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Abstract

This thesis work presents thermal decay rates for several reactions calculated within
the framework of the real-time formalism. Processes considered are those of a neutral
(pseudo)scalar decaying into two distinct (pseudo)scalars or into a fermion-antifermion
pair. These processes are extended from earlier work to include chemical potentials and
distinct species in the final state. A hypothetical (pseudo)scalar emission off a fermion
line is also presented. The thermal decay rates at high temperature are found to be
enhanced relative to zero-temperature theory in the case of (pseudo)scalar-(pseudo)scalar
or (pseudo)scalar-fermion final state with quadratic and linear enhancement respectively.
A suppression of the (pseudo)scalar decay rate into a fermion-antifermion final state,
related to the Pauli principle, is found.

Populärvetenskaplig sammanfattning (Swedish)

Författaren av denna uppsats är partikelfysiker, till p̊a köpet teoretisk partikelfysiker. Detta
innebär att jag är intresserad av att beskriva och först̊a universums absolut minsta best̊andsdelar.
Den moderna fysiken har, genom h̊art arbete av många ytterst kompetenta hjärnor, byggt en
modell av det minsta vi känner till: de fundamentala partiklarna. Med exotiska namn som
kvarkar, gluoner, fotoner och elektroner utgör denna samling av troligtvis odelbara byggste-
nar det som vanligen kallas för Standardmodellen. Denna modell har, under l̊ang tid, oerhört
framg̊angsrikt lyckats beskriva nästan allt beteende hos den materia som omger oss i varda-
gen. Med beteenden menas här alla de sätt som Standardmodellens partiklar kan växelverka
(interagera) sinsemellan.

N̊agot som har engagerat en del teoretiska fysiker under det senaste halva århundradet är
fr̊agan om de fundamentala partiklarna alltid beter sig likadant. Exempelvis kan man undra
om det är givet att beteenden som partikelsönderfall, kollisioner och str̊alning, som vi känner
fr̊an det universum som omger oss idag, alltid har varit möjliga. Det är inte otänkbart att
s̊adana processer kan förstärkas eller försvagas utifall en partikels omgivning kraftigt förändras
i jämförelse med v̊art nuvarande universum.

Som exempel p̊a ett scenario har jag undersökt enkla partikelsönderfall i detta arbete;
med sönderfall avses här en situation där en partikel i rörelse splittras till tv̊a andra partiklar.
Sannolikheten för ett s̊adant sönderfall kan beräknas med metoder som fysiker har utvecklat
under ca. 100 års tid, ett ramverk som kallas för kvantfältteori. Jag har undersökt hur sanno-
likheten för ett sönderfall p̊averkas när en partikel färdas genom ett oerhört varmt universum.
För denna analys har jag använt mig av en vidareutvecklad version av kvantfältteori och har
bekräftat att olika sorters partiklar (elektroner respektive Higgspartiklar) b̊ada ändrar sitt
beteende när de utsätts för höga temperaturer. Dessa tv̊a partiklars beteende ändras dock p̊a
helt olika sätt. När Higgspartiklar skapas i sönderfall ökar sannolikheten för hela processen när
det blir varmare medan den istället minskar om sönderfallet producerar elektroner (och dess
antipartikel). Att sönderfall som skapar elektroner eller Higgspartiklar skiljer sig för höga
temperaturer är en fundamental skillnad mellan dessa tv̊a partikelsorter och det är därför
mycket intressant att studera orsaken till detta fenomen för att först̊a naturens fundamentala
byggstenar.
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1 Introduction

The ordinary theoretical treatment of fundamental particles primarily uses the language of
quantum field theory (QFT), see for example [1–3]. This treatment has historically been
extremely successful in describing the behaviour of all the known particles that collectively
form the Standard Model of particle physics. However, the theoretical framework of this
zero-temperature theory does not naturally incorporate effects of the medium relevant for high
temperatures and densities. Currently, there is limited understanding of such systems even
though several authors have worked on the development of formalisms for treating the medium
both in and out of equilibrium. The problem of thermal dynamics has engaged physicists for
a long time, and early attempts of analysis were made by for example Bloch [4]. One pioneer
in the realm of thermal quantum field theory (TFT) was Matsubara [5] who developed the
imaginary-time (or Matsubara) formalism that describes equilibrated systems. This treatment
has great resemblance to zero-temperature QFT in the form of the propagators and theself-
energies. It differs, however, in the treatment of time by taking it to be a purely imaginary
quantity. Shortly afterwards, Kubo [6] and Martin and Schwinger [7] provided an important
relation between propagators, the so-called Kubo-Martin-Schwinger (KMS) condition, which
must hold for thermal propagators at equilibrium. Further important developments of theories
with equilibrated media, such as including real times, were made by Keldysh [8]. Thermo
field dynamics, a first principle analysis, was largely developed by Matsumoto et al. [9] while
a detailed investigation of QFTs at finite temperatures was made by Niemi and Semenoff [10].

Comprehensive outlines of the path-integral treatment of quantum fields in a thermal
medium may be found in [11,12], and much of the theoretical basis of this thesis draws upon
that work. Just a few years earlier, Weldon [13] provided self-energy calculations using the
Matsubara formalism and presented a condensed and clear overview on a quantity interpreted
as the thermal decay rate.

In order to explain temperature effects in the hot and dense state of the early Universe
or in heavy ion collisions in accelerators, a formalism for treating nonequilibrium systems
must be in place. It should be mentioned that several authors have worked over the last
four to five decades to provide tools for such analysis. Major contributions have come from
Danielewicz [14] through general work on QFT at finite temperature, while Wagner [15]
provided a detailed outline of nonequilibrium propagators and self-energies in great generality.

This thesis work seeks to provide further emphasis on the importance of thermal theories
by means of presenting explicitly the effects of finite temperature on observable thermal decay
rates for several decay processes. In the following Sec. 2, a discussion of the underlying theory
is presented beginning with the very general formulation of a statistical mechanics principle
introduced in QFT by Wagner [15]. This general approach is valid in equilibrium as well as
out of equilibrium. Afterwards, the equilibrium propagator is presented, transitioning into
an overview of the Matsubara formalism and the real-time formalism. Having the real-time
propagators and self-energies established, the concept and definition of the thermal decay
rate is presented. In Secs. 3-6, resulting thermal decay rates are presented in the real-time
formalism for several processes. This work has been concerned with a (pseudo)scalar particle
decaying into two distinct (pseudo)scalars, Sec. 3, a (pseudo)scalar decaying into a fermion-
antifermion pair, Secs. 4-5, and finally in Sec. 6, a (pseudo)scalar emission off a fermion line.

The importance of obtaining equilibrium observables should be noted since any nonequi-
librium quantity may be matched to a series of master integrals from equilibrium theory [16].
Equilibrium decay rates are specifically needed as input for nonequilibrium calculations.
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2 Theoretical background

This section provides the theoretical formulation of TFT and concludeswith an expression for
the thermal decay rate. The decay rate of a 1-to-2-transition is related to the self-energy of
the eye-diagram. In order to obtain a diagrammatic formulation of TFT, Green’s function
techniques are deployed in terms of a thermodynamic extension of Wick’s theorem.

2.1 Statistical treatment of initial states

The underlying principle of TFT will be outlined in this section. The discussion is mainly
based on the broad-ranging and comprehensive article by Wagner [15] and the initial formulas
are valid in equilibrium as well as out of equilibrium for arbitrary initial distributions. This
general treatment precedes any discussion of equilibrium theories, e.g. the Matsubara formal-
ism or the real-time formalism, and aims to introduce the underlying fundamental statistical
principle of TFT as manifested in Eq. (2.2) below.

2.1.1 Operator expectation values

Experimentally measurable observables in QFT are expressed as expectation values of op-
erators evaluated at any given time. An arbitrary experiment is defined by two properties
outlined in the following.

The first property to consider is the preparation of the initial state which fully specifies
the system at some initial time tin. It is reasonable to assume that no initial state can be
determined exactly; rather, one should adopt the view that the initial state can be prepared
up to a probability distribution ρ over pure states so that the initial preparation of any system
results in a mixed quantum state. Mixed states are statistical ensembles of pure states where
the ensemble specifies some lack of knowledge of the system e.g. due to noise, entanglement
with larger systems, etc. Using the language of statistical quantummechanics, the distribution
ρ assigns a weight ρ(n) ∈ [0, 1] to the pure states |n〉 where the weights describe the fraction
of the ensemble in each state. The weights are normalised according to

∑
n ρ(n) = 1 and, in

the Fock space spanned by |n〉, they provide a definition of the density matrix :

ρ̂(tin) =
∑

n |n(tin)〉 ρ(n) 〈n(tin)| . (2.1)

This expression describes a classical probability distribution over the pure states. Note that
any state, with pure or mixed initial preparation, may be described by this formalism1. Using
statistical mechanics, the operator expectation value (the observable) is given by

〈Ô(tin)〉 = tr
[
ρ̂(tin)Ô(tin)

]
=
∑

n 〈n(tin)|ρ(n)Ô(tin)|n(tin)〉 (2.2)

at the initial time tin for an observable O. Hence, the initial preparation of a system is
equivalent to the determination of ρ̂(tin).

With the initial state now dealt with, the second property to consider is the time evolution
of the system. This process is specified by the Hamiltonian Ĥ(t), and, in the Heisenberg
picture, the system evolves according to the Heisenberg equation of motion:

i
d

dt
ÔH(t) = [ÔH(t), Ĥ(t)] + i

∂

∂t
ÔH(t). (2.3)

1A pure state |Ψ〉 has ρ̂ = |Ψ〉 〈Ψ| and one may in this case note the idempotency ρ̂2 = ρ̂.
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The states are time-independent in this picture and specified fully at tin. A consequence of
the above equation of motion is that the time-dependent expectation value, the one-point
function, is given by

〈ÔH(t)〉 =
∑

n 〈n(tin)|ρ(n)ÔH(t)|n(tin)〉 . (2.4)

The subscript H will be dropped from now on.

2.1.2 Expansion of the density operator

The initial density operator for an arbitrary experiment may be a many-particle operator.
Danielewicz [14] provided the most general proof of Wick’s theorem stressing the necessary
condition that the expectation value must be taken over a one-particle density operator for
the theorem to hold. However, the many-particle density operator may be expressed in terms
of one-particle quantities as shown by Wagner [15]. The general outline is presented below.

A general many-particle density operator may always be expressed in exponential form
by the introduction of an operator B̂. This is done in complete analogy to the formalism
developed by Matsubara [5] so that

ρ̂(tin) =
1

Z
exp[−λB̂(tin)], Z = tr exp[−λB̂(tin)]. (2.5)

Note that for the grand canonical ensemble B̂ = Ĥ − µN̂ and λ = β, with µ being the chemical
potential, N̂ the number operator, and β = T−1 (inverse temperature), the formalism of
Matsubara is recovered. The deeper motivation for introducing the explicit exponential form
above is the desire to develop a theory that describes thermal systems. The exponential
expression of ρ̂ assumes the form of the Boltzmann distribution which appears in any system
that exhibits thermal equilibrium. One may define the one-particle density operator ρ̂0:

ρ̂0 =
1

Z0
exp[−λB̂0], Z0 = tr exp[−λB̂0]. (2.6)

Here, the general one-particle operator B̂0 is extracted from B̂ leaving the residual operator
B̂′: B̂′ = B̂ − B̂0. Since B̂0 is defined analogously to the free one-particle Hamiltonian of zero-
temperature theory, a generalised ‘interaction picture’ can further be defined with respect to
the time-independent operator in the Schrödinger picture using B̂0 so that

ÔB0(τ) = exp[iτB̂0]ÔS(t0) exp[−iτB̂0]. (2.7)

Comparing the translation operators (exponentials) on the right-hand side above to that of
Eq. (2.6), one is led to introduce the parameter τ further elaborated on below. Making use of
this ‘interaction picture’ to express the residual of B̂ after the extraction of B̂0, Wagner [15]
defined an expansion of the many-particle ρ̂ in terms of the one-particle ρ̂0. From Eq. (2.5)

ρ̂ =
Z0

Z
ρ̂0ŜCν (τ, 0), τ = −iλ. (2.8)

Here, the parameter τ is purely imaginary for real λ and it defines an imaginary contour of
integration Cν in the complex plane, see Fig. 1. The new operator, an analogue to the time
evolution operator of zero-temperature theory, was introduced above as identically being

ŜCν (τ, 0) = exp[iτB̂0] exp[−iτ B̂]. (2.9)
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Cν

tin

tin−iλ

Figure 1: The generalised contour of Matsubara. For the choice of the thermal density
operator the end-point is tin − iβ.

Since ŜCν (τ, 0) satisfies

i
∂

∂τ
ŜCν (τ, 0) = B̂′

B0
(τ)ŜCν (τ, 0), (2.10)

the operator may be formally integrated as

ŜCν (τ, 0) = TCν exp

[
−i
∫ τ

0
dτ ′ B̂′

B0
(τ ′)

]
(2.11)

by contour-ordering the exponential along the vertical contour segment that goes from 0 to −iλ
according to

TCν Ô1(τ1)Ô2(τ2) =

{
Ô1(τ1)Ô2(τ2) τ1 ≥ τ2 on Cν ,

ηÔ2(τ2)Ô1(τ1) τ1 < τ2 on Cν .
(2.12)

The sign expressed by η = +1 (−1) considers the case of commuting (anticommuting) operat-
ors. As mentioned, B̂′ has been expressed in the generalised interaction picture with respect
to B̂0. Wagner then provides the arbitrary expectation value at tin as

〈Ô(tin)〉 =
Z0

Z

∑
n0

〈n0(tin)|ρ0ŜCν Ô(tin)|n0(tin)〉 . (2.13)

This has the same form as Eq. (2.4) if one regards
(
Z0/Z

)
ŜCν Ô(tin) as the noninteracting

(i.e. expressed in the interaction picture) operator to be averaged with respect to ρ̂0. Notably,
ρ̂0 is a one-particle density operator defined at the initial time tin. As a consequence, Wick’s
theorem holds for each term in the expansion of ŜCν . The emerging contour of integration
is the vertical line of Fig. 1. The formalism achieved by the discussion above is valid for
any system that is defined by a distribution of the exponential thermal form of Eq. (2.6) at
some initial point. Quite generally, the formalism has been shown to hold for a wide family of
systems since the many-particle initial distribution may always, at least formally, be expressed
in terms of quantities that obey Wick’s theorem.

2.1.3 Expansion of the time evolution operator

The time evolution operator, formally defined by Eq. (2.11), evolves the operator to be av-
eraged along the contour of Fig. 1. In this section, its definition will be extended so as to
incorporate the real axis and thereby allowing for real temporal arguments.

Wagner [15] states that the time evolution operator must be a one-particle operator in
order for Wick’s theorem to hold. However, the general time-dependent Hamiltonian contains
many-particle interactions. This issue was resolved in the previous section in Eq. (2.13) for
the vertical contour in Fig. 1 since the expression provides an expansion in which Wick’s
theorem holds for each term in ŜCν . The thermal n-point functions defined by

〈Ô(t1, t2, . . . , tn)〉 = 〈Ô1(t1)Ô2(t2) · · · Ôn(tn)〉 (2.14)
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= t

< t

tin C1 tfi

C2

C3 = Cν

tin − iλ

Figure 2: A partly real-time contour C = C1 ∪ C2 ∪ C3. The contour is extended along
the real axis as to go through the time arguments of any n-point function under consideration.
The times tin and tfi are arbitrary and may be suitably chosen for a given system under the
condition that all time points of the observable are included. Note that the apparent offset
from the real axis is superficial; C1 and C2 lie exactly on top of each other and the radii of
the arcs connecting the contour segments tend to zero. This figure shows that the real-time
contour is a valid choice.

may be extended to include real time-arguments. Keldysh [8] developed an expansion of the
time evolution operator. As shown in Fig. 2, a contour segment C1 that goes up to some
largest time tfi on the real axis is added. A second segment C2 goes back to tin, again along
the real axis, before the piece C3 goes down to tin − iλ. The segments on top of the real axis
go through all temporal arguments of the n-point function of interest. Note that the apparent
offset from the real axis in the figure is purely for display purposes: the two contour pieces
C1 and C2 lie exactly on top of the axis.

