value throughout the test. On the other hand, in a real world testing
the test stimuli is dynamic, which means the wheel speed will not be exactly 20
km/h throughout the test. The wheel speed varies because there are many things
that affect the wheel speed, like how well the driver can hold the accelerator pedal
in the same position or the uneven drive surface can reduce the wheel speed, etc.
Dynamic test stimuli lead to dynamic test results. Due to the dynamic test results, it
is difficult to create a reliable evaluation program.

Although, there are many studies and applications relating to automatic testing and
evaluation, there is very little research which is specifically done in automatic eval-
uation of dynamic testing. In the following paragraphs two thesis works that are
similar to the assignment will be reviewed.

[Conrad et al., 2005] has developed a tool called MEval, an automatic evaluation
program designed for ECU software tests. This program can be used to evaluate the
test results which are time-dependent signals. The idea behind MEval is to evaluate
the test result based on signal comparisons. MEval takes the approved test result
(signal data) from previous tests and the current result signal as inputs. The program
then evaluates the current result signal by comparing it with the approved test result,
which is used as reference data. The signal comparisons are conducted in two steps:
preprocessing and comparison. At the first step the signals will be preprocessed
using a difference-matrix which is a matrix where entries are absolute values of
the signals differences Di f f M(ti,t j) = |o(ti)−o‘(t j)|, o(ti) is the value of reference
signal at sample i and o‘(t j) is value of the current output signal at sample j. The
purpose of this step is to adjust the current result signal to the reference signal so
that the signals will be time aligned as well as possible. If the test result passes the

13

Chapter 1. Introduction

first step it means the time deviations do not violate a given threshold. MEval will
then proceed to the second step which is a comparison of the signals using relative
and slope-dependent differences methods. The output of MEval is a single value
which shows how much the signal in the test result differ from reference data. If the
value is below the maximum accepted deviation the test result passes the evaluation.

The idea behind the master thesis performed by [Adenmark, 2003] at Scania was to
automate the integration tests at Scania as much as possible. This included automa-
tion of the test stimuli as well as automation of evaluation of test result. The result
of this master thesis was a program containing several automatic tests. This pro-
gram provided the required stimuli for each test and then evaluated the responses
from the ECU. While the program goes through and performs each test case one
by one it also fills in the test protocols with test results. Only the evaluation part
of this program is of interest since it is the focused area of my master thesis. Both
the evaluation in automated CAN communication test and User Function test im-
plemented by [Adenmark, 2003] work similar. The program evaluates the test result
by extracting information from response messages that are of interest and compare
the extracted information with the requirements provided in the test protocols. The
test result and any deviations that might occurs will be automatically filled into the
corresponding test result field of the specific test in the test protocols.

Although the works reviewed above are similar to this master thesis, these solutions
cannot be applied directly to solve this assignment. The thing in common between
the solution provided by [Conrad et al., 2005] and this work is that both programs
evaluate test results by analyzing the resulting signals collected from the test. How-
ever, what makes this work different from his work is that the program is expected to
evaluate signals against the requirements instead of former approved data. The eval-
uation must be independent from former test result, because there might be a newly
developed function that has never been tested and therefore do not have any former
data as reference. In [Adenmark, 2003] the evaluation is limited to binary evaluation
which means either the test result is identical to the expected result or not, while the
evaluation program in this master thesis should also be able to evaluate non-binary
cases like evaluating the value trend of the signals if it is continuously increased
or decreased. Even though these works somewhat differ from this assignment they
have been used as inspiration for this thesis work.

1.6 Terminology

The following terminology will be used throughout the thesis:

Evaluation program in this context means a program consisting of evaluation pro-
cesses for multiple test cases.

14

1.7 Outline

Test case in this context contains a driving scenario and expected results. By per-
forming the driving scenario and comparing the outcomes with expected results the
tester will be able to determine whether the software under test fulfills the require-
ments or functions correctly.

1.7 Outline

The rest of this thesis is outlined as follow: Chapter 2 provides the reader with in-
formation about the software testing at BorgWarner and a description of the manual
evaluation of Safe Driving Tests. The environment setup and a brief description
of each component are given in Chapter 3. The approach for solving the problem
followed by explanations of the algorithms used in this assignment is presented in
Chapter 4. Chapter 5.2 presents the verification process of the software and the re-
sult of this master thesis. Lastly, the conclusion and remaining problems that should
be solved or improved in the future are given in Chapter 6.

15

2
Background

This chapter aims to provide readers with the necessary information to understand
how the software evaluation process is performed at BorgWarner, Landskrona and
what software is used as a starting point of this project. The software evaluation
process is done in two parts, simulation-based testing and real-world testing. Section
2.1 describes the simulation-based testing and real-world testing. The Safe Driving
Test is described in Section 2.2 and Section 2.3 provides a description of the FXD
technology.

2.1 Software Testing at BorgWarner

Products developed by BorgWarner have to undergo a strict testing process to en-
sure that they operate as expected, while also meeting the functional and safety
requirements demanded by customers and international standards before they are
released. Serious defects in a product can cause unwanted accidents that cost hu-
man life, therefore BorgWarner and any supplier within the automotive industry has
put a lot of focus and effort on testing.

The software development process in a project at BorgWarner is an iterative pro-
cess and can be described as a variant of the V-model [Petersson, 2014] which is
illustrated in Figure 2.1 below. These phases are gone through for each iteration.
In a project there will be a team from the software development department works
together with a team from the software testing department. The development team
is responsible for phases on the left and Software Unit Test while the software test
team is responsible for the remaining phases on the right. The two teams work to-
gether and go through these phases in parallel. Requirements of the software are
divided in work packages which are to be implemented and tested in each iteration.
In each iteration the development team works on the implementation and unit test-
ing, while the test team designs and implements test cases. In that way, the software
test team is ready to run tests once a delivery is made.

16

2.1 Software Testing at BorgWarner

A variety of tests are carried out by the software testing department. In this section
a description of the software testing part that concerns the master thesis is provided.
The software testing in this context can be divided into two types: software testing
in simulated environments and software testing in real world environments. Both of
these types are black-box testing, which means that only the functionalities of the
software are examined, not its internal structure or code.

Figure 2.1: Phases in software development process at BorgWarner PDS Europe
[Petersson, 2014]

2.1.1 Software Testing in Simulated Environments
The software testing department at BorgWarner in Landskrona is responsible for
testing software developed for individual vehicle manufactures. The software to
be tested here is the software that operates in an ECU. Each vehicle manufacturer
has different communication conventions and requirements on the behavior of the
software. Therefore, each project has the potential to be unique. Software at Borg-
Warner can be tested manually and/or automatically in a simulated environment.
For most of the cases the software is tested automatically, but sometimes manual
tests are carried out.

The simulated environment here means that the ECU is connected to a system which
operates like a real vehicle and the ECU cannot differentiate between a real vehi-

17

Chapter 2. Background

cle environment and a testing environment. This is achieved by using CANoe (see
Section 3.1) and hardware produced by Vector. CANoe simulates the rest of the net-
work nodes while Vector hardware simulates the sensors and actuators. Figure 2.2
shows an example on how the ECU, CANoe and Vector hardware are connected to
each other to create a testing environment.

