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Abstract

Purpose: even in the era of exponential increase in the amount of stellar data gathered,
binaries are still often overlooked in observational data due to the special handling they require.
The goal of this work is to develop a method capable of automatically and e�ciently identifying
and extract double-lined spectroscopic binaries (SB2) from a spectroscopic survey, while being
scalable and technically successful, and to identify and optimize the parameters that influence
their detection.

Method : we combine two state-of-the-art machine learning algorithms that group the spec-
tra in the data-set in clusters based on their similarities, projecting them in a human readable
manner (t-distributed Stochastic Neighbor Embedding, t-SNE), and automatically identify and
retrieve those clusters that contain binary spectra (Density Based Spacial Clustering of Applica-
tions with Noise, DBSCAN). These methods are then optimized for e�cient recovery of binaries
from a synthetic spectroscopic data-set, where we know exactly which stars are single and which
are binaries.

Results: we study the results following from 360 combinations of our method’s parameters
and obtain a total average of recovered binaries of 57%. We show that under optimal conditions
we are able to reach a recovery of 75%. We find that bluer spectral regions (450 nm - 600
nm) are better suited to identify binary stars than redder regions (600 nm - 900 nm) with our
method. Not only this, but we also show that a moderate amount of noise can be beneficial
and can improve the recovery of binary stars. Furthermore, we find that the stellar parameters
that most influence the final recovery are the luminosity (or mass) ratio and the radial velocity
di↵erent between the two stellar components of the binary system, while some standard stellar
parameters can play a major role as well.

Conclusions: we show that our method and the adopted combination of machine learning
algorithms to be successful at automatically detect and retrieve binary stars from our synthetic
spectroscopic data and we provide a list with guidelines for its application to real spectroscopic
surveys.
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Populärvetenskaplig beskrivning

Contrary to the popular belief that most stars are singles, around half of the stars we see in
the galaxy are actually found in pairs called binary systems or simply ”binaries”. Their binary
nature can be discovered or inferred in many di↵erent ways, such as through eclipses that occur
when one star of the pair passes in front of the other, or through the characteristic features and
behavior of their combined spectrum. Moreover, binaries play a major role in astrophysics. They
o↵er scientists an insight into crucial stellar processes as well as enable accurate measurements
of fundamental stellar parameters such as mass and radius through the gravitational interaction
between the two components of the system.

In recent years, stellar surveys have increased exponentially in complexity and amount of
stars observed, and while binaries have been shown to be abundant they are often missed in
observational data. The reason for this is that in order to reveal their true nature, binary stars
require a special handling besides that given by traditional methods for the analysis of stellar
data. This can, in most cases, be quite time consuming. However, new approaches for discovery
and characterization of binary stars have been made possible by advances in the field of machine
learning and the increase of computational power. Machine learning is the name given to a
set of algorithms and statistical tools used by computers to extract information from data by
recognizing patterns without being explicitly programmed to do so. With it, it is possible to
not only examine and study the large amounts of new data gathered by stellar surveys, but also
”revisit” older data-sets in order to extract insights and patterns that were overlooked in the past.

In this project we will try to address the discovery e�ciency of binary stars in an archetypical
spectroscopic survey when using machine learning algorithms. By generating di↵erent types of
spectra ourselves, we create a mock spectroscopic survey data-set for which the distribution of
stellar parameters and the amount of binary stars are known. Unlike in real surveys, by using
self-generated data the nature of each star is known beforehand. This allows us to evaluate a
series of machine learning algorithms with respect to its own input parameters and the ranges
of stellar parameters present in the generated data. With this evaluation, we want to determine
and constrain the e�ciency and limits of the used method regarding their e�ciency discovering
and detecting binary stars.

Our aim is to generate an automated method capable of maximizing the recovery and detec-
tion of binary systems from real spectroscopic data while being scalable and applicable to future
surveys. To achieve such a goal, we combined two well-known and readily available machine
learning algorithms for the automatic analysis of spectroscopic data and the retrieval of binary
stars from it. One algorithm is called t-SNE, which is used to project the data onto a plane,
grouping objects that are similar in clusters and separating those that are dissimilar. The groups
of data-points representing spectra created by t-SNE are then automatically recovered regardless
of their morphology by the second machine learning algorithm we use, which is called DBSCAN.

The combination of t-SNE and DBSCAN, whose individual implementation has been care-
fully chosen to minimize the computation time, allowed us to obtain results that are easy to
implement and understand. Results from our study are promising, showing a mean recovery of
57%, averaged over all the 360 simulations we carried. We find that the presence of moderate
noise levels in the studied spectra can help improving the detection of spectroscopic binaries, as
it can smear out information from it that might throw o↵ the machine learning analysis. Fur-
thermore, we show that bluer spectral regions (between 450 and 650 nm) are better suited than
those in redder parts of the spectrum (between 650 and 900 nm) due to the increased amount of
information in the form of spectral lines present in the analyzed spectroscopic data. In the end,
we provide a table of stellar parameters for binary stars that were contained in our synthetic

2



sample and which were successfully identified in more than 90% of our simulations and which
can serve as a guide for future implementations of our method.
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Chapter 1

Introduction

When looking at the stars in the night sky, it might seem that all of them are found alone. In
reality, around 40% of the stars we observe are part of associations known as multiple systems
(Duchêne and Kraus 2013). These systems range from two components, known as binary stars
or binary systems, to higher order systems with six or even seven components, which revolve
around a common center of mass that receives the name of barycenter. In binary stars the
more massive is commonly called the primary star, and the less massive the secondary1 and it
is common to find in the literature the primary star denoted by A and the secondary denoted
by B. The number of multiple systems in an observed region or for a given range of masses is
commonly referred to as multiplicity frequency or MF, which is a function of the mass of the
system’s primary star, where higher primary mass means higher multiplicity fraction (Raghavan
et al. 2010) and specifically, it has also been known for almost half a century that at least half of
solar-like stars are found within binary systems (Abt and Levy 1976). Moreover, stars are born
in multiple systems within molecular clouds (Sadavoy and Stahler 2017; Reipurth et al. 2014)
and for this reason multiplicity is a property that is fixed in the early stages of stellar evolution
(Kounkel et al. 2019). It has also been shown that pre-main sequence stars have higher multi-
plicity frequency (Mathieu 1994; Tobin et al. 2016), although these systems can disintegrate as
they age due to dynamical interactions (Lada 2006 and references therein).

The physics and evolution of binary stars and subsequent higher order systems is tightly cou-
pled to many fields of astrophysics and their importance cannot be denied (Dorn-Wallenstein
and Levesque 2018; Breivik et al. 2019). In stellar physics, accurate parameters (such as stellar
mass or e↵ective temperature) are needed for the validation of stellar evolutionary models and
the constraining of formation scenarios. The desired accuracy of these measurements, however,
can only be reached with a careful study of binary systems, where masses and radii can be
accurately derived thanks to their motions under the influence of mutual gravity. Furthermore,
binaries are arguably the main source for benchmark stellar measurements (see the review by
Andersen 1991). Regarding planetary systems, undetected binarity can introduce strong biases
in the parameters derived from the depth of the measured transits (Ciardi et al. 2015). More-
over, the statistics of binary populations are important even in fields such as cosmology and
dark matter due to the uncertainties present in their extragalactic distributions, e.g. in dwarf
galaxies (Spencer et al. 2018).

Even though the formation and evolution of single stars is broadly understood, this is not
at all the case for binary stars, for which the formation and evolution channels are still a topic

1Assuming that both stars are located on the main sequence - which we will do throughout this thesis - and
that there is no mass exchange between both stars. In the literature it is common to find that the distinction
of primary and secondary is done regarding the luminosities. As we will see in section 2.3.2, it can be assumed
that luminosity is a quantity that scales with the stellar mass in the main sequence regime and therefore both
designations can be treated as equivalent.
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of debate. Furthermore, the e↵ect of a binary companion has a crucial e↵ect on the evolution of
that particular star which further complicates the constraining of the possible scenarios (Bec-
cari and Bo�n 2019). There are several formation mechanisms, which ordered in terms of their
importance are: fragmentation of the birth stellar cloud into two or more fragments (prompt
fragmentation), which forms binary systems with large separations between the two components
(wide binaries), fragmentation of the proto-stellar disk (delayed fragmentation), which forms the
secondary from within the disk and results in a close binary system of low separation (O↵ner
et al. 2016), and dynamical mechanisms such as capture, however due to the large separations
between objects in the field, this formation channel only becomes significant in dense environ-
ments such as clusters or galactic centers. For a more detailed overview on the formation of
binary stars, see the comprehensive review on this topic by Tohline 2002 and its references.

For a long time, strong biases have been present in the measurements of binary stars. Fur-
thermore, up until two decades ago, e↵orts to characterize binary population were replete of
biases coming from sample incompleteness, either due to volume or luminosity (Duquennoy and
Mayor 1991). This has caused strong disagreements between research publications and only
recently instrumentation has allowed to obtain samples to do reliable statistics with (Duchêne
and Kraus 2013). However, even with the recent samples, the obtained distributions associated
with binary populations and their parameters have been far from reliable, and as we will see
in subsection 2.3.3, there is for example no consensus on how their mass ratios are distributed.
Even today, in the age of big technological advancements and big data, where large astronomical
surveys such as Gaia (A. G. A. Brown et al. 2018), Gaia-ESO (Gilmore et al. 2012), GALAH
(Galactic Archeology with Hermes, Buder et al. 2018) or SDSS-IV (Sloan Digital Sky Survey,
Blanton et al. 2017), gather enormous amounts of data, binaries are often overlooked due to
di�culties that arise in their detection and classification. These are intrinsic to their nature and
require a careful handling apart from the bulk of single stars that are observed by these surveys,
as their binary nature can be concealed quite e↵ectively within the abundant observational data.
However, due to the increasing amount of gathered data (in the order of tera- and petabytes),
its manual inspection and analysis is neither a realistic nor a feasible option anymore, not only
because the quantity of data to be analyzed is enormous but also because of the rapid increase
in its complexity (high-dimensional data, e.g. multi-epoch measurements)(Süveges et al. 2017).

This accelerated growth and change of the paradigm in the field of astronomy and astro-
physics demands deep changes in the methods used to handle the data measured by the afore-
mentioned surveys, which in turn requires a shift from the more classical, mathematical models
to more sophisticated, scalable methods for e�cient solutions (Pesenson et al. 2010; Baron 2019).
These changes in methodology have seen numerous practical e↵orts recently, of which most have
a common denominator: the usage of machine learning. Machine learning is the name given to a
large set of statistical tools and algorithms that are used in the computer-assisted data analysis
and they rely on inference and patterns to extract useful information from it. The wide-spread
of these techniques is tightly bound to the fast increase of computational power of personal com-
puters and the existence of numerous open-source solutions. Moreover, the possible applications
of machine learning in the field of astronomy are countless and increase at a rapid pace. With
it, it is possible to perform tasks such as deriving stellar labels with The Cannon (Ness et al.
2015), performing chemical tagging for the reconstruction of past stellar aggregations (Kos et al.
2017) and even classifying Kepler data and detect exoplanets (Shallue and Vanderburg 2018).
Furthermore, besides applying these methods to study new data-sets for the first time, it is also
possible to ”revisit” older samples in order to extract new insights and identify patterns that
were overlooked in the past.

With machine learning growing in importance within the astronomical community, the ques-
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1.1. TYPES OF BINARY STARS 1.1. TYPES OF BINARY STARS

tion of whether it can e↵ectively be applied to identify binary stars from stellar surveys arises.
Indeed it can, and it has already been done on several occasions and on di↵erent types of bina-
ries, e.g. on eclipsing binaries (Armstrong et al. 2015), from the Kepler-2 mission (Howell et al.
2014) and also on spectroscopic binaries from the GALAH survey (Traven et al. 2016). As we
will see in chapter 3, one of the benefits of machine learning is that it possible to use algorithms
that require very little input from the user, contrary to more classical techniques, thus reducing
the amount of time spent calibration the algorithms and avoiding biases that may arise from it.

In the following we will see the most important types of binary stars and an overview of
their inner workings, why we choose to focus exclusively on double-lined spectroscopic binaries
and what is special about them regarding their spectrum and their detection.

1.1 Types of binary stars

Due to their abundance, binary stars are classified into several types and subtypes. The conven-
tion for the naming of these categories has been, traditionally, given depending the method the
binaries were discovered with. Due to this, it is possible for a binary star to be part of several
di↵erent categories as it might be observable through di↵erent methods. In the following we will
present the main types of binary stars and some details about their nature.

Visual binaries

Visual binaries refer to those binary systems that can be seen as two individual stars with the
aid of optical means, such as telescopes or the bare eye. This implies not only that the stars
have an angular separation that can be resolved by the instrument but also that the brightness
of the primary does not completely overpower the secondary star as well. It must be noted that
even if two stars appear to be close in the night sky, they may not form a binary system, which
depends on whether the two objects are gravitationally bound or not. These alignments are
known as optical doubles and they are only a product of chance.

Astrometric binaries

In an astrometric binary system, the presence of the companion cannot be directly observed
and it has to be inferred from the proper motion of the primary (Southworth 2019). The proper
motion of the primary star, if una↵ected by the companion, would appear as a straight line across
the sky (assuming that the annual parallax has been properly removed from the measurements).
However, its proper motion exhibits periodic wobbles that are caused by the motion around a
barycenter created by the invisible companion. The first astrometric binary was discovered by
Bessel 1844 and is the brightest star in the sky and most representative example for this type
of binaries, Sirius. In figure 1.1 below, we can see a depiction of the motion of Sirius and its
companion, Sirius B. The dashed line represents the path Sirius would follow on the sky if it
was a single star, whereas the thick and dotted lines represent the real proper motion of Sirius
A and Sirius B, respectively.
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Figure 1.1: Proper motion of Sirius A and Sirius B. Image credit: Jay B. Holberg.

Eclipsing binaries

An eclipse occurs when an astronomical object passes in between another object and the viewer
and thus partially or totally blocks the light coming from the other object. Eclipsing binaries
occur for viewers on Earth when the observed binary system is at an inclination close to 90°
(binary orbit is viewed edge-on). In this kind of systems two types of periodic eclipses occur:
the primary eclipse; when the secondary star passes in front of the primary thus blocking part
of its light, and the secondary eclipse; which happens when the secondary star is located behind
the primary. Both eclipses have a characteristic e↵ect on the light measured from the system,
which in turn can be used for accurate measurement of stellar parameters. This can clearly be
seen on the measurements presented below in figure 1.2, on a diagram called the light curve.
We can see two distinct dips: the primary eclipse at phases 0 and 1; and the secondary eclipse
at phase 0.5.