Contour ordering TC may be defined along this extended contour. In complete analogue
to the previous section, the notion of B̂ may be extended by the introduction of

K̂(τ) =

{
Ĥ(τ) τ on C1 ∪ C2,

B̂(τ) τ on Cν .
(2.15)

The procedure may be followed through by the definition of one-particle and residual operators
K̂ ′ and K̂0 that are defined over the entire real-time contour, similar to K̂ (see the analogous
definition of B̂′, B̂0 following Eq. (2.6)). The two-point function may be written as

〈Ô(t, t′)〉 = Z0

Z
0〈TC ŜCÔK0(t, t

′)〉0 . (2.16)

The subscripts of the brackets indicate that the trace is to be taken with respect to the
one-particle density operator ρ̂0 defined in terms of K̂0. TC orders operators along the entire
contour C and the time evolution operator

ŜC = TC exp

[
−i
∫
C
dτ K̂ ′

K0
(τ)

]
(2.17)

is expressed in the generalised interaction picture analogously to Sec. 2.1.2. Hence, a formu-
lation of an arbitrary system out of equilibrium exists in terms of the series expansion of ŜC
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that expresses nonequilibrium quantities in terms of equilibrium ones. Further, the equilib-
rium quantities are expanded in terms of one-particle functions later in this work in order to
obtain a diagrammatic series that describes the observables of interest. For such series, the
thermodynamic version of Wick’s theorem holds [14].

2.2 The contour path-integral formulation

Specialising to the case of density operators that describe systems in equilibrium, this section
outlines the path-integral formulation of thermal systems starting from the grand canonical
ensemble, extracts the general propagator of thermal theory and finally defines thermal decay
rates. One-particle quantities will be assumed initially and much of the theory is introduced
for free particles. Interactions are thereafter introduced perturbatively. The material presen-
ted is primarily based on the report by Landsman and van Weert [12] that discusses different
formalisms of TFT.

2.2.1 Grand canonical ensemble

In equilibrium, the Hamiltonian Ĥ is time-independent, and a system of charged particles is
characterised by the density operator of the grand canonical ensemble

ρ̂ = exp[−Φ−
∑

a αaQ̂a − βĤ], Φ = log tr
[
−
∑

a αaQ̂a − βĤ
]
. (2.18)

Here, Q̂a are the conserved charges with a ∈ {1, A} and Φ is the thermodynamical potential
related to the partition function through Φ = − logZ. The charge operators Q̂a and the
Lagrange multipliers αa may be related to the number density operator and the chemical
potential respectively as

N̂a =
1

V
〈Q̂a〉 , αa = −βµa, (2.19)

where V is the volume of the system and µa expresses the chemical potential related to each
type of charge. As seen in the previous section, the form of ρ̂ determines the expectation
value of any n-point function.2

2.2.2 The generating functional

Analogous to zero-temperature QFT, n-point correlation functions (thermal Green’s func-
tions) of arbitrary field operators Î∞ can be defined as

GC(x1, x2, . . . , xn) = 〈TC Î∞(x1) Î∞(x2) · · · Î∞(xn)〉 . (2.20)

So far, the contour C may be chosen quite arbitrary but it becomes restricted for diagrammatic
formalisms that require the thermodynamic version of Wick’s theorem to hold.

The thermal Green’s functions can be generated by the functional

Z[j] = Z[0]

〈
TC exp

[
i

∫
C
d4x j(x) Î∞(x)

]〉
(2.21)

2This work presents formalisms and results in the rest frame of the medium for simplicity. A Lorentz-
covariant formulation of the grand canonical ensemble has been introduced by Niemi and Semenoff [10].
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expressed in terms of the c-number sources j(x) through functional differentiation:

GC(x1, x2, . . . , xn) =
1

Z[0]

δnZ[j]

iδj(x1) · · · iδj(xn)

∣∣∣∣∣
j=0

. (2.22)

The normalisation is Z[0] = exp[Φ(β, V )].
Time ordering on the contour, TC , may be explicitly expressed by parametrising C accord-

ing to t = z(τ) with τ being real and monotonically increasing along the contour. Through
the definition of the contour step function

ΘC(t− t′) = Θ(τ − τ ′), (2.23)

the two-point function, taken as an example, is

GC(x, x
′) = ΘC(t− t′) 〈 Î∞(x) Î∞(x′)〉+ ηΘC(t

′ − t) 〈 Î∞(x′) Î∞(x)〉 . (2.24)

η = ±1 for commuting/anticommuting (bosonic/fermionic) field operators. Weldon [13]
showed that this expression is well behaved only if the imaginary component of the con-
tour C never increases with τ . Feynman, Matthews and Salam [2, 3] provided the first proof
of this statement in the context of the path-integral formulation.

It should be mentioned at this point that the terms scalar, boson and fermion will be
used extensively throughout the following theoretical outline, as well as commuting and anti-
commuting fields and operators. Some of those labels are used slightly different by different
authors and this paragraph shall shed some light on how the terms are used within this work.
The term ‘scalar’ intends to reference a scalar quantity both in Lorentz and in any internal
space. Hence, a ‘scalar field’ associates a single value to each point in space-time but it may
be either a commuting or an anticommuting field (the latter being a Grassmann variable)
in this thesis. A ‘boson’ refers to an operator that obeys canonical commutation relations.
Hence, a ‘scalar boson’ is the specification of a scalar (i.e. not a vector) field that obeys
Bose-Einstein statistics. The use of the term ‘fermionic scalar’ in this thesis might induce
some confusion for the reader; the label refers to a scalar (i.e. not a vector) field that anti-
commutes. This distinction of scalars is introduced simply because it is an easier exercise and
a common approach in literature to present the initial theory in terms of either commuting
or anticommuting scalar fields. The formalism is then later extended to include fields that
carry Lorentz or spin components. Hence, proper care must be taken when constructing a
Lagrangian so as to only include field types with the proper structure in Lorentz and spin
space respecting the conservations laws of the universe. The term ‘fermion’ is applied along
its most common usage to Dirac spinors that carry components in spin space.

Note, however, in the result sections 3-6, the theoretical framework has been laid out and
the mentioned scalars are assumed to be bosonic in nature for all computed self-energies and
decay rates.

2.2.3 The path-integral formulation

The functional that generates n-point functions was stated in the previous section as a thermal
expectation value. In the path-integral formulation, the state vectors that span the Fock space
of Sec. 2.1 may be substituted for a basis of coherent states that expresses the state of the
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quantum fields in terms of the continuous three-space variable x. In such basis, the states are
|φ(x); 0〉 at time t = 0 and are eigenstates of the field operator φ̂(x):

φ̂(x) |φ(x); 0〉 = φ(x) |φ(x); 0〉 , φ̂(x) = eiĤtφ̂(0,x)e−iĤt. (2.25)

The neutral bosonic field considered in this section provides a simple example with vanishing
chemical potential. The thermal trace in the generating functional for such field explicitly
becomes

Z[j] =

∫
[Dϕ] 〈ϕ; tin|e−βĤTC exp

[
i

∫
C
d4x j(x)φ̂(x)

]
|ϕ; tin〉 . (2.26)

Given the time evolution of the field operator in Eq. (2.25), the following time evolution
must be induced:

|φ(x); t〉 = eiĤt |φ(x); 0〉 . (2.27)

The action of the canonical density operator in the right-hand side trace of Eq. (2.26) can
then analogously be interpreted as a complex shift in time:

〈ϕ; tin| e−βĤ = 〈ϕ; tin−iβ| . (2.28)

This, so far, purely formal equivalence of the thermal density operator to the time-evolution
operator was first noted by Bloch [4] already in 1932 and from this observation follows the
introduction of the complex temporal contour of Sec. 2.1. Note specifically that the eigen-
value of the field operator remains in order for the trace interpretation to hold. Hence, the
functional measure [Dϕ] may only pick out fields with this periodicity condition over iβ so
that ϕ(tin,x) = ϕ(tin − iβ,x). With the formal observation above, the shifted trace can be
restated in terms of some arbitrary initial and final times ti, tf with the aid of the Feynman-
Salam-Matthews (FSM) formula [2, 3]:

〈ϕf(x); tf|TCF [φ̂]|ϕi(x); ti〉 = N ′
∫
[Dφ]F [φ]eiS[φ] (2.29)

if the path-integral on the right-hand side is taken over all c-number fields that satisfy the
boundary conditions

φ(ti,x) = ϕi(x) and φ(tf,x) = ϕf(x). (2.30)

Eq. (2.29) remains valid for arbitrary initial and final times under the single restriction that
the imaginary component of the integration contour C connecting ti and tf may not increase
along the direction of the contour [12]. Hence, C must go downwards in the complex plane or
extend in parallel to the real axis. The normalisation N ′ may absorb a Gaussian integration
over the conjugate momentum in S[φ] so that N ′ → N below. The action is then

S[φ] =

∫ tf

ti

dt

∫
d3xL(x) →

For ti,tf
connected

by C.

∫
C
d4xL(x), (2.31)

and hence the generating functional becomes

Z[j] = N
∫
[Dφ] exp

[
i

∫
C
d4x

(
L(x) + j(x)φ(x)

)]
= Z[0]

〈
exp

[
i

∫
C
d4x j(x)φ(x)

]〉
. (2.32)
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Here, ti = tin and tf = tin − iβ are connected through C. Expressed as a path-integral in
terms of fields rather than operators, the generating functional has absorbed the contour time
ordering. The statistical average has been reinterpreted in the path-integral formulation to
be taken with respect to the action. The ill-defined3 normalisation Z[0] cancels out in the
thermal Green’s functions of Eq. (2.22).

2.2.4 Propagator of the free neutral scalar boson

In the special case of a free particle with no derivative couplings4, here a neutral boson with
the free Lagrangian

L0(x) =
1
2φ(x)

(
−∂2 −m2

)
φ(x), (2.33)

the free generating functional may be rewritten from Eq. (2.32) by means of a change of
variables:

Z0[j] = Z0[0] exp

[
− i

2

∫
C
d4x

∫
C
d4x′ j(x)DC(x− x′)j(x′)

]
. (2.34)

Here φ(x) → φ(x)−
∫
C
d4x′DC(x− x′)j(x′). (2.35)

The shift of φ(x) is chosen carefully in order to complete the square of the free Lagrangian.
The emerging thermal bosonic propagator DC(x− x′) is defined in relation to the differential
operator of the equation of motion and satisfies

K(i∂)DC(x− x′) = δC(x− x′) for K(i∂)φ(x) = 0. (2.36)

For the neutral boson K(i∂)φ(x) = −(∂2 +m2)φ(x) = 0; this is the Klein-Gordon equation.

The contour δ-function may be defined as δC(t− t′) =
(
∂z
∂τ

)−1
δ(τ − τ ′) with τ parametrising

the contour C (recall the definition t = z(τ)). The propagator is therefore related to the free
two-point function (Green’s function)

G0C(x, x
′) ≡ iDC(x− x′). (2.37)

The propagator can be written in the spectral representation:

iDC(x− x′) =

∫
d4k

(2π)4
ρ0(k)e

−ik·(x−x′)[ΘC(t− t′) + n(k0)
]
, η = +1. (2.38)

This result was first derived by Mills according to Landsman and van Weert [12], and, for
normal time ordering, this is the expression presented by Dolan and Jackiw [17]. The spectral
density for the free neutral bosonic field is

ρ0(k) = 2π sign(k0)δ
(
k2−m2

)
. (2.39)

3The measure [Dφ] denotes all sufficiently differentiable and integrable functions that must be taken into
account when considering all paths. However, the total number of functions is vastly larger and there exists
no rigorous method of picking out only the physically relevant functions in the path-integral. If the reader,
nevertheless, is familiar with the path-integral formulation, one simply ignores this lack of rigour and presses
on.

4No such couplings are assumed to exist in the theory in order for the integration of the canonical mo-
mentum variable in the generating functional to be performed. A consequence is that the free scalar action

S =
∫
d4x 1

2

(
∂µφ∂

µφ−m2φ2
)
→((((((((

∂µ

(∫
d4x 1

2
φ∂µφ

)
+

∫
d4x 1

2
φ
(
− ∂2 −m2

)
φ.
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Note that this quantity is not related to the distribution in Sec. 2.1 and the latter ρ will not
appear from this point on other than in its explicit exponential form. The thermal distribution
function n(k0) may be derived from the expectation value of pairs of creation/annihilation
operators and for equilibrium dynamics, it is the Bose-Einstein/Fermi-Dirac distribution for
bosonic/fermionic fields:

n(k0) =
1

eβk0 − η
. (2.40)

This distribution guarantees that the fields satisfy the periodicity condition imposed by the
trace interpretation. Quite often, the propagator in Fourier space is used and transformation
of the expression for DC above gives5

iD̃(k) = i

∫
dk′0
2π

ρ0(k
′
0,k)

k0 − k′0 + iε
+ ρ0(k)n(k0). (2.41)

The thermal propagator has thus been split into a leading part that resembles the expression
from zero-temperature theory and an additional thermal term which vanishes in the limit
T → 0. Using the spectral density of Eq. (2.39), the integral may be performed and the
first term of this transformed propagator can be rewritten in terms of the Feynman propag-
ator of zero-temperature theory. The result can be seen for example in Eq. (2.95) using
Eqs. (2.93)-(2.94).

Splitting the Lagrangian into its free and interaction parts as L = L0 + LI, the free Lag-
rangian may be used to factor out the free generating functional of Eq. (2.34) from the full
generating functional of Eq. (2.32). To obtain Feynman rules and a diagrammatic series, the
full Z[j] is rewritten analogous to zero-temperature theory as

Z[j] = exp

[
i

∫
C
d4xLI

[ δ

iδj(x)

]]
Z0[j]. (2.42)

This expression is swiftly derived through a series expansion of exp
[
i
∫
C d4 LI(x)

]
. By ob-

serving that the series can be obtained by functional differentiation w.r.t. the source j(x),
the argument of LI may be replaced by the functional differential, and the exponentiated
interaction term can be taken out of the functional integral.

The generating functional of Eq. (2.42) contains all n-point functions GC(x1, . . . , xn).
Analogous to zero-temperature theory, all disconnected diagrams can be factorised out by

considering only the connected Green’s functions G
(n)
C (x1, . . . , xn) defined by

G
(n)
C (x1, . . . , xn) =

δnW [j]

iδj(x1) · · · iδj(xn)

∣∣∣∣∣
j=0

, W [j] = logZ[j]. (2.43)

The expansion ofW [j] is often referred to as the cumulative expansion and the resulting series
trivially generates the connected Green’s functions, i.e. the sum of all diagrams that are fully
connected.

W [j] = logZ[0] +
∞∑
n=1

in

n!

∫
· · ·
∫

d4x1 · · · d4xn G(n)
C (x1, . . . , xn) · j(x1) · . . . · j(xn). (2.44)

As a consequence of the log-relation of Z[j] to W [j], the contribution from all disconnected
diagrams factorises and may be absorbed by the normalisation of the Green’s functions.

5Use Θ(x0) =
i
2π

∫ +∞
−∞ dτ 1

τ+iε
e−ix0τ in the limit ε → 0+ in the transform.
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2.3 Thermal propagators

In the previous section, the propagator of a free neutral boson was related to the two-point
function. The latter will be of great importance for this thesis work and it is given by the
evaluation of expectation values in the form

〈Ô(t, t′)〉 = 〈Ô1(t)Ô2(t
′)〉 (2.45)

while making use of the contour time ordering procedure, see Sec. 2.2.2. This section can be
seen as a generalisation of Sec. 2.2.4 and follows closely Landsman and van Weert [12].

2.3.1 The general generating functional

Consider a general multi-component covariant complex field (bosonic or fermionic) described

by the operator Î∞i
α(x) [12]. Here, α is the index of the Lorentz representation of the field,

e.g. a spinor or vector index and i is an index of a representation of an internal symmetry
or a field generation index, i.e. not related to space-time transformations. Let the operator
transform under some representation of the Lorentz group Jαβ[Λ]. The field will be charged

under any internal symmetries and the conserved charges are denoted as qija so that[
Q̂a, Î∞

i
α(x)

]
= −qija Î∞j

α(x). (2.46)

The chemical potential for fields charged under multiple symmetries is generally given by
µ =

∑
a µaqa, (see the grand canonical ensemble in subsection 2.2.1 applied to eigenstates of

Q̂a:
∑

a µaQ̂a| I∞〉 =
∑

a µaqa| I∞〉). A theory with no derivative couplings may be assumed to
have a free Lagrangian of the quadratic form

L0(x) = Ī∞i
α(x)K

ij
αβ(i∂, µ) I∞

j
β(x). (2.47)

The adjoint field is defined as Ī∞i
α = ( I∞†A)iα.