Figure 2.2: Testing of the ECU in simulated environment [Vector, 2019c].

All the test rigs used at BorgWarner are built on Vector products and can be cat-
egorized in two types: VT System and VN System. The difference between them
is that the VT System is more powerful and offers additional functionalities that
can be used to test hardware related errors such as short-circuits, pump error etc,
while VN Systems are more suitable to test software related errors and diagnostic
communications.

Test stimuli and error injections can be done automatically via CANoe to the test
rigs. The test rigs are capable of for instance creating short-circuit, or open circuit
by switching relays or setting desired temperatures. The capability of the test rigs
makes it possible to run thousands of test cases automatically without the assistance
of a human being.

With the help of VT and VN Systems tests can be performed completely automati-
cally, from providing required test stimuli to evaluation. In automatic tests the test
sequences are run automatically, and at the end of each test a test result is produced.
The test engineers’ job after a test run is to go through the test result and investigate
the cause of the failed test cases. The test engineers also perform manual testing
in case there are test cases that has not yet been implemented or are impossible to
automate. Manual testing requires interaction between the test engineer and the sim-
ulated environment to generate inputs for the software and to verify or investigate

18

2.2 Safe Driving Test

the outputs provided by the software.

2.1.2 Software Testing in Real-world Environments
In order to be certain that a product operates well in a simulated environment also
performs well in real-world environments, testing of the software in real world en-
vironments ought to be conducted as a final check before deploying to production.
There are some conditions in the real world that sometimes cannot be simulated,
such as the state of the road (wet, dry, icing), terrains with different surface (asphalt,
grass, rocks, icy), etc so real world testing should be performed to cover driving sit-
uations that cannot be covered by testing in a simulated environment. This is also a
chance to verify that the software operates and collaborates properly with the rest
of the vehicle.

For this purpose, test tracks in different climates are used. There are two test tracks
located in Sweden, one in Arjeplog in the north and the other in Ljungbyhed in the
south. The test track in Arjeplog offers a cold climate and icy roads for testing the
behavior of the software in different driving scenarios when it is exposed to tough
climate and terrain. The test track in Ljungbyhed offers, however, a warmer climate
and asphalt roads.

2.2 Safe Driving Test

As mentioned earlier, in addition to software testing in simulated environments the
Software Testing Department at BorgWarner also conducts testing of the software in
real world environments. The SDT is one of these tests which belongs to testing in
real world environments. The test is often performed at the end of the development
cycle to verify that besides normal operations the software also manages to handle
extreme driving situations safely.

Since the test has been conducted for many years there are already well-created
requirements and test specifications for test engineers to follow. The requirements
specify the expectations BorgWarner has on the functionality of the software re-
garding safety, while the test specifications describe how the test cases should be
executed and what the expectations on each test case are.

To conduct the SDT, the test engineer mounts the ECU flashed with test software to
a vehicle. A PC is connected to the Vector hardware, which in turn is also connected
to the CAN network that the ECU is connected to. By including Vector hardware
and CANoe (see Section 3.1) to the network the test engineer manages to monitor
and log the signals and behavior of the software.

At the test track the test engineer performs each test case one by one by following
the test instructions in the test specification and quickly verifies that the correspond-

19

Chapter 2. Background

ing expectations on the test case are fulfilled or by taking notes if there is any de-
viation. This procedure is very time-consuming and exhausting for the driver since
the driver can get motion sickness by conducting many extreme driving scenarios.

After performing the test cases, the next step is evaluation. The test engineer does
a thorough examination of the test results by analysing the logged data. If any de-
viation or defect is found the test engineer collaborates with a developer to find out
the cause. As mentioned above this process is the most time-consuming part of the
testing which takes 3 to 5 days plus approximately 2 weeks for the developers to fix
the defects if any. This process continues until the software is approved. Figure 1.1
shows a summary of this process.

2.3 Front cross differential technology

As a starting point for the requirement elicitation and implementation of the soft-
ware I studied the requirements, test instructions and log files of the software devel-
oped for BorgWarner’s electronic limited slip differential (eLSD) technology called
Front Cross Differential (FXD) [BorgWarner, 2015]. This technology is designed to
improve traction, handling and stability of front-wheel drive (FWD) vehicles. The
eLSD with FXD technology is installed behind the gearbox in a FWD vehicle. FWD
vehicles often face an common problem which is the difference in levels of traction
between the driving wheels at cornering and acceleration. The difference in levels
of traction causes the vehicle to have a tendency to turn toward the direction of the
wheel with lowest traction.

This problem can be overcome by using the FXD technology. The FXD technol-
ogy uses data of the steering wheel angle, engine torque and yaw rate to calculate
and adapt the amount of torque needed for different driving situations. To prevent
the wheel slipping from occurring the FXD controls the locking torque between
the front wheels and applies the power to the wheel with best traction. To improve
driving performance during cornering the FXD technology reduces the inner wheel
slip by providing more power to the outer wheel. The stability of the vehicle is im-
proved by sending torque-vectoring effect at understeering and yaw-damping effect
at oversteering.

20

3
Equipment

This chapter provides a brief introduction to the software and hardware used to
setup the environment needed for the software development and evaluation of the
Safe Driving Test cases. The relationships between hardware and software used for
development are shown in Figure 3.1.

Figure 3.1: Overview of the environment setup.

3.1 CANoe

CANoe is an application developed by Vector Informatik GmbH [Vector, 2019d] for
development, test, analysis, simulation, diagnostics and start-up of the entire ECU
networks and individual ECUs. The application is used in automotive in-vehicle
electronic networking and also in industries such as heavy trucks, rail transportation
etc. It is used worldwide as a tool for ECU development for all type of vehicles.
The simulation and testing in CANoe is performed with CAPL, a programming
language similar to C. The tool can be used to create a simulation of the entire
network bus and simulate all the nodes on the buses. CANoe have support for all

21

Chapter 3. Equipment

types of communication protocols used by automotive industry like CAN, CAN
FD, LIN, FlexRay, Ethernet, MOST ect. In this project CANoe is used to be able to
display the logged data, analyze the relevant signals and execute the implemented
test cases.

3.2 vTESTstudio

vTESTstudio is a development environment developed by Vector Informatik GmbH
[Vector, 2019e] for creating, structuring and generating automatic ECU test se-
quences which can be executed by CANoe configurations in real-time and evalu-
ated in detailed reports. Tests are implemented in vTESTstudio by using test design
languages such as CAPL or C#. In this master thesis vTESTstudio has been used
for development of the evaluation program.

3.3 CAPL

Figure 3.2: A simple test case implemented in CAPL.

CAPL or CAN Access Programming Language is a procedural programming lan-
guage based on the C programming language with additional features to support the
development of the CAN-based embedded system. CAPL was developed by Vector
Informatik GbmH [Vector, 2019a]. CAPL programs are developed and compiled
using a dedicated program developed by Vector such as CAPL Browser or vTEST-
studio. In this master thesis CAPL was used to implement the evaluation of test
cases.