Figure 1.2: Light curve of BW3 V12, a close binary. The dots on the figure are the measurements
and the black line corresponds to the fitted light curve. Figure extracted from Rucinski 1996.
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Spectroscopic binaries (SB)

The first spectroscopic binary system discovered was ⇣ Ursa Majoris in 1889 (Pickering 1890).
Interestingly, this star system, which was thought to be only an optical double star system (that
is, not a real binary but only appear close in the night sky), was discovered to have a companion
of its own through the, back then, novel technique of spectroscopy.

Spectroscopic binaries are divided in two categories: SB1, where no line duplicity can be
seen in the measured spectrum, and SBn (n � 2), where n sets of lines corresponding to n
components of the system can be seen. The detection of spectroscopic binaries is based either
on the direct observation of the line duplicity or through the periodic shifts of lines in multi-
epoch observations due to the motion of the visible component around the barycenter caused by
the corresponding Doppler shift. A range of diverse spectroscopic binary spectra will be shown
in subsection 1.2.2.

1.2 SB2 and their spectrum

Except for a few examples of very close or very large ones, stars appear through telescopes
as point sources. Even binary and higher-order multiple systems do appear as such. For this
reason, spectroscopy has become one of the best ways astronomers have to study stars as they
do not need to be fully resolved to extract important information from. Since the first catalogue
of spectroscopic binary stars was published (W. W. Campbell and Curtis 1905), the field of
stellar spectroscopy has grown rapidly and has become an indispensable source of astronomical
data, not only for detecting multiple stellar systems but also as a source of stellar parameters
e.g. temperatures, chemical abundances and radial velocities. Some of the latest published
catalogues reach numbers of more than 12000 confirmed spectroscopic binaries (Traven et al.
2020).

1.2.1 Stellar spectra

Through their spectrum and the absorption lines within, stars reveal a fingerprint that not only
contains information about the corresponding chemical composition, but also about multitudes
of physical parameters of the star itself. Most of this information can be found in a type of
features that appears on the spectrum called absorption lines. Absorption is a phenomenon
that occurs when light emitted as a black body radiation, or continuum, passes through a cooler
region. This cooler regions in stars correspond to the upper layers of the atmosphere and it is
there where the cooler atoms and molecules absorb the photons with energies (or wavelenghts)
corresponding to those of their respective energetic levels. This absorption can be interpreted
as a removal of the photons with those exact wavelengths and thus formation of absorption
lines (missing light) in the observed spectrum. Stars are generally assumed to radiate as black
body radiators2 and the deviations from this approximation are caused by absorption processes,
which in turn are very sensitive to the stellar parameters. It is this strong correlation between
a stars’ spectrum and its physical parameters that allows for their precise measurement. Using
the previous black body approximation, one can measure the e↵ective temperature according

2A black body radiator is an idealized, perfectly opaque object that completely absorbs the incident electro-
magnetic radiation. If found in thermodynamic equilibrium, it can also emit electromagnetic radiation according
to Planck’s law, where the radiation is only dependent on the temperature of the black body. It is possible to
calculate an approximated spectrum for a star according to Planck’s law of black body radiation, which is given

by B⌫ (⌫, T ) = 2h⌫3

c2
1

e
h⌫

kBT �1

where B⌫ corresponds to the spectral irradiance of the object, h and kB are the

Planck and Boltzmann constant respectively, c is the vacuum speed of light, ⌫ is the frequency of the radiation
and T is the temperature of the emitting black body.
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to Wien’s displacement law3, which is given by the wavelength corresponding to the maximum
irradiance value. Other parameters that concern us in this work, the surface gravity, log g and
the metallicity determined by the iron abundance, [Fe/H] can also be measured from a stars’
spectrum, albeit with di↵erent methods.

1.2.2 Double-lined spectroscopic binaries: SB2

Spectroscopic binaries have the advantage that they can be observed at larger distances, as their
detection depends on the shifts on the spectrum caused by the Doppler e↵ect and this e↵ect
does not depend on distance (Carling and Kopal 2012), assuming the quality of the measured
spectrum is good enough to allow for the proper detection. Each type of spectroscopic binaries
allows for di↵erent types of measurements, which in turn allow to probe di↵erent aspects of their
nature. However the measurement of single- and multiple-lined binaries presents an important
di↵erence as well. Whereas in SB1 several (at least two) multi-epoch observations are needed in
order to observe the periodicity in the shifts of the spectral lines due to the variation of the radial
velocity of the component with visible lines (the primary), for SBn binaries one observation can
be enough to allow for detection due to the presence of the multiple lines (Merle et al. 2020). As
we will be working with only one spectrum for each star and because they are the most abundant
of the SBn type of binaries, we will focus exclusively on SB2 for the entirety of this work. In
this work two parameters (among others, Katoh et al. 2013) will be used to characterize SB2
binary systems: the radial velocity di↵erence of the two components and their luminosity ratio.

Radial velocity di↵erence: �vrad

For objects in a circular motion, their velocity has two components: the radial, which is directed
towards the center of the motion and the tangential, which is perpendicular to the former. In
the case of stars, the radial velocity represents the motion towards or away from the Earth
(in the literature then Sun is generally considered as the reference point). It is this motion
away or towards the observer that causes the Doppler shifts on the light measured from the
star. The Doppler e↵ect4 is a phenomenon that occurs when there is relative motion between a
wave emitting source and an observer, which causes an apparent change in the frequency (and
wavelength) of the emitted wave. If the source of emission is moving towards the observer, the
perceived frequency will be higher (blue-shift) and vice-versa (red-shift).

A visual representation of this concept can be seen on figure 1.3, with four distinct stages of
a spectroscopic binary system’s orbit and its e↵ect on the spectrum. On points 2 and 4, both
stars have the same radial velocity and therefore there is no perceivable Doppler shift between
them when viewed from Earth. On the contrary stages 1 and 3 do show Doppler shifts, as the
radial velocities for both stars are opposite and of di↵erent value. For 1, the secondary is moving
away from the observer and therefore its spectrum appears red-shifted, whereas the primary star
moves on the opposite direction, blue-shifting its spectrum. On stage 3, the opposite situation
occurs: the primary star is red-shifted and the secondary is blue-shifted. Moreover, it can clearly
be seen that the shifts of the primary star are less strong than those of the secondary, which is
a consequence of its higher mass.

3�peak = b
Teff

where b = 2.897 · 10�3 mK
4Doppler 1842. Funnily enough, Doppler based his hypothesis on the distinct coloration of binary stars for

the e↵ect that carries his name.
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Figure 1.3: Radial velocity curves of the two components for a given spectroscopic binary system.
The four boxes on top represent the changes on the measured spectrum, where the numbering
represents each of the four distinct stages in the orbit. Note that the radial velocities are
measured relative to the motion of the barycenter, which is 40 km/s, therefore a larger velocity
than that of the barycenter would be away from the observer and inferior would be towards it.
Image credit: Lumen Learning.

In a real spectroscopic survey, the secondary spectra is shifted to the rest frame of the primary
and therefore only the secondary appears shifted. Thus one can define the di↵erence between
the radial velocities of the two stellar components: �vrad. This quantity can be interpreted as
the net motion of the secondary star away or towards the observer if the primary was located
on the barycenter of the system and therefore it would appear still as seen from the sun (this
quantity is sometimes named barycentric radial velocity in the literature). This implies that the
only the spectrum of the secondary star will be Doppler shifted, moving the spectral features
along the wavelength axis. The values at which each line transition of the secondary star occurs
are shifted by the factor s, which is derived from the equality for the non-relativistic Doppler
e↵ect. For the wavelength at rest �o and � the measured wavelength, we have:

�v

c
=

�� �o

�o
(1.1)

where expanding and rearranging the above terms leads to:

� = �os, where s =
�v

c
+ 1 (1.2)

For our purposes, we set �v = �vrad.

Luminosity ratio: LB/LA

The luminosity ratio is defined as the ratio between the bolometric luminosities of both stellar
components in the binary system. It is expressed mathematically as LB/LA, where the individual
luminosities are given by the Stefan-Boltzmann law:

L = 4⇡R2�SBT
4
e↵ (1.3)
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where R is the stellar radius, �SB the Stefan-Boltzmann constant and Te↵ is the e↵ective
temperature of the star. From equation 1.3 it becomes clear that a slight increase in temperature
or stellar radius will lead to a very large di↵erence in luminosities due to the R2 and T 4

e↵ terms,
respectively. As we shall see later, the luminosity ratio plays a fundamental role in the detection
of binary stars.

Example of SB2 spectra

Because the features that define the spectra of SB2 binaries will be very important later during
their analysis with machine learning, we exemplify a variety of possible cases (for spectra with
varying values �vrad) in figure 1.4 with spectra extracted from the latest GALAH data release.

Figure 1.4: Binary star spectra from the GALAH survey. The 6 di↵erent systems are ordered
following a gradient of increasing radial velocity di↵erence �vrad. Spectra on rows a) to c) have
negative �vrad, whereas spectra on figures from row d) to row f) show positive values.
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In figure 1.4 we show examples for binary spectra with totally blended lines on rows c) and
d), spectra with lines that show a clear separation on rows a) and f), or in between examples
where the line duplicity can still be seen on rows b) and e). We exemplify this further by showing
two regions, one between 653 and 658 nm containing a strong spectral line such as H-↵ (656.28
nm) on the first column, and adjacent region with weaker lines, between 665 and 670 nm.

1.3 This work

The rapid growth and spread of machine learning methods in astrophysics has been mainly out
of necessity (Pesenson et al. 2010). In an e↵ort to mitigate the issue about insu�cient amounts
of properly characterized spectroscopic binary stars (and binary stars in general) and the incom-
plete statistics that arise from this, we intend to complement the more conventional methods for
detecting of SB2 systems, such as the Cross-Correlation Function (Matijevic et al. 2010), with
a combination of two state-of-the-art machine learning algorithms. For this, we will follow an
approach similar to that presented in Traven et al. 2016 and Traven et al. 2020.

While the CCF method is e↵ective at detecting binary stars on its own, it requires a series
of assumptions and restrictions that have to be i mposed by the user to ensure a high degree
of confidence in the results, such as a radial velocity lower limit or which templates should the
spectra be compared to. On the contrary, machine learning is designed to identify patterns in
the data without much user input based on the peculiarities of the given data-set, which this in
turn can avoid the introduction of certain sorts of biases, such as . This has already been done
on real stellar spectra, where the nature of each star is not known a priori thus hampering the
proper calibration of the methods. To overcome this, we will generate a synthetic spectroscopic
survey that contains both single and binary stars and is generated using the GALAH survey
as a reference. We do so to stay within realistic margins. This will allow for an e↵ective and
realistic calibration of the algorithms in order to maximize the e�ciency and detection of binary
stars. For this, we will make use of a combination of two algorithms: t-distributed Stochastic
Neighbor Embedding or t-SNE (Maaten and G. Hinton 2008), which will generate an overview
of the data-set by grouping similar data-points together and separating those that are dissimilar,
creating a projection where groups of binaries will be placed in clusters independent from the
bulk of single stars, and a second algorithm to select those cluster of data-points that correspond
to the binary spectra from our synthetic survey with the name of Density Based Clustering Of
Applications with Noise, or DBSCAN (Ester et al. 1996). We expect to obtain results of a
similar flavor to those presented in Matijevic et al. 2010, where a similar approach was taken to
examine the detection ranges with the CCF.

For this reason it is within the scope of this project to examine and optimize the parameters
that go into each of the algorithms in order to detect and extract groups of data-points that
represent binary stars from our data set in an automatized manner. For this, we aim to develop
a method that is capable of being not only technically successful, but also that is applicable
in the context of real spectroscopic surveys such as GALAH, Buder et al. 2018 or APOGEE,
Ahumada et al. 2019.

This thesis will be structured as follows: this chapter served as an introduction both to
the present paradigm in the study of binary stars, and more specifically that of spectroscopic
binaries and to the required theoretical concepts to understand this work. In chapter 2 we go
over the synthesis of single stellar spectra and the di↵erent models and assumptions involved, as
well as the pairing of single stars to form a binary population. Chapter 3 will focus exclusively
on the topic of machine learning and an overview of the inner workings of the algorithms selected
for this project, whereas in chapter 4 we will explain how we go about applying this methods
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to the generated data set. In chapter 5 we will present the most interesting results, as well as
their corresponding interpretation. Finally, we summarize everything in chapter 6, where we will
expose our concluding thoughts on the feasibility of the developed method and its applicability
in the real world.
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Chapter 2

Spectral Synthesis

The synthesis of stellar spectra is a technique whose main utility lies in analysis of observed
spectra and can be applied in several di↵erent ways. It o↵ers a much broader range of versatil-
ity compared to traditional methods for spectral analysis, such as the possibility of selecting any
combination of fundamental stellar parameters, elemental abundances and wavelength range
for a modeled star in order to accurately match its spectrum and obtain the corresponding
stellar parameters. However, this flexibility is limited by the quality of the used atomic data,
line-lists and the assumptions taken, namely regarding the geometry of stellar atmospheres,
e.g. plane-parallel or spherical, and regarding its state, which can be assumed to be in a local-
thermodynamical equilibrium (LTE) or non-LTE state. (Husser et al. 2013).

One peculiarity of our work is the usage of synthetic spectroscopic data for the calibration
and optimization of machine learning algorithms. The main reason for using self-generated
data is that the nature of each data point is known (each star’s spectrum is associated to a
high-dimensional data point, where each data point contains n flux values, however this will be
explained in more depth in the next chapter). To keep our sample within realistic margins, we
base our data-set on a real spectroscopic survey by taking combinations of stellar parameters
from stars present in it and thus generating a synthetic sub-sample of the survey. However, the
data we sample from the survey is comprised only of single stars and because the main goal of
this project is the detection of binaries, we need to design a process that will allow us to obtain
pairs of stars that could realistically be found in the field, as well as generating the corresponding
spectrum directly from the spectroscopic data present in the survey.

In this chapter we will present the steps undertaken to go from the data of a spectroscopic
survey with only single stars to a synthetic subsample of it, with both single and binary stars. In
section 2.1, we will describe the spectroscopic survey selected for this project and the selection of
the sub-sample. On section 2.3 we briefly introduce the tools used for the synthesis of the single
spectra, whereas in section 2.3 and 2.4 we elaborate on the algorithms we designed to both create
a binary population and to combine the spectra of the individual components, respectively. At
the end of the chapter in section 2.6, we present a small set of synthetic binaries to show that
the synthesis procedure was successful.