6 Kij
αβ(i∂, µ) is the differential operator of

the free field in the medium which generally depends on the chemical potential. The free
thermal Green’s functions that arise from this Lagrangian can be obtained from the generating
functional. In the path-integral formulation, this functional may be written in terms of two
source fields:

Z0[̄, j] = N
∫
[D Ī∞]

∫
[D I∞] exp

[
i

∫
C
d4x

(
Ī∞K I∞+ eiµt̄ I∞+ e−iµt Ī∞j

)]
. (2.48)

j(x) is the source of I∞ while ̄(x) is the source of Ī∞. The µ-dependence has been shifted
away from K to the source terms by means of a change of variables introduced by Weldon [18]
where the fields and the differential operator are transformed as

I∞ → eiµt I∞, Ī∞ → e−iµt Ī∞, K(i∂, µ) → K(i∂), (2.49)

thus treating the field and its adjoint as independent variables. In this generating functional,
the fields are contracted over all discrete indices: ̄ I∞ = ̄ iα(x) I∞i

α(x).
7

6The matrix Aαβ ensures invariance of the Lagrangian under Lorentz transformations of I∞. In the case
when α is an index of the Dirac spinor representation, A = γ0.

7The generating functional of Eq. (2.48) was initially formulated in terms of the Hamiltonian density rather
than the Lagrangian ditto. The path integral then involves the functional measure over the fields of interest,
the adjoint fields, and the respective conjugate momenta πα, π̄α. Theories with no derivative couplings fulfil
πα = İ∞α, and the Gaussian integral over πα may be fully absorbed into N .
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2.3.2 The general thermal propagator and the KMS condition

The functional integral of Eq. (2.48) is defined in order to generate the thermal Green’s
functions (n-point functions) under functional differentiation and therefore it must represent
the thermal trace of Eq. (2.4):

tr

[
e−β(Ĥ−µQ̂)TC exp

[
i

∫
C
d4x

(
̄ I∞+ Ī∞j

)]]
. (2.50)

In order to recover the trace interpretation of the generating functional, the functional measure
is to be taken only over c-number fields I∞, Ī∞ such that the following periodicity condition
is satisfied over a period iβ8:

I∞i
α(tin−iβ,x) = ηeβµ I∞i

α(tin,x). (2.51)

The periodicity leads to the Kubo-Martin-Schwinger condition (KMS) on the propagator
which was introduced by Kubo [6], implemented by Martin and Schwinger [7] and is presented
in the following.

The free generating functional of Eq. (2.48) can be rewritten in terms of the general free
thermal propagator by a shift of the field and its adjoint analogously to the case of the scalar
field in Sec. 2.2.4. Contracted over all indices, the result is

Z0[̄, j] = Z0[0, 0] exp

[
−i
∫
C
d4x

∫
C
d4x′ ̄ iα(x)D

ij
C αβ(x− x′)jjβ(x

′)

]
(2.52)

with

Z0[0, 0] = N
∫
[D Ī∞]

∫
[D I∞] exp

[
i

∫
C
d4x Ī∞K I∞

]
. (2.53)

In order to complete the square and extract the propagator D ij
C αβ ≡

(
K−1

)ij
αβ

, the thermal
propagator must satisfy the differential equation

Kij
αβ(i∂)D

jk
C βγ(x− x′) = δαγδ

ikδC(x− x′). (2.54)

The generating functional must be invariant under the introduced shifts of the fields. This
condition fixes the solution of the differential equation so that the propagator can be related
to the two-point function as

iD ij
C αβ(x− x′) ≡ G ij

0C αβ(x, x
′)

= 0〈TC Î∞i
α(x)

ˆ̄I∞j
β(x

′)〉0 = 〈 I∞i
α(x) Ī∞

j
β(x

′)〉 . (2.55)

This is a special case of the general relation Eq. (2.16) with the final expectation value
expressed in the path-integral formalism over fields rather than operators, analogously to
Eq. (2.32). Guided by the definition of the time ordering TC , the free propagator may be
split using the contour step-function of Eq. (2.23) so that

D ij
C αβ(x− x′) = ΘC(t− t′)D> ij

αβ(t− t′) + ΘC(t
′ − t)D< ij

αβ(t− t′). (2.56)

Compare this to Eq. (2.24) for the general n-point function. The imposed boundary condition
on the field of Eq. (2.51) forces a boundary condition on the propagator that relates the

8Without this condition, the functional integral no longer generates the trace: 〈 I∞−iβ| Ô | I∞〉 ≡ 〈 I∞| Ô | I∞〉.
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advanced and retarded components of the time-ordered propagator above. As a consequence,
invariance of the path-integral over iβ holds. This is the KMS-condition:

D> ij
αβ(tin − iβ) = ηe−βµD< ij

αβ(tin). (2.57)

The condition is important for thermal theories and it relates several thermal quantities in
the real-time formalism, Sec. 2.5, thereby reducing the number of degrees of freedom.

Note that any relativistic, multi-component field I∞i
α(x) should satisfy the Klein-Gordon

equation. Therefore, a multi-mass Klein-Gordon divisor dijαβ(i∂) exists so that

dijαβ(i∂)K
jk
βγ(i∂) = Kij

αβ(i∂)d
jk
βγ(i∂) = δαγδ

ik
∏
l

(
−∂2 −m2

l

)
. (2.58)

Theml’s represent the mass spectrum and can be inferred from the spin-structure ofK [19,20].
For an extended and comprehensive discussion regarding the mass spectrum, see the lecture
notes of Wightman [19]. The solution to Eq. (2.54) simply becomes

D ij
C αβ(x− x′) = dijαβ(i∂x)DC(x− x′) (2.59)

in terms of the scalar propagator encountered earlier. A slight reservation should be made
regarding the form of DC(x− x′). The solution presented in Eq. (2.38) of Sec. 2.2.4 is that of
a neutral scalar boson. When incorporating anticommuting as well as charged fields (µ 6= 0)
this propagator is modified slightly to become

iDC(x− x′) =

∫
d4k

(2π)4
ρ0(k)e

−ik·(x−x′)[ΘC(t− t′) + ηn(ω+)
]

(2.60)

with the distribution function

n(ω±) =
1

eω± − η
. (2.61)

The ± denotes charged particles/antiparticles through the definition ω± = β(k0 ∓ µ). Gener-
ally, the spectral density of the free field can be found as

ρ0(k) = iDisc
∏
l

1

k2 −m2
l

. (2.62)

The discontinuity is defined over the real axis as Disc f(k0) = f(k0 + iε)− f(k0 − iε) with
ε→ 0+. The results of this section rely on the fact that the contour step-function commutes
with the Klein-Gordon divisor. Further, the charge operators are assumed to commute with
L0 so that the matrices qa commute with both K(i∂) and d(i∂) [12]. The most important
points from the above discussion should be stressed as clearly as possible:

• Time integration is to be taken along a contour C that begins at an arbitrary initial
time tin and goes down to the final time tin−iβ with the restriction that the imaginary
component of the contour can not increase.9

• The propagator DC(x− x′) depends explicitly on the choice of contour.

9Recall that the contour is a consequence of the trace interpretation of the path-integral formulation with
one of the states shifted by the thermal density operator. The imposed restriction on the imaginary part of
the contour is required for the application of the FSM-formula of Eq. (2.29).
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These points are valid for all thermal propagators as a consequence of the very general expres-
sion of Eq. (2.59). Since the quantities used when performing calculations depend explicitly
on the choice of the contour C, it is imperative to choose a formalism where real-time quant-
ities easily can be extracted and more so in a way that the final result does not depend on
this choice of C. Two commonly used formalisms will be presented in the following.

2.4 The imaginary-time formalism

The presented thermal formulation of quantum field theory in the sections above formally
resembles to a high degree the well-known quantum field theory at zero-temperature. The
main distinguishing property is that the explicit form of the thermal n-point function (Green’s
function) depends on the choice of integration contour C in the complex temporal plane. This
contour connects some arbitrary initial time tin with the final time tin−iβ. This specific final
time point emerges as a consequence of the formal interpretation of the thermal equilibrium
distribution operator as an evolution operator. To a large extent, the contour that connects
the initial and final time points can be arbitrarily chosen in equilibrium theory with the single
restriction that the imaginary component of the contour must not increase when integrating
along the contour. In this section, a specific choice of contour will be considered in order to
perform explicit calculations. The discussion will be followed by a diagrammatic expansion
of the generating functional in order to derive the Feynman rules on this contour.

2.4.1 The Matsubara contour

The simplest possible choice of integration contour is due to Matsubara [5]. It constitutes a
straight vertical line that connects tin and tin − iβ, cf. Fig. 1 with λ = β. The time variable
may then be parametrised in a simple and purely imaginary way: t = iτ with τ ∈ [0, β] being
a real variable. This particular choice has the advantage that it generates a perturbative
expansion that contains diagrams recognised from zero-temperature theory. This section will
mainly be concerned with a single scalar field as a simple example, but the results may be
generalised [12] to fields with both Lorentz components and internal symmetries. Through
the parametrisation of t, the action may be written as an integral in Euclidean space:

−SE = i

∫
C
d4xL(x) = −

∫ β

0
dτ

∫
d3xLE(x) (2.63)

where the Euclidean Lagrangian is

LE(τ,x) =
1
2φ(τ,x)

(
−∂2τ −∇2

x +m2
)
φ(τ,x) + V(x)

= 1
2φ(τ,x)KE φ(τ,x) + V(x). (2.64)

The n-point Green’s functions may be obtained by functional differentiation w.r.t. a source
j(τ,x) of the generating functional

Z[j] =

∫
[Dφ] e−SE+j·φ, j ·φ =

∫ β

0
dτ

∫
d3x j(τ,x)φ(τ,x). (2.65)

2.4.2 The imaginary-time propagator

As stated in Eq. (2.34), the free generating functional Z0[j] (with V(x) = 0) may be written
in terms of the free propagator by completion of the square. In the Matsubara formalism, the
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result is
Z0[j] = Z0[0] exp

[
1
2j ·K

−1
E ·j

]
. (2.66)

The inverse of the differential operator must satisfy the boundary condition of Eq. (2.36) in
order to fix the solution of the differential equation. The solution is the thermal propagator of
Matsubara K−1

E = ∆(τ − τ ′,x− x′) which is given by Eq. (2.60) over the chosen contour.10

The propagator is periodic in τ over a period β as imposed by the KMS-condition (Eq. (2.57)),
which is a straightforward verification. Completion of the square of the free Lagrangian
renders the generating functional in the form

Z0[j] = Z0[0] exp

[
1

2

∫∫ β

0
dτ dτ ′

∫∫
d3x d3x′ j(τ,x)∆(τ − τ ′,x− x′)j(τ ′,x′)

]
. (2.67)

Comparing with Eq. (2.34), the Euclidean propagator of a neutral scalar may be found as

iDE(−iτ,x) ≡ ∆(τ,x). (2.68)

Note the purely imaginary temporal coordinate of the Euclidean propagator. Z0[j] shown
above generates all the Green’s functions with imaginary-time arguments.

The above results are analogous to zero-temperature theory with the two differences that

• the temporal integration is reduced to the periodic interval [0, β]:

i
∫
dt→

∫ β
0 dτ .

• the free propagator of a scalar field is no longer the Feynman propagator but the thermal
propagator of Matsubara:
DF(x− x′) → ∆(τ − τ ′,x− x′).

Due to the periodicity condition (antiperiodicity for fermionic fields) applied to the bosonic
fields, and therefore on the thermal propagator, over β, the Matsubara propagator may be
written in Fourier space as a sum over discrete frequencies ωn. Transformation of Eq. (2.38)
using the Matsubara contour leads to

∆(τ − τ ′,x− x′) =
1

β

∑
n

∫
d3k

(2π)3
e−iωn(τ−τ ′)+ik·(x−x′) 1

ω2
n + ω2

k

(2.69)

with ωn = 2nπ/β (bosonic), ωn = (2n+ 1)π/β (fermionic), and ω2
k = |k|2 +m2. Note that

ωk ≡ ω(|k|), meaning that k denotes an argument of the function rather than an index to
be summed over. The ωn’s are the Matsubara frequencies and they parametrise an infinite
number of poles of the momentum-space propagator located on the imaginary axis since

∆̃(iωn,k) =
1

ω2
n + ω2

k

≡
∫

dk0
2π

ρ0(k)

k0 − iωn
. (2.70)

To obtain an expression analogous to zero-temperature theory, define k0 = iωn in Eq. (2.69).
Then

iDE(x− x′) = − 1

β

∑
n

∫
d3k

(2π)3
e−k·(x−x

′) 1

k2 −m2
(2.71)

where the energy coordinates k0 are purely imaginary.

10On the Matsubara contour, the propagator may be expressed in terms of the real variable τ so that
t− t′ → τ − τ ′ and ΘC(t− t′) → Θ(τ − τ ′).
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2.4.3 The imaginary-time Feynman rules

In the path-integral formulation, the generating functional may be expanded to yield the
Feynman rules of the imaginary-time formalism through a perturbative series. Following the
reasoning of Sec. 2.2.4, the Euclidean action may be split into a quadratic free part and an
interaction part so that SE = S0 + SI. The generating functional of Eq. (2.32) may then be
expanded as

Z[j] = N
∫
[Dφ] e−S0e−SI+j·φ

= N
∫
[Dφ] e−S0

{
1 +

(
−SI + j ·φ

)
+ 1

2

(
−SI + j ·φ

)2
+ . . .

}
. (2.72)

Each term in this series may be interpreted as a statistical average with respect to exp[−S0]
so that

Z[j] = Z0[0]

{
1 + 〈(−SI + j ·φ)〉0 +

1
2 〈(−SI + j ·φ)2〉0 + . . .

}
. (2.73)

The Feynman rules are extracted from this series. For the specific case of φl-theory with a
coupling constant λ, the rules are given as follows:

• Draw diagrams using Wick contractions and determine symmetry factors.

• Define k0 = iωn and assign a propagator ∆̃(k) to each line and a factor of −λ to each
vertex i.

• Impose energy-momentum conservation through β(2π)3 δn0δ
(3)
(∑

i ki
)
with n =

∑
i ni.

A global conservation factor β(2π)3δ00δ
(3)(0) may be separated out corresponding to

the exclusion of one vertex.

• Sum and integrate over all internal energies and momenta ki:
1
β

∑
n

∫
d3ki
(2π)3

.

Further, the definition of the cumulant (Eq. (2.44)) allows for the extraction of connected
diagrams with at least one external leg so that

logZ[j] = logZ[0] + 〈e−SI(ej·φ − 1)〉con . (2.74)

2.4.4 Frequency summation and pinch singularities

In the loops of the diagrammatic expansion of the Matsubara formalism, one must perform
the energy summation over thermal functions of the discrete Matsubara frequencies. This
is commonly performed by analytic continuation of the summation away from the discrete
frequencies and down to the real axis. The procedure, outlined in [12], allows for the replace-
ment of the energy summation by closed integrals due to Cauchy’s theorem. However, while
the continuation of the summation procedure is well described, the diagrammatic product of
Matsubara propagators that occur under the summation must be continued as well. The de-
tails of this continuation will be discussed below in Sec. 2.6 when considering self-energies but
the procedure often introduces divergencies, so-called pinch singularities, briefly mentioned
here. Pinch singularities arise when products of continued propagators appear in the form

1

k20 − ω2
k + iε

1

k20 − ω2
k − iε

. (2.75)
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= t

< t

tin C1 = C+ tfi

C4

tfi − iσC2 = C−
C3

tin − iβ

Figure 3: A generalised Keldysh contour C = C1 ∪ C2 ∪ C3 ∪ C4. The contour is exten-
ded along the real axis in order to go through the real time arguments of the n-point function
of interest. It then goes down by iσ before going back parallel to the real axis. Finally, the
contour goes down to the final time tin−iβ. The points tin and tfi are arbitrary and may be
suitably chosen for any system.

In the limit when ε→ 0+, the contour of integration is ‘pinched’ between the poles and the
integration becomes ill-defined. Such singularities usually arise at higher-loop orders and
must be regulated in order to assign meaning to observables.