22

3.4 Log file

3.4 Log file

CANoe provides its user the ability to log all the data communication on the CAN
buses. This function makes it possible for the user to analyze the record later af-
ter the tests have been performed. CANoe supports two type of logging formats:
message-based and signal-based [Vector, 2019b]. The message-based format stores
all the messages together with other information like statistics and disturbances on
the buses. The signal-based format records all signal values extracted from mes-
sages sent over the network. Logging of the signal-based format requires a database
for decoding signal values. In this master thesis the BLF (Binary Logging Format)
file, a message-based format was used.

3.5 Vector Hardware

At BorgWarner, Vector Hardware is a crucial component for running software tests.
To run the tests, the ECU is flashed with software must be connected to some of
the hardware provided by Vector. The most common Vector hardware used at Borg-
Warner are VT-system and VN-system. They are slightly different but have the same
purpose, to provide the ECU under test with a testing environment that is the same
as in a real vehicle environment. Vector Hardware is also a necessary component to
get a license for running CANoe.

3.6 Environment Setup

The environment needed for the software development and evaluation of the Safe
Driving Test cases is setup using the equipment described above. Figure 3.1 shows
the relationship between software and hardware. The Vector hardware is connected
to the computer with CANoe via either Ethernet or USB. The purpose of the Vector
hardware in this context is just to provide the license for using CANoe. It does
not perform any simulation since this project only uses the real data traffic records
from the log file. The software was written in CAPL with help of CAPL Browser.
The CAPL Browser was chosen over vTESTstudio because both program provided
similar functions but CAPL-Browser has less overhead.

23

4
Software Development

This chapter provides a detailed description of the development of the evaluation
program.

4.1 Approach

Software development in general typically involves a number of common stages
regardless of the methodology used. The six common main stages are [Elysiu-
mAcademyPrivateLimited, 2017]:

1. Requirement elicitation

2. Software design

3. Implementation

4. Verification

5. Deployment

6. Maintenance

Based on the scope of this master thesis, the first four stages are relevant and were
applied in this work. However, the stages were not followed strictly as in the wa-
terfall model but was done iteratively. The presentation of this approach will never-
theless be organized after the order mentioned above. In the following sections, the
stages will be gone through in detail and the result from each step will be provided.

24

4.2 Requirements

4.2 Requirements

Before the design and implementation of the software begin, the requirements for
the software must be elicited. It is of course difficult to gather all the requirements
directly in this step but starting the software development with requirement elicita-
tion is a good idea to get a deeper understanding of the problem the software will
solve. The requirement elicitation methods used were: studying the current manual
evaluation, interviewing software test engineers and studying the test specifications.

In order to be successful with this project I had two mentors at BorgWarner: Måns
Andersson, supervisor and test verification engineer, who has the responsibility for
creating and evaluating the SDTs and Mattias Wozniak, who is responsible for the
software test architecture of all projects at the Software Testing Department.

At the initial phase I had several meetings with Måns. The purpose of the meetings
was to provide me the necessary information about the problem I was going to solve.
In these meetings he described how the manual evaluation of each test case was
carried out and what should be included in the test reports. The description of the
manual verification process is described in Section 2.2. This gave me an overview
of the high-level expectations the Software Testing Department has on the proposed
evaluation program.

During the development of the software I also had meetings with Mattias in which
he went through and explained how the software test architecture of the current
projects looks like and why it is designed that way. These meetings gave me the
requirements on the software design. This also served as inspiration for me to come
up with a design that fulfils these requirements.

The result of this step was a list of requirements on the software. Notable is that
not all the requirements were formulated at this stage. Some of the requirements
were created at the elicitation phase, but some have been added to the list during the
course of this project. The reason why these requirements exist, how and what has
been done to fulfil them will be explained in the following sections.

Below are the requirements of the software.

1. The evaluation program shall evaluate test cases from the Safe Driving Test
based on logged data.

2. The output of the evaluation program shall be a test report containing test
results for the evaluated test cases.

3. The evaluation program shall be easy to integrate into different projects.

25

Chapter 4. Software Development

4. The evaluation program shall be designed so that it is easy to expand it with
new test cases.

5. Each project shall be able to declare its project specific limits without inter-
fering with other projects.

6. Each log file will only contain data for one test case.

7. The evaluation program shall be able to deal with different signal names from
different projects.

8. The evaluation program shall be able to evaluate software from different
projects.

9. A test case is evaluated when the values of signals that are relevant to the test
case pass the test condition check.

10. The signal data shall be sampled at minimum message cycle time which
means every 10 milliseconds

11. Test condition check shall be created by translating the test instructions to a
logical and programmable set of rules.

12. Depending on the expected test result the signal data shall be analysed in 3
ways: binary comparison, similarity comparison and value trend detection.

13. If the expected result of a test case is binary such as "value of signal A is
greater than X" or "value of signal A is within an interval" and so on, the test
result shall be analysed through simple binary comparison.

14. If the expected result of a test case is that the behavior of signal A is similar
to the behavior of signal B, the test result shall be analysed by similarity
comparison with three steps:

• Step 1: Sample values from signal A and B in the evaluation interval.

• Step 2: Time-align the signals using cross correlation coefficient.

• Step 3: Evaluate the similarity between two signals using correlation
coefficient. If signals has disturbances moving average is applied before
using correlation coefficient.

15. If expected result of a test case is that "the values of signal A increase or
decrease", the test result shall be analysed in either of the two ways below:

• If the values of the signal shall strictly decrease or increase, binary com-
parison is applied which means that value of the incoming sample must
be greater than value of previous sample, if expected result is increment
and vice versa for decrement.

26

4.3 Software Design

• If the values of the signal are not strictly decreased or increased which
means the values can increase or decrease in some intervals but the over-
all trend is an increased trend or decreased trend, the evaluation shall be
performed by first applying moving average on the signal and then using
binary comparison to evaluate the increment or decrement.

4.3 Software Design

The structure of the software must be organized so that it is not only easy to un-
derstand, maintain and expand but also fulfills the requirements and needs. The
requirements that have effect on the software structure are:

• Requirement 3: The evaluation program shall be easy to integrate into differ-
ent projects.

• Requirement 4: The evaluation program shall be designed so that it is easy to
expand it with new test cases.

• Requirement 5: Each project shall be able to declare its project specific limits
without interfering with other projects.

The software structure presented in Figure 4.1 was created by taking all the require-
ments and needs into consideration.

Figure 4.1: Overview of software structure when integrating into a project.

Requirement 3 and 5 are achieved by the "SafeDrivingProjectSpecific" file. This
file has two purposes. The first one is declaring project specific limits by assigning

27

Chapter 4. Software Development

the values to pre-defined global variables. This makes it possible for each project to
declare its own limits. The second purpose is that it invokes only evaluation of test
cases that are applicable for a specific project.

The SafeDrivingTest file contains the evaluation process implemented for all test
cases in SDT. This file includes the SafeDrivingTestHelpFunctions file which is
where all the algorithms and necessary functions supporting the evaluation process
are implemented and the SafeDrivingTestCommonConstants, which contains all the
common variables used by the SafeDrivingTest file. New test cases can easily be
added to the evaluation program by implementing a new function for each test case
in SafeDrivingTest file, and this fulfils Requirement 5.

4.4 Software Implementation

4.4.1 Log File Preprocessing
Requirement 6 limits the number of test cases that can be logged in a log file. The
reason why this requirement exists and how this issue was solved is explained in
this section.