2.1 The GALAH survey and the selection of single stars

GALactic Archeology with Hermes (Buder et al. 2018) or GALAH for short, is a spectroscopic
survey with the goal of obtaining large-scale sample of high resolution spectra to serve as a
complement of the Gaia mission (Gaia-Collaboration et al. 2016; Gaia-Collaboration et al. 2018)
for which it will deliver key chemical information about the stars observed in it. The GALAH
survey uses the HERMES spectrograph (High-E�ciency and high-Resolution Mercator Echelle
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Spectrograph, Raskin et al. 2011), which operates in four di↵erent spectral bands with a width
of roughly 25 nm, the ranges of which are shown in table 2.1 The mean resolving power of the
GALAH survey is around 28000, with an estimated signal-to-noise ratio (SNR) of at least 100
(this number varies depending on the wavelength).

Band �min (nm) �max(nm)

Blue 4718 4903
Green 5649 5873
Red 6481 6739
IR 7590 7890

Table 2.1: GALAH spectral regions.

A data-driven approach is used in the GALAH survey to estimate the stellar parameters and
the elemental abundances. A training sample for the data-driven algorithm composed of high
quality GALAH spectra is analyzed using the spectral synthesis code Spectroscopy Made Easy
or SME for short (Valenti and Piskunov 1996; Piskunov and Valenti 2017), yielding reliable
parameters for these spectra. The sample is then used as by The Cannon (Ness et al. 2015) to
generate a spectral model, which will in the end be used to analyze the rest of the spectroscopic
data captured in the survey. As a last step, the quality of results for the measured spectra is
assessed using diverse statistical methods and the quality of the measured spectra is indicated
using various flags, shown in Table 5 of Buder et al. 2018.

The GALAH survey was chosen because recent work shows that it presents a high proportion
of detected SB2 to single stars, between 2-3% (Traven et al. 2020). This high percentage of
SB2 allows for more reliable statistics and will be important source of data for future studies.
Furthermore, GALAH is equipped with a relatively high resolution and high signal-to-noise ratio.
This is very helpful in resolving double lines, which as we mentioned previously is essential for
the detection of double-lined spectroscopic binaries.

Data selection and dwarf stars

To select the appropriate data from the GALAH survey and define the data-set this work will
be based upon, we apply two filters. First, the stars with the most reliable parameters are
selected, i.e those that are not marked with any quality flag (which means that they present
accurate parameter measurements and have no known issues). Further filtering is done under
an assumption presented in Matijevic et al. 2010 that mostly dwarf, main-sequence stars will be
observable as double-lined spectroscopic binaries. For this reason, we will be focusing our study
only on dwarf stars, which we assume to be main-sequence even if the number of dwarfs and
giants in the GALAH survey is very similar. This assumption is further supported by several
arguments:

1. For the system to be detectable regarding the luminosity di↵erence between the two com-
ponents, both must be in the same phase (main-sequence or giant) at the same time.
However, for two stars to be found in the red giant phase at the same time, their masses
cannot vary more than ⇠1% from each other, i.e they must have rather similar masses, as
the main-sequence lifetime of a star scales approximately as ⌧/⌧� / (M/M�)

�2.5.

2. The lifetime of the giant phase is much shorter than that of a dwarf on the main sequence
in the mass regime for typical stars of GALAH and therefore the chances of finding a
giant-dwarf system is further reduced.
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3. For giant stars, the minimum size of the orbit is larger than that of dwarf stars. This trans-
lates to a smaller maximum radial velocity di↵erence and as a consequence less separated
lines, thus meaning harder detection.

Additionally, Matijevic et al. 2010 argues that even if the chances of finding a binary system
with two giant components is small, and in case of doing so, the results would not be drastically
altered as the spectrum of a giant star is comparable to that of a dwarf with similar e↵ective
temperature. To filter accordingly, we use equation 1 from Zwitter et al. 2018 given by:

log g = g1 + (g2 � g1)
(T1 � Te↵)

(T1 � T2)
(2.1)

where g1 = 3.2, g2 = 4.7, T1 = 6500K and T2 = 4100K. The constants g1,2 and T1,2

determine the points where the division between dwarfs and giants is traced.

Figure 2.1: Parameter distributions for GALAH DR2. The thin grey line corresponds to the
division between dwarfs (highlighted with the shaded grey histogram) and giants given by equa-
tion 2.1 and the thick grey line represents the complete sample. Figure from Zwitter et al.
2018.

On figure 2.1 we can see the parameter distributions of the stars from the GALAH survey
that are not marked with any quality flag where plot a) is for the e↵ective temperature, plot
b) for the logarithmic surface gravity and c) for the metallicity (plot d) refers to the galactic
latitude, which we will not be using in this work). It is interesting to note that both distributions
for the e↵ective temperature and surface gravity show a double peaked feature, which is caused
by two distinct populations of stars, which according to equation 2.1 these are dwarf and giant
stars. The metallicity distribution does not present this feature as both populations are centered
around a value slightly lower than the solar value. A Kiel diagram of the stars without flags and
already divided in dwarfs and giants can be seen on figure 2.2, where the black line is traced
according to expression 2.1.
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Figure 2.2: Kiel diagram of the GALAH stars not marked with flags, divided into giants (grey
points) and dwarfs (black points) according to Zwitter et al. 2018.

Although the GALAH survey has a flag to mark whether a star is a binary or not, as we
introduced in chapter 1, the determined binarity in stellar surveys is not always correct and can
su↵er from errors and false positives. For this reason, it is possible that undetected binaries
might be within the stars selected for this work. Even if this is the case, we will be assuming
that all of our dwarf stars are indeed singles and will use them in our later analysis indi↵erently
and that the combination of their stellar parameters are still within realistic margins. In terms
of numbers, the second public release of GALAH (GALAH DR2) contains information about
342682 stars (Buder et al. 2018), out of which 264227 were selected and shown in figure 2.2 as
they were not marked with any flag. Using the prescription from equation 2.1, we found 163279
dwarf stars (and 100948 giant) in the filtered GALAH data-set from which we randomly select
100000 stars. This is a large enough amount of stars to yield statistically meaningful results but
it is still manageable regarding the available computational resources.

2.2 Single spectra synthesis

The goal of spectral synthesis is, for a given set of stellar parameters, to simulate the processes
that take place within the stellar atmosphere and propagate the emitted photons to obtain the
corresponding spectrum, which is enabled by the theory of the radiative transfer. Although it
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can be pursued through 3-D hydrodynamical simulations to a high degree of accuracy, the com-
putational cost of this is far too large for our purposes. Consequently, we will use turbospectrum,
by Plez 2012, which is a spectral synthesis code and coupled with it, a model under the approx-
imation of 1-D atmospheric under the assumption of local thermodynamical equilibrium (LTE)
with the name of MARCS (Gustafsson et al. 2008). Together with the code and the model, in-
formation about the spectral line transitions occurring within the model atmosphere, as well as
solar abundances to extrapolate from are needed. For this purpose, we will be using the line-list
fromGaia-ESO, GESv5 (Asplund et al. 2013) and the solar abundances from Asplund et al. 2009.

All of the above is conveniently contained within a Python wrapper called iSpec (S. Blanco-
Cuaresma et al. 2014; Sergi Blanco-Cuaresma 2019) which additionally allows for the selection of
diverse options of atmospheric grids, the spectral synthesis codes and line-lists. iSpec made pos-
sible to manually examine di↵erent model atmosphere and synthesis code combinations, which
allowed us to pick turbospectrum mainly due to its speed and reasonably accurate results. For
the model atmosphere and the line-list, we followed Buder et al. 2018. GESv5 was chosen be-
cause it contains information of transitions occurring between wavelengths 420nm and 920nm
and thus covering the four GALAH spectral regions.

For the spectral synthesis itself we sampled randomly a subset of 100000 dwarf stars from the
filtered GALAH data-set and fed their parameters into the synthesis code. These parameters
are: Te↵ , log g, [Fe/H], alpha enrichment [↵/H], micro-turbulence vmic and projected stellar
rotational velocity v sin(i); where i is the inclination. The linear limb darkening coe�cient
(Schwarzschild 1906) was arbitrarily fixed to be the same for all of the considered stars at 0.6,
as it is not measured by the GALAH survey and was needed as an input in turbospectrum. To
match the GALAH survey, we use the values of 28000 for the resolving power and 0.004 nm/px
for the sampling. Our synthetic spectra has flux values for wavelengths between 450 and 900
nm, which covers all four GALAH spectral regions (shown in table 2.1). This wide range of
wavelengths allows for a later, more specific selection of any region, regardless if it was observed
by GALAH or not, and as we will see, the analyzed spectral region plays a major role on the
discovery of SB2.

Figure 2.3: Comparison of a real spectrum from the GALAH survey to its synthetic counterpart.
Both spectra correspond to a star with Te↵ = 5560K, log g = 3.85 and [Fe/H] = 0.25.

On figure 2.3 two instances of spectra for the same star are shown: the real spectrum mea-
sured by the GALAH survey and the spectrum we synthesized using the tools presented before.
The similarities can clearly be seen, as almost every line is properly represented, albeit their
depth appears to have been slightly underestimated. This is probably because the parameters
from the GALAH survey were determined using a di↵erent model than ours (SME and The
Cannon) and also due to non-linear e↵ects that are not contemplated by the used model. We
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expect this underestimation in the line depth to not have a major influence on the later analysis,
as the same behavior will be carried further on to every other synthetic spectrum. Moreover,
on the figure we can also see that the synthesized spectrum does not have noise yet, as it will
be added later in section 2.5. All in all we can conclude the synthesis of single star spectra
was successful and that the generated spectra match well their real counterparts within margins
acceptable for our future analysis.

2.3 Binary population and the pairing algorithm

2.3.1 Pairing algorithm

The generation of binary spectra requires several more steps than their single counterparts
because we do not (nor can do so) sample parameters specific to binary stars from any existing
data-set of spectroscopic binaries, rather we create such a population ourselves. To do so, we
create an algorithm to set up pairs of single GALAH dwarf stars for which we have spectrum
synthesized and once the pairs are defined, it is then possible to combine their individual spectra.
The main goal behind our pairing algorithm is therefore to obtain pairs of stars that could
realistically be observed. It works as follows:

1. Our pairing algorithm begins by sampling the mass of the primary star and the mass ratio
between the secondary and primary star of the given system. Their distributions are given
by the initial mass function or IMF (Salpeter 1955; Kroupa 2001), and diverse functional
forms of the mass ratio distribution, such as those given in Hogeveen et al. 1991; Raghavan
et al. 2010; Duchêne and Kraus 2013. We use the power-law from Salpeter 1955 as our
IMF for the sake of simplicity, as it only di↵ers of more modern forms such as Kroupa
2001 or Chabrier 2003 in the low mass regime (which we do not contemplate). To sample
a random primary mass from this power-law, we apply the convenient formulation found
in equation 1.8 of Eggleton 2006 and it is given by

MA =
M0

(1�X)0.75
, (2.2)

where X is a uniformly distributed random number and M0 is mass at which we trun-
cate the distribution, set to M0 = 0.55. This lower boundary M0 is chosen as such,
because otherwise the star would be to faint to be detected by GALAH. For the mass
ratio q = MB/MA, where MA and MB are the stellar masses of the primary and sec-
ondary components of the binary system respectively, we will use a fairly recent result
from Duchêne and Kraus 2013 (in subsection 2.3.3 we will discuss the mass ratio in more
detail). Duchêne and Kraus 2013 claims that for stars with masses between 0.7M� and
1.3M�, q is distributed as a single power-law with the exponent of � = 0.3, f(q) / q� (we
assume that these limits can be extended and thus applied to the whole range of masses
we will be dealing with). From q, the secondary mass is defined as:

MB = qMA (2.3)

2. It is possible to approximate the e↵ective temperature for each of the system’s components
just by knowing their masses under the assumption that both are non-evolved and non-
interacting main sequence stars. For this we use what is known as scaling relations, which
will be presented in more depth in subsection 2.3.2. With the approximated Te↵ , we cross-
match the GALAH survey and search for a star with a temperature within a range of
±75K of the computed one. Both log g and [Fe/H] were left undefined, as they will be
part of the selected star’s own set parameters. If the search for a given primary mass
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and its corresponding theoretical Te↵ results in several matches, we randomly select one of
them. This ensures that the individual star is not only realistic regarding its parameters
but also that we have a synthetic spectrum for it (because we synthesized it from the
GALAH sub-sample we selected).

3. If the search for a primary star for a given mass is successful, the next step is to find a
suitable companion. We assume that for MA � MB, the following equalities of log gA 

log gB and [Fe/H]A ⇡ [Fe/H]B must hold. The theoretical Te↵ of the secondary star is
calculated in the same way as for the primary and the allowed ranges for its cross-match
are also maintained. If the search of the selected dwarf stars with the previous conditions
is successful, then the secondary star of the system for a given primary mass and mass
ratio is found. If the search for a secondary star does not deliver a result, then we remove
the primary and start the process again for the next one.

We do not contemplate an exact value for orbital period, eccentricity, or inclination to our
binary systems as their e↵ect on the composite binary spectrum will be e↵ectively replaced by a
more observational quantity, the di↵erence in radial velocities of both components (see subsection
1.2.2 in chapter 1). For a comprehensive review of di↵erent binary pairing algorithms found in
the literature and their consequences in the resulting binary population, the reader is referred
to Kouwenhoven et al. 2008.

2.3.2 Empirical scaling relations

The term empirical scaling relations refers to a set of proportionality equations that are defined
through observations. In stellar astrophysics, the most common of these equalities is the mass
luminosity relation (MLR) for main-sequence stars, which has been known and studied since the
beginning of the 20th century. It was discovered independently by Hertzsprung et al. 1923 and
Russell et al. 1923, and shortly after by Eddington 1926. Since then, the MLR has been revisited
in uncountable occasions, more recently by Moya et al. 2018 and Eker et al. 2015; Eker et al.
2018. On the contrary, the mass-radius relation (MRR) has been studied only since the second
half of the 20th century such as Plaut 1953; Demircan and Kahraman 1991 and more recently
also by Eker et al. 2015; Eker et al. 2018. Although we will not be using the MRR directly, it is
useful to note that a mass-temperature relation (MTR) can be derived from a combination of
the MLR, MRR and equation 1.3.