2.5 The real-time formalism

Matsubara found that, by the procedure of analytic continuation of Euclidean Green’s func-
tions, retarded correlation functions of real time-arguments, and hence observables, may be
obtained in the imaginary time formalism presented above. However, the evaluation of mo-
mentum integrals over Matsubara propagators is by no means straightforward for any but
the simplest cases. By calculating Green’s functions in the real-time formalism, analytic
continuation is avoided completely and this formalism is free of the pinch singularities that
appear in the continuation process of Matsubara. The real-time procedure is originally due
to Schwinger [21] and Keldysh [8]. The formalism makes use of a special contour of temporal
integration, the Keldysh contour presented in Fig. 2, which has the effect of doubling the
degrees of freedom. This results in a 2×2-matrix structure of the propagator.

2.5.1 The real-time contour

The Keldysh contour of Fig. 2 is a special case of a family of real-time Keldysh-esque contours
[9, 22] parametrised by σ ∈ [0, β] and presented in Fig. 3. The Keldysh contour is recovered
for σ = 0. An even more general family of contours was presented in [22] with pieces going
back and forth N times between < tin and < tfi in parallel to the real axis. However, it can be
shown that such additional pieces cancel out for N ≥ 2. Fundamental reasons for discarding
this extended class of contours are laid out in [22]. Hence, the contour presented in Fig. 3 is
the most general real-time contour that includes all n-point functions with real arguments,
with σ being a freedom of choice. Commonly, this parameter is set to 0, β or β/2 [11,12,16,23].

It was argued previously, using Eqs. (2.60) and (2.59), that the contour propagator de-
pends explicitly on the choice of contour. It is clear from these equations that the contour
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dependence of the propagator enters only through the contour step-function ΘC(t− t′). In
the case of the real-time contour of Fig. 3, the time coordinates of x, x′ may be distributed
arbitrarily over C and several unique two-point functions (propagators) arise. Label tr, t

′
s so

that tr ∈ Cr, t
′
s ∈ Cs for r, s = {1, 2, 3, 4}. Then the different propagators may be expressed

as
Drs(t− t′) = DC(tr − t′s). (2.76)

Note e.g. that t2, t3 always are later than t1, t4. The appearance of several distinct propag-
ators is a very general consequence of the statistical formulation of the two-point function of
Eq. (2.16). The Keldysh contour of Fig. 2 is treated in great detail by Wagner [15]. In an ap-
proach valid both in as well as out of equilibrium, Wagner organised the two-point functions
(Green’s functions) in a matrix. In the special case of σ = 0, this matrix is

D(t, t′) =

D11(t, t′) D12(t, t′) D13(t, t′)
D21(t, t′) D22(t, t′) D23(t, t′)
D31(t, t′) D32(t, t′) D33(t, t′)

. (2.77)

Adding the piece C4 (σ = 0) is a trivial extension. In the limit tin → −∞ and tfi → +∞, for
any system in equilibrium, Landsman and van Weert [12] and Wagner [15] argued that the
contour pieces C3, C4 decouple entirely from the parallel pieces in the sense that

Drs(t− t′) = 0 if
(
r = 1, 2 ∧ s = 3, 4

)
∨
(
r = 3, 4 ∧ s = 1, 2

)
. (2.78)

This may be proven by the application of the Riemann-Lebesgue lemma [24] if the source
field is constrained to

lim
t→±∞

j(x) = 0. (2.79)

This condition is compatible with the KMS condition [12]. A consequence of the decoupling
of the vertical contour segments is that the generating functional factorises as

Z[j] = Z[0]Z34[j]Z12[j] (2.80)

with

Zrs[j] = exp

[
i

∫
Crs

d4xLI

[
δ

iδj(x)

]]
exp

[
− i

2

∫
Crs

d4x

∫
Crs

d4x′ j(x)DC(x− x′)j(x′)

]
. (2.81)

Here, Crs = Cr ∪ Cs. Therefore, the main concern, when considering real-time Green’s func-
tions, is the upper left 2×2-corner of the matrix in Eq. (2.77).

2.5.2 The real-time propagator

The explicit real-time thermal propagator of a neutral scalar particle can be found by ex-
amining Eq. (2.81) in the light of Eq. (2.80). Having factorised out the vacuum bubbles Z[0]
and the vertical contour pieces Z34[j], only the real-time part Z12[j] will be considered from
here on. The two exponentials in Z12[j] can be further factorised with respect to C1 ∪ C2 by
conveniently organising the propagator components in a matrix. From now on, the spatial
variables will be suppressed. At the same time, a new notation will be introduced. The
contour pieces C1, C2 of Fig. 3 are relabelled C+, C− respectively to indicate chronological
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and antichronological time evolution on the different parts of the contour. The factorisation
of the first exponential becomes

exp

[
i

∫
C+−

dtLI

[
δ

iδj(t)

]]
= exp

[
i

∫
R
dt

(
LI

[
δ

iδj+(t)

]
− LI

[
δ

iδj−(t)

])]
. (2.82)

The relative minus sign is a result of the antichronological evolution of the fields on C−. The
two fields j+(t), j−(t) are introduced as sources of two separate field components φ+, φ− that
exist only on C+, C− respectively. Together, the components form the full real-time field

φ =
(
φ+ φ−

)T
. The physical field component φ+ evolves chronologically and its integration

limits are recognised from zero-temperature field theory. The component φ− is an unphysical
degree of freedom since it evolves antichronologically. This field component can not appear on
external lines of diagrams generated by the above exponential. Nevertheless, its presence is
an unavoidable consequence of the Keldysh contour, and contributions from virtual φ−-fields
in loops must be taken into account. Such contributions are introduced by the second term
LI[δ/iδj−]. Summing over r, s = ±, the second exponential factor can be rewritten as

exp

[
− i

2

∫∫
Crs

dtdt′ j(t)DC(t− t′)j(t′)

]
= exp

[
− i

2

∫∫
R2

dtdt′ jr(t)D
rs(t− t′)js(t

′)

]
. (2.83)

The matrix components of the propagator must fulfil
D(++)(t− t′) ≡ DC(t− t′),

D(−−)(t− t′) ≡ DC

(
(t− iσ)− (t′ − iσ)

)
≡ −

[
D(++)(t− t′)

]∗
,

D(+−)(t− t′) ≡ DC

(
t− (t′ − iσ)

)
,

D(−+)(t− t′) ≡ DC

(
(t− iσ)− t′

)
.

(2.84)

The right-most side of the second line reflects the negative orientation of C2 and can be
show explicitly from, for example, Eq. (2.92). These components may be used to express the
general propagator of Eq. (2.59) for any bosonic or fermionic field of arbitrary spin and any
charge. The explicit solution of Eq. (2.59) for each of the above components gives, after a
Fourier transform of Eq. (2.60),

iD̃
(++)
αβ (k) =

[
Θ(k0)i∆̃F (k) + Θ(−k0)i∆̃∗

F (k) + ηρ0(k)n(ω+)
]
dαβ(k),

iD̃
(−−)
αβ (k) =

[
iD̃(++)(k)

]∗
dαβ(k),

iD̃
(+−)
αβ (k) = ηρ0(k)e

σk0n(ω+)dαβ(k),

iD̃
(−+)
αβ (k) = ηe∓βµe(β−2σ)k0 · iD̃(+−)

αβ (k).

(2.85)

Here, the internal indices i, j have been suppressed and

i∆̃F (k) =
i

k2 −m2 + iε
(2.86)

is the Feynman propagator of zero-temperature theory. Recall that the spectral density ρ0 is
the discontinuity over the real axis of this propagator (Eq. (2.39)) and may therefore also be
written in terms of i∆̃F , i∆̃

∗
F as

ρ0(k) = sign(k0)
[
i∆̃F (k)− i∆̃∗

F (k)
]
. (2.87)
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Hence, the propagator matrix may be diagonalised in a basis of zero-temperature functions
by means of a Bogolyubov transformation. The result is

iD̃αβ(k) = Mη(k)

(
dαβ(k)i∆̃F (k) 0

0 −dαβ(k)i∆̃∗
F (k)

)
Mη(k) (2.88)

with the thermal (Bogolyubov) matrix

Mη(k) =

(
cos[h]θk ηeβµ/2e−(β−2σ)k0/2sin[h]θk

e−βµ/2e(β−2σ)k0/2sin[h]θk cos[h]θk

)
. (2.89)

Here the thermal angle θk was introduced11 through the functionssin[h]θk =
√
N(ω),

cos[h]θk =
[
Θ(k0) + ηΘ(−k0)

]√
1 + ηN(ω),

for fermionic[bosonic] fields. (2.90)

The thermal function is N(ω) = Θ(k0)n(ω+) + Θ(−k0)n(−ω+). The square-parenthesis nota-
tion conveys that for fermions the goniometric functions are assumed while the hyperbolic
functions apply to the scalar case. Note that the propagator is symmetric under simultaneous
transposition and reversal of momentum, i.e. iD̃rs(k) = iD̃sr(−k), for neutral bosons.12 For
T = 0, the Bogolyubov matrix becomes the unit matrix. In that case, the field components
completely decouple in the sense that Z+− → Z+Z− and the contribution from φ− may be
completely absorbed into the irrelevant normalisation constant. The diagonalisation of the
propagator is particularly useful since any thermal dependence may be absorbed into vertices
leaving a basis where the propagator itself is defined in terms of zero-temperature functions.
Hence, the real-time formalism and the propagator is intrinsically connected to the imaginary-
time formalism since they meet when the formalism of Matsubara is analytically continued.
This statement is formulated as

iD̃(++)(k) = iD̃(k) ≡ n(ω+)i∆(k0 − iε,k)− [1 + n(ω+)]i∆(k0 + iε,k) (2.91)

where ∆ is the analytic continuation to the real axis of the Matsubara propagator of Eq. (2.69)
with k0 = ωn → k0 ∈ R. The second equality take in the propagator of Eq. (2.41).

2.5.3 The real-time scalar propagator(s)

The thermal decays of interest to this work involve interactions between fermions and scalar
bosons. In this subsection and the one that follows, the real-time free propagators for such
fields will be presented. First, for the scalar field (commuting or anticommuting), in which
case the Klein-Gordon divisor dαβ(k) is equal to unity. For the choice of σ = 0, the components
of Eq. (2.85) may be written as

iD̃(++)(k) =
i

k2−m2+ik0ε
+ ηρ0(k)n(ω+),

iD̃(−−)(k) =
−i

k2−m2−ik0ε
+ ηρ0(k)n(ω+),

iD̃(+−)(k) = ηρ0(k)n(ω+),

iD̃(−+)(k) = ρ0(k)e
ω+n(ω+).

(2.92)

11This diagonalisation procedure was first formulated by Umezawa, Matsumoto and Tachiki [25] in the
framework of thermo field dynamics.

12Neutral bosons have η = +1, µ = 0 and dαβ(k) = 1
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One recognises the retarded and advanced propagators

iD̃R(k) =
i

k2−m2+ik0ε
, iD̃A(k) =

−i
k2−m2−ik0ε

(2.93)

from zero-temperature theory. For practical calculations, it is common to rewrite the four
components in terms of the Feynman propagator (and its conjugate), consequently rewriting
also the thermal terms. Through the relation

iD̃R(k) = Θ(k0)i∆̃F (k)−Θ(−k0)i∆̃∗
F (k) (2.94)

and by insertion of the explicit spectral density Eq. (2.39), the components can be found as

iD̃(++)(k) =
i

k2−m2+iε
+ η2πδ

(
k2−m2

)[
n
(
|ω|+

)
+ n

(
|ω|−

)]
,

iD̃(−−)(k) =
−i

k2−m2−iε
+ η2πδ

(
k2−m2

)[
n
(
|ω|+

)
+ n

(
|ω|−

)]
,

iD̃(+−)(k) = η2πδ
(
k2−m2

)[
n
(
|ω|+

)
− n

(
−|ω|−

)]
,

iD̃(−+)(k) = −η2πδ
(
k2−m2

)[
n
(
−|ω|+

)
− n

(
|ω|−

)]
.

(2.95)

Here, the new thermal distributions introduced for compact notation are:

n
(
|ω|±

)
=

Θ(±k0)
e|ω|± − η

, |ω|± = β(|k0| ∓ µ). (2.96)

Note especially that, in the case of a neutral boson, one might define

nB
(
|k0|
)
=
[
n
(
|ω|+

)
+ n

(
|ω|−

)]
µ=0

≡ 1

eβ|k0| − 1
(2.97)

and, for further future convenience (see Secs. 3-6), in the case of charged fermions

nF/F̄(k0) = n
(
|ω|±

)
+ n

(
|ω|∓

)
≡ Θ(k0)

eβ(|k0|∓µ) + 1
+

Θ(−k0)
eβ(|k0|±µ) + 1

. (2.98)

The lower sign reflects the opposite charge of antiparticles.

2.5.4 The real-time spin-12 propagators

Considering spin-12 fields, the Klein-Gordon divisor carry spin structure and for fermions
(upper sign)/antifermions (lower sign) it is

dαβ(k) → dF/F̄(k) =
(
k/ ±m

)
. (2.99)

Recall that η = −1 for Fermi-Dirac statistics. The propagator components may then be found
from Eq. (2.85) as

iS̃
(++)

F/F̄
(k) =

(
k/ ±m

){ i

k2−m2+iε
− 2πδ

(
k2−m2

)
nF/F̄(k0)

}
,

iS̃
(−−)

F/F̄
(k) =

(
k/ ±m

){ −i
k2−m2−iε

− 2πδ
(
k2−m2

)
nF/F̄(k0)

}
,

iS̃
(+−)

F/F̄
(k) = −2π

(
k/ ±m

)
δ
(
k2−m2

)[
n
(
|ω|±

)
− n

(
−|ω|∓

)]
,

iS̃
(−+)

F/F̄
(k) = 2π

(
k/ ±m

)
δ
(
k2−m2

)[
n
(
−|ω|∓

)
− n

(
|ω|±

)]
.

(2.100)
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In the simple case of neutral particles, with µ = 0, these components reduce to those of
Das [26].

2.5.5 Real-time Feynman rules

It was seen in the previous section that the Keldysh contour of Fig. 2 necessarily gives rise
to a doubling of the degrees of freedom in the real-time thermal theory. This is expressed by
separating the field into two components, each appearing on the respective segments of the
real-time contour. One component is physical while the other is to be regarded as a thermal
ghost arising from the choice of the specific contour. For notational convenience, a neutral
scalar field φ will be considered in the derivation of the Feynman rules below. For simplicity,
the field is assumed to have an interaction term proportional to λφl. The generality of the
method, however, allows for the treatment of the multicomponent vector field I∞i

α introduced
above. The derivation of the Feynman rules is analogous for the case of I∞i

α, only with the
addition of contraction of Lorentz and internal indices to the summation over the thermal
propagator components.

It was seen in Sec. 2.5.2 that, for a field with no derivative couplings, the relevant factor
in the generating functional, Z12[j], can be written as

Z+−[j] → Z[j+, j−]

= exp

[
i

∫
R
dt

(
LI

[
δ

iδj+

]
− LI

[
δ

iδj−

])]
exp

[
− i

2

∫∫
R2

dt dt′ jr(t)D
rs(t− t′)js(t

′)

]
. (2.101)

The series expansion of this function generates all the diagrams of the theory in analogy to the
zero-temperature case. Two distinct vertices appear due to the two interaction terms in the
leftmost exponential: one interaction vertex involves only the physical field component and
one vertex involves only the ghost field. See Fig. 4 for the vertices of the φ4-theory. Hence,
the field components do not mix at vertices. However, due to the non-zero off-diagonal
components of the propagator of the Keldysh contour, the fields may propagate into each
other.