After examining the log files for each test case from a former SDT, it turned out that
one log file can sometimes contain logged data for multiple test cases. This is due to
the overlapping test sequences between these test cases. Two test cases might have
almost identical driving scenario but with a small difference. For example, both test
cases can be: accelerate to 20 km/h and then perform a turn. The difference here
is that in one test case there will be a left turn and in the other a right turn. An
example of overlapping sequences can be: test case 1, start the engine and test case
2, start the engine and wait for the engine to idle. Test case 2 overlaps test case 1.
The overlap sequence here is of course the "start engine"-step.

For the sake of simplicity, the test engineer often performs and records these test
cases together in one log file. However, this manner makes the implementation of
the evaluation for each test case complicated and unreliable. The evaluation must
somehow be able to detect and distinguish between test cases to be able to determine
when to start evaluating a specific test case. For example, a log file may contain log
data for test cases 1, 2 and 3. The evaluation program needs to know which part of
the log file belongs to each test. To ease the implementation and therefore minimize
the risk of evaluating the wrong test case, I decided that if a log file contains data
from more than one test case it must be preprocessed before usage.

Preprocessing in this context means that a log file, which contains data from more
than one test case, must be split up into separate files. CANoe at this moment does
not offer a tool for dividing a log file. However, CANanalyzer has a tool for that.

28

4.4 Software Implementation

The user could load the file he wants to split and enter a start timestamp and an end
timestamp of a test case in the log. The result is a file that only contains log data for
the specified interval.

Preprocessing of log files cannot be automated so the user must do it manually.
It requires that the user can differentiate between test cases by looking at relevant
signals or by saving the test case separately during testing.

4.4.2 Generic Solution for Customer-Specific Configurations
BorgWarner provides products for numerous customers, i.e., various car manufac-
turers. Even though it is the same product, each car manufacturer has its own config-
uration and therefore has different requirements on how the product should commu-
nicate with the rest of their system, the behavior of the software at certain situations,
which signal should show which data, customized features, etc. To make it as effec-
tive as possible the testing department at BorgWarner requires that the evaluation
program must be designed and implemented so that it can be used across multiple
projects. In this section I am going to address the customer specific problems and
describe my solution to make the evaluation program generic.

Project-specific Signal Names
The evaluation of a test case is performed by analyzing the values or value trend of
relevant signals. For each test case there is a group of signals that are of interest, and
it happens to be that the names of the signals are not the same across different cus-
tomers. One signal can have the same purpose but different name depending on the
car manufacturer. For example, the name of the wheel speed signal could be wheel-
speed for car manufacturer A but could be wheelspd for car manufacturer B. The
variation in signal names between projects prevents the program from being reused
for various projects. A solution for this problem must also satisfy Requirements 3,
7 and 8.

To solve this problem, I studied how the earlier implementation of other test mod-
ules solved the customer specific problem. The solution was that each project using
the evaluation program must map its signals to the predefined global and common
variables. I summarized a list of signals used in the evaluation of all test cases and
created global variables for these signals. Each project will have to implement the
mapping between its project specific signals and the global variables. This mapping
updates the variables with the value of the project specific signals as soon as any
change in value from these signals occurs. This way the evaluation program can
analyze data from the global variables instead of dealing with the project specific
signals directly. Figure 4.2 shows an example of how the mapping is done in CAPL.

29

Chapter 4. Software Development

Figure 4.2: Signal mapping.

Different Signal Units and Project-specific Limits
BorgWarner’s customers also use different units for their measured data. For exam-
ple, in some projects the wheel speed can be measured in meters per second, while
in other it is measured in kilometers per second. This problem is solved by specify-
ing a unit for each signal that is used by the evaluation program. A signal with a unit
that differs from the one specified in the evaluation program has to be converted to
the specified unit. That way the evaluation will be generic across projects.

Another problem is that the limits are not the same across projects. For instance,
in Project A the pump is off when the ampere is equal or less than 50 mA, while
in Project B the pump is off when the ampere is equal or less than 30 mA. If these
limits are not taken into consideration the evaluation program will provide incorrect
test results.

To give an idea, one of the test cases in SDT is to turn off the motor and check that
the pump is off. The test case is performed on Project A and B, and the ampere
values received are 40 mA respective 30 mA, which means the pump was off in
both projects. The test passed in manual evaluation. Now assume that the limit for
pump being off is hardcoded to 30 mA in the automatic evaluation program. The
automatic evaluation program will evaluate the test result in Project A as fail since
the ampere is greater than 30 mA, while it will evaluate the test result from Project
B as pass. In this case the evaluation program gives incorrect evaluation for Project
A.

To solve this problem I decided that limits that are different from project to project
will have a global variable and this variable has to be assigned a value by each
project using the evaluation program.

4.4.3 Algorithms
The automatic evaluation workflow is shown in Figure 4.3. The two most important
parts of the automatic evaluation is the test condition check and the evaluation.
The test condition check is responsible for detecting intervals where a test case is
performed in the log. This is necessary because a log file does not only contain data
for just the duration the test case is executed but it also contains data for the period
before, between and after the test execution in which some intervals are not related

30

4.4 Software Implementation

to the test. Figure 4.4 shows log of a test case. The same test case was performed
two times (intervals within blue rectangles). The intervals before, between and after
the test execution (within magenta rectangles) are not related to the test case and
should not be evaluated. A test case might be repeated multiple times; therefore, it
is absolutely essential that the evaluation process must be able to identify the start
and the end of the test case and be able to find all the intervals where a test case
is executed using the provided data. The program should only evaluate intervals
where a test case actually occurs (Requirement 9). The input of the test condition

Figure 4.3: Automatic evaluation workflow.

check are the values of relevant signals. Since the messages contain the value of
different signals are send in different frequency depending on the message cycle,
I decided that the signal data should be sampled every 10 milliseconds which is
the minimum message cycle. The reason is to make sure that no important sample
values are missed (Requirement 10).

31

Chapter 4. Software Development

Figure 4.4: Intervals within blue rectangles are where the test case is executed. Inter-
vals within magenta rectangles are not related to the test case and therefore should
not be evaluated.

Figure 4.7 provides an example of how the program shows which intervals it eval-
uates. Each test case has a description of the driving scenario, so the test condition
check was implemented by transforming the description into a set of programmable
rules (Requirement 11). For visualization of the evaluation intervals, there is a signal
called "iVerifying" which is the orange signal in Figure 4.7. The evaluation intervals
are the intervals in which the signal "iVerifying" is 1. The iVerifying is 1 when the
test condition check is fulfilled.

After these intervals are detected the evaluation program proceeds to the next step:
evaluation. Depending on the expected result of the test case the evaluation can be
divided into two groups: binary evaluation and complex evaluation (Requirement
12). The binary evaluation is as simple as comparing the result value with the ex-
pected value, while the complex evaluation means to verify that the value of a signal
changes over time in an expected pattern. For instance, the ampere of the pump is
expected to increase when the accelerator pedal is pressed and decrease when the
accelerator pedal is released.

Depending on the expected result of each test case one or a combination of different
evaluation approaches are applied. In the following sub-section, the algorithms or

32

4.4 Software Implementation

methods implemented in CAPL for determining the evaluation intervals and eval-
uation of a test case along with the motivation for the chosen algorithms will be
presented.