Classically, the MLR has been described as a power-law with the exponent ↵ = 3.5. For
this work however, we fitted a power-law to the results presented Eker et al. 2018. Because the
results also contained data relating the stellar mass to the Te↵ , we were able to obtain both a
MLR and a MTR as power-laws with ↵MLR = 4.5 and ↵MTR = 0.38 and thus

L

L�
/

✓
M

M�

◆4.5

and
Te↵

Te↵,�
/

✓
M

M�

◆0.38

(2.4)

2.3.3 The mass ratio distribution

The question of whether binary systems follow an IMF-like distribution in their masses and
the subsequent distribution of their mass ratios, f(q), has been and still is a matter of debate
(Duchêne and Kraus 2013). Early e↵orts in this matter, such as Kuiper 1935, suggested that
the observed binary populations were consistent with random pairing (both stellar masses were
sampled from the same IMF and are therefore uncorrelated), although this hypothesis has been
long rejected by observations (Duchêne and Kraus 2013). More recent e↵orts have results that
include a uniform distribution (Mazeh et al. 2003) a uniform distribution with an excess of
twins with q ⇡ 1(Van der Swaelmen et al. 2019), a distribution with two assymetric peaks at
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q ⇡ 0.2 and q ⇡ 0.8 (Goldberg et al. 2003), a decreasing power-law (Ducati et al. 2011) or even
an increasing power law (Hogeveen et al. 1991) among several others. This collection of very
dissimilar distributions for q is a probable consequence of the di↵erent data-sets used in each of
the studies, which could indicate a strong dependency of the stellar type, and also of the biases
and selection e↵ects present therein, where a correction has been deemed necessary on multiple
occasions, e.g. Hogeveen et al. 1991.

Duchêne and Kraus 2013 present in their comprehensive review, after careful examination of
binary data-sets for several masses and spectral classes , a power-law approximation for di↵erent
mass bins. As previously mentioned, we will be using their results for the range corresponding
to solar-type stars and assuming it is valid for all of the masses we have in our data-set. Using
equation 2.4 and inverting the MTR, we get that the lowest and highest stellar masses in our
data-set are ⇠ 0.55M� and ⇠ 1.65M� respectively.

2.3.4 Parameter distribution of the synthetic binary population

We set the number of synthetic binaries to be 5% of their single counterparts, although recent
estimates of recovered SB2 systems in spectroscopic datasets (e.g. around 2-3% of the whole
dataset in Traven et al. 2020) are lower. We did this for two reasons: first, a higher percentage
of binaries with respect to single stars means that we are able to better cover the parameter
space of the binary systems and second, because during the analysis some of the binary stars will
not be recovered and we need a fairly large number of recovered binaries to do reliable statistics
with, even in the worst case scenarios.

On figure 2.4 we show the distributions of Te↵ , log g, mass and both the mass and luminosity
ratios for both the primary and secondary stars of all the 5000 synthesized binary system. These
distributions di↵er from those belonging to the original sample of selected dwarfs from GALAH
shown in figure 2.1 due to the conditions imposed to the pairing algorithm from subsection 2.3.1.
The surface temperature for the secondary stars peaks at lower temperatures than that for the
primaries due to the imposed condition of Te↵,A > Te↵,B. A similar situation is seen on the
distribution for the stellar masses of both components. There, the mass of the secondary stars
peaks at the lower values while the primary masses present a peak at slightly sub-solar values,
again due to the condition MA > MB. The fact that the panels for the temperatures and the
masses are very similar is due to the scaling relations from subsection 2.3.2 used to compute the
temperature from the mass. The distribution for the surface gravity of the secondary compo-
nents shows a peak at higher values than that of the primary. On the contrary, the distribution
of the primary star log g shows a double peaked feature, with one peak at lower values and one
at higher. This is most probably due to both the random sampling from the GALAH dwarfs,
which present two somewhat distinct populations, one of pure main-sequence stars and one of on
the turno↵ as seen in figure 2.2, and due to the interplay between the conditions imposed in the
pairing algorithm and the tendency of it to produce twin pairs (binary systems of components
with similar parameters). The luminosity ratios of the binary systems are almost flat distributed
and resembles the one used by Matijevic et al. 2010 (however, in our case is a consequence of the
pairing algorithm and not a distribution we sample from). The mass ratio distribution f(q) is a
power-law selected from Duchêne and Kraus 2013, although there are no stars with mass ratios
below 0.3 because the range of parameters from the sampled dwarf stars cannot reach lower
values. The e↵ects of the conditions from the pairing algorithm are further explored in figure
2.5, where we can clearly see the e↵ects the imposed conditions from subsection 2.3.1 have on
the synthesized binary population.

It is interesting to note that although we tried several combinations of initial primary mass
and mass ratio distributions for the pairing algorithm, all converged to results very similar to
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those presented in figures 2.4 and 2.5. This suggests that because we do not use random sampling
for the binary pair generation, the shape of the resulting distributions is strongly influenced by
the dependency of the secondary star’s parameters on those of the corresponding primary and
so not only by the sampling from the distributions of MA and q.

Figure 2.4: Parameter distributions of the synthesized binary population. The grey shaded
histogram corresponds to the primary star and the black line corresponds to histogram of the
secondary, with the exception of the last panel where both display the properties of the system.
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Figure 2.5: Stellar parameters of the primary star against those of the secondary.

2.4 Synthetic binary spectra

2.4.1 Combination of single spectra

With the synthetic binary population, the only thing left to complete the synthetic spectroscopic
survey is to combine the spectrum of a primary and secondary stars from the pairs defined in
2.3. For this, we created an algorithm with the following steps:

1. First, a value of �vrad is assigned to the secondary component of each one of the defined
pairs. The value is sampled from a Gaussian distribution that is defined to approximately
match the one given in Matijevic et al. 2010 (which in turn corresponds to that what is
mostly seen in observations), with the parameters µ = 0 and � = 30 km/s. The radial
velocity di↵erence is directly responsible for the Doppler shift experienced by the spectrum
of the secondary star. The shift is given by the factor s, defined in equation 1.2, and it is
applied by direct multiplication of the wavelength range the single spectra was synthesized
for. The primary star is fixed at the zero-velocity frame of reference. For a wavelength
range � = {�1,�2, ...�n} where n is the length of the range in nm times the sampling
value used in the synthesis, the resulting shifted wavelength range is �s = s�.

2. After the wavelength shift, the wavelength ranges on which the spectrum of the primary
and secondary star are defined will have di↵erent start and end points. To avoid having
extrema with the contribution of only one star, both spectra are interpolated onto a new,
common wavelength grid.

3. For the last step, we combine the spectrum of both system’s components using a weighted
sum. We use for the combination of the fluxes the luminosities we previously computed
with the MLR from equation 2.4 and a set of coe�cients found in equation 4 from Cotar
et al. 2019, which serve as the weights and are given by
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a =
1

1 + r1,2
and b =

r1,2
1 + r1,2

(2.5)

where r12 = LB/LA. The combination of the two single spectra can be then expressed as:

fbinary = afA + bfB (2.6)

where fA and fB are vectors containing the flux values of primary and secondary stars’
spectrum and fbinary the vector containing resulting synthetic spectrum of the binary
system.

2.5 Noise

The signal-to-noise ratio, or SNR, is a measure of the strength of the signal against the back-
ground noise (Welvaert and Rosseel 2013). In the literature, it is assumed very often that the
spectral noise can be defined as Gaussian distributed (that is, noise is a random fluctuation
governed by a Gaussian distribution). Assuming the real signal can be represented by its expec-
tation value and, then the noise can be quantified by the standard deviation of the distribution.
With this, the signal-to-noise ratio can be defined as:

SNR =
µ

�
(2.7)

Adding noise to all the spectra we created for our synthetic survey is necessary in order to
achieve certain resemblance with that found on real spectroscopic surveys. To do so, we sample
the noise values from a Gaussian distribution by choosing some value of SNR, setting the mean
value at the level of continuum (µ = 1), and thus obtaining the � from equation 2.7. These
sampled values are then added to the corresponding vector of flux values. The result from this
can be seen on figure 2.6, where the same spectra shown in figure 2.3 can be seen, this time with
noise.

Figure 2.6: Comparison of real spectrum to its synthetic counterpart. The both spectra are the
same as those shown in figure 2.3, with the only di↵erence that here a SNR of 100 was used to
match the average value used in GALAH.

2.6 Synthetic spectroscopic survey

The synthesis process described in this chapter results in a synthetic spectroscopic survey com-
posed of single and binary star spectra. An example of a synthetic single spectra was already
shown in figure 2.6. In figure 2.7 we show a sample of 6 di↵erent synthetic binary systems with
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SNR of 100 with two di↵erent spectral ranges for each, between 535 and 540 nm and between
680 and 685 nm. The spectra are ordered according to an increasing radial velocity di↵erence.
The luminosity ratios were selected to be larger than 0.85, so the line duplicity could be properly
shown.

Figure 2.7: Sample set of synthetic binary spectra with SNR of 100 and increasing value of radial
velocity di↵erence from top to bottom. Each spectra (row) is shown as two separate regions
(columns) in spectral regions between 535 - 540 nm and 680 - 685 nm.
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Chapter 3

Machine Learning

Machine learning is a name given to a set of techniques and algorithms implemented by com-
puters to extract useful information from data and make predictions based on its properties.
It is considered a sub-field of artificial intelligence. Machine learning methods methods are de-
signed to automatically generate an analytical, mathematical model in order to perform actions
”without being explicitly programmed to do so” (Samuel 1959). Although the vast majority of
the algorithms that are used within the realm of machine learning were created decades ago, its
growth in popularity and importance is tightly bound to the increase of computational power
and the decrease of the price per unit, which was not su�cient until recently (following Moore’s
law). This has made them readily available for the average user. Machine learning methods are
traditionally separated in two major groups (Ayodele 2010):

· Supervised methods: represent the most popular category within machine learning. Al-
gorithms are trained using labeled data, which contains examples of data pairs with the
correct labels (inputs and their corresponding output values). By examining the train-
ing data-set, the computer is able to derive an approximate relation between the training
data and their corresponding labels, which allows it to predict labels for new, unexplored
data. However, this approach has several downsides such as the danger of overtraining
(the algorithm is capable of high accuracy predictions when analyzing the training set but
it does not generalize well to unseen data) or the introduction of biases caused by a poorly
chosen or wrongfully labeled training set. Linear regression and neural networks are very
common examples for this category of algorithm.

· Unsupervised methods: contrary to the supervised methods, these do not require any
type of training data-set to perform predictions. Instead, they rely on finding patters
and relationships that are present on the data without having been previously exposed
to it. Nevertheless, their output cannot predict any type of new labels in the same way
a supervised method could and the interpretation of the results is left for a human to
interpret. Unsupervised machine learning algorithms are mainly used for data mining,
clustering and classification with common examples for this category including k -means
clustering and Principal Component Analysis (PCA).

As we first mentioned in chapter 1, that due to the increasing complexity and size of the data-
sets generated by surveys in the recent years, there is a need for faster and more scalable methods
to handle it. In our case, dealing with spectroscopic data means studying vast amounts of objects
(stars), each with a large amount of information (one flux value per sampled wavelength unit per
each star). For this reason, it would not be possible to manually compare all of the flux values
with each other in order to find and extract the patterns that distinguish SB2 spectra. Regarding
the two main categories of machine learning, in this work we will be using a combination of
two unsupervised methods. The reason for this is that when working with real spectroscopic
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surveys such as GALAH, the nature of the spectrum of each star is not known a priori (whether
it was measured from a multiple system or single star), in which case one would not have a
representative set of training data for a supervised method to built a proper predictive model.
The usage of an unsupervised machine learning algorithm would further benefits our analysis
by reducing the amount of biases that could be introduced during binary star detection.

3.1 High dimensional data and dimensionality reduction algo-
rithms

Spectroscopic data is high-dimensional in nature. Each spectrum can be considered as a data
point, which in turn is a vector of dimensionality d (one dimension per each wavelength-flux
pair). Each flux value is, in turn, measured at the corresponding point on a wavelength grid
given by

�top � �bottom

&
(3.1)

where �top is the higher limit of the wavelength grid, �bottom the lower limit and & is the
sampling, which gives the amount of flux measurements per unit of wavelength. With this, it
is possible to define our high-dimensional set of spectra as a matrix of flux values, given by the
matrix

F =

2

6664

f11 f12 · · · f1d
f21 f22 · · · f2d
...

...
. . .

...
fn1 fn2 · · · fnd

3

7775
(3.2)

that contains n vectors of d dimensions, fn = {f1,f2, ...,fd}. Because in reality both the amount
of data vectors n and dimensions d are going to be very large, with n >> d and the total number
of numerical values N = nd, it would not be feasible to examine the whole data-set by hand.
However, there is a type of unsupervised machine learning algorithms called dimensionality re-
duction algorithms, that can help by reducing the amount of dimensions in the data-set to a
few ones. These methods are able to simplify high-dimensional data such as the spectral matrix
F while extracting important information from it and presenting it in a human readable manner.

Dimensionality reduction methods are widely used in astronomy and science in general and
they can be used as mapping tools for feature extraction (dimensions reduced to d > 3) or
as visualization tools (for d  3). A very important example for this is Principal Component
Analysis or PCA, an algorithm capable of creating a linear mapping of the data into a space of
lower dimensions. An introduction to PCA can be found in Francis and Wills 1999. However,
for the purpose of this work and in order to deal properly with spectroscopic data (which is
highly non-linear due to the processes within within stellar atmospheres) we need a reduction
method capable of handling non-linear data.

3.2 t-SNE

t-distributed Stochastic Neighbor Embedding or t-SNE is a non-linear dimensionality reduction
algorithm developed by Maaten and G. Hinton 2008. It has proven to be one of the lead-
ing machine learning choices for visualization and dimensionality reduction of high-dimensional
data, widely used in recent years, mostly in the field of biology but it has found its way into
astrophysics as well with many successful applications (Traven et al. 2016; Valentini et al. 2017;
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Lochner et al. 2016; Kos et al. 2017; Jofré et al. 2017; Anders et al. 2018). For our pur-
poses, t-SNE performs better than other non-linear techniques such as ISOMAP (Tenenbaum
et al. 2000), Locally Linear Embedding or LLE (Saul and Roweis 2000) or even its predeces-
sor, Stochastic Neighbor Embedding or SNE (G. E. Hinton and Roweis 2003) as it is easier to
optimize and its ability to solve the crowding problem1. Furthermore, t-SNE not only success-
fully alleviates the crowding problem but it also utilizes the whole low-dimensional space for
the projection, making its result much easier to understand than those produced by the other
alternatives available. The main idea behind t-SNE is to create a projection or a map of all
the data in such a way, that it can be inspected and understood by a human. In the map,
the similar points are clustered together while the dissimilar points are located further apart.
Due to the di↵erences in the spectrum of binary and single stars, it is expected that most of
the binaries will be separated from the groups of single stars, making their identification possible.

