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Abstract
Active suspensions of microswimmers such as bacteria or microalgae are found in oceans or
lakes, and within living organisms, such as the human body. These suspensions can exhibit
complex flow patterns and enhanced diffusion of passive tracer particles due to the advection
from the long-ranged dipolar flow fields of the swimmers. The diffusion of tracers at varying
radii is poorly understood but one recent experimental study points to a non-monotonic be-
haviour with a certain radius that maximizes diffusion. In this thesis, we study the effect of
nonlinearities in the flow field on the effective diffusion of spherical tracer particles. To do
so, we model the swimmers as force dipoles which create a known fluid field around them.
In a single-swimmer-single-tracer simulation this field is used directly to study the advection
while a lattice Boltzmann simulation allows for many-particle simulations. For non-interacting
swimmers, corresponding to very dilute suspensions, we find that the diffusion coefficient as a
function of tracer radius is non-monotonic, although it is convex in the probed range. However,
the simple one-swimmer-one-tracer simulation indicates that the many-particle simulation is
only valid below a certain tracer radius (R0 = 2.5 × the swimmers’ length) where the func-
tion is slightly decreasing. In this range, for interacting swimmers, the effect of interaction is
increased for both of the studied swimmer types, pushers and pullers.
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1. Introduction

Figure 1.1: The fluid velocity in one
plane of a 3D microswimmer simu-
lation where vectors show the veloc-
ity field in the plane and the colours
indicate its out-of-plane component.
Adapted from [1] with permission
fromThe Royal Society of Chemistry.

Bacteria are one of the earliest forms of life on earth and
while they seem simple when compared to the human
organism, they are still actively researched in several
disciplines. For physicists, one interesting aspect about
them is their collective behaviour, in other words, how
they swim together in a suspension of many other bac-
teria. While each and every one of them can swim inde-
pendently, they swim in a correlated fashion once they
overcome a critical density. Just like birds or fishes,
they dispose of some advanced means of communica-
tion (chemotaxis and quorum sensing) but in 3D the
correlations are mainly a result of their individual fluid
flows interacting. Large scale simulations have shown
exactly this [2] and a result from such a simulation can
be seen in figure 1.1.

Many swimming microorganisms can be classified as
either pushers or pullers. Pushers have flagella at-
tached to their rear end that rotate and thus propel
the swimmer forward, the pullers’ flagella achieve this
by “breaststrokes”. In doing so, they create flow fields
whose far field has a dipolar structure [3]. A good
model for pusher is a positive force dipole, as indicated
in figure 1.2. The most iconic example is the Escherichia coli (E. coli) bacterium (around 2 µm
in size) and one puller example would be the algae Chlamydomonas (around 20 µm in size). The
puller model is very similar to the pusher one, only that the forces would point inwards. These
simple models explain why pusher and puller suspensions differ greatly when their density is
high. For example, pushers exhibit active turbulence, pullers do not [1] and this is a result
entirely due to hydrodynamic interactions.

The cartoon figure 1.2 also includes a tracer particle that is modeled as a simple sphere (usually
bigger than the swimmer). In nature, such particles could be nutrients or just sand that is
stirred up in oceans. Without microswimmers, passive particles would still move by thermal
diffusion (always damped by fluid viscosity). This is a result from collisions with the fluid
molecules, and leads to random trajectories, called Brownian motion. If the fluid additionally
contains bacteria (or other self-propelling particles), equilibrium is never reached because the
bacteria create flows, inject energy and generate mechanical stresses. The resulting behaviour
is then categorised under non-equilibrium thermodynamics. However, the tracers can still be
considered to be diffusive, only that now there is an additional active diffusion term.

As such, the natural first factor to study when inserting tracers into swimmer baths is their
diffusivityD. It turns out that it can be greatly enhanced compared to regular Brownian (ther-
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CHAPTER 1. INTRODUCTION

mal) diffusivityD0 [4]. In the early days of active matter research, the diffusivity was only ever
observed to increase linearly with bacteria concentration n [5]. Using different experimental
parameters, this was since then corrected to hold only at sufficiently low bacteria concentration
where there is no collective motion [6]. An explanation for this effect is tracer advection in the
swimmers’ field that adds an active diffusion term DA to D0 [7]. This approach is also taken
in this thesis although it strictly holds only at low concentrations.

Figure 1.2: A bacteria with rotating
flagella is modelled as a positive force
dipole. The blue arrows indicate the
surrounding mean flow field. Tracers,
usually bigger than the swimmers, are
modeled as spheres.

It is already known that the diffusivity of point-like
tracers is enhanced in pusher suspensions as compared
to puller suspensions [2]. But instead of further in-
vestigating the well studied dependence on swimmer
density n, it is the radius R0 of the tracers that we
will focus on here. The pioneers of tracer diffusion re-
search suggested that, at least for large particles (R0 >
4.5 µm), diffusion scales as 1/R0 [8]. They based this
on an argument of friction - just as in passive flu-
ids. More recently, a simplified theory and simulation
predicted non-monotonic size behaviour [9] based on
the interplay between active and passive diffusion. A
separate experimental observation also showed a non-
monotonic behaviour [10]. In this thesis we investigate

the connection between non-linearities in the flow field and the diffusion as a function of tracer
radius.

Understanding the effects of size on particle dynamics is important because tracers are used, for
example, to gauge the activity of a fluid. If different particle sizes give rise to different diffusion
constants, keeping everything else constant, fluids might be mischaracterized if one is careless
about this effect. In nature, bacteria density and tracer size (e.g. nutrients) have surely co-
evolved to an optimal condition but if one wants to exploit diffusion for technological purposes
(such as drug delivery), one must find alternatives to the ever so slow process of trial and error.
Finding a good model that could predict the size behaviour even at high bacterial densities is
therefore indispensable. For this purpose, a reliable theory and efficient numerical simulations
are needed.

If a theory of advection only takes into account fluid flow, an excellent way to simulate its
effects would be to use the numerical lattice Boltzmann method (LBM) because it offers the
possibility to simulate a comparatively large number of swimmers (N > 106). Just such an
analytical theory has been developed in 1922 by the Swedish physicist Hilding Faxén [11] and
the more recently developed lattice Boltzmann code LBSWIM from Lund [12] could easily be
modified to include his correction.

The thesis therefore starts off with the theory of fluid flow, in particular Faxén’s law that describes
advection of a passive particle in laminar flow. Thereafter, the necessary theory for diffusion
is introduced. Then, the microswimmer model is described. The method section reviews the
lattice Boltzmann approach and compares it to a semi-analytical method. Results are presented
for both non-interacting and interacting systems and their validity is discussed by making use
of the results from the semi-analytical method.
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2. Background and Theory

2.1 Fluid Flow at Low Reynolds Number

This thesis deals with swimmers and tracers suspended in a fluid. The swimmers self propel,
exerting forces on the fluid, and thus stir up their surroundings. The other swimmers and the
passive tracers are affected by the motion of the fluid and advect. To know the strength and
direction of the velocity field u at a certain point and time, the Navier-Stokes (NS) equations
can be solved. This set of differential equations is the equivalent of Newton’s second law for
fluid motion. In their most general form, they are quite involved and complicated enough so
that it has not yet been proven whether they can always be solved in three dimensions [13].
In our domain, however, the so called Reynolds number, Re, is very small which leads to a
simplification. By definition, Re = ρUL/µ, where ρ is the fluid density, µ is the dynamic
viscosity, and L and U are the characteristic length and velocity. The Reynolds number is the
ratio of inertial to viscous forces in a fluid. Inertial forces are due to the momentum of the fluid
which increases with fluid density and velocity. Between regions of different velocities friction
arises and turbulent flow may be the result. The fluid viscosity, however, inhibits turbulence
such that fluids with low Re exhibit laminar flow. Swimming E. coli in water, for example,
has Re ≈ 10−4 [14], low enough for the Navier-Stokes equations to simplify to the Stokes
equations,

−∇P + µ∆u = 0 (2.1a)
∇ · u = 0, (2.1b)

where u is the velocity of the fluid, P is the pressure, and µ is the dynamic viscosity. Fluid
flow described by these equations is called Stokes flow or creeping flow. Apart from its applica-
tions to microorganisms, it also describes the flow of lava, which provides a useful macroscopic
visualization of the creeping motion.