Wheel Slip Detection
In the SDT there are several test cases in which are designed to test how the software
handle situations where one or both of the front wheels lose traction, while turning
left or right. In order to evaluate these test cases, the evaluation program must be
able to identify intervals where the wheels lose grip based on the available signal
data.

In a real driving situation, when the wheel slip occurs the driver should easily be
able to detect that by hearing the sound from the wheels and by feeling the slipping
when steering. It is also easy for a human to see where the wheel slip happens only
by looking at the displayed logged data. Figure 4.5 shows data of the front wheel
speeds. We can see that at normal driving with no wheel slip the signal data for both
wheels look smooth. When wheel slip occurs on the right wheel, we could see that
the signal oscillates much more compare to the signal of the left wheel.

Figure 4.5: Intervals where wheel slip occurs. Front left wheel speed in blue and
front right wheel speed in turquoise.

Nevertheless, to make the computer sees what we see and comes to the same conclu-
sion is not easy. To implement wheel slip detection based on available data requires
some knowledge about physics. As a starting point the behavior of the front wheels
when turning left or right was studied. In a normal driving situation without wheel
slip when turning left, the right wheel must travel a longer distance compared to
the left wheel which means that the right wheel should always has a higher speed
than the left wheel. The same principle is applied to a right turn, except that the

33

Chapter 4. Software Development

left wheel will always has higher speed than the right wheel. Figure 4.6 shows the
technical details of the wheels when cornering.

Figure 4.6: Cornering

Ideally, for detecting wheel slip when cornering one could calculate the expected
wheel speed for each wheel and compare with the actual wheel speed. The expected
wheel speed can be calculated based on the traveled distance of each wheel, the
turning angle, the distance between front wheels and the time it takes for the wheels
to travel that distance. Unfortunately, the log data does not contains information
for any of the mentioned parameters. The information that can be extracted from
logged data is wheel speed for each wheel, steering wheel angle and the steering
wheel direction. Therefore, the evaluation program can only use the available data
for detection. By combining the knowledge about the wheel speed when cornering
and studying the logged data of wheel slip test cases a programmable set of rules
for detecting a wheel slip situation can be created.

At a left turn wheel slip occurs when:

• The steering wheel angle is greater than for example x degrees.

• The steering direction is left.

• The left wheel speed is greater than or equal the right wheel speed

34

4.4 Software Implementation

The reason why the first rule exists is because when the cornering angle is small the
speed difference between left and right wheel is almost negligible. Since the speed
difference is negligible when steering wheel angle is small, it is impossible to detect
if wheel slip occurs or not using the rules mentioned above. If we can calculate the
expected wheel speed it is then possible to detect wheel slip even at small steering
angle. The second rule decides which wheel speed will be the reference. This rule is
a complement to the third rule. For instance, when turning left the right wheel speed
is the reference. If the left wheel spins faster than or equal to the reference wheel,
wheel slip occurs.

Figure 4.7: Wheel slip detection at right cornering. Signals in separate diagrams.

Figure 4.8: Wheel slip detection at right cornering. All signals with the same y-axis.

Figure 4.7 and 4.8 show the result of the wheel slip detection. In Figure 4.7 when
showing the signals in separate diagrams it is difficult to see where exactly the wheel

35

Chapter 4. Software Development

slip occurs but in Figure 4.8 when placing both wheel speeds in the same axis the
wheel slip occurrence is clearer. The intervals within the orange signal is where the
wheel slip occurs. The interval on the right of Figure 4.8 looks like wheel slip also
occurs but the wheel slip actually did not happen in that interval. As mentioned
above when the steering angle is small the wheel speed is almost the same for both
wheels and because of the first rule that interval is not detected as wheel slip.

Accelerator Pedal Lift Detection
Some test cases are supposed to test that an expected feature is applied when the
driver releases the accelerator pedal. Since this feature expects to be applied as soon
as the acceleration pedal is released, the evaluation program must be able to detect
where in the log the accelerator pedal is released. The information available from
the accelerator pedal is the accelerator pedal position in percent between 0 to 100.
Detecting the accelerator pedal lift might be as easy as finding the points when the
accelerator pedal position goes to zero. However, this assumption is not true because
as one could imagine when the driver removes his foot from the pedal, the pedal
does not go back to the zero position immediately, but it takes some milliseconds
for the pedal to reach the zero position. This means that the feature expects to be
applied somewhere between these milliseconds.

Studying the signal of the accelerator pedal position reveals that when the pedal
is released the decrement of the accelerator pedal in percent is much faster than
normal. Due to this fact the accelerator pedal lift detection is implemented using the
gradient and its direction. A negative gradient means the accelerator pedal position
is decreasing.

The accelerator pedal lift is detected when it has a high negative gradient. The gra-
dient is given:

g(percent/second) =
x[i+1]− x[i]
t[i+1]− t[i]

(4.1)

where x is accelerator pedal position signal and t is the time stamp corresponding to
the sample.

Moving Average
The correlation coefficient is used in signal comparison. The correlation coefficient
performs really well on signals without disturbances but not so well on signal with
disturbances. Consequently, to make the comparison more accurate, signals with
disturbances must be filtered before using as input to the comparison. For that pur-
pose, the moving average filter is used [Steven W. Smith, 1999]. Moving average is
a simple filter but it is very effective for making the shape of the signal stand out
(Requirement 14 Step 3). The moving average filter works by shifting a window
with fixed size one point at a time over the input signal while computing the mean
value of the points fit into the window size. The mean value of each shift becomes
a sample of the output signal.

36

4.4 Software Implementation

The equation is given by:

y[i] =
1
n

n−1

∑
j=0

x[i+ j] (4.2)

where n is the window size, x is input signal and y is output signal. The evaluation
program will first sample the signal to be filtered over the entire evaluation period
and then apply the moving average filter to the signal.

Delay Determination Between Signals
A vehicle is built from several systems like engine system, steering system, brak-
ing system, etc. Each of these systems are controlled by ECUs. In today’s modern
vehicles there are hundreds of ECUs installed. To operate properly and effectively
the ECUs communicate and exchange information with each other by sending mes-
sages containing data over the CAN bus.

Even though the communication over the CAN bus and the time it takes for an
ECU to receive input from sensors and switches is really fast, there are still delays
between signals. It takes a small amount of time for the message to be transmitted
from ECU A to ECU B and a small amount of time for a signal to travel from
switches and sensors to ECU. Therefore, when an event occurs it will take some
time for the ECU to get that information and reply with a command.

Since there is almost always a delay between signals, evaluation of the test cases
where an event occurs and expects some specific reaction from the software to be
activated, it is important to find the delays between relevant signals. By finding the
delay, evaluation programs can evaluate if the reaction time is within the expected
time interval. Besides that, identifying the delay is also important in signal compar-
ison which will described in the next section.