The connected Green’s functions of Eq. (2.43) are generated by functional differentiation
according to

G(n,m)(t1, . . . , tn, tn+1, . . . , tn+m) =
δn+m logZ[j+, j−]

iδj+(t1) · · · iδj+(tn)iδj−(tn+1) · · · iδj−(tn+m)

∣∣∣∣∣j+=0
j−=0

. (2.102)

It is clear that, for any value of σ 6= 0, real-time Green’s functions may only be recovered
by functional differentiation with respect to the source j+ since the second contour segment
includes no real times. It may be proven [12] that the real-time Green’s functions are inde-
pendent of the parameter σ and, hence, they are given by

G(n,0)(t1, . . . , tn) =
δn logZ[j+, j−]

iδj+(t1) · · · iδj+(tn)

∣∣∣∣∣j+=0
j−=0

, ∀σ. (2.103)

The thermal ghost field φ− may only propagate as internal lines connecting vertices. These
internal lines are generated by functional differentiation with respect to j− inside Z[j+, j−],
see Eq. (2.82).
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The full set of Feynman rules can easily be extracted through the generating functional
in its path-integral form if the Lagrangian is split into its free and interaction parts. Then,
in terms of the action, the generating functional may be written as

Z[j+, j−] =

∫
[Dφ+]

∫
[Dφ−] exp

[
i

∫
R
dt
{
φrK

rsφs + LI(φ+)− LI(φ−) + jrφr

}]
=

∫
[Dφ+]

∫
[Dφ−] eiS0 ei(SI+j·φ), with j ·φ =

∫
R
dt jrφr. (2.104)

Summation over r, s = ± is assumed. Expanding the second exponential, each term may be
interpreted as an expectation value in the path-integral formalism with respect to a weight
eiS0 so that

Z[j+, j−] =

∫
[Dφ+]

∫
[Dφ−] eiS0

{
1 + i

(
SI + j ·φ

)
+ i2

2

(
SI + j ·φ

)2
+ . . .

}
= Z0[0, 0]

{
1 + i 〈(SI + j ·φ)〉0 +

i2

2 〈(SI + j ·φ)2〉0 + . . .

}
. (2.105)

By means of the cumulant expansion, it is possible to factor out not only the free Z0[0, 0] but
all vacuum bubbles Z[0, 0] so that the cumulant becomes

W [j+, j−] ≡ logZ[j+, j−] = logZ[0, 0] + 〈eiSI(eij·φ − 1)〉con . (2.106)

The expansion of the final term gives all connected diagrams with at least one external leg of
the physical field φ+. The real-time Feynman rules are extracted from this series:

• Draw diagrams using φ+-, φ−-vertices: n external φ+-lines and arbitrarily many internal
φ+- and φ−-lines. Determine symmetry factors.

• Connect vertices by assigning a propagator:
iD̃rs(k) = 〈φrφs〉0 = r s .

• Assign a factor of −iλ to each φ+-vertex and iλ to each φ−-vertex.

• Impose energy-momentum conservation at each vertex through (2π)4 δ(4)
(∑

i ki

)
. A

global conservation factor may be separated out as (2π)4 δ(4)(0).

• Integrate over each internal momentum ki:
∫

d4k
(2π)4

and sum over all internal distributions

of r, s.

Comparing the real-time formalism to Matsubara theory, the propagator has gained a matrix
structure and, further, two separate types of vertices has appeard.

2.6 Thermal self-energies

This section approaches the goal of expressing the thermal decay rate in terms of the self-
energy. Weldon [13] related the self-energy of the Matsubara formalism to the decay rate.
In the sections below, we will examine this self-energy, its analytic continuation and finally
the connection of real-time quantities to it. This connection has been discussed by several
authors, see for example [12,23,27].
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= −iλ

(a)

= +iλ

(b)

Figure 4: The two real-time vertices of φ4-theory, appearing on each horisontal
piece of the real-time contour respectively. (a) Vertex corresponding to the quartic
interaction of the physical field φ+. (b) Vertex corresponding to the quartic interaction of
the unphysical field φ−.

2.6.1 Matsubara formalism

The connected two-point function of the Matsubara formalism is obtained by functional dif-
ferentiation of the cumulant in Eq. (2.74). In order to obtain a perturbative series, and hence
the Feynman rules, in Fourier space, the full generating functional of Eq. (2.73) may be trans-
formed. It may be further manipulated so as to recover a form similar to that of Eq. (2.42).
The full propagator appearing in Feynman diagrams is

G̃(k1, . . . , kn) → (−i)nG̃E(k1, . . . , kn) (2.107)

in comparison to the zero-temperature propagator. Since global momentum conservation
is imposed, an overall factor of β(2π)3δn0δ

(∑
ki
)
may be extracted, leaving the interact-

ing many-body propagator labelled G̃(k) by Landsman and van Weert [12]. Analogous to
Eq. (2.70), this propagator may be defined as

G̃(k) = ∆̃′(z,k) =

∫
dk0
2π

ρ(k)

k0 − z
. (2.108)

The free spectral density ρ0 has been replaced by the corresponding full quantity defined as
iρ(k) = Disc ∆̃′(k). This analytic continuation extends the propagator away from the discrete
Matsubara frequencies on the imaginary axis and allows the propagator to be defined for
real energies. The continuation is not unique and this is usually resolved [12, 17] by letting
lim|z|→∞ ∆̃′(z,k) = 0 and by taking ∆̃′(z,k) to be analytic off the real axis. Then uniquely

∆̃′(z,k) =

∫ ∞

0

d(k′0)
2

2π

ρ(k′0,k)

z2 − k′0
2 (2.109)

given that k0ρ(k) ≥ 0. This function can be shown to have neither zeroes nor poles off the
real axis given this inequality property [12]. Guided by the above definition, it is useful to
define the thermal Feynman propagator

∆̃′
F(k) = −∆̃′(k0 + ik0ε,k). (2.110)

This propagator may be inverted by writing k20 − |k|2 = m2 so that the thermal self-energy
for the imaginary-time formalism can be extracted:

∆̃
′−1
F = k2 −m2 − Π̄F(k). (2.111)
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As in zero-temperature theory, one may observe that the real part of the self-energy may be
absorbed as a correction to the mass while its imaginary component will be interpreted as a
decay rate [13].

2.6.2 Real-time formalism

The full real-time propagator may be assumed to satisfy the Schwinger-Dyson equation (see
further references in [12]) similar to the zero-temperature case:

D̃rs
αβ(k) = D̃rs

αβ(k) +
(
D̃Π̃D̃

)rs
αβ

(k). (2.112)

Like in zero-temperature theory, the real-time self-energy is most often the sum of all one-
particle irreducible (1PI)13 insertions on the propagator line as visualised in Fig. 5.

= + 1PI + . . .

Figure 5: The graphical interpretation of the Schwinger-Dyson equation. All 1PI
insertions are parametrised by the self-energy. By recursive insertion of the full propagator,
the 1PI series expansion may be obtained.

2.6.3 Self-energy relations

Viewing the free-field propagator of Eq. (2.85) as a special case of the full propagator of
Eq. (2.112), the matrix of Eq. (2.89) also diagonalises the full propagator for some function
D̃Fαβ(k) = D̃Fαβ(k) +

(
D̃FΠ̄FD̃F

)
αβ

so that

D̃αβ(k) = Mη

(
D̃Fαβ 0

0 D̃∗
Fαβ

)
Mη. (2.113)

The insertion of Mη and its inverse in the Schwinger-Dyson equation allows for the identific-
ation

Π̃ =

(
Π̃(++) Π̃(+−)

Π̃(−+) Π̃(−−)

)
≡ M−1

η

(
Π̄F 0
0 −Π̄∗

F

)
M−1

η . (2.114)

The derivation is rather lengthy but can be found in [12] where it is shown that Π̄F is indeed
the analytically continued self-energy of the re-summed propagator ∆̃′

F in Eq. (2.111). For
notational convenience, possible spinor and Lorentz indices have been suppressed but are
generally present in the form of the Klein-Gordon divisor dijαβ. By inserting the explicit
expression for the thermal matrix, the following relations may be deduced:

Π̃(−−) = −
[
Π̃(++)

]∗
, (2.115)

Π̃(+−) = ηe−βµe(β−2σ)k0Π̃(+−). (2.116)

13A 1PI diagram is defined to be any diagram that cannot be split into two by removal of a single propagator
line. The 1PI blob of Fig. 5 is defined as the sum of all such diagrams with the eye-diagram (the single loop)
being the lowest order contribution. See [1] for a discussion of the 1PI insertion procedure.
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Hence, the number of independent components is less than the initial four. The two relations
above hold for any σ, also for σ = 0. Importantly for the forthcoming calculations, the real
and imaginary parts are related as

< Π̃(++) = < Π̄F, (2.117)

= Π̃(++) = sign(k0)
[
1 + 2ηn(ω+)

]
= Π̄F. (2.118)

The self-energy on the left-hand side will be calculated to first order for several interaction
terms in Secs. 3-6.

2.7 Thermal decay rates

Below, the self-energies of the previous section will be related to the thermal decay rate.
Initially, a relation between the corresponding thermal quantity to the zero-temperature decay
rate and the self-energy of the imaginary-time formalism due to Weldon [13] will be presented.
This relation will then be restated in terms of the self-energy of the real-time formalism by
making use of the self-energy relations of Sec. 2.6.3.

2.7.1 Imaginary-time self-energy

The decay rate γD for a given process in zero-temperature theory may be related to the
discontinuity (the imaginary part) of the self-energy through the optical theorem as

γD = −
(
= Π0(E0)

E0

)
, (2.119)

where E0 is the energy of the decaying particle. Weldon [13] defined a similar quantity Γ(p0)
so that

Γ(p0) = −
(
= Π̄F(p0)

p0

)
, (2.120)

where Π̄F is the self-energy of the imaginary-time formalism. It is important to understand
what this quantity describes. One may assume that the distribution of a particle Φ at some
time tin is described by a nonequilibrium function, which Weldon labelled f(p0, tin) [13]. This
function will approach the thermal distribution of the equilibrium (Bose-Einstein or Fermi-
Dirac) in a simple manner if the perturbation from equilibrium is small (∂f/∂t� 1). The
rate of approach to first order is parametrised by Γ(p0). Weldon formulated the evolution of
this distribution as

∂f

∂t
= −fΓD + (1 + ηf)ΓI . (2.121)

What does this mean? The first term simply expresses the loss of Φ-particles through decay
modes while ΓI takes into account that the medium is not empty. Rather, the thermal medium
is filled with particles that couple to Φ and, hence, this second parameter, the inverse decay
rate (production rate), adds the contribution from processes in the medium that produce
Φ particles. As an example, production may occur through reactions φ1φ2 → Φ. Weldon
comprehensively presents an analysis of possible production and decay channels for Φ through
interactions with medium particles.

The solution to Eq. (2.121) is

f(p0, t) = n(ω+) + c(p0)e
−Γ(p0)t. (2.122)
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This solution requires that the temperature T is constant over time. Since T characterises the
background medium, the perturbations of the distribution of Φ must be small and one may
assume that the distribution of the medium particles is the thermal equilibrium distribution.
The net decay rate Γ of the distribution of Φ in the medium is the rate at which the distribution
of Φ approaches the equilibrium function and it is

Γ(p0) = ΓD − ηΓI . (2.123)

The evaluation of the amplitude for the thermal forward decay ΓD is of interest in this thesis
work. Fortunately, Weldon provides a thermal relation between the forward and inverse decay
rates due to unitarity so that one therefore may write the decay rate of Φ as

ΓD = − 1

1− ηe−β(p0−µ)
= Π̄F(p0)

p0
. (2.124)

For the purpose of this work, the expression provided by Weldon has here been extended in
order to explicitly include the chemical potential µ.

2.7.2 Real-time self-energy

The self-energy relations of Sec. 2.6.3 related the self-energy of the imaginary-time formalism
to the components of the real-time self-energy. Eq. (2.124) may hence be written as

ΓD = −sign(p0)
1 + ηn(ω+)

1 + 2ηn(ω+)

= Π̃(++)(p0)

p0
. (2.125)

In the following sections 3-6, the (++)-component of several real-time self-energies is presented
to first order as the self-energy of the eye-diagram. The results are used for extracting
predicted decay rates for fields in an equilibrated thermal medium.

Note that, if Π̃(++) comes with internal or Lorentz indices, one may follow the procedure
advised by Weldon [13] and define the scalar function

Σ(p) = Ī∞i
α(p)Π̃

(++) ij
αβ(p) I∞

j
β(p), (2.126)

which is the contraction with asymptotic states. This allows for a probabilistic interpretation
of Σ as the decay rate, similar to a Breit-Wigner resonance, for any particle species.

For convenience, the ratio of the thermal decay rate above to the zero-temperature limit
may be defined:

R =
ΓD
γD

. (2.127)

If this ratio is equal to unity for all temperatures, the medium has no effect on decay rates.

3 (Pseudo)scalar decay into (pseudo)scalars

We now have the formalism and the relations needed to compute thermal decay rates. This
section presents the thermal rate at which a neutral (pseudo)scalar particle Φ of mass M
decays into a neutral (pseudo)scalar pair φ1φ2 of masses m1, m2 as a result of calculations
performed within the thesis work. The scalars in the final state need not to be identical in
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the following calculations. Note, however, that all scalars considered are neutral particles.
The model responsible for such a decay process contains the interaction term

Lint = λΦφ1φ2. (3.1)

The resulting self-energy of this section has been published in [23] but the full calculation
was performed independently within this work as an introductory example.

3.1 The real-time self-energy of the scalar-scalar eye-diagram

Using the interaction term of Eq. (3.1), one may draw the following eye-diagram:

Φ

φ2

φ1

Φ . (3.2)

This is the matrix eye-diagram appearing in the Dyson series that expresses the full interacting
propagator of Φ. The crosses denote either external legs or connections to vertices. The
Φ-lines are amputated in the following self-energy calculation for the loop. It is clear that the
intermediate scalars φ1, φ2 are virtual and their momenta must be integrated out. Note that
this diagram represents all allowed propagator combinations.14 The intermediate particles are
not restricted to the physical field component φ+ but the external legs are. As a consequence,
all valid combinations of propagators must be considered when calculating the total amplitude
for this diagram. Only the physical field component may appear on the external legs and, in
the primary basis used in this thesis, (+)- and (−)-field components do not mix at vertices,
cf. Fig. 4. Each vertex contributes with a factor of ∓iλ. Note that the pseudoscalar loop is
identical to the scalar-scalar loop.

In order to obtain the thermal decay rate, the self-energy of Eq. (3.2) will be calculated
in the following. This self-energy is defined as the bubble

iIbubble(p;m1,m2) =
k

φ1

k − p

φ2

. (3.3)

14The thick lines are drawn in order to indicate the free matrix propagator. Hence, the diagram represents
the sum of diagrams over all valid combinations of φ+, φ−. Note that only the physical field component φ+

may appear on external lines.

= +

+ +
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The crosses are vertices connected to external legs in the case of interest to this thesis. All
components of this self-energy are related through Eq. (2.114) and the evaluation of the
(++)-component is sufficient in order to calculate the decay rate. This component is

iI(++)
bubble(p;m1,m2)

= i(1 + δ12)(−iλ)2
∫

d4k

(2π)4
iD̃(++)(k − p;m1)iD̃

(++)(k;m2)

= iI
(2)
SS (p

2;m1,m2) +
[
iF

(2)
SS (p;m1,m2) + (1 ↔ 2)

]
+ iF

(3)
SS (p;m1,m2). (3.4)

Note here the pre-factor; δ12 is defined as unity if the two particles in the loop are of the same
species and zero otherwise. Hence, the correct symmetry factor will be taken into account
when considering either identical or distinct loop particle species.15 The two-component
structure of the scalar propagator splits the bubble into four terms above; a non-thermal

(temperature independent) integral I
(2)
SS , two mixed integrals F

(2)
SS and (1 ↔ 2), and one purely

thermal integral F
(3)
SS are defined. The bracketed arrow denotes the interchange of indices 1

and 2 in the second mixed term. The explicit integrals are

iI
(2)
SS (p

2;m1,m2)

= i(1 + δ12)(−iλ)2
∫

d4k

(2π)4
i

(p− k)2 −m2
1 + iε

i

k2 −m2
2 + iε

, (3.5)

iF
(2)
SS (p;m1,m2)

= i(1 + δ12)(−iλ)2
∫

d4k

(2π)4
i

(p− k)2 −m2
1 + iε

2π nB
(
|k0|
)
δ
(
k2 −m2

2

)
, (3.6)

iF
(3)
SS (p;m1,m2)

= i(1 + δ12)(−iλ)2
∫

d4k

(2π)4
2π nB

(
|p0−k0|

)
δ
(
(p−k)2−m2

1

)
2π nB

(
|k0|
)
δ
(
k2−m2

2

)
. (3.7)

3.1.1 The non-thermal self-energy term

The non-thermal contribution to the self-energy is well known from zero-temperature the-
ory, see for example [1]. It may be evaluated by dimensional regularisation techniques in
D = 4− 2ε dimensions at the renormalisation scale µ. The resulting expression for the non-
thermal integral is

iI
(2)
SS (p

2;m1,m2) = (1 + δ12)
λ2

16π2

{
− 1

ε̃
− 2 +

x+
2

ln

[
m2

1

µ2

]
− x−

2
ln

[
m2

2

µ2

]
− Iloop

}
. (3.8)

Here, 1/ε̃ parametrises the divergence emerging from the dimensional regularisation scheme
and, denoting the Euler-Mascheroni constant by γE, it is defined as 1

ε̃ =
1
ε − γE + ln 4π. The

15In the case of identical particles, the symmetry factor of the loop is S = 2. However, the vertex factor will
gain an additional factor of 2 from identical Wick contractions which later is squared and will after cancellation
give the overall factor 1+δ12.
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last term Iloop is the term of interest to the decay rate since it is complex.