In the following paragraphs we present an introduction to the main concepts of t-SNE,
adapted from Maaten and G. Hinton 2008 and Van Der Maaten 2014, although for a more in
depth explanation and theoretical derivation of t-SNE we refer the reader to Linderman and
Steinerberger 2019. The goal of t-SNE is to achieve a low-dimensional embedding or projection
of a high-dimensional data-set containing N numerical values from n objects in d dimensions.
This is done by modeling the similarities between each pair of data-points within the data-set
by using two symmetric joint probability distributions: P , that represents the similarities of the
high-dimensional data-points X = {x1,x2, ... ,xn} and Q, that does this for the low-dimensional
set Y = {y1,y2, ... ,yn} where yi 2 Rs with s commonly being 2 or 3. The distribution P is
given by:

pij =
pj|i + pi|j

2
(3.3)

where the individual conditional probabilities are defined as:

pj|i =
exp

⇣
�kxi�xjk2

2�2
i

⌘

P
k 6=i exp

⇣
�kxi�xkk2

2�2
i

⌘ (3.4)

with pi|i = pj|j = 0 and �i is the variance of a Gaussian probability distribution located
at xi, which is accounts for the density of data-points around xi. If assumed that the close
neighbours of xi are defined proportionally to the Gaussian probability density kernel around
xi, then the conditional probability pj|i defined in equation 3.4 is the similarity between points
xj and xi. Similarly, Q is defined for the low-dimensional space as:

qij =

�
1 + kyi � yjk

2
��1

P
k 6=l (1 + kyk � ylk

2)�1 (3.5)

with qii = qjj = 0. Unlike in P , the similarities in Q between points yi and yj are deter-
mined using a normalized Student’s t-distribution with a single degree of freedom. The heavier
tails of the Student’s t-distribution compared to a Gaussian allow for a more accurate modeling
of spatial distances, setting more space between data-points that are somewhat dissimilar and
leaving more space available for the local structure to be modeled accurately (the local structure
corresponds to the smallest pairwise distances).

1Maaten and G. Hinton 2008 provides some insight into the crowding problem: ”[...] the area of the low-
dimensional map that is available to accommodate moderately distant data-points will not be nearly large enough
as compared to the area available to accommodate nearby data-points.”
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To obtain the positions of the points in the low-dimensional space Y in which Q optimally
reflects the behavior from P , t-SNE minimizes the di↵erence between these two distributions by
minimizing the cost function given by the Kullback-Leibler divergence:

C = KL (P ||Q) =
X

i 6=j

pij log
pij
qij

(3.6)

where C is the cost function to be minimized. The Kullback-Leibler divergence or KLD
is a quantity that measures the di↵erence between two probability distributions (Kullback and
Leibler 1951). The KLD of two functions is equal to 0 only if both distributions are exactly the
same. The minimization of the cost function is accomplished using iteratively a gradient descent
to find the minimum (which corresponds to the most optimal embedding), with the gradient
defined as:

@C

@yi
= 4

X

i 6=j

(pij � qij) qijZ (yi � yj) (3.7)

where Z =
P

k 6=l

�
1 + kyk � ylk

2
��1

is the normalization term from equation 3.5. The gradi-
ent descent is initialised by randomly placing data-points in space Y . As a consequence, two runs
of t-SNE can have di↵erent outputs even if the input parameters are the same. Above equation
3.6 shows that the computational complexity of the algorithm is O

�
N2

�
, as the computation of

similarities between data-points requires N (N � 1) numerical operations.

3.2.1 t-SNE: an example

The optimal result of a t-SNE analysis is given in the form of a visual representation or map
from the high-dimensional data in a low-dimensional space (most frequently 2-D) displaying
data-points grouped in clusters (also named islands of data-points). As an example, we show
the results from t-SNE applied to MNIST data-base (LeCun et al. 2010), a widely used bench-
marking data-set used in machine learning. MNIST contains images of handwritten digits in a
bitmap (image), composed by a matrix of 28x28 pixels where the position of each pixel in the
bitmap matrix represents a dimension containing one greyscale value, so that the dimensionality
of the MNIST dataset is 784. An extract of the raw data is shown in figure 3.1, where we can
see that each data-point (bitmap image) represents a number from 0 to 9 and that those images
representing the same digit show slight di↵erences between each other.

Applying t-SNE on the MNIST data-set results in a projection that can be seen in figure
3.2, where similar numbers are clustered together. Even though there are some outliers, such
as poorly written 4 that resemble the number 9, or some samples of the number 5 that appear
very similar to number 6 (and thus are located relatively close on the map), the algorithm did a
great job at separating the numbers and grouping them on clusters that are easily recognizable
visually. Furthermore, a closer inspection reveals local structure within each number’s cluster,
showing the smallest variations even between numbers that were properly grouped, such as a
gradient from thinner to fatter or di↵erent writing orientations. This ability to show both large
and small structure at the same time without excessive cluttering is one of the strengths of
t-SNE and is what sets this algorithm apart from the other non-linear dimensionality reduction
algorithms.
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Figure 3.1: Raw data from the MNIST database, from C.-L. Liu et al. 2003. Each of the shown
digits corresponds to a 28x28 pixels bitmap (image) containing grayscale values.

Figure 3.2: t-SNE applied on the MNIST data-set, from Maaten and G. Hinton 2008. Here are
shown only 6000 digits from the 60.000 used in the t-SNE analysis for easier visualization.
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It is important to remind that t-SNE does not preserve the densities nor exact distances be-
tween the data-points of the original high-dimensional space in its low-dimensional representaton,
but rather groups data-points according to similarities. The separation between data-points in
the projection map cannot therefore be directly related to some metric (e.g. Euclidean). This
is a consequence of the highly non-linear nature of the algorithm.

3.2.2 Perplexity

From all the hyperparameters that go into t-SNE, perplexity is the one that has the largest
impact on the end result. It essentially defines the scale of the projection, setting whether t-SNE
is more sensitive to local or global structure, which consequently determines the morphology of
the embedding (Cao and Wang 2017). The set value of perplexity is used by t-SNE to compute
the standard deviation �i of the Gaussian distribution which e↵ectively sets the number of
neighbours for each point xi in the high-dimensional space X , as given in equation 3.4. The
value of �i is computed for each point xi according to:

Perp (xi) = 2�
P

j pj|i log2 pj|i (3.8)

which must then be equal to the pre-specified input value Perp for perplexity, so that
Perp (xi) = Perp for every high-dimensional point xi. Perplexity must be fixed by hand before
starting the t-SNE computations, with recommended values between 5 and 50 (Van Der Maaten
2014). For an interactive visualization of the behavior of t-SNE under di↵erent choices of the
perplexity, we refer the reader to Wattenberg and Johnson 2016.

3.3 Clustering algorithms

Clustering algorithms are a group of machine learning methods commonly used for data mining.
These algorithms are designed to identify and retrieve clusters of data-points from an input
set by defining the boundaries between them. Furthermore, clustering algorithms are able to
mark points that do not belong to any cluster (outliers) as noise. For a comprehensive review
on the di↵erent types of clustering algorithms and an overview of their functionality we refer
the reader to D. Xu and Tian 2015. These methods are used in the field of data mining to
extract information and explore data-sets by detecting points close to each other and labeling
those groups as clusters. This can be used in combination with the output of t-SNE, which
groups similar data in clusters as we saw previously in figure 3.2 and thus a clustering algorithm
could automatically identify and separate them from the rest of the data. This will allow for
an automatic detection and separation of the major binary-star clusters from their single-star
counterparts in the t-SNE projection.

3.3.1 DBSCAN

Density-Based Spatial Clustering of Applications with Noise or DBSCAN (Ester et al. 1996), is a
very well-known and widely used unsupervised clustering algorithm. DBSCAN stands out from
other clustering methods by being able to identify clusters with di↵erent morphologies based
on their density. Further advantages from DBSCAN include: its input of only two parameters
without the need of extensive knowledge of the data-set, its scalability, its ability to recognize
noise and that no guess or knowledge about the number of clusters is needed, which removes
the necessity of a manual examination of the data-set.

The two input parameters of DBSCAN are: minPts, which gives the minimum amount of
data-points (hereafter points) per retrieved cluster, and ✏, which defined the neighborhood of a
given point and it is a measure of the maximum distance between two points so that they are
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considered neighbors. DBSCAN defines three kind of points using a combination of minPts and
✏, which is named mode. The following definitions of the point properties and categories they
are classified in by the algorithm were adapted from Ester et al. 1996. For a given mode and a
randomly chosen point p from the data-set D, one can define the following situations:

· p is a core point if there are Neps (p) � minPts within its neighborhood given by the
specified epsilon value, which can be expressed as:

Neps (p) = {q 2 D | dist (p, q)  ✏} (3.9)

· A point q is said to be directly reachable from the core point p if q 2 Neps (p). In other
words, q is located within a distance ✏ of p.

· A point qn is density reachable from the core point p = q1, if there is a succession of points
q1, q2, ... , qn with the condition that qi+1, i  n is directly reachable from qi. Note that
due to the previous definition of direct reachability, every point of the succession must be a
core point with the possible exception of qn itself. If qn is not a core point, it is considered
a border point. The fact that qn is density reachable from q1 does not imply that the
reverse case is true. However, two points q1 and q2 are said to be density connected if
there is a point x such that both q1 and q2 are both directly reachable from x and in this
case, both q1 and q2 are mutually density reachable.

· A cluster C is defined as a non-empty subset D and is formed by all points that are either
density connected and/or density reachable from a given point within C.

· If the point u is neither directly or density reachable from a core point p it is marked as
noise and it therefore does not belong to any of the detected clusters Ci.

A visual example of this can be seen in figure 3.3. The parameters used in the figure are
minPts = 4 and ✏ is the radius of the circumference drawn around each point. In figure 3.3
there is one cluster formed by six red core points and by the two yellow border points. There is
also one blue point in the upper part of the figure which is marked as noise by the algorithm.
The red points are labeled by DBSCAN as core points because the algorithm was able to find
Because it is possible to find at least 4 points within the circumference given by ✏ (this includes
the point itself). These form part of the cluster as they are density connected. The yellow points
belong to the detected cluster as well as they are density reachable from a core point. The blue
point, as it is not density reachable from a cluster core point nor it is a core point itself (no
neighbors within its epsilon neighborhood) is marked as noise.

DBSCAN begins by sampling a random point p from the data-set D and then tries to recover
all points that are density reachable from p. This procedure can have two di↵erent outcomes:
either p is a core point and the search for the density reachable points forms a cluster, or p is a
border point and DBSCAN moves on to examine the next point in D. From this, it is possible
to infer that the right selection of the mode is remarkably important. Indeed, for example if ✏ is
selected to be too small, then only the densest regions will be clustered, on the contrary, on the
other hand if ✏ is too large, then most of the data-points will be part of the same cluster. Besides
the dependency of the end result on the mode selection, there are two major disadvantages of
DBSCAN: first, the proper determination of both ✏ and minPts is not straightforward, and
second, it has trouble with data-sets of varying densities as a single DBSCAN mode is only able
to e↵ectively target a single density value (or narrow range of densities). In the next chapter we
will explore the solutions we designed to overcome the drawbacks presented by this algorithm.
Regarding computation times, DBSCAN has a complexity of O

�
N2

�
, as it has to go once over

each point in the data-set and calculate distances to all other points.
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Figure 3.3: Visual example of DBSCAN. Image from Wikipedia.

In figure 3.4 we can see an example of a possible input and output for a DBSCAN analysis. In
the left panel we see the raw input data-set for DBSCAN. Numerically, the input for DBSCAN
will, in this case, be the location of each points as a pair of x and y coordinates. From this
information, DBSCAN is able to detect the clusters present on the left panel and separate them
accordingly. The result from the analysis is shown in the right panel, where each detected cluster
is marked using a di↵erent color. As we can see, all of the clusters were properly recognized
regardless of their morphology (shape) and the outlying points were marked as noise.

Figure 3.4: Non-uniform raw data can be seen on the left panel, clusters found by DBSCAN are
shown on the right. Image by Christ Wersnt.

39



Chapter 4

Method

In the previous chapter we explained that the combined usage of t-SNE and DBSCAN can be
useful to automatically separate binary and single stars (among other types). This has already
been tried and proven successful on GALAH data in Traven et al. 2016 and more recently in
Traven et al. 2020. In this work we will be, however, focusing on optimizing the combined use
of these two machine learning algorithms so that together they can e�ciently detect SB2 sys-
tems from a collection of spectra. This combination of methods constructs a two-step analysis
method, where first t-SNE reduces the complexity of the data-set to be analyzed allowing for
a manual examination if needed, and then DBSCAN automatically detects and recovers the
di↵erent clusters obtained with the t-SNE projections, labeling them and allowing for a more
exhaustive classification of the di↵erent categories that might be present in the data-set.

We perform a parameter space search to identify the parameter combinations that work
best regarding the recovery e�ciency of binaries, which in turn allows for a thorough analysis
of the e↵ect these parameters have on the machine learning algorithms and how they a↵ect
the recovery. We can divide the parameters that will influence the final recovery result in two
di↵erent categories: variable and implicit.

Implicit parameters

Implicit parameters are those whose alteration would require a new synthesis procedure and
therefore are fixed during the analysis; they are implicit in each stars’ spectrum. These are:

· Stellar parameters used in the synthesis such as Te↵ , log g and [Fe/H].

· Parameters that define the binary systems: q, MA, �vrad, LB/LA.

· The wavelength region of the spectral synthesis (450 to 900 nm in this work)

· Resolving power and sampling (nm/px) of the resulting synthetic spectroscopic survey.

For example, a new subset of stellar data from GALAH would be needed to change the
parameters of the used stars, di↵erent q,MA (use a di↵erent type of IMF) and�vrad distributions
would be needed to change the properties of the resulting binaries or even new atomic line-list
to shift the wavelength range of the synthesized spectra.

Variable parameters

Variable parameters, on the contrary, are those that can be varied for the current synthetic
spectroscopic data and allow for a comprehensive study during the parameter space exploration
for a given data-set. They are:
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· The selected spectral range, which is a small portion selected from the entire spectral
region the spectra was synthesized in.

· Signal-to-noise value.

· Machine learning parameters: perplexity for t-SNE and ✏ and minPts for DBSCAN.