For determining the delays between signals, a method called cross-correlation is
used (Requirement 14 Step 2). Cross-correlation is a very useful method with many
practical applications in signal processing and one of them is identifying delays.
Delay determination is done by finding the cross-correlation of two signals. The
cross-correlation can be calculated by computing the sum of the product of the over-
lapping samples while sliding a signal upon the other signal. The cross-correlation
of discrete time signals is given by:

Cxy[j] =
n

∑
i=0

x[i]∗ y[i− j] (4.3)

Where Cxy[j] is correlation coefficient of signal x and y at sample j. n is the number
of samples. j is a value between −n and n. i is a value between 0 and n.

For instance, the cross-correlation of signals x[i] = [0,2,2,0] and y[i] = [0,0,3,3]
can be calculated as shown in Figure 4.9. In Figure 4.9 the samples with blue color

37

Chapter 4. Software Development

Figure 4.9: Cross correlation calculation

38

4.4 Software Implementation

are obtained by multiplying the corresponding sample of x with the corresponding
sample of y. The samples with red color are the correlation coefficient when shifting
a signal x positions to the left or right from the other signal. These sample are
obtained by adding the samples with blue color.

The cross-correlation obtained from the signals x and y is [0, 6, 12, 6, 0, 0, 0] where
the fourth element is the zeroth sample which means there are no shifting between
x and y. To the left of the zeroth sample is the coefficient of two signals when signal
x is shifted to the left relative to signal y. To the right of the zeroth sample is the
coefficient of two signals when signal x is shifted to the right relative to signal y.

Further, the cross correlation is at its highest value, 12 which means that the two
signals are most similar when signal x is shifted one position to the right. This also
means that the delay between signal x and y is 1 sample. Figure 4.10 shows signal
x, y and the shifted version of y. With bare eyes we can see that signal y is delayed
one sample relative to signal x. Using the Matlab function for computing the cross-
correlation we get the same result. It is worth noting that the cross-correlation can
still find the correct delay even though the amplitudes of these signals are different.

Figure 4.10: Using cross-correlation to find the delay between signal x and y

39

Chapter 4. Software Development

Similarity Comparison Between Signals
Test cases with expected result such as "signal B will increase when signal A in-
creases and decrease when signal A decreases" are very simple to evaluate manually
by optical comparison. Figure 4.11 shows an example of two signals. The first one
is the ampere signal and the second on is the torque signal. The ampere signal is
expected to mirror the torque signal. For the human eyes there is no problem to see
that the ampere signal behaves similar to the torque signal even though the ampere
signal has oscillations in it. For the automatic evaluation to achieve the same conclu-
sion as the manual evaluation an appropriate algorithm for comparing the similarity
between two signals is needed. The algorithm must also be able to compare signals
with different amplitude, signals with disturbances and signals with delays.

After studying different algorithms that are used in machine learning and signal
processing for signal/data comparison, an algorithm that is suitable for solving this
problem was found. The algorithm is called correlation coefficient.

Figure 4.11: Ampere signal and torque signal.

In statistics the correlation coefficient is used to measure how strong the relationship
is between the value trend of two variables. The correlation coefficient is a number
between −1 and 1. −1 is the strongest negative correlation and 1 is the strongest
positive correlation. A negative correlation coefficient means that if one variable
increases the other variable decreases while a positive coefficient means that if one

40

4.4 Software Implementation

variable increases the other variable also increases. The closer the absolute correla-
tion coefficient is to 1 the higher the correlation is between signals or in other word
the more similar two signals are. The formulation used to calculate the correlation
coefficient is given below. Assume the data of signal x and y stored in array x and y.
The correlation c is:

c =
∑

n
i=0(zx)i(zy)i

n−1
(4.4)

(zx)i =
xi− x

sx
(4.5)

(zy)i =
yi− y

sy
(4.6)

sx =

√
∑

n
i=0(xi− x)2

n−1
(4.7)

sy =

√
∑

n
i=0(yi− y)2

n−1
(4.8)

Where (zx)i and (zy)i are the standardized value of signal x and signal y at index i
of the data arrays, sx and sy are the standard deviation of signal x and y, x and y are
the mean value of signal x and y and n is the number of samples.

As mentioned earlier the goal is to find an algorithm that manages to compare sig-
nals with disturbances, delays and different amplitudes. The correlation coefficient
method, however, only manages to compare signals with different amplitude. Since
I did not find an algorithm that could solve this completely, I combined several
different algorithms to achieve the goal.

For signals with some delay but no disturbance, the delay between them must first be
found using the cross-correlation described in Section 4.4.3, after that the program
adjust the signals by shifting one signal to the left or right relative to the other signal
based on the delay so that they are time-aligned and finally the time-aligned signals
are used as input to the correlation coefficient algorithm.

For signals with both delays and disturbances, the signals must first be shifted ac-
cording to the delay, then filtered or smoothed using the moving average algorithm
and after that the resulting signal can be used as input to the correlation coefficient.

41

5
Verification and Result

This chapter provides a description of the verification process as well as discussion
and analysis of the result obtained from the verification. The verification was done
by integrating the evaluation program to a project and running the evaluation pro-
gram on the log files from a former SDT of that project. The report provided by the
evaluation program was then analysed thoroughly based on two factors: detection
of the evaluation interval and the evaluation result of these intervals. The chapter
ends with an example how a specific test case is evaluated by the program.

5.1 Verification

In this stage the software was tested to verify that it meets the specifications and
works as intended. The evaluation program was integrated into a project and the logs
from a former SDT of that project were used as input to the evaluation program. The
test report generated from the evaluation program was then analysed exhaustively
and compared to the manual test report, test case by test case.

The analysis was done based on two factors which are important for the reliability
of the evaluation program: detection of the evaluation interval and the evaluation
result of these intervals. The detection of an evaluation interval is accurate if it can
find all evaluation intervals that match the test scenario of the specific test case. The
evaluation is accurate when it gives pass result when the test result is as expected
and fail when it is not as expected. If the two factors are accurate the evaluation
program is reliable. The result from the analysis and comments are categorized in
two groups and presented in the subsections below.

5.1.1 Evaluation Interval Detection
There are two ways to verify if the detection of the evaluation interval is correct or
not. The first one is to compare the intervals detected by the program with corre-
sponding description of the test scenario from the test instruction. This method is

42

5.1 Verification

applied for test cases that have simple test scenarios such as "while driving at 20
km per hour engage brake". The verification is performed by checking if the wheel
speed is 20 km/m when the brake signal switched from 0 (inactive) to 1(active) in
the detected intervals. Besides that, I also verify that all intervals that matches the
test instruction are detected. The second one is to discuss with domain expert. When
verifying test cases which may be ambiguous to verify if the detected intervals are
correct or not I often asked for help from test evaluation engineer to make sure that
the verification was correct.

The analysis on the detection of the evaluation intervals showed that the evalua-
tion program detected the correct intervals in 14 of 18 test cases and incorrectly
in 4 test cases. In Figures 5.1, 5.2, 5.3 and 5.4 the intervals that have been incor-
rectly detected are the intervals within the red rectangle box. These four test cases
have similar driving scenarios but are slightly different when it comes to steering
direction and accelerator pedal. The driving scenario is accelerating the vehicle and
then performing a minimized right respective left turn while the accelerator pedal is
pressed respective released. Since the driving scenarios are similar the implementa-
tion of the detection for them are also similar, and therefore the same defects occur
in these test cases.