2.2 Faxén’s law

Once the fluid velocity u is found, it is still not obvious how a particle would react to it. The
Swedish physicist Hilding Faxén made this the topic of his dissertation published in 1922,
considering spherical particles of radius R0 [11]. Faxén’s law thus states that the force F on
such a suspended tracer is given by

F = 6πµR0

(
1 +

R2
0

6
∆
)
u− 6πµR0U , (2.2)
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2.3. DIFFUSION

where U is the tracer velocity and the first term is evaluated at the sphere’s center. Without an
external force, F = 0, the equation can simply be solved for U . Furthermore, the derivative
term is commonly neglected when the velocity field does not change much over distances∼ R0.
In this case, one says that the tracer is simply advected, i.e. U = u. It is justified when R0

is small. Experimental evidence confirms that there are indeed regimes in which the enhanced
diffusion coefficient is independent of tracer size [15, 16, 17]. Other studies, however, detect a
non monotonic behaviour of active diffusion with respect to tracer size [10]. One explanation
for this relies simply on collisions between swimmers and tracers. The evidence for this is based
on observations of individual collisions [18] and it could not yet be excluded that the extra
term in Faxén’s law also contributes to the behaviour.

2.3 Diffusion

Already in the previous section, the term diffusion was mentioned several times. Most generally,
diffusion is the intermingling of substances by the natural movement of their particles [19].
The net flow of, for example, tracers from a region of high concentration to a region of low
concentration results partly from random thermal motion. To begin with, we assume that the
tracers are solely such random walkers and we will see later how things change when advection
is also taken into account.

2.3.1 Mean Square Displacement and Brownian Motion

In our case, the tracers are equally distributed and there will be no net flow. However, the indi-
vidual tracers will still move about and it is useful to introduce the mean square displacement
(MSD), a measure of how much space each random walker explores in a given time. At time
t, it is defined as

MSD ≡ 1

N

N∑
i=1

∣∣x(i)(t)− x(i)(0)
∣∣2, (2.3)

whereN is the total number of particles, x(i)(0) is the starting position of the ith particle, and
x(i)(t) is the position of the ith particle at time t. In experiments or simulations, the particles
can easily be tracked and theMSD computed. Often it is the diffusion constantD that is then
plotted as a function of, for example, particle size. The diffusion constant is defined as a factor
in the diffusion equation:

∂ϕ(r, t)

∂t
= D∇2ϕ(r, t), (2.4)

where ϕ(r, t) is the density of the diffusing material. To derive the relation between D and
MSD in the case of Brownian (random) motion, ϕ(r, t) is replaced by the probability density
function for a particle (this is the method originally used by Einstein). It is then easy to show
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2.4. REVIEW OF EXPERIMENTAL RESULTS

that the probability to find a particle at x is a Gaussian centered around the initial position
x(0) [20]. From this it follows (not trivially) that in three dimensions

MSD = 6Dt. (2.5)

Einstein also obtained a relation betweenD and the atomic properties of matter. Named in his
honour, the Stokes-Einstein relation reads

D =
kBT

6πµR0

, (2.6)

where kB is Boltzmann’s constant and T is temperature.

2.3.2 Langevin Equation and Active Diffusion

Another method that leads to the same results was pioneered by the French physicist Langevin.
The Langevin equation describes the motion of a Brownian particle immersed in a liquid at
temperature T :

dx

dt
= −1

γ

dV (x)

dx
+ ηT , (2.7)

where V (x) is a potential, γ is the particle friction coefficient and ηT is thermal noise char-
acterized by ⟨ηTα (t)ηTβ (t′)⟩ = 2DT δαβδ(t − t′) and DT = µkBT (α and β representing
Cartesian components). This method is particularly useful because it allows us to add an-
other type of noise, an active one, ηA, that is due to the swimmers’ velocity field. If this
active noise is described by an Ornstein-Uhlenbeck process (a random walk with a tendency
to move back towards its center [21]), its correlation function is given by ⟨ηAα (t)ηAβ (t′)⟩ =
DAδαβ exp(−|t− t′|/τa)/τa. Adding it to Eq. 2.7 the MSD can be computed:

MSD(t) = 2DT t+
L2

τa
[t− τa(1− e−t/τa)], (2.8)

where L is a characteristic distance along which the swimmers drag (on average) the parti-
cle [22]. The characteristic cross-over time τa corresponds to when tracers transit from an
initially ballistic regime for t ≪ τa to a diffusive regime with for t ≫ τa. This becomes clear
when looking at an exemplary log-log plot of this equation as in Fig. 2.1 whereDT = 0. In this
case, we find D = DA = L2/6τa because in the long time limit the MSD needs to approach
Eq. 2.5.

2.4 Review of Experimental Results

We mentioned previously that the diffusion coefficient can vary non-monotonously with re-
spect to tracer size [10]. Now that τa has been introduced, it is suitable to show the two figures
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2.5. FORCE DIPOLE MODEL

Figure 2.1: A log-log plot of Eq. 2.8 with arbitrary parameters L2 and τa and DT = 0.

from this paper, which our simulation tries to replicate. In experiments, one cannot avoid
thermal diffusion, but its diffusion coefficient can be computed from Eq. 2.6 and then simply
subtracted from the measured diffusion to obtain the active diffusion coefficient DA. This is
what the authors of ref. [10] have done, and the plot for DA with respect to tracer diameter d
is shown in Fig. 2.2 (a). Next to it, the plot for the cross-over time as a function of d is repli-
cated. As we can see, DA as a function of particle size is non-monotone for all tested bacterial
concentrations c. The cross-over time τa (τ in the figure) increases monotonically with tracer
diameter.

Figure 2.2: (a) Active particle diffusivities DA versus particle diameter d at varying bacterial
density c. (b)The crossover-time τa (in figure: τ ) increases with d, scaling as approximately dn,
where 1/2 < n < 1. Adapted from [10] with permission fromTheRoyal Society of Chemistry.

2.5 Force Dipole Model

Many biological microswimmers self-propel by turning rear attached flagella counterclockwise,
examples are the bacteria Escherichia coli and Salmonella typhimurium [14, 23]. The flagellar
bundle traces out a helix with a contour length ∼ 10 µm propelling the organism to speeds
of up to vs = 20 − 60 µm/s. If one or more flagella changes rotational direction, the flagel-
lar bundle disintegrates leading to a change in the direction p of the swimmer, resulting in a
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2.6. POINT FORCE DIPOLE APPROXIMATION

run-and-tumble motion. Such swimmers are called pushers and they can be modeled as a force
dipole characterized by two equal forces F a distance l apart (see Fig. 2.3). Pullers are similar
only that their forces point inwards, resulting in entirely different interactions and collective
motion [2]. Mechanically, this is achieved by “breaststrokes”; an example is the algae Chlamy-
domonas. Putting all the relevant parameters together, swimmers in a liquid are characterized
by their dipole strength κ = ±Fl/µ, where µ is the dynamic viscosity of the liquid, and κ < 0
for pullers and κ > 0 for pushers. Because of how they reorient each other, pushers lead to
large scale correlations, and pullers do not (see Fig. 2.3 for two-body interactions).