Iloop =



√
C

2

[
ln

∣∣∣∣∣
(√
C + x−

)(√
C − x+

)(√
C − x−

)(√
C + x+

)∣∣∣∣∣+ 2πi

]
if (a),

−
√
D

[
arctan

x+√
D

− arctan
x−√
D

]
if (b),

√
C

2
ln

∣∣∣∣∣
(√
C + x−

)(√
C − x+

)(√
C − x−

)(√
C + x+

)∣∣∣∣∣ if (c).

(3.9)

The cases are defined as the momentum regions

a) p2 ≥ (m1 +m2)
2,

b) (m1 −m2)
2 ≤ p2 < (m1 +m2)

2,

c) p2 < (m1 −m2)
2,

and

x± = ±1 +
m2

2 −m2
1

p2
, C = −D =

(
1− (m1 +m2)

2

p2

)(
1− (m1 −m2)

2

p2

)
. (3.10)

The imaginary part of Eq. (3.8) is

=
[
iI

(2)
SS (p

2;m1,m2)
]
=

−(1 + δ12)
λ2

16π

√
C if (a),

0 otherwise.

(3.11)

3.1.2 The mixed self-energy term

The mixed self-energy contribution consists of two complex propagator cross terms. The
evaluation of the imaginary component of those integrals results in

=
[
iF

(2)
SS (p;m1,m2) + (1 ↔ 2)

]

= −(1 + δ12)
λ2

16π|p|β



ln

∣∣∣∣∣1− e−βω2,p+

1− e−βω2,p−

∣∣∣∣∣+ (1 ↔ 2) if (a) ∨ (c1),

0 if (b),

− ln
∣∣∣(1− e−βω2,p+

)(
1− e−βω2,p−

)∣∣∣+ (1 ↔ 2) if (c2).

(3.12)

Here

ω2,p± =
1

2

∣∣∣∣p0∣∣∣∣1 + m2
2−m2

1

p2

∣∣∣∣± |p|
√
C

∣∣∣∣. (3.13)

Two further cases have been defined as
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c1) 0 ≤ p2 < (m1 −m2)
2,

c2) p2 < 0.

The real part of the mixed term is

<
[
iF

(2)
SS (p;m1,m2) + (1 ↔ 2)

]
= (1 + δ12)

λ2

16π2|p|

∫ ∞

m2

dω2,k n(ω2,k)

×P ln

∣∣∣∣∣∣
(
p2−2p0ω2,k+2|p|

√
ω2
2,k−m2

2+m
2
2−m2

1

)(
p2+2p0ω2,k+2|p|

√
ω2
2,k−m2

2+m
2
2−m2

1

)
(
p2−2p0ω2,k−2|p|

√
ω2
2,k−m2

2+m
2
2−m2

1

)(
p2+2p0ω2,k−2|p|

√
ω2
2,k−m2

2+m
2
2−m2

1

)
∣∣∣∣∣∣

+ (1 ↔ 2). (3.14)

Here ω2
2,k = |k|2 +m2

2.

3.1.3 The purely thermal self-energy term

The purely thermal contribution to the self-energy has no real component and was found to
be given by the purely imaginary expression

iF
(3)
SS (p;m1,m2) = −i(1 + δ12)

λ2

8π|p|β
×

×



1

eβp0 − 1
ln

∣∣∣∣∣
(
1− e−βω2,p+

)(
1− eβ(p0−ω2,p− ))(

1− e−βω2,p−
)(
1− eβ(p0−ω2,p+ ))

∣∣∣∣∣ if (a),

0 if (b),

1

e∓βp0 − 1

[
ln

∣∣∣∣∣1− e−βω2,p+

1− e−βω2,p−

∣∣∣∣∣− e∓βp0 ln

∣∣∣∣∣1− eβ(±p0−ω2,p+ )

1− eβ(±p0−ω2,p− )

∣∣∣∣∣
]

if (c1) ∧ (d1),

1

e−βp0 − 1

[
e−βp0 ln

∣∣∣1− eβ(p0−ω2,p± )
∣∣∣− ln

∣∣∣1− e−βω2,p±

∣∣∣]
+

1

eβp0 − 1

[
eβp0 ln

∣∣∣1− e−β(p0+ω2,p∓ )
∣∣∣− ln

∣∣∣1− e−βω2,p∓

∣∣∣] if (c2) ∧ (d2).

(3.15)

The further two cases were defined as

(d1) m2 ≥ m1 ∨ m2 < m1.

The leftmost inequality corresponds to the upper sign. The rightmost inequality cor-
responds to the lower sign.

(d2)

{[
m2 ≥ m1 ∧ 1+

m2
2−m2

1
p2

≥ 0
]

∨ m2 < m1

}
∨
{
m2 ≥ m1 ∧ 1+

m2
2−m2

1
p2

< 0

}
.

The leftmost curly bracket corresponds to the upper sign. The rightmost curly bracket
corresponds to the lower sign.
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Note importantly that in the above expression for the purely thermal contribution, the mass
parametersm1,m2 in ω2,p± should be replaced by expressions min{m1,m2} and max{m1,m2}
respectively.

The combined (++)-self-energy component of the eye-diagram provided in Sec. 3.1.1-3.1.3
is identical to that found by Nishikawa et al. [23] and, thus, their calculation has been verified.

3.1.4 Decay rate of Φ → φ1φ2

As mentioned in the beginning of this section, the thermal decay rate of a scalar particle into
two scalar particles is identical to that of pseudoscalar particles in the final state. The thermal
decay rate of a neutral (pseudo)scalar is given by Eq. (2.125), Sec. 2.7.2. In the special case of
identical loop masses, the expression for the self-energy simplifies significantly due to vanishing
terms in

√
C and ω2,p± . The ratio of Eq. (2.127) may be obtained by putting the external

particle on-shell in the momentum region p2 ≥ (m1 +m2)
2 where the zero-temperature decay

rate is finite. Hence, p2 =M2
Φ. The plotted ratio can be seen in Fig. 6a-c for a non-relativistic,

slightly relativistic and highly relativistic incoming particle Φ. In the figures, the limiting
case of M2

Φ � (m1 +m2)
2 was used rendering the loop-particles effectively massless. With

these simplifications, the figures reproduce the findings of Ho and Scherrer [28]. Their work
considered the case of identical loop masses m1 = m2 = 0 evaluated in the imaginary-time
formalism and their result has here been verified in the real-time formalism. The limit as
T → 0 is RΦ→φφ → 1 as expected.

The deviation from [28] when loop masses m1, m2 are not identical was investigated.
Such deviations are clearly relevant only in the case of MΦ ∼ m1,m2, close to the equality of
M2

Φ = (m1 +m2)
2. An analysis of the self-energy presented earlier in this section shows that

the behaviour is qualitatively similar to Fig. 6a-c also close to the equality. Further, in another
mass region 0 ≤M2

Φ < (m1 −m2)
2 or for virtual particles Φ with p2 < 0, the behaviour of

ΓΦ→φφ also here is quadratically growing with temperature. Hence, these regions do not differ
in behaviour compared to the plotted cases.

4 Scalar decay into a fermion-antifermion pair

This section presents the thermal rate at which a neutral scalar particle Φ decays into a
fermion-antifermion pair ψ2ψ̄1. One model that gives rise to such decay process is

Lint = aΦψ̄1ψ2. (4.1)

The particles are associated with masses M for Φ and mi for ψ
i.

4.1 The real-time self-energy of the fermion-antifermion eye-diagram

Using the interaction term of Eq. (4.1), the following eye-diagram may be drawn:

Φ

ψ1

ψ2

Φ
. (4.2)
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Figure 6: Ratio of the thermal de-
cay rate to the zero-temperature
limit for Φ → φφ. The ratio R = ΓD/γD
is plotted for M2

Φ ≥ 4m2, below which
the zero-temperature decay rate vanishes.
Further, the limit mφ = 0 has been con-
sidered as a simple case. Subfigures dis-
play ratios for varying ε = |p|/MΦ that
parametrises the three-momentum of Φ
and are plotted here for non-relativistic
(a), slightly relativistic (b) and highly re-
lativistic (c) particles. The figures re-
produce the results of [28]. Note that
R→ 1 when T vanishes.

The Φ-lines may connect to either external legs or vertices and will be amputated in the
following calculation of the self-energy.

As in the case of the scalar-scalar loop of Sec. 3, the self-energy of this diagram is related
to the thermal decay rate of the process Φ → ψ2ψ̄1. The self-energy is defined as the bubble

iIbubble(p;m1,m2) =
k

ψ2

k − p

ψ1

. (4.3)

Also here, all valid combinations of field components must be taken into account, as has been
indicated by the thick lines that represent the matrix propagator, but only one self-energy
component is independent, see Eq. (2.114). The evaluation of the self-energy (++)-component
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is sufficient to extract the thermal decay rate. This component is

iI(++)
bubble(p;m1,m2)

= i(−ia)2(−1)

∫
d4k

(2π)4
tr
[
iS̃

(++)
F (k − p;m1)iS̃

(++)
F (k;m2)

]
= i(−ia)2(−1)

∫
d4k

(2π)4
tr
[
−iS̃(++)

F̄
(p− k;m1)iS̃

(++)
F (k;m2)

]
= iI

(2)

FF̄
(p2;m1,m2) +

[
iF

(2)

FF̄
(p;m1,m2) + (F ↔ F̄)

]
+ iF

(3)

FF̄
(p;m1,m2). (4.4)

Note that an extra minus sign appears as well as the trace over spin space in the case of
a fermion loop. The bracketed arrow represents the second mixed integral that arises from
propagator cross terms. As in the case of the scalar-scalar loop, the bubble splits into four
terms. The explicit integrals are

iI
(2)

FF̄
(p2;m1,m2)

= i(−ia)2
∫

d4k

(2π)4
tr

[
i
(
(p/− k/)−m1

)
(p− k)2 −m2

1 + iε

i
(
k/ +m2

)
k2 −m2

2 + iε

]
, (4.5)

iF
(2)

FF̄
(p;m1,m2)

= i(−ia)2
∫

d4k

(2π)4
tr

[
i
(
(p/− k/)−m1

)
(p− k)2 −m2

1 + iε
(−2π)

(
k/ +m2

)
nF(k0)δ

(
k2−m2

2

)]
, (4.6)

iF
(3)

FF̄
(p;m1,m2)

= i(−ia)2
∫

d4k

(2π)4
tr
[
(−2π)

(
(p/− k/)−m1

)
nF̄(p0−k0)δ

(
(p−k)2 −m2

1

)
×

× (−2π)
(
k/ +m2

)
nF(k0)δ

(
k2−m2

2

)]
. (4.7)

The trace is common to all integrals and evaluates to

tr
[(
(p/− k/)−m1

)(
k/ +m2

)]
= −4

(
m1m2 − p · k + k2

)
. (4.8)

4.1.1 The non-thermal self-energy term

The non-thermal contribution is again known from zero-temperature theory but the full in-
tegral is cumbersome to evaluate in comparison to the case of the scalar-scalar loop. However,
by rewriting the logarithm resulting from dimensional regularisation according to

ln
[
x± iε

]
= ln |x| ± iπΘ(x), (4.9)
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with Θ(x) being the Heaviside step-function, the imaginary part of interest to the decay rate

calculation may be extracted. The imaginary part of iI
(2)

FF̄
(p2;m1,m2) is

=
[
iI

(2)

FF̄
(p2;m1,m2)

]
=
a2

8π

√
C×

×


p2

2

[
C −

(
1+

m2
2−m2

1

p2

)2 ]
− p2

(
1+

m2
2−m2

1

p2

)
+ 2m2

[
m1+2m2

]
if (a),

0 otherwise,

(4.10)

where C is identical to the definition in Sec. 3. In the case of identical loop masses, the
expression reduces to

=
[
iI

(2)

FF̄
(p2;m1,m2)

]
=

−
a2
(
p2 − 4m2

)
8π

√
1− 4m2

p2
if (a),

0 otherwise.

(4.11)

This matches literature, e.g. [29].

4.1.2 The mixed self-energy term

The mixed self-energy contribution consists of two complex cross terms. The evaluation of
the imaginary component of those terms results in

=
[
iF

(2)

FF̄
(p;m1,m2) + (F ↔ F̄)

]
= − a2

8π|p|β

(
p2 − (m2 +m1)

2
)
×

×



ln

[(
e−β(ω2,p+−µ) + 1

)(
e−β(ω1,p++µ) + 1

)(
e−β(ω2,p−−µ) + 1

)(
e−β(ω1,p−+µ) + 1

)] if (a) ∨
{
(c1) ∧ m2 ≥ m1

}
,

0 if (b),

ln

[(
e−β(ω2,p++µ) + 1

)(
e−β(ω1,p+−µ) + 1

)(
e−β(ω2,p−+µ) + 1

)(
e−β(ω1,p−−µ) + 1

)] if (c1) ∧ m2 < m1,

−ln
[(
e−β(ω2,p+−µ)+1

)(
e−β(ω1,p++µ)+1

)(
e−β(ω2,p−−µ)+1

)(
e−β(ω1,p−+µ)+1

)]
if (c2).

(4.12)

Here ω1,p± has been defined analogously to ω2,p± of Sec. 3 with interchanged masses.
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In compact notation, the real part may be written as

<
[
iF

(2)

FF̄
(p;m1,m2) + (F ↔ F̄)

]
=

a2

4π2|p|
∑
s=±

×

×
{∫ ∞

m2

dω2,k n
s
F,2

[
Cs2P ln

∣∣∣∣∣A
(s)
21,+

A
(s)
21,−

∣∣∣∣∣+ P

(
2|p|

√
ω2
2,k−m2

2+D
s
21 ln

∣∣∣∣∣A
(s)
21,−

A
(s)
21,+

∣∣∣∣∣
)]

+

∫ ∞

m1

dω1,k n
−s
F,1

[
Cs1P ln

∣∣∣∣∣A
(s)
12,+

A
(s)
12,−

∣∣∣∣∣+ P

(
2|p|

√
ω2
1,k−m2

1+D
s
12 ln

∣∣∣∣∣A
(s)
12,−

A
(s)
12,+

∣∣∣∣∣
)]}

, (4.13)

where the following functions have been defined:

ω2
1,k = |k|2 +m2

1, (4.14)

n±η,i =
1

eβ(ωi,k±µ) − η
, η = ±1 for bosons(B)/fermions(F), (4.15)

C±
i = mimj ± p0ωi,k +m2

i , (4.16)

D±
ij =

1

2

(
p2 ± 2p0ωi,k +m2

i −m2
j

)
, (4.17)

A
(±)
ij,± = p2(±)2p0ωi,k ± 2|p|

√
ω2
i,k −m2

i +m2
i −m2

j . (4.18)

4.1.3 The purely thermal self-energy term

The purely thermal contribution to the self-energy has no real component and was found to
be

iF
(3)

FF̄
(p;m1,m2) = −i a2

4π|p|β
(
p2 − (m1 +m2)

2
)
×

×



1

eβp0−1
ln

[(
e−β(ω2,p+−µ) + 1

)(
eβ(p0−ω2,p−+µ) + 1

)(
e−β(ω2,p−−µ) + 1

)(
eβ(p0−ω2,p++µ) + 1

)] if (a),

0 if (b),

1

e∓βp0−1

{
e∓βp0 ln

[
e−β(ω2,p+∓(p0+µ))+1

e−β(ω2,p−∓(p0+µ)+1

]
+ ln

[
e−β(ω2,p+∓µ)+1

e−β(ω2,p−∓µ)+1

]}
if (c1) ∧ (d1),

1

e−βp0−1

{
e−βp0 ln

[
e−β(ω2,p±−p0−µ)+1

]
− ln

[
e−β(ω2,p±−µ)+1

]}
+

1

eβp0−1

{
eβp0 ln

[
e−β(ω2,p∓+p0+µ)+1

]
− ln

[
e−β(ω2,p∓+µ)+1

]}
if (c2) ∧ (d2).