The reason for these defects was that the detection can only see the value of these
signals at the current moment. As soon as values of the signals pass the test con-
dition check, it concluded that the test case is happening, and the evaluation flag
is set to 1. While the evaluation flag is 1, the evaluation program keep evaluating
as long as the incoming samples pass the condition check. The evaluation program
therefore does not know that the test case was not performed in these intervals but
it was just some sample values that happen to pass the test condition check. Figure
5.1 shows two evaluation intervals. The evaluation intervals are intervals where sig-
nal "iVerifying" is true. The first evaluation interval was wrongly detected because
there are samples that passed the test condition check and the evaluation flag is set
to 1 but the test case was not performed at that time.

In addition to correct detection in 14 of 18 test cases the analysis also reveals that the
evaluation program is able to detect intervals that are likely to be missed in manual
evaluation, especially in test cases about wheel slip. Figure 5.5 and 5.6 show the
evaluation intervals detected by the evaluation program. Within the green rectangle
boxes are intervals which are hard to detect optically. Based on the behaviors of the
signals in Figure 5.5 it is really difficult for the human eye to see in which intervals
the wheel slip appears. Besides intervals that can be found optically the evaluation
program also finds intervals which are hard to find with the human eye.

After the analysis it can be concluded that in general the evaluation program can
find all the intervals it should evaluate but in some test cases there are intervals that

43

Chapter 5. Verification and Result

should not be included in the evaluation.

Figure 5.1: Evaluation detection of Test Case 9. The interval within the red rectangle
was wrongly detected.

Figure 5.2: Evaluation detection of Test Case 10. The interval within the red rectan-
gle was wrongly detected.

44

5.1 Verification

Figure 5.3: Evaluation detection of Test Case 11. The interval within the red rectan-
gle was wrongly detected.

Figure 5.4: Evaluation detection of Test Case 12. The interval within the red rectan-
gle was wrongly detected.

45

Chapter 5. Verification and Result

Figure 5.5: Evaluation detection of Test Case 15. The interval within the green rect-
angle was detected by the evaluation program but can be missed in manual evalua-
tion.

Figure 5.6: Evaluation detection of Test Case 15. The interval within the green rect-
angle was detected by the evaluation program but can be missed in manual evalua-
tion.

5.1.2 Evaluation Process
To verify the evaluation process of the software the evaluation result was analysed
and compared with the manual evaluation. In the manual test report the number of
test cases passed are 16 of 18 test cases. However, only 9 of 18 test cases passed
the automatic evaluation. The analysis of the passing test cases showed that the
evaluation was correct, and therefore, only the analysis of failing test cases will be
mentioned here.

46

5.1 Verification

There are three reasons behind the differences in test result between the manual
and automatic evaluation. The first reason is incorrect evaluation intervals in the
automatic evaluation. As mentioned in the previous subsection in test cases 9, 10,
11, 12 there are intervals that are detected by the evaluation program but should not
be included in the evaluation. These test cases should pass the evaluation but due to
incorrect evaluation intervals it failed.

The second reason is that the test case actually failed but was not detected in the
manual evaluation. This happened in Test Case 17 and 18. These test cases tested
that the torque increased when the accelerator pedal was lifted. In Test Case 17 there
was an interval where the torque did not increase but this was probably not detected
in the manual evaluation. In Test Case 18 by observing the behavior of the torque
signal it can be seen that when the accelerator pedal signal goes to zero the torque
increases as expected, but actually the torque increased much later. This failure was
probably not seen in manual evaluation. The behavior of the torque signal in Figure
5.9 seems to be as expected, but the zoom in of these signal in Figure 5.10 reveals
that the test failed in the last three trials.

Figure 5.7: Interval was missed in manual evaluation of Test Case 17. The interval
within the red rectangle was probably not evaluated in manual evaluation.

47

Chapter 5. Verification and Result

Figure 5.8: Interval was missed in manual evaluation of Test Case 17 (zoom in on
Figure 5.7). The interval within the red rectangle was probably not evaluated in
manual evaluation.

Figure 5.9: Test Case 18 passed in manual evaluation but actually failed. The inter-
val within the red rectangle was probably wrongly evaluated in manual evaluation.

48

5.2 Result

Figure 5.10: Test Case 18 passed in manual evaluation but actually failed (zoom in
on Figure 5.9). The interval within the red rectangle was probably wrongly evalu-
ated in manual evaluation

The third reason is the difference in evaluation method of test cases for wheel slip
situation. In test cases 13, 14, 15, 16 the manual evaluation method was checking
that the torque oscillated around a set point while the method used in automatic
evaluation compared the wheel slip signal with the torque signal. The comparison
between signals is stricter therefore only half of the evaluation intervals passed the
automatic evaluation. It is also worth to know that the manual evaluation misses
many evaluation intervals that are not easily seen.

5.2 Result

The result of this thesis work is a software which is able to evaluate test cases from
a Safe Driving Test. This software can be integrated and used on different project
at BorgWarner. The software takes log files of the Safe Driving Test as input and
generates a test report with detailed information about the evaluation of each test
case as output.

Depending on the size of the log file the evaluation time can vary. The evaluation
time for running the test cases in the verification stage was approximately 20 min-
utes. Figure 5.11 shows the overview of the evaluation results for all run test cases.
By clicking on each test case detailed information about the evaluation is shown.
Figure 5.12 shows details in the evaluation of Test Case 4. The detailed test result
consists of the result (pass or fail) from the evaluation of each relevant signal and
a plot of the relevant signals. There is one signal called "iVerifying" which is set to
one when it comes to the evaluation intervals and zero otherwise. This signal makes
it easier for test evaluation engineer to see which parts of the log was evaluated.

49

Chapter 5. Verification and Result

The evaluation of Test Case 4 is carried out by comparing the similarity between
the pump current signal and the accelerator pedal signal. Since the pump current
signal has both delay and disturbances, the evaluation is performed using three al-
gorithms: cross-correlation, moving average and correlation coefficient. The first
step is finding the delay between pump current signal and accelerator pedal signal
using cross-correlation. When the delay is found the pump current signal is shifted
according to the delay so that it is time-aligned with the accelerator pedal. The sec-
ond step is filtering the disturbances by running the moving average algorithm on
the shifted pump current signal. This step makes the shape of the pump current sig-
nal stand out and makes the comparison more accurate. The last step is comparing
the resulting signal from the previous step with the accelerator pedal signal using
correlation coefficient algorithm.

50

5.2 Result

Figure 5.11: The test report overview

51

Chapter 5. Verification and Result

Figure 5.12: The detailed evaluation of Test Case 452

6
Conclusion and Future
Work

The conclusion of this master thesis is that it is possible to automate the evaluation
process of the Safe Driving Test, and that this automation will not only save time,
but most importantly create a standard definition of how each test case should be
evaluated.

Since it is the first version of the software and due to defects found in the verification
stage, it is not advisable to totally trust the result provided by the software without
a second verification of a test evaluation engineer. The evaluation should always
be semi-automated at least on the very first versions. Semi-automated here means
that a test evaluation engineer has to go through the test result to ensure that the
evaluations are correct.