Figure 2.3: a) Bacteria such as E. coli are “pusher swimmers”, whose flow field is modeled by
a positive force-dipole (red arrows). Two converging pushers reorient each other (gray arrows
indicate swimming direction, blue arrows reorientation), leading toward a configuration with
parallel cells swimming side-by-side. b) The “breaststrokes” by pullers lead to a negative dipole
field such that two diverging pullers reorient each other, leading toward a configuration of
antiparallel cells, swimming away from each other.

2.6 Point Force Dipole Approximation

The lattice Boltzmann method uses the model of the force dipole to extrapolate the fluid be-
haviour at certain points. Another approach is based directly on the velocity field of a pusher
in the point force dipole approximation:

u(r) =
P

|r|2
[3(r̂ · d′)− 1]r̂, r̂ =

r

|r|
, (2.9)

where p = κ/8π, d′ is the unit vector in the swimming direction, and r is the distance vector
relative to the dipole center. This can be used because the field of the point dipole is equivalent to
that of an extended dipole at large separations. It was experimentally shown that many bacterial
swimmers’ flow fields can be well described by this equation, as can be seen in Fig. 2.4. From
this, it could be extrapolated that p = 31.8 µm3/s (for E. coli swimming at an average speed of
vs = 22 µm/s).

This point dipole approximation is used in a simulation that assumes low swimmer density
n. How to find an approximate diffusion coefficient of one tracer in such suspensions will
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2.6. POINT FORCE DIPOLE APPROXIMATION

Figure 2.4: Average flow field created by a single freely swimming E. coli bacterium. Streamlines
indicate the local direction of flow, and the color indicates flow speed magnitudes. (B) Best-fit
force dipole flow to the experimental flow field. (C) The difference between the best-fit dipole
model and the measured field. Adapted from [24].

take up the remainder of this section. Without loss of generality, swimmers will be moving a
distance λ with speed Us from left to right horizontally. This is the average distance a swimmer
would stay on a straight path before tumbling in a random direction. During this time, a tracer
is advected in the flow field, which is referred to as scattering. One such event results in an
average tracer displacement of ∆ that depends on the initial distance to the swimmer. Thus,
two relevant parameters are the initial perpendicular distance to the particle, a > 0, and the
relative distance b between the start of the trajectory and the point of initial closest approach
(see Fig. 2.5).

Figure 2.5: Sketch of a scattering event between a swimmer and a tracer: a is the shortest
distance between the swimmer’s trajectory and the tracer’s original position, and b is the dis-
tance between the swimmer’s initial position and the point of closest approach. The total dis-
tance travelled by the swimmer is λ and ∆ denotes the tracer’s net displacement. Reproduced
from [25] with permission fromThe Royal Society of Chemistry.

Following Morozov and Marenduzzo [25] (who in turn followed Lin et al. [26] and who them-
selves were inspired by Einstein’s theory of Brownian motion [27]), the diffusion coefficient
can be found by considering M such events with different a and b that happen during time t.
If the tracer starts at the origin, its position after all these encounters is given by
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2.6. POINT FORCE DIPOLE APPROXIMATION

r(t) =
M∑
k=1

∆(ak, bk)r̂k (2.10)

where r̂k is a direction vector. The swimmers are assumed identical and non-interacting, and
the scatterings are taken to be statistically independent. Their swimming directions are assumed
isotropically distributed. Also, ak and bk are identically distributed for each encounter. In this
case, the mean square displacement is given by

MSD = ⟨|r(t)|2⟩ = M(t)⟨∆2(a, b)⟩a,b, (2.11)

where ⟨...⟩a,b is the average over all possible scattering parameters a and b. This average can be
written as an integral and the number of encounters can be found easily: during time t, each
swimmer changes its directions Ust/λ times, so that M(t) must be proportional to this. In
3D, the number of swimmers in a ring of radius r and thickness dr around the target particle is
4πnr2dr, where n is the number density of swimmers. Equation 2.11 can therefore be written
as

MSD = n
Ust

λ

∫ ∞

0

da

∫ ∞

−∞
db2πa∆2(a, b) = 6Dt, (2.12)

where the last equality comes from Eq. 2.5 and the integral has been changed from spherical
coordinates to a and b coordinates. In an approximation, the infinite boundaries can be replaced
by values of a and b where the tracer displacement becomes negligible. To aid evaluation of the
integral we introduce σ =

√
p/U and substitute a = σeξ, b = λχ, and ∆ = σ∆̃. We then

conclude that

D = AnUσ4, (2.13)

where

A =
π

3

∫ ∞

−∞
dξ

∫ ∞

−∞
dχe2ξ∆̃2(ξ, χ). (2.14)

This integral can be computed by numerically evaluating the integrand for a sufficient set of
scattering parameters a and b. The errors at the grid boundaries are small since the integrand
is very small there. Note, that even though we included n here, the derivation does not hold
for an arbitrary many-body simulation because it assumes very dilute suspensions. This was
important to be able to consider the encounters independent of each other (Eq. 2.11).
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3. Method
The last part of the theory chapter leads directly to the method chapter where we first describe
how the correction to Faxén’s law can be simulated in the point force dipole approximation. We
then explain how this can be useful to judge the validity of our many body simulation before
the latter is described in detail.

3.1 The Point Dipole Method

The point force dipole approximation is easy to implement because we know the velocity field,
Eq. 2.9. If the tracer is simply advected, i.e. U(r) = u(r), its total displacement ∆ is found
by updating its path in the fluid as the swimmer moves along (in discrete time steps) and then
subtracting final from initial position. Including the Faxén correction is only slightly more
complicated because the derivative is known analytically (tedious by hand but a Mathematica
script can help to find it):

∆u(r) =
6p

r4
[(1− 5(r̂ · d′)2)r̂ + 2(r̂ · d′)d′], (3.1)

which has a component in the swimmer’s direction d′. At each time step, the tracer velocity is
then found via Eq. 2.2 and its position is updated. Then, the swimmer continues and we start
over. The first reason why this is helpful for the many body simulation is because it allows us to
easily check if a cut-off radius might be necessary: it might be essential to not update the tracer
when it comes to close to the swimmer. If needed, this simple simulation should also help in
choosing what this radius should be.

The second benefit is comparing the analytical derivative with the numerical approximation.
A discrete Laplacian in 2D is obtained by considering the velocity field at the point of interest
and four points around it:

∆f(x, y) ≈ f(x− h, y) + f(x+ h, y) + f(x, y − h) + f(x, y + h)− 4f(x, y)

h2
, (3.2)

where h is an appropriately small distance. In 3D the approximation is almost the same, the
initial pattern just has to be extended to include z and the number 4 has to be replaced with 6.
To increase accuracy, it is also possible to include not just immediate lattice neighbours [28].
Comparing the results of the discrete method with the analytical one (using Eq. 3.1), it is
possible to choose the appropriate h, decide whether the higher order approximation is called
for, or if the numerical approximation is valid at all.

10



3.2. THE LATTICE BOLTZMANN METHOD

In units where the length is measured in micrometers and time in seconds, we set p = 32, a time
step of 0.001, a swimmer velocity of 22 and λ = 10. This is used to simulate E. coli [24].