4.1 Optimization of machine learning algorithms for SB2 detec-
tion

The optimization procedure we designed consists of three distinct phases: the pre-processing
of the data, the analysis using t-SNE and the automatic cluster recovery using DBSCAN. To
maintain a certain hierarchy, the parameters will be altered in a cyclic fashion according to
the diagram shown in figure 4.1, where for a given spectral range, all possible combinations of
SNR, perplexity and DBSCAN mode will be tested. We perform this recursively for all possible
combinations of variable parameters within a set of pre-defined ranges. This will allow not
only to maintain a certain order during the analysis but it also has a positive e↵ect on the
computation e�ciency.

Figure 4.1: Hierarchy used in the parameter space exploration.

The ranges of parameters that for each of the variable parameters shown in figure 4.1 are
specified in 4.1. Both the machine learning parameters for DBSCAN and t-SNE as well as SNR
were chosen to encompass the range of most common values found in the literature. The spectral
range intervals were chosen to be 25 nm in width for two reasons: they are almost as large as
the average width of a single GALAH band and with this division, we were able to separate
important spectral ranges such as that containing H-↵.

Parameter Range

Spectral range 25 nm intervals between 450 and 900 nm
Perplexity 5, 15, 30 and 100
SNR 10, 25, 50, 100 and 500
✏ 10 equally spaced values between 0.1 and 0.75
minPts 10 equally spaced values between 25 and 125

Table 4.1: Ranges of the studied variable parameters.

4.1.1 Pre-processing

Before the analysis, we perform a pre-processing of the synthetic data. It includes: extracting
the corresponding flux data for the selected wavelength ranges from the synthetic spectra, adding
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noise to it according to an input SNR value and cutting the extrema of the spectra. The last
step is crucial as after the shift of the secondary spectra due to the �vrad, the new wavelength
grid the spectra were interpolated onto was too wide. This caused unwanted features to appear
on the resulting binary spectrum, which could be interpreted by t-SNE as very distinct features
and therefore throw o↵ the validity of the resulting t-SNE projection.

4.1.2 t-SNE projection

In this phase we apply t-SNE to the pre-processed data for a given perplexity value. Because the
standard version of t-SNE is computationally very expensive for such a large data-set as ours, we
use a multi-core version of t-SNE by G. C. Linderman et al. 2019 (based on an earlier accelerated
version by Van Der Maaten 2014), conveniently wrapped in a Python package called FIt-SNE
(short for fast Fourier inverse transform Interpolation based t-SNE). The usage of FIt-SNE sped
up the computations by a factor of 10 compared to other implementations, which allowed us to
increase the range of the studied parameters.

Figure 4.2: Example of a t-SNE result from spectra in the wavelength range between 800 and
825 nm for perplexity 30 and SNR 100. The binaries are colored in red, while the singles are
shown in grey.

Figure 4.2 shows one of the maps created by t-SNE for spectroscopic data between the
wavelength range of 800 and 825 nm, where we can see the clustered features we mentioned in
the previous chapter. Data-points representing binary star spectra are mostly grouped in four
distinct clusters with some outliers mixed with the single stars, probably due to their binary-
defining features not being strong enough to allow for proper isolation. As we advanced in section
3.2, perplexity plays a major role in the final morphology of the projection, making it denser
or sparser for lower and higher values, respectively. This high dependency plays a major role in
the final recovery of binary clusters from a given t-SNE embedding and its proper handling will
prove crucial for this.
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4.1.3 Interpreting the t-SNE results

Figure 4.3: t-SNE projection from figure 4.2 with di↵erent color codings. Projection a) is
colored according to the e↵ective temperature for the singles and the e↵ective temperature of
the primary for the binary systems, b) according to the surface gravity of the singles and that
of the primary component of the binaries, c) and d) are colored with respect to the luminosity
ratio and radial velocity di↵erence for each one of the pairs, respectively.
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In figure 4.3 we show the same t-SNE projection as in figure 4.2, where the points representing
the synthetic spectra analyzed by t-SNE have been color coded according to diverse stellar pa-
rameters that shape the spectra they represent. In both plots a) and b), we see the projection
color coded according to the Te↵ and log g of the singles and primaries (for the binary systems)
respectively.

There is a clear gradient from higher Te↵ on the right towards cooler values on the left along
the arch of the main single star islands. A gradient is seen as well on the projection color coded
according to log g but from lower values on the right to larger values on the left along the main
single island. The four islands of points containing binary spectra in the middle of the projection
follow a similar pattern, as the two upper clusters show lower values of Te↵ and larger values
of log g whereas the lower two islands show the inverse behavior, higher temperature and lower
surface gravity figures. Furthermore, binary clusters seem to show an internal substructure on
plot c) with respect to the luminosity ratio, which appears as a gradient from top to bottom in
each one of the clusters. On the last plot d), we see that binary clusters are presented from top
to bottom with radial velocity di↵erences of alternating signs. This in the spectra is shown as
a positive and negative Doppler shifts of the secondary star. As for the binaries that are not
recognized by t-SNE as such and are therefore not separated in an independent clusters, they
are mainly located on the lower right corner of the main single star island. We can see from
plots c) and d) that they show both low luminosity ratio and radial velocity di↵erence values,
which means that the spectra found there present a strong blending of their spectral lines and
a gradual disappearance of the secondary lines. However, they still present di↵erences from the
single spectra large enough for t-SNE to place those stars apart from the bulk of single stars, but
those di↵erences are not large enough for t-SNE to consider them a special class of data-points
and are therefore not separated in a single cluster. The same behavior is seen in Traven et al.
2020 as well.

Figure 4.4: t-SNE projection from figure 4.2 color coded according to the metallicity of the
primary star.

In figure 4.4 we can see the same t-SNE projection from figures 4.2 and 4.3 color coded
according to the metallicity of the primary component. In this case, we can see that although
there is also a gradient across the arch of the main island of single stars, this is not the case for
the binary islands, whose metallicities seem to vary only from island to islands, where the two
upper binary islands appear to be slightly metal-richer than the two bottom ones. Therefore,
due to this and the small range of considered values, metallicity appears to have a less noticeable
e↵ect on the final identification of SB2 in our study. With all of this, we can see how the groups
of data-points presented on the t-SNE projections in both figures 4.2, 4.3 and 4.4 are not a
consequence of only one property but a combination of several, all of which seem to have been
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considered with varying degrees of importance by the algorithm regarding the positioning of
that given data-point, either with respect to the local or large scale structure. This shows that
t-SNE is capable of identifying binarity with great success, even if some of the essential feature
for its identification are suppressed or lessened up to some degree.

4.1.4 DBSCAN mode selection and recovery ratio

With the t-SNE projection of spectroscopic data for a given SNR and perplexity values and
within a given wavelength range, we now can apply DBSCAN to the embedding for automatic
cluster recovery. To do so we need a mode capable of targeting the specific density of the
projection to be analyzed. However, in subsection 3.3.1 we argued that one of the downsides
of DBSCAN is its intrinsic di�culty when selecting the appropriate mode. To overcome this
issue we perform an exploration of the DBSCAN parameter space based on the recovery ratio of
binary stars from the t-SNE clusters. For this purpose, we designed an algorithm that analyzes
the output of DBSCAN to find the cluster each data-point (star) was assigned to and then it
compares this to the real nature of the data-point, which is either binary or single. With this,
the algorithm inspects all data-points that belong to each one of the detected clusters and it
computes the ratio of binary stars to all stars in that given cluster as:

�B =
NB

NT
(4.1)

where �B is the ratio, NB is the amount of binaries and NT = NS +NB the total amount
of stars (both single and binary) in the cluster. We can use equation 4.1 as a filtering for the
cluster identification, where a pre-defined value of �B serves as a threshold to define a binary
cluster. If the computed value of �B for a given cluster is larger or equal than the specified,
then the analyzed cluster and all of the stars within are labeled as binaries (even the single
stars that might be there). On the contrary, if the calculated value is lower than the pre-
defined �B, then all of the stars within the examined cluster are marked as single stars. Doing
so for each one of the detected clusters allows us to quantify the quality of the investigated mode.

In this work we perform the DBSCAN parameter space exploration for a range of 10 values
that span between 0.1 and 0.75 for ✏ and 10 values between 25 and 125 for minPts, accounting
for a total of 100 combinations. The parameter ranges were selected upon manual examination
of t-SNE maps with the data-points enclosed between (-10, 10) on each axis of the 2D projection
space. For this reason, all of the t-SNE embeddings that DBSCAN will analyze are normalized
to fit within that range, ensuring that the parameter space exploration is as targeted as possible
without the need of human interaction.

The results of the optimal mode search can be seen on figure 4.5, where all 100 combinations
of explored ✏ and minPts are shown as a heat-map, color-coded according to the recovery ratio
each mode yielded. The results from this type of figure are interesting because they encompass
information from both the t-SNE projection and the DBSCAN performance in the recovery. If
the t-SNE projection was not well suited for binary detection (no defined binary islands), the
sharp recovery seen on figure 4.5 would appear smeared out over a large portion of the shown
parameter space. On the contrary, and as we can see on figure 4.5, the heat-map presents
several peaks of high recovery located on a line with sharp edges, which correspond to other
modes that could be suitable for the final analysis. This is a consequence of the t-SNE map
shown in figure 4.2, which presents four well-defined islands corresponding to the binaries and
which are properly recovered by the selected mode. While the parameter space search chooses
the mode with the absolute best recovery e�ciency, other minPts and ✏ combinations would
also yield optimal binary cluster recovery, however, the way the cluster detection perform varies
greatly depending on the chosen parameters.
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Figure 4.5: Heat map corresponding to the parameter space exploration of the possible DBSCAN
modes for the t-SNE projection shown in figure 4.2. The selected mode is marked with a cross
at ✏ = 0.39 and minPts = 113.9, with a recovery of 0.75.

Furthermore, the selection of the ranges of the DBSCAN parameters is not arbitrary, as for
low values of minPts and ✏, almost every small group of stars would form a cluster and therefore
the number of technically recovered binary stars would be much higher. However, this would be
a misleading result, as we strive for a practically useful number and size of identified DBSCAN
clusters of data-points. For this reason, we tried to avoid the lowest values to ensure that even if
the highest recovery occurs at the lowest value of the interval, it is still large enough so that the
DBSCAN clusters can be e�ciently explored by a human in a real data-set where our findings
might be applied.

With the mode selected according to the point of largest recovery in figure 4.5, we can
analyze the t-SNE projection shown in figure 4.2. The result of this analysis can be seen as two
t-SNE embeddings in figure 4.6. The top t-SNE map is color coded according to the clusters
that DBSCAN is able to recognize using the input mode (✏ = 0.39 and minPts = 113.9) and as
we can see, it manages to properly recognize the islands as clusters with a total recovery of 75%.
On the bottom projection from figure 4.6, we show in red the clusters that were labeled as binary
from those detected by the selected DBSCAN mode and in blue, those the binaries that were
missed. By carefully examining the results from figure 4.6 (bottom) and comparing that t-SNE
map to the one shown in figure 4.2, we can see that although it recognizes 5 binary clusters, it
still misses the left-most cluster, probably because the density of data-points is lower than that
the selected DBSCAN mode is able to detect. This is an example of the second disadvantage for
DBSCAN we mentioned in chapter 3, as every DBSCAN mode targets a single density level and
for a recovery of all the binary clusters several modes targeting the di↵erent levels of density
present in the analyzed t-SNE projection would be needed.
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Figure 4.6: Example of the DBSCAN clustering (top) with each detected cluster marked by a
di↵erent color, and the recovered binary stars using equation 4.1 (bottom).
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Chapter 5

Results

In the following we present the results from the described method when applied to the previ-
ously synthesized spectroscopic survey composed of 99986 synthetic single1 and 5000 synthetic
binary stars, represented by spectra spanning over a wavelength range between 450 and 900 nm.
We study every possible parameter combination within the ranges as given in table 4.1, which
accounts for a total of 360 di↵erent configurations (assuming the optimal DBSCAN mode has
already been selected). Furthermore, we set the threshold for the ratio of binaries compared to
all stars in a DBSCAN cluster to be 0.9, as given by equation 4.1.

For some of the results we will be dividing the analyzed spectral regions in two groups groups,
blueward and redward of the region containing H-↵ (650 - 675 nm), as it conveniently lies in
the middle of the wavelength range of our synthetic spectra and corresponds to a relatively
important part of the spectrum due to the presence of the H-↵ line.

5.1 Diagnostics

Before we present an in-depth analysis of the di↵erent trends and behaviors observed on the
data from the parameter space exploration, we explore the results corresponding to a default or
baseline models, with parameters that have been previously used in the literature and that we
deem as standard.

5.1.1 Baseline model: parameters

As a first approach to analyze the large amount of results from all of the parameter combinations,
we define a baseline model based on typical values found in the literature: 30 for perplexity
(Maaten and G. Hinton 2008; Van Der Maaten 2014) and 100 for the SNR as it represents the
average value intended for the GALAH survey (Buder et al. 2018).

5.1.2 Baseline mode: results

The analysis of the baseline model in general terms shows an average recovery of ⇠70%, which
translates to an SB2 fraction of ⇠3.5%. The results are presented in figure 5.1 with their t-SNE
projections and the binaries detected with the automatic recovery using DBSCAN and in figure
5.2 as well, which shows the heat-maps corresponding to the mode selection of DBSCAN as well
as the recovery each mode yielded for each one of the studied parameter combinations. A close
inspection of both figures reveals two major trends:

· We can see clear di↵erences in the amount of local structure from the t-SNE plots in figure
5.1: spectral ranges bluer than the region containing H-↵ show a larger degree of internal

1Originally 100000 stars, but some were discarded due to a defective synthesis
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structure, where both binaries and single stars are shown on more fragmented embeddings
than those for the regions redder than H-↵, whose projection’s structure appears to be
more uniform for the same value of perplexity due to a lower level of internal complexity.
As we will see later in more depth, this is a consequence of the higher abundance of lines in
the blue parts of the investigated spectra, which allow for a finer classification with t-SNE.

· Regarding the parameter space of the DBCSCAN modes in figure 5.2, we can see clearly
that those spectral regions that achieved a high recovery (> 0.65) present sharper features
in the corresponding heat maps than those that recovered fewer binary stars, which present
a more di↵use parameter space, with features that are very faint and appear smeared out
through the whole parameter space.

Moreover, when looking at the point of maximum recovery per region for the baseline
model (marked with ”x” on the individual plots from 5.2), we can see that when the
recovery was low, DBSCAN had trouble finding an appropriate mode for that given t-SNE
projection and tried to find as many small clusters as possible in order to achieve the best
possible overall recovery fraction.