Comparisons between the automatic evaluation and the manually evaluation showed
that the test result from some test cases was the same while other test cases failed in
the automatic evaluation. Besides the failed test cases due to defects in software, it
is worth to notice that the automatic evaluation is much stricter with higher accuracy
compared to the manually evaluation, therefore it can discover unexpected results
that can be missed in a manual evaluation.

The evaluation program was only a part of the new planned workflow that the soft-
ware test department wants to achieve, thus there is a lot of work to be done.

As shown in Figure 1.2 the final goal is integrating the evaluation program to evalu-
ate the Safe Driving Test performed by the simulated vehicle model. Currently, the
evaluation program can only take the log file as input, so to be able to evaluate data
from a simulation in real time the program must be further developed.

Since the program is only integrated into one project it is desirable in the future that

53

Chapter 6. Conclusion and Future Work

the integration is done in more projects so that they also have access to automatic
evaluation.

Due to the time frame of the master thesis I did not have time to fix the defects
and do the desired improvements. To improve the reliability of the software it is
necessary to fix all the defects and investigate further to improve the wheel slip
detection. Currently the wheel slip detection can only detect wheel slip when the
steering wheel angle is large enough. If the expected wheel speed for each wheel
can be calculated, the wheel slip detection will be more accurate and manage to
detect the wheel slip even when the steering wheel angle is small.

The solution of this project is implemented using custom algorithms. An alternative
solution could be to use machine learning instead. The disadvantages of machine
learning are that it requires a large amount of data with good quality and correct
labelling for each test case. The requirements of the software might change over
time, which means that the model needs to be retrained to take new requirements
into account. However, new requirements do not have data that can be used as input
to the training. A solution using logical rules on the other hand does not need large
amount of data and is easier to adapt to changes of the requirements by modifying
the logical rules.

54

Bibliography

Adenmark, M. (2003). Automation of integration tests. From Department for Sig-
nals, Sensors and Systems, Royal Institute of Technology. URL: https : / /
people.kth.se/~kallej/grad_students/adenmark_thesis03.pdf
(visited on 2019-10-31).

BorgWarner (2015). URL: https://www.borgwarner.com/newsroom/press-
releases/2015/04/20/borgwarner-wins-2015-automotive-news-
pace- award- for- its- front- wheel- drive- electronic- limited-
slip-differential-fxd-technology (visited on 2020-04-24).

BorgWarner (2019). URL: https://www.borgwarner.com/home (visited on
2019-12-09).

Conrad, M., S. Sadeghipour, and H.-W. Wiesbrock (2005). “Automatic evaluation
of ECU software tests”. SAE Technical Papers. DOI: 10.4271/2005-01-1659.

ElysiumAcademyPrivateLimited (2017). URL: https://www.linkedin.com/
pulse / what - software - development - life - cycle - sdlc - phases -
private-limited (visited on 2019-12-09).

Espfors, N. (2018). CANoe - Simulink integration of vehicle model in existing
test environment. From Division of Industrial Electrical Engineering and Au-
tomation Faculty of Engineering,Lund University. URL: http://www.iea.
lth.se/publications/MS- Theses/Full%20document/5414_full_
document.pdf (visited on 2019-09-03).

Petersson, J. (2014). Software test strategy. Internal Document at BorgWaner. (Vis-
ited on 2019-12-13).

Steven W. Smith, P. (1999). The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, p. 277.

Vector (2019a). CAPL scripting quickstart. URL: https://assets.vector.
com / cms / content / products / VectorCAST / Events / TechNights /
CAPLQuickstart_Generic_2018_Final.pdf (visited on 2019-12-10).

55

https://people.kth.se/~kallej/grad_students/adenmark_thesis03.pdf
https://people.kth.se/~kallej/grad_students/adenmark_thesis03.pdf
https://www.borgwarner.com/newsroom/press-releases/2015/04/20/borgwarner-wins-2015-automotive-news-pace-award-for-its-front-wheel-drive-electronic-limited-slip-differential-fxd-technology
https://www.borgwarner.com/newsroom/press-releases/2015/04/20/borgwarner-wins-2015-automotive-news-pace-award-for-its-front-wheel-drive-electronic-limited-slip-differential-fxd-technology
https://www.borgwarner.com/newsroom/press-releases/2015/04/20/borgwarner-wins-2015-automotive-news-pace-award-for-its-front-wheel-drive-electronic-limited-slip-differential-fxd-technology
https://www.borgwarner.com/newsroom/press-releases/2015/04/20/borgwarner-wins-2015-automotive-news-pace-award-for-its-front-wheel-drive-electronic-limited-slip-differential-fxd-technology
https://www.borgwarner.com/home
https://doi.org/10.4271/2005-01-1659
https://www.linkedin.com/pulse/what-software-development-life-cycle-sdlc-phases-private-limited
https://www.linkedin.com/pulse/what-software-development-life-cycle-sdlc-phases-private-limited
https://www.linkedin.com/pulse/what-software-development-life-cycle-sdlc-phases-private-limited
http://www.iea.lth.se/publications/MS-Theses/Full%20document/5414_full_document.pdf
http://www.iea.lth.se/publications/MS-Theses/Full%20document/5414_full_document.pdf
http://www.iea.lth.se/publications/MS-Theses/Full%20document/5414_full_document.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Events/TechNights/CAPLQuickstart_Generic_2018_Final.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Events/TechNights/CAPLQuickstart_Generic_2018_Final.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Events/TechNights/CAPLQuickstart_Generic_2018_Final.pdf

Bibliography

Vector (2019b). Logging formats. URL: https://kb.vector.com/entry/520/
(visited on 2019-12-10).

Vector (2019c). Simulated environment. URL: https://www.vector.com/se/
en-se/products/products-a-z/hardware/vt-system/#c8509 (visited
on 2019-09-05).

Vector (2019d). Testing ECUs and networks with CANoe. URL: https://www.
vector.com/int/en/products/products- a- z/software/canoe/
(visited on 2019-12-10).

Vector (2019e). vTESTstudio – Comfortable design of automated test sequences for
embedded systems. URL: https://www.vector.com/int/en/products/
products-a-z/software/vteststudio/ (visited on 2019-12-10).

56

https://kb.vector.com/entry/520/
https://www.vector.com/se/en-se/products/products-a-z/hardware/vt-system/#c8509
https://www.vector.com/se/en-se/products/products-a-z/hardware/vt-system/#c8509
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/vteststudio/
https://www.vector.com/int/en/products/products-a-z/software/vteststudio/

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Introduction
	BorgWarner
	Problem Formulation
	Objectives and Approach
	Delimitation
	Related Work
	Terminology
	Outline

	Background
	Software Testing at BorgWarner
	Software Testing in Simulated Environments
	Software Testing in Real-world Environments

	Safe Driving Test
	Front cross differential technology

	Equipment
	CANoe
	vTESTstudio
	CAPL
	Log file
	Vector Hardware
	Environment Setup

	Software Development
	Approach
	Requirements
	Software Design
	Software Implementation
	Log File Preprocessing
	Generic Solution for Customer-Specific Configurations
	Algorithms
	Accelerator Pedal Lift Detection
	Moving Average
	Delay Determination Between Signals
	Similarity Comparison Between Signals

	Verification and Result
	Verification
	Evaluation Interval Detection
	Evaluation Process

	Result

	Conclusion and Future Work
	Bibliography