(4.19)

Note that in this final expression for the purely thermal contribution, the mass parametersm1,
m2 should again be replaced by min{m1,m2} and max{m1,m2} respectively; cf. Sec. 3.1.3.

The (++)-component of the self-energy of the fermionic eye-diagram presented in Sec. 4.1.1-4.1.3
has not been found in the literature.
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4.1.4 Decay rate of Φ → ψ2ψ̄1

The thermal decay rate of a neutral scalar is given by Eq. (2.125) in Sec. 2.7.2. In the special
case of the two loop masses being identical, the expression for the self-energy is reduced
significantly due to the simplification of the factors C and ωi,p± . The ratio of Eq. (2.127)
may be obtained in the mass region of M2

Φ ≥ (m1 +m2)
2 were the zero-temperature decay

rate is non-vanishing. Φ is simply put on-shell so that p2 =M2
Φ. The plotted ratio can be

seen for non-relativistic, slightly relativistic and highly relativistic Φ in Fig. 7 taking the
simplification m1 = m2 = 0 as a limiting case. Then, the figure reproduces the findings of Ho
and Scherrer [28] who evaluated the loop in the imaginary-time formalism. Their result was
reproduced here in the real-time formalism. The limit as T → 0 is RΦ→ψψ̄ → 1, shown in
Fig. 8.
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Φ
→
ψ
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T/MΦ

ε = 0.001
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Figure 7: Ratio of the thermal decay
rate to the zero-temperature limit
for Φ → ψψ̄. The ratio R = ΓD/γD is
plotted for M2

Φ ≥ 4m2
ψ below which the

zero-temperature quantity vanishes. Fur-
ther, mψ = 0 was used for simplification.
Varying ε = |p|/MΦ, a parametrisation of
the three momentum of Φ, ratios are
plotted for a non-relativistic (solid and
dashed), slightly relativistic (dotted) and
highly relativistic (dash-dotted) particle
Φ. The figure reproduces the result of [28].
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Figure 8: Ratio of the thermal de-
cay rate to the zero-temperature
limit for Φ → ψψ̄. The ratio R = ΓD/γD
is plotted for M2

Φ ≥ m2
ψ, below which

the zero-temperature quantity vanishes, in
the region of low temperature. Further,
mψ = 0 is used as a simple case. Vary-
ing ε = |p|/MΦ, a parametrisation of the
three momentum of Φ, ratios are plotted
for a non-relativistic (solid and dashed),
slightly relativistic (dotted) and highly re-
lativistic (dash-dotted) particle Φ.
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5 Pseudoscalar decay into a fermion-antifermion pair

This section presents the thermal rate at which a neutral pseudoscalar particle Φ5 decays into
a fermion-antifermion pair ψ2ψ̄1 as calculated in this thesis work. One model giving rise to
such a process is

Lint = bΦ5ψ̄
1γ5ψ

2. (5.1)

The vertex factor of γ5 näıvely requires some care when computing the decay of Φ5 into
a fermion-antifermion pair through the fermionic loop in contrast to the scalar-scalar loop
considered in Sec. 3 that has no spinor structure. Masses have been assigned according to M
for Φ5 and mi for ψ

i.

5.1 The real-time self-energy of the fermion-antifermion eye-diagram

Using the interaction term of Eq. (5.1), the following eye-diagram may be drawn:

Φ5

ψ1

ψ2

Φ5
. (5.2)

The Φ5-lines connect either to external legs or vertices and will be amputated in the following
calculation of the self-energy.

As in the case of the scalar-scalar loop of Sec. 3, the self-energy of this diagram is related
to the thermal decay rate (see Eq. (2.125)). The self-energy is defined as the bubble

iIbubble(p;m1,m2) =
k

ψ2

k − p

ψ1

. (5.3)

Again, all valid combinations of propagators must be taken into account but only one compon-
ent of the self-energy is independent, see Eq. (2.114), and the evaluation of the (++)-component
is sufficient in order to extract the thermal decay rate. Note that the bubble above is very
similar to the case of an external scalar that was considered in Sec. 4. The discrepancy is
one insertion of γ5 at each vertex and this factor does not trivially commute with the fermion
propagator. The (++)-component is

iI(++)
bubble(p;m1,m2)

= i(−ib)2(−1)

∫
d4k

(2π)4
tr
[
γ5iS̃

(++)
F (k − p;m1)γ5iS̃

(++)
F (k;m2)

]
= i(−ib)2(−1)

∫
d4k

(2π)4
tr
[
−γ5iS̃(++)

F̄
(p− k;m1)γ5iS̃

(++)
F (k;m2)

]
= iI

(4)

FF̄
(p2;m1,m2) +

[
iF

(4)

FF̄
(p;m1,m2) + (F ↔ F̄)

]
+ iF

(5)

FF̄
(p;m1,m2). (5.4)



5 PSEUDOSCALAR DECAY INTO A FERMION-ANTIFERMION PAIR 42

As for the Φ → ψ2ψ̄1-process considered in the previous section, an overall minus sign appears
as well as the trace over γ-matrices. The bubble splits into four terms and the bracketed arrow
denotes the second mixed cross term. The explicit integrals are

iI
(4)

FF̄
(p2;m1,m2)

= i(−ib)2
∫

d4k

(2π)4
tr

[
γ5

i
(
(p/− k/)−m1

)
(p− k)2 −m2

1 + iε
γ5

i
(
k/ +m2

)
k2 −m2

2 + iε

]
, (5.5)

iF
(4)

FF̄
(p;m1,m2)

= i(−ib)2
∫

d4k

(2π)4
tr

[
γ5

i
(
(p/− k/)−m1

)
(p−k)2 −m2

1 + iε
γ5(−2π)

(
k/ +m2

)
nF(k0)δ

(
k2−m2

2

)]
, (5.6)

iF
(5)

FF̄
(p;m1,m2)

= i(−ib)2
∫

d4k

(2π)4
tr
[
γ5(−2π)

(
(p/− k/)−m1

)
nF̄(p0−k0)δ

(
(p−k)2 −m2

1

)
×

× γ5(−2π)
(
k/ +m2

)
nF(k0)δ

(
k2−m2

2

)]
. (5.7)

The trace may be performed in the näıve dimensional regularisation scheme since the
diagram appears at one-loop level.16 See [30] for a condensed but comprehensive and general
discussion on γ-matrices and γ5 in D-dimensional schemes. The trace evaluated in the näıve
dimensional regularisation scheme is

tr
[
γ5
(
(p/− k/)−m1

)
γ5
(
k/ +m2

)]
= 4
(
−m1m2 − p · k + k2

)
. (5.8)

The sign differences compared to the case of a decaying scalar particle are an overall positive
sign together with the minus sign in front of m1m2. The overall sign change may be reverted
by imposing hermiticity of the Lagrangian and thereby force the pseudoscalar coupling to
ψ̄1γ5ψ

2 to become purely imaginary, i.e. b = i|b|. The apparent negative mass, of either
m1 or m2, is more intriguing and signifies a fundamental difference between the scalar and
pseudoscalar decay rates.17

Apart from the mentioned differences in relative signs, the resulting self-energy integrals
for the pseudoscalar case are identical to those for the scalar case. To obtain the correct non-
thermal, mixed and purely thermal self-energy integrals it is sufficient to change the overall
sign in the scalar results as well as to replace m1 → −m1.

5.1.1 The non-thermal self-energy term

The non-thermal contribution in the case of an external pseudoscalar particle is related to
the case of an external scalar particle as

iI
(4)

FF̄

(
p2;m1,m2

)
= − iI

(2)

FF̄

(
p2;−m1,m2

)
. (5.9)

16Calculations could potentially require a more robust technique at higher loop orders. For example in the
evaluation of 3-body decays another scheme is required. [30]

17Note that the wording “negative mass” is purely a heuristic, here denoting the relative sign difference
between the scalar and pseudoscalar results.
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The right-hand side is the result of Sec. 4.1.1.

5.1.2 The mixed self-energy term

The mixed thermal contribution in the case of an external pseudoscalar particle is related to
the case of an external scalar particle as

=
[
iF

(4)

FF̄
(p;m1,m2) + (F ↔ F̄)

]
= −=

[
iF

(2)

FF̄
(p;−m1,m2) + (F ↔ F̄)

]
(5.10)

and
<
[
iF

(4)

FF̄
(p;m1,m2) + (F ↔ F̄)

]
= −<

[
iF

(2)

FF̄
(p;−m1,m2) + (F ↔ F̄)

]
. (5.11)

The right-hand side is the result of Sec. 4.1.2.

5.1.3 The purely thermal self-energy term

The purely thermal contribution in the case of an external pseudoscalar particle is related to
the case of an external scalar particle as

iF
(5)

FF̄
(p;m1,m2) = −iF (3)

FF̄
(p;−m1,m2) (5.12)

The right-hand side is the result of Sec. 4.1.3.

5.1.4 Decay rate of Φ5 → ψ2ψ̄1

The thermal decay rate of a neutral pseudoscalar is given by Eq. (2.125) in Sec. 2.7.2. The
resulting expression is similar to the case of a decaying scalar. The sign change preceding one
of the loop masses enhances the decay rate for the pseudoscalar relative to the scalar decay
rate in the region of M2

Φ ∼ (m1 +m2)
2 where Φ has been put on-shell (p2 =M2

Φ). Taking
m1 = m2 = m and normalising MΦ in units of m, the ratio ΓΦ5→ψψ̄/ΓΦ→ψψ̄ as a function of
the mass of the external (pseudo)scalar is shown in Fig. 9 for this momentum region. Close
to the equality M2

Φ = 4m2, the expression diverges which implies that the scalar decay rate
vanishes quicker than the pseudoscalar decay rate. Normalising the fermion mass to m = 1,
the ratio diverges at 2. This is a non-thermal effect, independent of temperature.

6 Emission of a (pseudo)scalar off a fermion

The interaction term of Eq. (4.1) in Sec. 4 allows for the emission of a scalar off a fermion line.
The amplitude for such emission may be evaluated by considering (pseudo)scalar corrections
to the fermion line. In this section, the thermal self-energy of the scalar-fermion one-loop
diagram is presented.

6.1 The real-time self-energy of the scalar-fermion eye-diagram

The scalar-fermion interaction term of Eq. (4.1) gives rise to the eye-diagram

ψ2

Φ

ψ1

ψ2

. (6.1)
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f
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ε = 0.001, T = 0 Figure 9: Ratio of the pseudo-
scalar decay rate to the scalar ditto.
The ratio ΓΦ5→ψψ̄/ΓΦ→ψψ̄ is plotted for

M2
Φ ≥ 4m2

ψ, fermion masses in the loop
being equal, as a function of the mass
of the decaying scalar. Here MΦ =MΦ5

for comparison and expressed in terms
of mψ. The pseudoscalar decay rate is
enhanced relative to the scalar quant-
ity close to the equality M2

Φ = 4m2
ψ.

This behaviour was verified for a broad
range of both ε = |p|/MΦ ∈ [0.001, 100]
and T/MΦ ∈ [0, 1000].

As in previous sections, the thick lines of the loop denote the full real-time thermal propagator
in its matrix structure with components of Eqs. 2.95, 2.100. The ψ2-lines may connect either
to vertices or external legs. This diagram in itself is on matrix form and represents the full sum
of thermal diagrams, similar to the case of the scalar bubble in Sec. 3, including both physical
chronological and unphysical antichronological field components. Using the convention as for
previous calculations, the self-energy matrix is defined as the bubble

iIbubble(p;m1,M) =

−k

Φ
p− k

ψ1
(6.2)

where, for the case of interest, vertices couple to fermion lines on external legs. The (++)-
component of this bubble is

iI(++)
bubble(p;m1,M)

= i(−ia)2
∫

d4k

(2π)4
iS̃

(++)
F (p− k;m1)iD̃

(++)(−k;M)]

= iI
(2)
SF

(
p;m1,M

)
+
[
iF

(2)
SF

(
p;m1,M

)
+ (S ↔ F)

]
+ iF

(3)
SF

(
p;m1,M

)
. (6.3)

The four integrals extracted above are the non-thermal contribution, the mixed thermal con-
tribution and the purely thermal contribution to the loop. The second mixed term, expressed
through the bracketed arrow, is similar to its preceding term but with the thermal term of
the fermion propagator and the non-thermal term of the boson propagator interchanged. The
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explicit forms are

iI
(2)
SF (p;m1,M)

= i(−ia)2
∫

d4k

(2π)4
i
(
(p/− k/) +m1

)
(p− k)2 −m2

1 + iε

i

k2 −M2 + iε
, (6.4)

iF
(2)
SF (p;m1,M)

= i(−ia)2
∫

d4k

(2π)4
i
(
(p/− k/) +m1

)
(p− k)2 −m2

1 + iε
2π nB(|k0|)δ

(
k2 −M2

)
, (6.5)

(S ↔ F)

= i(−ia)2
∫

d4k

(2π)4
(−2π)

(
(p/−k/) +m1

)
nF(p0−k0)δ

(
(p−k)2−m2

1

) i

k2−M2+iε
, (6.6)

iF
(3)
SF (p;m1,M)

= i(−ia)2
∫

d4k

(2π)4
(−2π)

(
(p/− k/) +m1

)
nF(p0−k0)δ

(
(p− k)2−m2

1

)
×

× 2πnB(|k0|)δ
(
k2 −M2

)
. (6.7)

6.1.1 The non-thermal self-energy term

Relevant to the emission is the imaginary part of the non-thermal contribution to the (++)-
component of the self-energy. It may be extracted by a similar procedure performed in
Sec. 4.1.1. Evaluated by dimensional regularisation techniques, the imaginary part of Eq. (6.4)
is

=
[
iI

(2)
SF (p;m1,M)

]
= − a2

32π

√
C ′ ×

p/
(
1 +

m2
1−M2

p2

)
+ 2m1 if p2 ≥ (m1 +M)2,

0 otherwise.

(6.8)

Here

C ′ =

(
1− (m1+M)2

p2

)(
1− (m1−M)2

p2

)
. (6.9)

6.1.2 The mixed self-energy term

The mixed self-energy contribution consists of two complex cross terms from the product of
the propagators: the integrals in Eqs. (6.5) and (6.6). The resulting imaginary component of
the sum of the integrals is a rather long expression when written down explicitly. For clarity,
the result is therefore presented for each momentum region separately.
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If p2 ≥ (m1 +M)2:

=
[
iF

(2)
SF (p;m1,M) + (S ↔ F)

]
= − a2

16π|p|β

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
ln

∣∣∣∣∣
(
e−βωM,p+−1

)(
eβ(ωM,p−−p0+µ)+1

)(
e−βωM,p−−1

)(
eβ(ωM,p+

−p0+µ)+1
)∣∣∣∣∣

− a2

16π|p|β2

(
−γ0 + γ3

p0
|p|

)
×
{
−β2

2

(
ω2
M,p+− ω2

M,p−

)
+ Li2

(
eβωM,p+

)
− Li2

(
eβωM,p−

)
− Li2

(
−eβ(ωM,p+

−p0+µ))+ Li2
(
−eβ(ωM,p−−p0+µ)

)
+ βωM,p+ ln

[
1− eβωM,p+

eβ(ωM,p+
−p0+µ)+1

]
− βωM,p− ln

[
1− eβωM,p−

eβ(ωM,p−−p0+µ)+1

]}
, (6.10)

where

ωM,p± =
1

2

∣∣∣∣p0∣∣∣∣1 + M2−m2
1

p2

∣∣∣∣± |p|
√
C ′
∣∣∣∣. (6.11)

Further, Li2(z) is the analytic continuation of Spence’s function, the dilogarithm

L̂i2(z) = −
∫ z

0
dτ

ln[1− τ ]

τ
, z ∈ C, (6.12)

which cancels exactly the imaginary part that arises from the negative sign of 1−eβωM,p± in
the two analytically continued logarithmic terms in Eq. (6.10).