3.2 The Lattice Boltzmann Method

To be efficient, a many body simulation must rely on different methods than the ones discussed
previously. An unique way to solve for the NS fluid flow is the lattice Boltzmann method which
is described in the remaining part of this chapter.

3.2.1 An intuitive approach to the LBM

The NS equations can be quite difficult to solve analytically but there are many computational
alternatives. Traditional computational fluid dynamics (CFD) would start by discretizing the
Navier-Stokes equations and then solving them, numerically, for the desired boundary condi-
tions. This approach, however, can be quite tedious to implement and has difficulties dealing
with complex boundaries [29].

In the early 1990s, the lattice Boltzmann method was developed starting from an entirely dif-
ferent perspective: consider the fluid to be an ideal gas that has no macroscopic velocity and is
in thermal equilibrium at temperature T . In three dimension, its molecules’ thermal velocities
vc will be distributed according to the Boltzmann distribution:

P (vc) =
( m

2πkBT

)3/2

e−m|vc|2/2kBT , (3.3)

where m is the molecular mass. Integrating this function over a range of velocities gives the
probability of a molecule to have a velocity in that range; the equation is simply the Boltzmann
factor e−E/kT , withE = 1

2
m|vc|2 and a normalization factor. When the function is integrated

over the whole range, the normalization factor guarantees that this integral equals unity. In
the LBM, we consider collections of molecules that move together in the same direction. As
such, it is a mesoscopic method and not a microscopic one (which would treat every molecule
individually) nor a continuous one (solving for the continuous vector field directly in traditional
CFD). The movement of each collection of molecules can be solved in parallel and allows for
great computational efficiency.

The lattice Boltzmann method discretizes both space and time, allowing only certain velocities.
This thesis uses a D3Q15 algorithm, meaning that space is discretized in three dimensions with
15 allowed displacement vectors ξi (zero being one of them, see Fig. 3.1). One can imagine to
use even more velocity components for better accuracy but this would entail a computational
cost.

At each time step t, each lattice site x is associated to 15 different probability distributions
fi(x, t), the densities that are moving in the direction ξi. The total density ρ can be computed
from these, as well as the macroscopic velocity u. Different fi at the same lattice point should
eventually come to equilibrium and an obvious next step would be to set all the 15 densities
equal to these equilibrium values. In real ideal gases, collisions among the molecules would
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3.2. THE LATTICE BOLTZMANN METHOD

Figure 3.1: The three-dimensional lattice model D3Q15.

bring them closer to this thermal equilibrium. Because the time scale for reaching equilib-
rium need not be identical to the simulation time step, it is more general to approach equilib-
rium:

f new
i = f old

i − 1

τ
(f old

i − f
eq
i ), (3.4)

where τ = 1wouldmean relaxation to equilibrium at each time step. Once this is done for each
lattice site, all the moving molecules are put into adjacent or diagonal lattice sites by copying
the appropriate values of fi. This last step is called streaming, while the first steps are referred to
as collisions. Alternating them leads to the same large-scale flow behavior as the NS equations
would predict (at least if certain conditions are met, such as fluid flowing slower than the speed
of sound). It is easy to include boundaries or obstacles by making the fluid that would flow
into them in each streaming step reflect in the opposite direction instead.

3.2.2 The Boltzmann Equation

The lattice Boltzmann equation governs how the discrete distribution function evolves over
time. To motivate it, based on the intuition gained in the previous sub-section, we start from
the continuous case, where we have f(x, ξ, t) instead of fi(x, t) where ξ is velocity, following
the notation in [30]. Integration yields relevant macroscopic quantities such as density ρ:

ρ =

∫
f(x, ξ, t)dξ (3.5)

Momentum density ρu, energy density Eu, and other quantities can be computed from other
moments of f (integrals of f , weighted with some function of ξ).

The redistribution of the fluid density (the streaming step) is done after the collision step that
equilibriates the different f ’s. We therefore write

df

dt
= Ω(f), (3.6)
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3.2. THE LATTICE BOLTZMANN METHOD

omitting to explicitly write the dependencies (x, ξ, t). The source term Ω(f) is called the
collision operator. Since all the dependencies are functions of t we can rewrite this as

∂f

∂t
+ ξβ

∂f

∂xβ

+
Fβ

ρ

∂f

∂ξβ
= Ω(f), (3.7)

where dxβ

dt
= ξβ , and, from Newton’s second law, dξβ

dt
= Fβ/ρ. The index notation for vectors

follows the Einstein summation convention. The form of Ω(f) may not be chosen arbitrarily
because mass, momentum and translational energy must be conserved. An elegant choice is
the Bhatnagar–Gross–Krook (BGK) collision operator:

Ω(f) = −1

τ
(f − f eq), (3.8)

where f eq is defined shortly. Equation 3.7 is called the Boltzmann equation and it has a simple
interpretation as an advection equation: the first two terms on the left represent the advection
of the distribution function f with the velocity ξ of its molecules. The third term accounts
for forces affecting this velocity, and the source term on the right hand side represents the local
redistribution due to collisions.

The function for f eq in three dimensions can be uniquely determined from the average fluid
velocity u and the density ρ:

f eq(ρ,u, T, ξ) = ρ
( m

2πkBT

)3/2

e−m|ξ−u|2/2kBT . (3.9)

Maxwell arrived to this conclusion by demanding that f eq has the same moments of density
and energy as f . The fact that it is unique was later shown by Boltzmann who used more
fundamental statistical mechanics. This is why f eq is called the Maxwell-Boltzmann distribu-
tion. Equation 3.3, which gave us some intuition, is actually not the starting point for many
textbooks but it is here that they first introduce this well known distribution.

3.2.3 The Lattice Boltzmann Equation

We will now simply state the most important results from discretization. To derive these rigor-
ously, some pages of math using Hermite polynomials are required, while their implementation
is quite simple. The velocity is no longer continuous so we again write ξi, i going from 0 to 15
in our case. For convenience we introduce a new particle velocity ci = ξi/

√
3. With this, the

discrete equilibrium distribution reads

f eq
i = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (3.10)

where cs is a constant (actually, it can be interpreted as the speed of sound). The weights wi,
in our specific case, are 2/9 for i = 0, 1/9 for going to the close sides of the square (i from 1
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3.2. THE LATTICE BOLTZMANN METHOD

to 6) and 1/72 for the remaining velocities. Maxwell’s approach to find Eq. 3.9 must also hold
in the discrete case such that

ρ =
∑
i

fi =
∑
i

f eq
i , ρu =

∑
i

cifi =
∑
i

cif
eq
i . (3.11)

It can be shown that similar relations also hold for the third moment (energy), but not for
higher ones.

The discrete-velocity Boltzmann equation is simply

∂tfi + ci∇fi + [F · f ]i = Ω(fi) (3.12)

and a first-order discretization, ignoring the force term, gives the lattice Boltzmann equation
(LBE):

fi(x+ ci∆t, t+∆t) = fi(x, t) + ∆tΩi(x, t). (3.13)

Again, the most common collision operator is the BGK operator:

Ωi(f) = −fi − f eq
i

τ
∆t. (3.14)

Putting things together and writing f ⋆
i (x, t) for the distribution function after collisions, we

obtain

f ⋆
i (x, t) = fi(x, t)

(
1− ∆t

τ

)
+ f eq

i (x, t)
∆t

τ
. (3.15)

The streaming step is then simply

fi(x+ ci∆t, t+∆t) = f ⋆
i (x, t). (3.16)

3.2.4 The Lattice Boltzmann Algorithm

Already discussed in subsection 3.2.1, we now summarize the LBM algorithm:

• The densities and velocites are computed from fi(x, t) via the sums in Eq. 3.11.