With the exploration of the baseline model we wanted to show that a simple exploration with
default parameters can already lead to trends representative for the type of data we analyze in
this work.
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Figure 5.1: t-SNE map for every spectral region of the baseline model.
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Figure 5.2: Results from the DBSCAN parameter space exploration from the data corresponding
to the baseline model, with a perplexity of 30 and SNR 100, color coded by recovery fraction of
SB2. The black cross on each plot marks the point of highest recovery and therefore the chosen
method (in some the marker is barely visible as it is located on the lowest minPts value, on the
very same x-axis)
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5.2 General performance

So far we have presented the results from the baseline model with the default parameters from
the literature and show that it is already possible to extract conclusions from it. In the following
points, we will explore the combined results from all of the 360 parameter combinations possible
with the parameter ranges we defined in table 4.1. We will first show the general results us-
ing simple statistics with focus on the general performance for each di↵erent wavelength region
studied, which will give a better overview of the performance di↵erences before diving into the
e↵ects of each of the studied parameters.

In table 5.1 we show the main numerical results for each of the investigated spectral ranges.
All of values in the table are extracted for a given wavelength region across all perplexity and
SNR variations. For a clearer visualization, the results from 5.1 are shown in figure 5.3, where
the red line represents the average recovery per spectral range regardless of perplexity and SNR,
and the upper and lower black lines correspond to the maximum and minimum recovery value
achieved for that wavelength region. By carefully studying table 5.1 and figure 5.3 we can
observe a gradient that goes from the short to the long wavelengths that shows an increasing
di↵erence between the extremal values of the recovery. We can attribute this to the decreasing
complexity gradient we observed already for the baseline model in the corresponding t-SNE
projections in figure 5.1. From the global results, we can extract two further observations:

· There appears to be an absolute maximum value of recovery (between 0.75 and 0.8) that
any spectral region can achieve within the parameter ranges defined in table 4.1. This can
be seen as the approximately flat line in figure 5.3.

· In terms of absolute numbers, the spectral region containing the H-↵ line presents the
lowest maximum recovery, albeit a mean recovery slightly larger than the lowest achieved
average value (0.471 in adjacent region between 675 and 700 nm).

· The maximum and minimum values in most spectral ranges are not symmetric with respect
to their mean recovery. That is, both extremal values are not equidistant from the red
line, with a tendency for the average recovery to be closer to the maximum value than to
the minimum.

Spectral Range Recovery max. Recovery min. Max. di↵erence Mean recovery

450 - 475 nm 0.7252 0.4622 0.263 0.639
475 - 500 nm 0.7264 0.4628 0.264 0.595
500 - 525 nm 0.7580 0.4574 0.301 0.640
525 - 550 nm 0.7794 0.4670 0.312 0.668
550 - 575 nm 0.7596 0.4250 0.335 0.623
575 - 600 nm 0.7464 0.3210 0.425 0.600
600 - 625 nm 0.7724 0.3504 0.422 0.604
625 - 650 nm 0.7548 0.3586 0.396 0.608
650 - 675 nm 0.6942 0.2392 0.455 0.508
675 - 700 nm 0.7378 0.0132 0.725 0.471
700 - 725 nm 0.7634 0.2344 0.529 0.554
725 - 750 nm 0.7194 0.1774 0.542 0.527
750 - 775 nm 0.7464 0.2034 0.543 0.558
775 - 800 nm 0.7158 0.0644 0.651 0.485
800 - 825 nm 0.7856 0.1740 0.612 0.552
825 - 850 nm 0.7626 0.1876 0.575 0.542
850 - 875 nm 0.7304 0.2294 0.501 0.558
875 - 900 nm 0.7192 0.1952 0.524 0.513

Table 5.1: Table of the most important values from the analysis of all the parameter combinations
presented in table 4.1
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Figure 5.3: The red line represents the average recovery achieved for each spectral region, while
the upper and lower black lines correspond to the maximum and minimum recovery numbers
achieved.

Moreover, because the values shown in both table 5.1 and figure 5.3 encompass all of the
possible parameter combinations within our given ranges, the gradient of increasing di↵erence
between largest and smallest recovery value per given spectral range can also be interpreted as
measure of the stability under the variation of the aforementioned parameters. The stability
against changes is the most important feature that can we extract from the exploration of the
general results because it gives the best overview of the performance from each spectral range,
regardless of the machine learning parameters and SNR value used.

An example of this using, the results from the baseline model in figure 5.2 can be seen in
the heat map corresponding to the region the region 800 - 825 nm. Its DBSCAN parameter
space presents the sharpest recovery features (two distinct yellow peaks) and also the highest
recovery value of 0.75. Furthermore, we can see that DBSCAN did not have any troubles finding
an appropriate mode, as both parameters minPts and ✏ are relatively large, meaning that it
was able to recognize the clusters as a whole entity and did not have to rely on finding many
small ones. This same region also presents an almost ideal t-SNE projection on figure 5.1, which
shows four distinct binary islands surrounded by the single stars and only one fourth of the
studied binaries are not recovered either because they are mixed with the single star spectra or
due to the DBSCAN mode not being able to recover the big and the small islands at the same
time (due to the varying density between both). However, regarding its global performance, the
aforementioned region shows a strong variation against parameter changes as given by table 5.1.
This example already gives a sense of the di↵erent performances the studied parameter space
can lead to.

5.3 E↵ect of parameters

One of the main trends we found for each explored spectral range is their stability (or instability)
to parameter variation. Exploring this in more depth is crucial, as it will give us a better
understanding on why the studied parameter space has such large di↵erences in the recovery of
SB2 spectra for a one part of the studied wavelength range, but enables the other to perform
with much more stability. In the following we will explore the di↵erent choices of both perplexity
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and SNR have on the recovery for each studied spectral range.

5.3.1 Variation of perplexity

The theoretical e↵ects of perplexity were already explained in section 3.2 however, the e↵ect it
has on synthetic spectroscopic data is not as straightforward and requires a more careful exam-
ination.

We investigate the e↵ect of varying perplexity with the help of 5.4 where columns of di↵erent
color represent the mean recovery for di↵erent perplexity values, and the error bars correspond
to the minimum and maximum recovery achieved for that spectral range and perplexity value
regardless of the SNR. By looking at both panels, two observations become clear:

· The average recovery of the first panel, without counting the H-↵ region, is larger than
0.6, clearly higher than that of the second panel, whose average recovery is around 0.5.

· The error bars in the first panel, again without including the region containing the H-↵
line, are clearly smaller than those in the second panel. This further proves what we
previously mentioned, that the regions in the bluer side of the studied wavelength range
are less susceptible to parameter changes than those in the red. The gradient that we saw
on figure 5.3 can also be seen here represented as the varying width of the error bars.

Furthermore, from figure 5.4, it becomes clear that the optimal range of perplexity values
lies somewhere between 15 and 30 depending on the internal complexity of the analyzed spectra.
This suggests that to achieve the highest possible recovery, a proper balance between the amount
of local and large scale structure that is examined by t-SNE is needed.

We can explore these observations in more detail with figure 5.5. In it, we show the t-
SNE maps of two regions with very di↵erent recovery ratios for the baseline SNR value of 100.
Although in terms of absolute numbers for the recovery, the region with wavelengths between
725 - 750 nm has values clearly larger than those from the spectral range 475 - 500 nm, even if
in terms of the stability regarding good recovery the region 475 - 500 nm is better (as shown in
figure 5.3). However, the reason behind the stability of the bluer regions against the variation
of perplexity is the larger amount of small scale structure that is present in the spectra for that
region. This is further illustrated using the t-SNE plots. With increasing perplexity, and thus
larger number of e↵ective neighbors considered when grouping spectra, t-SNE produces smoother
and larger islands of points by smearing out the local structure. We can see this for the blue
region, where the embedding done using perplexity 5 clearly shows many small islands, each one
containing a smaller group of data-points representing spectra with very concise similarities.
Even at perplexity 100, where the amount of local structure that t-SNE accounts for is minimal,
there are still sub-structures present on the projection. On the contrary, for the redder region
this is not the case, as for perplexity 5 the t-SNE embedding already looks quite smooth and
this behavior only increases. This is, again, due to the larger amount of spectral lines that are
generally present on the bluer regions of the spectrum for the type of stars that we consider in
this work.
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Figure 5.4: Bar plot of the mean recovery per perplexity. Each bar is color coded according
to one of the examined perplexity values and it shows the recovery achieved averaging over all
SNR values. The error bars represent the maximum and minimum value achieved for the given
combination of perplexity and spectral range.
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Figure 5.5: t-SNE maps of both regions between 475 - 500 nm and 725 - 750 nm with a fixed
SNR of 100. The perplexity of each panel, as well as the spectral range and achieved recovery
is indicated on the panel itself.
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5.3.2 Variation of noise

Although SNR of spectra generally depends on specific observations, here, because we are work-
ing with clean, synthetic spectra, we can analyze the e↵ects it has on spectroscopic binary
recovery. We do so in a similar fashion as we did previously in section 5.3.1 for the perplexity.
On figure 5.6 we show a similar plot to figure 5.4 but analyzing the e↵ect of varying other pa-
rameters while keeping SNR fixed.

From figure 5.6 we observe that:

· Up until 575 nm, our method is capable of recovering almost 50% of the binary stars
regardless of the noise present in the studied spectra, even under values as low as 10.
Furthermore, in the spectral range between 450 - 475 nm, the average recovery under SNR
of 10 is larger than the average recovery for the same spectral range for very clean spectra
with SNR 500.

· The gradient we have so far seen in figures 5.3 and 5.4 is presented in figure 5.6 as a
decreasing recovery when using SNR 10 and also as a larger di↵erence between the average
value of the low SNR values and the higher ones.

· The range of variation between maximum and minimum values when varying the SNR is
much lower than that shown in figure 5.4 for the perplexity variation. Interestingly, the
SNR value that shows overall the largest variation is the largest, 500. Furthermore, the
average recovery for SNR 500 is not the highest in any of the 18 shown spectral ranges.

The strongest takeaway from 5.6 is that the highest average recovery are achieved when
there is a moderate level of noise and not at lower amounts, as intuition would suggest. This is
the case for SNR 50 and 100, for which we obtain the highest average recovery in all of the 18
examined spectral ranges. From this, we see that the e↵ects of noise in removing information
from the spectra can be beneficial under some circumstances for the detection and recovery of
data-points representing SB2.

In figure 5.7 we show the same spectral regions as in 5.5 but with varying SNR and fixed
perplexity. As we explained before, some amount of noise appears to be beneficial, mostly in
the bluer regions with higher information content and many spectral lines. This is behavior is
seen in the first column of figure 5.7, which corresponds to the spectral range between 500 and
525 nm and where the recovery peaks at SNR 50 and then decreases slightly. The spectral range
between 800 and 825 nm shows, on the contrary, a recovery that increases with increasing SNR
due to the presence of fewer spectral lines compared to the bluer region.
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Figure 5.6: Bar plot of the mean recovery per SNR value. Each bar is color coded according
to one of the examined SNR values and it shows the recovery achieved averaging over the all
perplexity values. The error bars represent the maximum and minimum value achieved for the
given combination of SNR and spectral range.
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Figure 5.7: t-SNE maps of both regions between 475 - 500 nm and 725 - 750 nm with a fixed
perplexity of 30. The SNR of each panel, as well as the spectral range and achieved recovery is
indicated on the panel itself.
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5.3.3 E↵ect of the stellar parameters

The synthesis process explained in chapter 2 and the subsequent stellar parameters from the
selected GALAH sub-sample that were used in combination with turbospectrum, as well as the
sampled binary parameters we used to generate the binary population (and the corresponding
binary spectra) do play a major role in the analysis. In the following, we present two distinct
groups of histograms on figures 5.8 and 5.9, which correspond to a parameter combination that
showed low recovery and to one that resulted in a larger fraction of recovered binaries, respec-
tively. The histograms, which are shown with the same perplexity value, present the stellar
parameters that play a major role in the shape of the spectra corresponding to each individual
component of the system and as well as those that shape the resulting combined spectrum. The
data that was used to create the histograms shown in this section is that belonging only to the
actual binary systems, thus we do not show here any of the possible false positives that may
have been introduced during the DBSCAN recovery of the clusters, even if some of the binary
systems were recovered alongside other single stars.

The scenario with low recovery ratio shown in figure 5.8 presents a low value of 25 for the
SNR. This will cause many spectral lines to be smeared out, making it harder for t-SNE to
identify di↵erences between. From the histograms we observe that:

· The binary systems that are not recovered are those with low radial velocity di↵erence
and/or a low luminosity ratio (the two are not correlated). In this case, the spectrum of
the binary shows either a very small separation on the wavelength axis or the spectrum from
the primary star completely dominates the combined spectrum due to the high di↵erence
in luminosities. The di�culties in recognition are additionally amplified by the high level
of noise.

· Regarding the primary component of the binary systems, a large amount of those present-
ing the lower values of log g are missed during the recovery. This e↵ect is also seen on
the Te↵ histogram for the distribution of the recovered binaries, where no primaries with
high temperatures were recovered. This correlation is due to the assumption that all of
the stars we synthesized are main-sequence, unevolved dwarfs and therefore a lower value
of log g means a higher value of Te↵ .

There are two reasons for t-SNE and DBSCSAN missing these stars. The first reason
is a direct consequence of the pairing algorithm we designed. For a hotter primary, the
range of parameters its secondary star could have is larger than that for a colder primary,
which in turn means that hot primaries have a higher probability of being in a system
with small luminosity ratios and/or small radial velocity di↵erences. The second reason
for missing the hot, low log g stars is due to spectral lines being fewer and weaker and
at the same time hydrogen lines dominating most of the spectrum as they are stronger
and wider (hydrogen lines get more prominent with increasing e↵ective temperature up
to 10000 K - for main sequence stars). The combination of these two factors a↵ects the
ability of t-SNE to properly identify the features related with binarity in the resulting
projections.