If (m1 −M)2 ≤ p2 < (m1 +M)2:

=
[
iF

(2)
SF (p;m1,M) + (S ↔ F)

]
= 0. (6.13)

If 0 ≤ p2 < (m1 −M)2:

=
[
iF

(2)
SF (p;m1,M) + (S ↔ F)

]
= − a2

16π|p|β

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
ln

∣∣∣∣∣
(
e−βωM,p+−1

)(
eβ(ωM,p−∓(p0−µ))+1

)(
e−βωM,p−−1

)(
eβ(ωM,p+

∓(p0−µ))+1
)∣∣∣∣∣

∓ a2

16π|p|β2

(
−γ0 + γ3

p0
|p|

)
×

×
{
Li2
(
eβωM,p+

)
− Li2

(
eβωM,p−

)
+ Li2

(
−eβ(ωM,p+

∓(p0−µ)))− Li2
(
−eβ(ωM,p−∓(p0+µ))

)
+ βωM,p+ ln

[(
e−βωM,p+−1

)(
eβ(ωM,p+

∓(p0−µ))+1
)]

− βωM,p− ln

[(
e−βωM,p−−1

)(
eβ(ωM,p−∓(p0−µ))+1

)]}
. (6.14)

Here, the upper sign applies ifM ≥ m1 and the lower sign ifM < m1. Compare to the similar
case (d1) in Sec. 3.1.3.
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If p2 < 0:

=
[
iF

(2)
SF (p;m1,M) + (S ↔ F)

]
= +

a2

16π|p|β

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
×

×ln
∣∣∣(e−βωM,p±−1

)(
e−βωM,p∓−1

)(
e−β(ωM,p±−p0+µ)+1

)(
e−β(ωM,p∓+p0−µ)+1

)∣∣∣
+

a2

16π|p|β2

(
−γ0 + γ3

p0
|p|

)
×

×
{
Li2
(
eβωM,p±

)
− Li2

(
eβωM,p∓

)
+ Li2

(
−eβ(ωM,p±−p0+µ)

)
− Li2

(
−eβ(ωM,p∓+p0−µ)

)
+ βωM,p± ln

[(
e−βωM,p±−1

)(
eβ(ωM,p±−p0+µ)+1

)]
− βωM,p∓ ln

[(
e−βωM,p∓−1

)(
eβ(ωM,p∓+p0−µ)+1

)]}
. (6.15)

Here, the upper and lower signs correspond to the modified case (d2) defined in Sec. 3.1.3.
The modification is analogous to the modification of the case (d1) in the section above for
0 ≤ p2 < (m1 −M)2 and, as a consequence, the result depends on the mass hierarchy of M ,
m1.

6.1.3 The purely thermal self-energy term

The purely thermal self-energy contribution in Eq. (6.7) is purely imaginary, cf. previous self-
energy evaluations in Secs. 3.1.3, 4.1.3 and 5.1.3. The resulting expression for this term, after
momentum integration, is again rather long. Therefore, different regions of p2 are presented
separately below for clarity.

If p2 ≥ (m1 +M)2:

iF
(3)
SF (p;m1,M)

= i
a2

8π|p|β

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
1

eβ(p0−µ)+1
ln

∣∣∣∣∣
(
1−e−βωM,p+

)(
eβ(p0−ωM,p−−µ)+1

)(
1−e−βωM,p−

)(
eβ(p0−ωM,p+

−µ)+1
)∣∣∣∣∣

+ i
a2

8π|p|β2

(
γ0 − γ3

p0
|p|

)
1

eβ(p0−µ)+1
×

×
{
Li2
(
eβωM,p+

)
− Li2

(
eβωM,p−

)
− Li2

(
−eβ(ωM,p+

−p0+µ))+ Li2
(
−eβ(ωM,p−−p0+µ)

)
+ βωM,p+ ln

[
1−eβωM,p+

1+eβ(ωM,p+
−p0+µ)

]
− βωM,p− ln

[
1−eβωM,p−

1+eβ(ωM,p−−p0+µ)

]}
. (6.16)

If (m1 −M)2 ≤ p2 < (m1 +M)2:

iF
(3)
SF (p;m1,M) = 0. (6.17)
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If 0 ≤ p2 < (m1 −M)2:

iF
(3)
SF (p;m1,M)

= i
a2

8π|p|β

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
1

e∓β(p0−µ)+1
×

×
[
ln

∣∣∣∣∣
(
1−e−βωM,p+

)(
1−e−βωM,p−

)∣∣∣∣∣+ e∓β(p0−µ) ln

∣∣∣∣∣
(
e−β(ωM,p+

∓(p0−µ))+1
)(

e−β(ωM,p−∓(p0−µ))+1
)∣∣∣∣∣
]

∓ i
a2

8π|p|β2

(
γ0 − γ3

p0
|p|

)
1

e∓β(p0−µ)+1
×

×
{(

e∓β(p0−µ)+1
)β2
2

(
ω2
M,p−− ω2

M,p+

)
+ βωM,p+ ln

[
1−eβωM,p+

]
− βωM,p− ln

[
1−eβωM,p−

]
+ e∓β(p0−µ)

[
βωM,p+ ln

[
eβ(ωM,p+

∓(p0−µ))+1
]
− βωM,p− ln

[
eβ(ωM,p−∓(p0−µ))+1

]]
+ Li2

(
eβωM,p+

)
− Li2

(
eβωM,p−

)
+ e∓β(p0−µ)

[
Li2
(
−eβ(ωM,p+

∓(p0−µ)))− Li2
(
−eβ(ωM,p−∓(p0−µ)))]}. (6.18)

Again, the upper and lower signs correspond to the modified case (d1) discussed in Sec. 6.1.2
in order to take into account the hierarchy of M , m1.

If p2 < 0:

iF
(3)
SF (p;m1,M)

= −i a2

8π|p|β

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
×

×
{

1

e−β(p0−µ)+1

[
ln
∣∣∣(e−βωM,p±−1

)∣∣∣+ e−β(p0−µ) ln
∣∣∣(e−β(ωM,p±−p0+µ)+1

)∣∣∣]

+
1

eβ(p0−µ)+1

[
ln
∣∣∣(e−βωM,p∓−1

)∣∣∣+ eβ(p0−µ) ln
∣∣∣(e−β(ωM,p∓+p0−µ)+1

)∣∣∣]}

− i
a2

8π|p|β2

(
−γ0 + γ3

p0
|p|

)
1

e−β(p0−µ)+1
×

×
{
−π2

3
+
π2

6
e−β(p0−µ) +

β2

2
(p0 − µ)2e−β(p0−µ) − 1

2

(
1+e−β(p0−µ)

)
β2ω2

M,p±

+ βωM,p±

[
ln
[
1−eβωM,p±

]
+ e−β(p0−µ) ln

∣∣∣eβ(ωM,p±−p0+µ)+1
∣∣∣]

+ Li2
(
eβωM,p±

)
+ e−β(p0−µ)Li2

(
−eβ(ωM,p±−p0+µ)

)}
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− i
a2

8π|p|β2

(
−γ0 + γ3

p0
|p|

)
1

eβ(p0−µ)+1
×

×
{
−π2

3
+
π2

6
eβ(p0−µ) +

β2

2
(p0 − µ)2eβ(p0−µ) − 1

2

(
1+eβ(p0−µ)

)
β2ω2

M,p∓

+ βωM,p∓

[
ln
[
1−eβωM,p∓

]
+ eβ(p0−µ) ln

∣∣∣(eβ(ωM,p∓+p0−µ)+1
)∣∣∣]

+ Li2
(
eβωM,p∓

)
+ eβ(p0−µ)Li2

(
−eβ(ωM,p∓+p0−µ)

)}
. (6.19)

Also here, the sign cases correspond to a modified (d2).
Note that in the final expression for the purely thermal contribution, Eqs. (6.16)-(6.19),

the mass parameters m1, M should be replaced by min{m1,M} and max{m1,M} respect-
ively; cf. Sec. 3.1.3.

The (++)-component of the self-energy of the fermionic eye-diagram presented in the
above Sec. 6.1.1-6.1.3 has not been found in the literature.

6.1.4 Pseudoscalar emission off the fermion line

Analogously to Sec. 5, the pseudoscalar interaction with ψ̄1γ5ψ
2 provides an additional vertex

factor of γ5 compared to the case of scalar emission considered in the previous three sections.
In the näıve dimensional regularisation scheme, γ5 anticommutes with the γ-matrix in the
numerator of the fermion propagator and thereby provides an overall sign change together
with a sign change of the numerator mass m1. These sign changes are stated relative to
the obtained results of Secs. 6.1.1-6.1.3 and a conclusion completely analogous to Sec. 5 is
reached.

6.1.5 Scalar emission rate of the process ψ2 → ψ1Φ

The thermal rate for the scalar emission provided in this section is given by Eq. (2.125) in
Sec. 2.7.2. In order to extract a probability observable from the self-energy presented in
Secs. 6.1.1-6.1.3, that carries spin structure, it is advisable according to Weldon, (2.23) [13]
to define

Σ(p) = ū(p)iI(++)
bubble(p;m1,M)u(p). (6.20)

This is the bubble contracted with incoming and outgoing states. These states satisfy the
Dirac equation (p/−m)u(p) = 0 as well as ū(p)u(p) = 2

√
p2. In terms of Σ, the discontinuity

over the real axis of this new scalar function may be related to the thermal decay rate. More
specifically, the contraction of the three different pre-factors that appear in the self-energy
and which contain explicit γ-matrices, is of interest. Assuming the external ψ2 to be on-shell
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(p2 = m2
2), the contraction results in

ū(p)

(
p/
(
1 +

m2
1−M2

p2

)
+ 2m1

)
u(p) = 2

[
p2 +m2

1 + 2m1

√
p2 −M2

]
= −2M2

(
1− (m1+m2)

2

M2

)
, (6.21)

ū(p)

(
p/+ γ3

−p2+m2
1−M2

2|p|
+m1

)
u(p) = p2 +m2

1 + 2m1

√
p2 −M2

= −M2

(
1− (m1 +m2)

2

M2

)
, (6.22)

ū(p)
(
−γ0 + γ3

p0
|p|

)
u(p) ≡ 0. (6.23)

The ratio of Eq. (2.127) may be obtained in the mass region of m2
2 ≥ (m1 +M)2 when

putting the external ψ2 on-shell (p2 = m2
2). The plotted ratio can be seen in Fig. 10 for a

non-relativistic, slightly relativistic and highly relativistic incoming particle ψ2. The figure is
concerned with the limit m1 =MΦ = 0, in which the ratio is not sensitive to m1, M . In the
limit T → 0 the decay ratio Rψ2→ψ1Φ → 1.

0
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10

0 10 20 30 40 50

R
ψ
2
→
ψ
1
Φ

T/m2

ε = 0.001
ε = 1
ε = 10
ε = 100

Figure 10: Ratio to the zero-
temperature limit of the emission
rate of a scalar off a fermion line.
The ratio R = ΓD/γD is plotted for
m2

2 ≥ (m1 +MΦ)
2, below which the zero

temperature quantity vanishes. Fur-
ther, m1 =MΦ = 0 is used as a simple
case. Curves display ratios for vary-
ing ε = |p|/m2 that parametrises the
three-momentum for a non-relativistic
ε ∈ {0.001, 1, 10, 100}, slightly relativistic
ε = 0.001 and highly relativistic ε = 100
incoming particle ψ2.

The linear dependence of the self-energy on T seen in Fig. 10 is initially surprising in com-
parison to the quadratic dependence of the self-energy of the scalar-scalar loop seen Fig. 6.
This difference in behaviour may be argued for [31] in the high-temperature limit. Then, the
dependence on temperature of the free propagator comes from the term proportional to the
thermal distribution function n(|k0|), see Eq. (2.95). Expanding this function at high temper-
atures (small β) results in different powers of T of the leading term for bosons and fermions
respectively. For bosons, the temperature-dependence of the propagator is proportional to T
while the leading term for the fermion propagator is constant in T . Hence, it is seen that for
T → ∞, the scalar-scalar loop of Sec. 3 contains a term that is quadratic in T (the purely
thermal part) while the scalar-fermion loop of Sec. 6 contains terms proportional only to T .
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7 Summary and conclusions

Thermal effects on observables have caught the interest of theoretical physicists over the
last 50-60 years. Results are scattered in the literature and this thesis work presents a col-
lection of decay rates for a theory containing generic (pseudo)scalar bosons and fermions.
Several one-loop calculations were performed within the scope of this thesis using a very
general formulation of thermal quantum field theory presented by Wagner [15]. Components
of the self-energy were related to a quantity interpreted as the thermal decay rate of a field
in an equilibrated medium. A (pseudo)scalar decaying into a (pseudo)scalar pair was con-
sidered as well as a (pseudo)scalar decaying into a fermion-antifermion pair. The rate of a
(pseudo)scalar emission off a fermion line is also provided. For all these processes, except for
the (pseudo)scalar decay to a fermion-antifermion pair, an enhancement of the thermal decay
rate was found relative to the corresponding zero-temperature decay rate. In the case of a
(pseudo)scalar decaying into two distinct (pseudo)scalars, this enhancement is quadratically
growing with temperature, see Fig. 6a-c. Considering instead a scalar emission off a fermion
line, the T -dependence is linear for high temperatures, see Fig. 10.

An interesting suppression is present in the case of a fermion-antifermion final state from
an incoming (pseudo)scalar. The rate of this process was shown to be 0.25 times the zero-
temperature quantity at high temperatures. From private communications with J. Bijn-
ens [32], and by studying the imaginary-time analysis by Weldon [13], it is clear that the
real-time self-energy is proportional to one factor of (1− nF/F̄) for each outgoing fermion/an-
tifermion. According to Weldon, this statement remains valid in the imaginary-time formalism
for an n-particle final state and it is therefore expected to hold when more than two particles
appear in the final state also in the real-time formalism. Hence, the outgoing particles are
accompanied by Pauli suppression through the distribution function nF; at high temperat-
ures, this distribution approaches 1/2 and the outgoing particles are Pauli blocked by medium
particles with this probability. This fundamental effect is manifested in Fig. 7.

The one-loop self-energy for (anti)commuting fields had previously been written down in
the imaginary-time formalism by Weldon [13]. Ho and Scherrer [28] extracted decay rates
for the processes of Secs. 3-4 using the results of Weldon. This thesis confirms the thermal
decay rate of [28] in the referenced sections within the real-time formalism. The decay rates
have been further extended beyond the results of [28] to include chemical potentials, and,
more importantly, the loop masses have been allowed to take on different values. Hence,
a new momentum region 0 ≤ p2 < (m1 −m2)

2 has been investigated for a (pseudo)scalar
decaying into two (pseudo)scalars, a region in which decays are kinematically forbidden in
zero-temperature theory.

The explicit real-time self-energy of the scalar-scalar loop has been published in [23] and
was reproduced in this work. The equivalent quantity for the fermion loop has not been
found in literature, although, for anticommuting fields, it appears in [13] in the imaginary-
time formalism. However, the loop was presented there without the effects of spinor structure
which has been incorporated in this thesis. The calculated decay rate of Fig. 7 reproduces
the imaginary-time result of [28] if the loop-masses are taken to be identical.

The explicit real-time self-energy of the scalar-fermion loop has not been found in liter-
ature. Formally, the thermal decay rate is extracted from this self-energy, see Fig. 10. It
is presented here as a hypothetical decay process not present within the framework of the
Standard Model. Nevertheless, the thermal decay rate is presented in order to contribute to
a complete understanding of the observables of thermal quantum field theory.



REFERENCES 52

Lastly, the decay rate for a pseudoscalar transitioning into a pair of pseudoscalars, see
Sec. 3, provides a provoking thought in relation to the baryon asymmetry problem. Through
discussions with Antonio Rodŕıguez-Sánchez [33], the thought of important thermal effects
on kaon-decays was lifted. The Standard Model provides the decay channels K0 → π0π0 and
K̄0 → π0π0, all of which are pseudoscalars. From the results of Fig. 6a-c, it may be expected
that, after a careful analysis of those decays out of equilibrium, thermal effects could enhance
both decay channels at high temperatures. If the amplitude of the two processes are different,
thermal enhancement could provide a mechanism for significant CP violation. The violation
of CP-symmetry is essential for the production of matter and antimatter at different rates
according to the Sakharov conditions and hence necessary for explaining the observed lack of
antimatter. It is therefore conceivable that a careful thermal treatment of the neutral kaon
decay might shed light on the so far unexplained baryon asymmetry of the Universe. However,
it is imperative to analyse the possibility to fulfil the remaining conditions of baryon number
violation as well as out-of-equilibrium interactions.
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