• The equilibrium distribution f eq
i (x, t) is obtained from Eq. 3.10.

• The molecules collide via Eq. 3.15.

• Streaming is performed as shown in Eq. 3.16.

• The time step is increased by setting t to t + ∆t, and all the steps are repeated until
convergence or the final time step.
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3.2. THE LATTICE BOLTZMANN METHOD

3.2.5 Force Interpolation

So far, we focused on the force free discrete results but they can easily be extended to include a
force term [31]. This is important since the swimmers are modeled as extended force dipoles.
They move off lattice onto which their forces need to be interpolated. In the continuous case,
the swimmers’ force density would be represented by

F (r) =

∫
f(R)δ(r −R)dλ, (3.17)

where the force is localized to some manifold with measure dλ. Clearly, the integral needs to
be replaced by a sum in the discrete case, but then also the δ needs to be adapted:

F (r) =
∑
a

f(Ra)δ
p(r −Ra). (3.18)

Following Nash et al. [31], a regularized Dirac δ function δp is used:

δp(r) =
1

h3
f(

x

h
)f(

y

h
)f(

z

h
), (3.19)

where h = ∆x = ∆y = ∆z is the lattice spacing and f(r) is given by

f(r) =


3−2|r|+

√
1+4|r|−4r2

8
, |r| ≤ 1,

5−2|r|−
√

−7+12|r|−4r2

8
, 1 ≤ |r| ≤ 2,

0, |r| ≥ 2.

(3.20)

Each swimmer has two force poles that are independently sampled onto the grid using Eq. 3.18
where the forced LBE is solved. Similarly, velocities from the lattice can be interpolated onto
the swimmers and tracers.

To implement the whole of Faxén’s law, we also need to compute the Laplacian of the velocities.
This is simply done via the three dimensional version of Eq. 3.2 using h = 0.5.

3.2.6 Simulation and Units

Implementing such an LBM algorithm and plotting its velocity field results in figures or videos
that resemble fluid flows that seem natural, i.e. governed by the Navier-Stokes equation. That
this is indeed the case can even be proven using the Chapman-Enskog analysis [30].

The in-house software LBSWIM is such an implementation in FORTRAN. This program al-
lows for two scenarios: in the first one the swimmers just run and tumble without being affected
by each others’ velocity fields. This is a good approximation at low enough swimmer densities.
Above a certain threshold density, swimmer-swimmer interactions should, however, be taken
into account. In the second scenario, therefore, each swimmer i moves according to
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ṙαi = vsp
α
i + Uα(ri), ṗαi = Pαβ

i ∇γ
i u

β(ri)p
γ
i , (3.21)

where Greek indices denote Cartesian coordinates, Pαβ
i = δαβp

α
i p

β
i , u(ri) is the fluid velocity

at the position of swimmer i, and vs is the swimming speed [2]. In both scenarios the swimmers’
orientations are randomized with average tumbling frequency λt.

The units used in the LBM are all with respect to the unit cell in the lattice and the time step
of the simulation. As such, we have vs = 10−3, F = 1.57 · 10−3, l = 1, λt = 2 · 10−4 and
τ = 1. From the dipole strength κ we define the non-dimensionalized one κn = κ/(l2vs) =
F/(µlvs). Plugging in the aforementioned values, κn ≈ 9.4. For E. coli, vs = 22 µm/s,
F = 0.42 pN and l = 1.9 µm [24] in water we would have κn = 11.2 and the parameters in
the LBM were chosen to approximate this value.

It is common to represent all units with respect to the parameters of the simulation. Since the
tracer radius is in units of length and l = 1, this case is trivial. The SI units of the diffusion
constant are [m2 s−1] such that D will be given as a multiple of lvs = 10−3. Similarly, any
parameter that has unit of time (such as τa) is given as a multiple of l/vs = 1000.

3.3 Contributions

As mentioned, the LBM simulation LBSWIM only needed minor modifications to include the
Faxén correction. However, all the scripts for the data analysis (for example fitting the MSD)
were python coded from scratch for this thesis. The simulation for the point dipole approxi-
mation described in section 2.6 was also written entirely anew in python and translated to C++
to reduce running time. The python version of the latter is attached in the appendix.
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4. Results

4.1 Point Dipole Results

Before implementing the numerical integral described in section 2.6, we simply plot some tracer
trajectories from arbitrary parameters: a = 5, b = 20, c = 1 and λ = 40 (remember, in the
point dipole method, all units of length are in µm). The results can be seen in Fig. 4.1. The
point like tracer behaves as expected; had we chosen an even bigger λ (and keeping b = λ/2),
the loop would have almost closed on itself. This is a well known result and it is also not
surprising that the trajectory of a tracer with a small radius (R0 = 2) does not deviate much
from the point tracer’s. It is unforeseen, however, that a tracer withR0 = 8 gives such different
paths, and that they differ so much depending on whether an analytical or discrete∆u is used
(in the following, we refer to this as the analytical or the discrete method). Not shown in the
figure is that we also implemented a higher order numerical approximation and used various
h. We found that the approximation given above (Eq. 3.2) was good enough and that below
h = 0.5 the trajectory did not change anymore. While the trajectories differ qualitatively,
they all end relatively close to each other whence it is not obvious that the diffusion coefficient
would be much affected. To learn more about this, we need to actually compute the numerical
integral A, see Eqs. 2.13 and 2.14.

Figure 4.1: The trajectories of different tracers with parameters a = 5, b = 20, c = 1 and
λ = 40.

To do so, the tracer’s position is initially only updated whenever its distance to the swimmer is
bigger than c = 1 because then effects other than the dipole field would also play a role. For the
numerical integral to converge, the grid has to extend from -30 to 30 in both directions, with
a grid spacing of 0.05. A point like particle then gives A = 3.72 and the integrand is focused
around the origin with a slight shift to the right as can be seen in Fig. 4.2. The asymmetry arises
from the fact that the swimmer does not affect the tracer when too close (c = 1) and it looks
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4.1. POINT DIPOLE RESULTS

qualitatively like the results in [25] (but A is slightly lower compared to 3.75). In this paper,
a many-particle simulation was also performed by overlaying many dipole fields. Because the
tracer would then not be able to complete its one-dipole path, A is reduced to 3.6. Since its
implementation and running time are rather long, this part is not reproduced here.

Figure 4.2: The integrand of Eq. 2.14 for a point like tracer (result similar to Fig. 2 in [25]).

To extend from this known result, we now simply include the extra Faxén term into the update
of a tracer with R0 = 4. Again, the Laplace operator needed for this is done both discretely
and analytically. In the first case we find A = 152 and in the second case A = 151. The
integrands are shown in Figs. 4.3 (a) and 4.3 (b) from which we see that the analytical method
gives a much more coarse grained result. This can be explained by considering that the discrete
method necessarily takes into account neighbouring points and such softens the edges in the
differentiated vector field. It is also evident that a much smaller set of initial conditions a and
b now dominates the contribution to A as compared to the point tracer (Fig. 4.2). Here, the
integrand reaches values that are a factor of∼ 200 larger than in the previous case. These values,
however, are partly so that the swimmer would be found inside the tracer radius showing the
need to introduce an R0-dependent cutoff radius to the swimmer-tracer interactions.

To further investigate the point dipole model, we plotted the paths that gave rise to the biggest
discrete and analytic integrand value (starting configuration a = 2.97, b = 2.00 and a =
3.28, b = 3.00, respectively). They are, together with the R0 = 0 path and the swimmer’s
path, shown in Figs. 4.3 (c) and 4.3 (d). The trajectory of the point tracer is again as expected,
but for R0 = 8 it is remarkable that the two different methods give such similar A. The exact
paths differ considerably for the same starting conditions, but apparently this evens out. Also,
the jumps in the analytic method manifest themselves in the coarse grained integrand we have
seen before. These unphysical jumps are another reason of why a radius dependent cut-off
radius should be introduced.

Next,A is computed for differentR0 and varying c. This is interesting because for simplicity we
had previously allowed the swimmers to penetrate the tracers, nonphysical but not theoretically
inconceivable since there are no excluded volume interactions between the swimmer and the
tracer. The result can be seen in Fig. 4.4 where black circumferences mark the cases when
the cut-off radius was set to the tracer radius, effectively prohibiting swimmer-tracer overlaps
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Figure 4.3: (a) The integrand of A when the discrete approximation of the derivative in Faxén’s
law is included. (b) The same, but with the analytic derivative. (c) The horizontal trajectory of
a swimmer and its effect on a point like tracer and a tracer of R0 = 8 with cut-off radius c = 1
(the derivative term evaluated analytically and discretely). These parameters (a = 2.97, b =
2.00) give rise to the biggest integrand in the discrete case. (d) The same, but with parameters
(a = 3.28, b = 3.00) that give rise to the biggest integrand in the analytic case.

(only for R0 = 0 this is not possible). Of course, at such distances near field effects would
be relevant, and so would be collisions. To conclude something about the LBM, this is useful
nonetheless. All but the R0 = 0 graph “converge” the latest when c = R0, and many already
at c = R0 − 1 or less (at this point, we note that the butterfly shape of the integrand [see
Fig. 4.2] is also recovered). Before that, A, and therefore the diffusion constant, starts off two
magnitudes higher than in the point like case with c = 1. These high values, however, drop
steeply with increasing c until the aforementioned convergence. This shows that a too small
cut-off radius gives a large overestimation of A.

If we chose c = R0, we would observe D as a decreasing function of R0. Choosing c for each
R0 separately, say the first one for which the graph has reasonably plateaued, we could even
find a non-monotonic behaviour. This, of course, would be rather artificial and unsatisfactory
as an explanation. Much more reasonable is the decreasing behavior from the Faxén correction
and that some other effect explains the non-monotone function. Another conclusion from this
plot is that the numerical Laplacian can differ substantially from the analytical reference value.
Nonetheless, these two approach each other following the general convergence. Choosing a
suitable c, therefore, can successfully remedy both an overestimation of D and errors from the
numerical approximation. With this in mind, it is now time to turn to the LBM.
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4.2. LATTICE BOLTZMANN RESULTS

Figure 4.4: A as a function of the cut-off radius c. For all but R0 = 0 a convergence is reached
at latest when c = R0 (black circumferences).

4.2 Lattice Boltzmann Results

The swimmers and tracers for the Lattice Boltzmann simulations were placed in a square box
of side length 100. 100000 tracers were placed in this box together with a varying number
of swimmers: N = 1000, 2000, 4000, 7000, 10000, 20000, 40000, 70000, 100000. The tracer
radius was then varied from 0 to 5.5. Each parameter combination was run five times with
different random seeds.

4.2.1 Non-Interacting Swimmers

Because the relevant experiments were all done at such densities that interactions between swim-
mers could be ignored, we begin by studying the case of non-interacting microswimmers, where
swimmer-swimmer correlations are absent. An exemplary fit of Eq. 2.8 to the MSD in this case
can be seen in Fig. 4.5. Most other fits are much better than the one below, but the general
trend is that bigger radii lead to worse fits whereas more swimmers lead to better fits. This is
also the first indication of what becomes evident later on: the simulation seems to run into
problems at higher radius (R0 > 3.5).

From these fits, D, τa and L2 can be extracted. Doing this for all five random seeds, we take
the standard deviation of the results as error bars. The result of this can be seen in Fig. 4.6.
The diffusion constant with respect to swimmer density n (Fig. 4.6 (a)) is expected to behave
linearly in the case of non-correlated swimmers. A rigorous argument for this would follow the
lines that led up to Eq. 2.13, where D was shown to be proportional to the swimmer number
density n. Here, however, it seemed necessary to fit the curves for the two highest radii with a
second order polynomial. This is important to note for it will be used later on.

Maybe themost important figure is the diffusion constant as a function of tracer radius, Fig. 4.6 (b).
Up toR0 = 2.5,D declines slowly before increasing rather rapidly. Here,D as a function ofR0

is convex. For larger radii, the diffusion constant also varies more and more between different
densities. Again, especially the behaviour forR0 > 3.5might need a special explanation.
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Figure 4.5: Equation 2.8 fitted to the MSD for n = 0.004 (the dots are simulation results, and
the fits are shown in color).

The cross-over time τa as a function of swimmer density stays nearly constant (not explicitly
shown here) whereas it clearly differs between radii. To focus on the latter, τa/τa(0) is plotted
against swimmer radius in Fig. 4.6 (c). In the first half, it increases with R0 and the difference
between the point tracer and the maximum atR0 = 2 is∼ 40 % after which it declines steeply.
Already at R0 = 3.5, the function has somewhat converged.

To determine how much L2 depends on R0, we plot L2(R0)/L
2(0), see Fig. 4.6 (d). In the

first half, the function stays nearly constant. In conjunction with Fig. 4.6 (c) (τa increases) this
means that the crossover point in the MSD experiences a shift to the right (see Fig. 2.1). After
this, the function drops sharply but, unlike τa(R0)/τa(0), it does not plateau.

4.2.2 Interacting Swimmers

When the swimmer-swimmer interactions are turned on via Eqs. 3.21, the difference between
pushers and pullers becomes evident. The typical way to represent this is to normalize the re-
sulting diffusion constants with respect to the non-interacting diffusion constants. Explicitly,
this is done by dividing each value by the corresponding value of the fit in the non-interacting
case. Here, the previously mentioned non-linear fit is important to avoid noisy graphs. An ex-
ample of how pushers and pullers compare on the same scale is given in Fig. 4.7 (a) forR0 = 0.
This is a known result and confirms the functioning of our code [2]. Its interpretation is clear:
above a certain density, interacting pusher suspensions enhance the diffusion of point-like trac-
ers while puller suspensions diminish it. The explanation for this is simply the hydrodynamic
interactions between swimmers (see section 2.5, specifically Fig. 2.3).

For the remaining radii, the pusher and puller graphs are separated, see Figs. 4.7(b) and 4.7 (c).
Below n = 0.001, the interactions do not yet change the behaviour as compared to without
them. Above that, for any radius, D is enhanced by pushers and diminished by pullers. For
both pushers and pullers, however, the effect is non-monotone as a function of R0.

To ascertain how exactly R0 affects the diffusivity in these suspensions, we take an exem-
plary density, n = 0.07, and plot D(R0)/Dfree(R0) normalized with D(0)/Dfree(0), see
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Figure 4.6: The markers indicate the densities throughout. (a) The diffusion coefficient as a
function of swimmer density (linear and polynomial fits, see text). (b) The reduced diffusion
coefficient as a function of tracer radius. (c) The reduced cross-over time τa as a function of
tracer radius. (d) The reduced characteristic distance L2 as a function of tracer radius.

Fig. 4.7(d). Initially, this function increases for pushers, which means that the enhancement
effect of the interactions increases with R0. Above R0 > 2.5, the function drops sharply, but
this might again be an artifact of overlapping pushers and swimmers. For pullers, the function
is nearly mirrored. This means that the interaction effect, now a diminishing one, is also in-
creased in puller suspensions. Why the higher radii are more difficult to interpret is addressed
in the following discussion.

4.3 Discussion

So far, the LBM predicts that the Faxén correction does indeed affect the diffusion of finite
size tracers significantly - especially when R0 > 2.5. It does not, however, predict the results
seen in some experiments. For example,D(R0) in the simulation is a convex function and not
concave.

At the same time, the point force dipole method was successful in showing that a cut-off
radius ∼ R0 must eventually be introduced. Otherwise, the calculated diffusion constant
is strongly increased from near-field effects due to the diverging flow-field, which are absent in
experiments due to excluded volume interactions. We also inferred from it that a cut-off radius
on the order of R0 is needed. In the LBM, no cut-off radius is explicitly implemented, but we
know that the flow-field is regularized for distances below 2 lattice units, according to Eq. 3.20.
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Figure 4.7: The difference between pushers and pullers surfaces in the interacting case. (a) The
diffusion constants normalized with the corresponding non-interacting case. (b) The diffusion
constants of pushers, normalized with the fit of the corresponding non-interacting case, as
a function of swimmer density. (c) The same but for pullers. (d) At fixed n, the diffusion
constants are non-monotone as functions of R0.

Any lattice position further away than 2 lattice units from a swimmer does not “feel” the swim-
mer’s force. Similarly, any swimmer or tracer only feels the fluid in its immediate vicinity. It
seems to be the case that the stark deviation for large R0 has to do with these interpolations.
For small radii, this issue is not dominant but eventually it cannot be ignored.

From, for example, Fig. 4.6 (b) we had already concluded that up to R0 = 2.5 the LBM
simulation yields reasonable results. These observations are in accordance with the notion that
the LBM uses an “implicit” cutoff radius of∼ 2, and explains why the results become seemingly
unreliable for R0 > 2.5. We see from Fig. 4.4 of the point dipole method that roughly all the
cases up to R0 = 5 µm plateau if we choose c = 4 µm. Similarly, the “implicit” cut-off radius
in the LBM causes the results forR0 < 3.5 to not be inflicted by strong near field effects.

Again, up to this point, the diffusion constant was a slightly decreasing function of tracer ra-
dius. If everything beyond this is to be ignored, the non-monotone behaviour from experiment
(Fig. 2.2 (a)) could not be reproduced. Similarly, the cross-over time in the interpretable regime
changed much less than observed in experiments (compare Fig. 2.2 with Fig. 4.6 (c)).

It might be the case that the non-monotone behaviour can be explained by other effects, or
a superpositions of multiple ones. The three established factors in diffusivity are Brownian
motion, the “hydrodynamic” diffusivity discussed in this thesis and possible excluded volume
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interactions with bacteria (i.e. collisions). It is not obvious that these three can be analyzed
separately and than simply summed up to completely describe the effective diffusivity. At best,
they should be studied all together because the velocity field around a tracer is a function of
the tracer’s position with respect to the bacteria, and this relative position depends both on
Brownian motion and the bacterial velocity field. Similarly, collisions happen more often where
there are more bacteria, but in these regions the velocity field is different from more dispersed
regions. Attempts have been made in this direction [9] but never in the LBM framework nor
with any other method that accounts for swimmer-swimmer interactions.

A natural continuation for the experiments would be to increase the swimmer density. It could
then be possible to validate our results on interacting swimmer. At such high densities, however,
collisions would become more and more important and we would really have to include them
in simulations.
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5. Conclusion and Outlook
From experiments we know that the diffusivity of tracer particles in microswimmer suspensions
of specific bacterial species and size range is not monotone. We tried to predict this behaviour in
an LBM simulation by including the derivative term in Faxén’s law that is commonly ignored.
Doing so for suspensions in which swimmers are independent of each other, we do indeed
observe a non-monotone behaviour, although with a minimum instead of a maximum. Up to
this minimum, the diffusivity is a slightly decreasing function. Using a simpler simulation that
mimics the scattering of a single tracer by a point force dipole we could conclude that a cut-off
radius is needed for realistic simulation. If the swimmer and the tracer are allowed to overlap,
the Faxén correction becomes dominant and the diffusivity increases dramatically. It also makes
physical sense not to allow such a penetration because the boundaries of either organism do not
allow for it. Moreover, at such a short distance other effects such as collision should anyway
dominate. A conservative conclusion from our LBM simulation is therefore that for small R0,
D decreases slightly with tracer size, whereas the subsequent increase with R0 can possibly be
a result from swimmer-tracer penetration.

It would obviously be useful to include a cut-off parameter in the LBM simulation but this is
far less trivial than in the simple point dipole approximation. One could imagine to instead
only update the tracer position if it is about to move below a threshold value. This, however,
would probably reduce the code’s efficiency. Furthermore, it would be nice to include collision
effects into the simulation. Others use these to explain the non-monotone response [18] but
they have never been simulated or otherwise analyzed in many particle systems. Because such
an approach involves more than the flow field, it would not be an easy task to incorporate them
into the LBM.

While this research is carried out on the fundamental level, understanding tracer diffusion is
key to some important applications. For example, there are ways to transport microparticles
for drug delivery, and microswimmers are one of them [32]. Knowing how tracers behave in
their vicinity could lead to new delivery methods. A less obvious application might be artificial
stirring in zones of oceans that are dead due the a lack of microorganisms [33]. Research is
still conducted on how appropriate artificial swimmers might look like, and this also requires
understanding of their effects on tracers. It is useful to aid all of this research using LBM
simulations because they are so unique in dealing with high swimmer and tracer densities.
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A. Python Code
1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri May 29 15:40:12 2020
4

5 @author: André Nuesslein
6 A swimmer creates a flow field and a passive tracer advects.
7 Partly to reproduce results from a paper (DOI: 10.1039/c3sm52201f).
8 Extension: include the Faxén Laplcian correction for non point-like

tracers.
9 Laplacian implemented both analytically and discretely.

10 Also: analyze different cut-off parameters c (see paper).
11 The code produces results such as figure 2 in the paper.
12 It also creates files which list the parameter A (see paper) as a

function of c.
13 """
14

15 import numpy as np
16 from scipy.spatial import distance
17 import math
18 import matplotlib.pyplot as plt
19 plt.rcParams.update({'font.size': 32})
20

21 #swimmer parameters:
22 p = 32 #coefficient in front of the velocity field
23 orientation = [1, 0] #orientation of the swimmer
24 DT = 0.001 #time step
25 V = 22 #velocity of the swimmer
26 Lambda = 10 #average distance covered by swimmer before tumbling
27 Steps = int(Lambda/V/DT)
28 sigma = math.sqrt(p/V)
29

30 h = 0.05 #parameter for discrete Laplacian
31

32 #various initial distances between tracer and swimmer:
33 GridSpacing = 0.05
34 Beg = -30
35 End = 30
36 Length = End - Beg
37 num = int(Length/GridSpacing + 1)
38 Xi_array = np.linspace(Beg, End, num)
39 Chi_array = np.linspace(Beg, End, num)
40

41 tracerInitial = np.array([0,0]) #convenient to set the tracer in the
origin

42

43 Radius_List = [8]
44 C_List = [1, 3, 5, 7, 9, 11] #cut-off radius
45

46 def u(A, r, d): #velocity field (at distance r) of a swimmer placed at

30



APPENDIX A. PYTHON CODE

the
47 #origin with orientation d (equation 1 in DOI:

1019079108)
48 r_hat = r / np.linalg.norm(r)
49 d_hat = d / np.linalg.norm(d)
50 return A/(np.linalg.norm(r)**2) * (3*(np.dot(r_hat, d_hat))**2 - 1)

* r_hat
51

52 def Laplace2D(A, Position , d, h): #Laplace of a velocity field
53 Position_x1 = Position + [h,0]
54 Position_x2 = Position + [-h,0]
55 Position_y1 = Position + [0,h]
56 Position_y2 = Position + [0,-h]
57 V_x1 = u(A, Position_x1 , d)
58 V_x2 = u(A, Position_x2 , d)
59 V_y1 = u(A, Position_y1 , d)
60 V_y2 = u(A, Position_y2 , d)
61 Laplace = (V_x1 + V_x2 + V_y1 + V_y2 - 4 * u(A, Position , d))/h**2
62 return Laplace
63

64 def LaplaceAnalytic(A, r, Radius): #assumes horizontal swimmer
orientation

65 rr = np.linalg.norm(r)
66 LaplaceU = A/(rr**7)*np.array([r[0]*(3*rr**2 - 5*r[0]**2), \
67 r[1]*(rr**2 - 5*r[0]**2)])*(Radius

**2)
68 return LaplaceU
69

70 def NoLaplaceDistanceWrite(radius, c):
71 f = open(f'Integrand_TracerRadius_0_c_{c}.dat','w')
72 for Xi in Xi_array:
73 for Chi in Chi_array:
74 b = Lambda * Chi
75 a = sigma * np.exp(Xi)
76 swimmerInitial = np.array([-b, a])
77 swimmer = swimmerInitial
78 tracer = tracerInitial
79 for t in range(0, Steps):
80 r = np.subtract(tracer, swimmer) #The position of the

tracer in the coordinate system centered around the swimmer
81 if np.linalg.norm(r)>c:
82 velocity = u(p, r, orientation)
83 tracer = np.add(tracer, velocity*DT)
84 swimmer = np.add(swimmer, [V*DT, 0])
85 d = distance.euclidean(tracer, tracerInitial)
86 Integrand = np.exp(2*Xi) * d**2 / sigma**2
87 f.write(f'{Chi} {Xi} {Integrand}\n')
88 f.close()
89

90 def DiscreteLaplaceDistanceWrite(radius, c):
91 f = open(f'Discrete_Laplace_Integrand_TracerRadius_{radius}_c_{c}.

dat','w')
92 for Xi in Xi_array:
93 for Chi in Chi_array:
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94 b = Lambda * Chi
95 a = sigma * np.exp(Xi)
96 swimmerInitial = np.array([-b, a])
97 swimmer = swimmerInitial
98 tracer = tracerInitial
99 for t in range(0, Steps):

100 r = np.subtract(tracer, swimmer) #The position of the
tracer in

101 #the coordinate system centered around the
swimmer

102 if np.linalg.norm(r)>c:
103 velocity = u(p, r, orientation)
104 Laplaced = Laplace2D(p, r, orientation , h)
105 FaxVelocity = velocity + radius**2/6*Laplaced
106 tracer = np.add(tracer, FaxVelocity*DT)
107 swimmer = np.add(swimmer, [V*DT, 0])
108 d = distance.euclidean(tracer, tracerInitial)
109 Integrand = np.exp(2*Xi) * d**2 / sigma**2
110 f.write(f'{Chi} {Xi} {Integrand}\n')
111 f.close()
112

113 def AnalyticLaplaceDistanceWrite(radius, c):
114 f = open(f'Analytic_Laplace_Integrand_TracerRadius_{radius}_c_{c}.

dat','w')
115 for Xi in Xi_array:
116 for Chi in Chi_array:
117 b = Lambda * Chi
118 a = sigma * np.exp(Xi)
119 swimmerInitial = np.array([-b, a])
120 swimmer = swimmerInitial
121 tracer = tracerInitial
122 for t in range(0, Steps):
123 r = np.subtract(tracer, swimmer) #The position of the

tracer in
124 #the coordinate system centered around the

swimmer
125 if np.linalg.norm(r)>c:
126 velocity = u(p, r, orientation)
127 LaplaceU = LaplaceAnalytic(p, r, radius)
128 FaxVelocity = velocity + LaplaceU
129 tracer = np.add(tracer, FaxVelocity*DT)
130 swimmer = np.add(swimmer, [V*DT, 0])
131 d = distance.euclidean(tracer, tracerInitial)
132 Integrand = np.exp(2*Xi) * d**2 / sigma**2
133 f.write(f'{Chi} {Xi} {Integrand}\n')
134 f.close()
135

136 def ComputeIntegral(FileName):
137 Sum = 0
138 with open(FileName ,'r') as f:
139 for line in f:
140 values = [float(s) for s in line.split()]
141 Sum += values[2]
142 Integral = Sum*Length**2/num**2
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143 return Integral
144

145 X, Y = np.meshgrid(Chi_array , Xi_array)
146

147

148 for radius in Radius_List:
149 f = open(f'Discrete_Laplace_Integrand_TracerRadius_{radius}.dat','w'

)
150 f.write('c A \n')
151 g = open(f'Analytic_Laplace_Integrand_TracerRadius_{radius}.dat','w'

)
152 g.write('c A \n')
153 for c in C_List:
154 #discrete verison:
155 DiscreteLaplaceDistanceWrite(radius, c)
156 Integral = ComputeIntegral(f'

Discrete_Laplace_Integrand_TracerRadius_{radius}_c_{c}.dat')
157 A = np.pi/3*Integral
158 f.write(f'{c} {A}\n')
159

160 Data = np.loadtxt(f'Discrete_Laplace_Integrand_TracerRadius_{
radius}_c_{c}.dat', delimiter=' ')

161 Z = np.array(np.split(Data[:,2], len(X)))
162

163 fig = plt.figure(figsize=(6,5))
164 left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
165 ax = fig.add_axes([left, bottom, width, height])
166

167 cp = plt.contourf(X, Y, Z, 500, cmap = 'gist_stern')
168 plt.colorbar(cp)
169

170 ax.set_ylim(-6, 6)
171 ax.set_xlim(-4.5, 4.5)
172 ax.set_title(f'r = {radius}, Discrete , DT = {DT}, num = {num},

from {Beg} to {End}, A = {A}, c = {c}')
173 ax.set_xlabel('\u03C7 = b/\u03BB')
174 ax.set_ylabel('\u03BE = log(a/\u03C3)')
175 plt.show()
176 #analytic verison:
177 AnalyticLaplaceDistanceWrite(radius, c)
178 Integral = ComputeIntegral(f'

Analytic_Laplace_Integrand_TracerRadius_{radius}_c_{c}.dat')
179 A = np.pi/3*Integral
180 g.write(f'{c} {A}\n')
181

182 Data = np.loadtxt(f'Analytic_Laplace_Integrand_TracerRadius_{
radius}_c_{c}.dat', delimiter=' ')

183 Z = np.array(np.split(Data[:,2], len(X)))
184

185 fig = plt.figure(figsize=(6,5))
186 left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
187 ax = fig.add_axes([left, bottom, width, height])
188

189 cp = plt.contourf(X, Y, Z, 500, cmap = 'gist_stern')
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190 plt.colorbar(cp)
191

192 ax.set_ylim(-6, 6)
193 ax.set_xlim(-4.5, 4.5)
194 ax.set_title(f'r = {radius}, Analytic , DT = {DT}, num = {num},

from {Beg} to {End}, A = {A}, c = {c}')
195 ax.set_xlabel('\u03C7 = b/\u03BB')
196 ax.set_ylabel('\u03BE = log(a/\u03C3)')
197 plt.show()
198 f.close()
199 g.close()
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