· The distributions for the parameters of the recovered secondary components seem to follow
the distribution of the whole sample of secondaries and only on the metallicity there is a
slight shift towards a worse recovery of more metal-poor spectra, which can be explained
with the same reasoning that applies for the primary stars of the binary systems.
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Figure 5.8: Histograms for the main stellar parameters of both the primary (A) and the sec-
ondary (B) of each of the analyzed synthetic binary systems, corresponding to 650 - 675, SNR
25 and perplexity 30.
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Figure 5.9: Histograms for the main stellar parameters of both the primary (A) and the sec-
ondary (B) of each of the analyzed synthetic binary systems, corresponding to 500 - 525, SNR
100 and perplexity 30.
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In the high-recovery situation of figure 5.9, there appears to be a more homogeneous recovery,
as all distributions for the recovered stars (for both components) resemble the distribution of
the whole sample, with the exception of the surface gravity of the primary, which still presents
a small dip on the low log g primaries. This is due to the same reason we mentioned for the
histograms in figure 5.8, as these primaries have the highest chances of being in a system with
low luminosity ratios and therefore are the ones with an increased probability of being missed
by t-SNE. We clearly see from figures 5.8 and 5.9 that the luminosity ratio and radial velocity
di↵erence are the parameters that overall most significantly influence the SB2 recovery as they
present hard dips at lower values, while in a non-ideal situation (e.g. the case in figure 5.8),
other stellar parameters of both components seem to influence the general performance as well.

5.4 Individual examination of the binaries

The study done on our data-set of synthetic stellar spectra can be complemented with an analy-
sis of the individual binaries. By studying the amount of times each binary system is recovered
under the given parameter combinations in our study, we can analyze with more accuracy the
influence of the stellar parameters in the final recovery of the binary systems as well as give
confidence intervals regarding their final detection and classification. In the following, we also
only the results for the actual binary systems, thus the results presented here do not show any
of the possible false positives that may have been introduced in the analysis.

In figure 5.10 we show 6 plots of di↵erent binary stellar parameters and relate them to the
total amount of times each individual binary system was recovered in our analysis. The first
two plots of the left column, a) and c), present the same data as the two first plots shown in 2.5
but color coded according to di↵erent bins that correspond to the absolute recovery. We can
see that the binary systems that are more easily recovered are those where both components
have very similar Te↵ and log g values, mostly showing sub-solar values. In plot a), we can also
see that even for twin systems, the amount of times the system was recovered tends to decrease
with increasing temperature, consistent with our findings in the previous sections. On plot e)
we show the luminosity ratio against the absolute radial velocity di↵erence. We can see that
systems that were recovered most lie in a zone between 20 and 50 km/s for the radial velocity
di↵erence and span even to luminosity ratios of ⇠ 0.6. Furthermore, we show that for radial
velocity di↵erences lower than ⇠ 10 km/s there seems to be a strip of binary systems that were
recovered at most on 5% of the simulations. This suggests the presence of a hard limit for the
recovery of binaries. On the contrary, an increasing radial velocity di↵erence value does not
seem to guarantee an easier recovery, although the lack of systems with such high values can
cause t-SNE to not isolate them in a distinct island due to a lack of similar closest neighbors,
and even if such a small island exists, it might not be identified by DBSCAN due to the minPts
parameter.
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Figure 5.10: Recovery of the individual binaries. The first column (plots a), c) and e)) shows
the e↵ective temperature and surface gravity of the primary against that of the secondary
respectively and the luminosity ratio against the absolute value of the radial velocity di↵erence,
color coded according to the total amount of recoveries per system. The legend on plot c) serves
for all three plots on the first column. On the second column (plots b), d) and f)) we show total
number of recoveries against the binary parameters mass ratio, luminosity ratio and absolute
value of radial velocity di↵erence.
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In second column of figure 5.10 we show the total number of times a binary system was
recovered with respect to three parameters of binary systems: q, LB/LA and |�vrad|. Plot b)
shows the recoveries per system according to their mass ratio. This plot is color coded regarding
the average metallicity of each system to further exemplify what was shown in figure 4.4, that
the metallicity seems to have a less strong influence in the final shape of the t-SNE projection
and therefore does not seem to influence the recovery strongly, and is seen on plot b) as an
homogeneous coloring and that it hardly shows any gradient. In plot b) we can also see that
were able to achieve large percentages of recovery for systems with mass ratios down to ⇠ 0.65.
In plot d) we can see that although there is a strip of binary systems that show little to no
recovery for all luminosity ratio values (which correspond to the strip of black points seen on
plot e)), a large fraction of the binary systems with |�vrad| > 15 km/s are recovered in more
than 80% of the simulations down to LB/LA ⇡ 0.2. A similar behavior can be seen on plot
f), where the black points from plot e) form the band of no recovery regardless of their radial
velocity di↵erence value. Furthermore, we can see from plot f) that t-SNE is able to detect binary
systems with |�vrad| values down to 8 - 10 km/s for more than two thirds of the simulations, at
which point in the plot the amount of recoveries per system falls abruptly (this radial velocity
di↵erence value accounts for a shift on the secondary spectrum of 0.015 nm with respect to the
primary component).
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Chapter 6

Discussion

In this work we presented a method capable of automatically identifying and extracting binary
stars from a data-set of stellar spectra as well as showed an in-depth examination and optimiza-
tion procedure of the parameters that play a major role in its performance. As we showed in the
previous chapter, the absolute numbers regarding the recovery ratio of the binaries is promising.
However, it is important to keep in mind that even if the numbers of recovery are high, the
resulting projections and chosen DBSCAN modes might vary when applied to a real spectro-
scopic survey. We have shown that the quality of the di↵erent t-SNE maps and the amount
of detected clusters by DBSCAN play a major role on the scalability and applicability of this
method and it needs to be assessed properly, regardless of the absolute numbers presented in
this work. The method we developed appears to be very sensitive to the level of complexity and
internal structure (intrinsic dimensionality) of the data used. We have also seen that not all
the examined possible parameters yield acceptable results, and for this reason in the following
points, we will explore the caveats of the method, some best practices for the user to determine
the best starting point and what could be done in future iterations of this work.

Previous work

To the best of our knowledge, a similar set of simulations to characterize and optimize machine
learning methods for the detection of binary stars using synthetic spectra has not yet been
undertaken. Matijevic et al. 2010 presents a study related to our work, where they simulate
the SB2 detection capabilities of the CCF method on a synthetic subset of dwarf stellar spectra
from the Radial Velocity Experiment (RAVE) survey (Steinmetz et al. 2006). Although some
assumptions are similar, such as the use of dwarfs and a common metallicity for both stars in a
binary system, they use spectra from only the near-infrared (between 840 and 880 nm) with a
resolving power of 7500, almost a fourth of the one we use in this work, and they make use of
an essentially di↵erent procedure.

6.1 Variable parameters

6.1.1 Spectral range

In figure 5.3 we showed that almost all of the inspected spectral regions yield recovery ratios
� 0.7 with an appropriate choice of the other variable parameters. However, from figure 5.3
it becomes clear that the regions located on the blueward of the H-↵ segment (650-675 nm)
are more stable against parameter variations than those at redder wavelengths. This stability
ensures that even under sub-optimal conditions (high noise levels or a poorly chosen perplex-
ity), a relatively high degree of recovery can be achieved. The stability of the di↵erent spectral
regions is further explored and confirmed in figures 5.4 and 5.6. According to our results, we
conclude that the spectral region of the GALAH survey from those given in table 2.1 that is
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most suited for binary detection would be blue (471 - 490 nm) and in a lower degree green
(564 - 587 nm), however, this will be dependent on the quality of the captured spectra and the
processing pipeline.

The region between 650 and 675 nm, which was specifically chosen to be centered around the
H-↵ absorption line, showed the lowest maximum recovery percentage of all the examined spec-
tral ranges. This behavior was expected and confirmed what was previously found by Traven
et al. 2020, who by masking the H-↵ and also H-� (at 483.15 nm) lines on the spectral templates
used by the CCF method was able to improve the detection rates of SB2 spectra. However, we
find that H-� line does not have any noticeable e↵ect on the final fraction of recovered binaries
in the case of our work, most likely due to the abundance of other spectral lines in its wavelength
segment and the fact that it is generally less prominent than H-↵.

Furthermore, one possible prospect for future research would be to study the e↵ects that a
very broad spectral region, such as the whole visual range (between 380 and 740 nm), would
have on the detection of binarity with the simulations presented in this work. We have shown
that an increased amount of information in the form of spectral lines has the ability to yield
higher, more stable recovery numbers (as well as better suited t-SNE projections). However,
the inclusion of many more lines and thus new information about the corresponding stellar
atmospheres that would come with an spectral range of increased length, could potentially
result in an higher amount of local structure present in the t-SNE projection, which would in
turn create unnecessary sub-divisions in the binary islands. Although this might be of interest
when addressing the general categories and di↵erent morphologies present in the unexplored
spectral data, we believe that the detection of binarity demands a much more careful approach
in order to balance the amount of local and large scale structure explored by t-SNE. Even though
this can be achieved by using di↵erent perplexity values, the increased computational costs of
analyzing such high dimensional data (again, due to the wider wavelength range) might prove
unrewarding. For this reason, we argue that narrower wavelength regions, such as the ones
used in this work, are su�cient and well-suited for the detection of binaries together with the
presented method.

6.1.2 Perplexity

The e↵ect of perplexity on the resulting t-SNE projections cannot be ignored as it arguably is
the most important parameter that drives t-SNE. Maaten and G. Hinton 2008 argues that the
typical values for perplexity should lie in a range between 5 and 50 and Van Der Maaten 2014
defaults this value at 50. However, we find from our analysis that the given range is too broad
and the results are not acceptable for some values.

Although there are several other parameters that can be input in t-SNE to fine-tune the pro-
cesses occurring in the algorithm, their impact on the final projection is rather minimal when
compared to t-SNE. For this reason, we used the default values in the used t-SNE implemen-
tation. For more information regarding these hyperparameters and their theoretical impact on
the algorithm, we refer the reader to Linderman and Steinerberger 2019.

From the projections we have shown in figured 5.5, 5.7 and those from the baseline model
analysis in figure 5.1, we observe that the best recovery values are associated with a t-SNE
projection that has a clear separation between its single and binary clusters as well as a smoother
and more uniform single star island. This indicates that a proper balancing between the local
and global structure is necessary for t-SNE to be able to extract the features that highlight
their binarity and allow for a successful recovery of SB2 spectra, although under the most stable
spectral ranges more extreme values of perplexity are usable. For this reason, we argue that
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a perplexity value between 15 and 30 should be used for this purpose. However, depending
on the intrinsic dimensionality of the investigated data-set, these numbers might change as
one would prefer a more localized analysis and therefore a lower value of perplexity or vice-
versa. We suggest as a starting point for higher values of intrinsic dimensionality the use of a
perplexity value of 30 and for the opposite situation of lower values of intrinsic dimensionality,
we recommend the value for perplexity to be closer to 15.

6.1.3 SNR

In subsection 5.3.2, we studied the e↵ects that SNR has on the other variable parameters and
contrary to intuition, we found that moderate noise levels between SNR 50 and 100 can poten-
tially have a beneficial impact on the final binary spectra recovery, with simulations on spectra
with SNR values within the aforementioned range showing better recovery fractions in average,
than those simulations on spectra with a very large SNR value of 500. The presence of noise can
conceal undesired features that might impact the recognition of binarity by t-SNE and can re-
duce the amount of substructure to be analyzed, thus smoothing the resulting t-SNE embedding
and making it more appropriate for binary detection. This smoothing of the embedding is bene-
ficial for the DBSCAN analysis as well as we showed in figure 5.7, where both examined regions
present almost ideal maps for recovery between 50 and 100 SNR with proper separation between
the binary islands and those containing single stars. On the contrary, we also saw that in some
occasions having almost noiseless spectra (SNR 500) can be counterproductive for binary star
detection when applying the described method. These e↵ects are furthermore more dominant on
the bluer spectral regions from the range we examined, as there is amount of information in the
form of spectral lines is larger than for those with redder wavelengths. Some of this information
is, however, not relevant for binarity detection and the e↵ects noise has on concealing super-
fluous features in the spectrum can be, up to some degree, beneficial for the detection of binarity.

The stability of the investigated wavelength ranges against di↵erent SNR values is also much
higher than in the case of varying perplexity (excluding SNR 10, whose recovery values are only
acceptable for wavelengths until ⇠ 550 nm). However in reality, the amount of noise in real
spectra depends on the wavelength range (among other factors) and is not constant throughout
the whole observed range, as we assumed for our analysis. Furthermore, for real dwarf spectra
(mostly from FGK stars), noise at bluer wavelengths will be higher due to those stars emitting
less photons with energies within those ranges. For this reason, we expected the shown behavior
will even out when dealing with real data.

We suspect that the role of noise in diminishing the influence of spectral lines will become
much more important the larger the analyzed sections are, as the internal complexity and the
information content of the spectra is related to the wavelength range it belongs to (Ruchti et al.
2016). For this reason, we believe that knowing the e↵ects of SNR on this type of analysis is
a must for future surveys such as 4MOST (De Jong et al. 2012), where the analyzed spectral
ranges will be at least double of those studied in GALAH and the increased complexity of the
investigated spectra could have a strong influence on the binarity detection.

6.1.4 DBSCAN modes and their selection

The method we developed to recover binaries based on two machine learning algorithms that
work in tandem, depends strongly on the ability of DBSCAN to automatically extract the clus-
ters where t-SNE grouped the binary stars. Its performance is also strongly tied to the used
hyperparameters. However, we showed that the combination of ✏ and minPts (DBSCAN mode),
whose selection, as we mentioned in subsection 3.3.1, is not straightforward. We overcome this
issue with an iterative testing of all the possible modes for a given range of ✏ and minPts and
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evaluating them regarding their binary recovery e�ciency. For the exploration presented in the
previous chapter, this method did not pose a large increase in computation times (100 studied
modes). However, this iterative mode testing is not optimal when the search grid is made finer
and the amount the modes to be analyzed is consequently larger. Every iteration is a whole
new DBSCAN computation and due to the large number of points to be analyzed, the time per
iteration is not negligible.

As seen in figure 5.2, there exists a linear relation between ✏ and minPts and the zones
of higher recovery, which approximately holds for all spectral regions. This relation is directly
proportional to the density of the resulting t-SNE projection and we believe it could be related
to the amount of points on the given data-set. If properly quantified, it would be possible to
restrict the ranges of the parameter space exploration, as an approach that would target the
specific modes that have a higher probability of detecting clusters. Targeting these specific
mode combinations that show the highest SB2 recovery e�ciency would be key for an e�cient
DBSCAN usage and would allow to extract the best possible performance while using the least
amount of computational resources.

We believe that because performance of DBSCAN is directly tied to the quality of the
projection generated by t-SNE, as it depends greatly on the data-point density in the final
projection, the best solution for scalability of the DBSCAN mode selection method would the
appropriate resizing of the t-SNE map (as we did in chapter 4) and as we explain later in section
6.4 to maintain a certain density for which the appropriate modes are known.

6.2 Data selection and spectral synthesis

In this study we chose to work only with dwarf stars according to the dwarf/giant division from
Zwitter et al. 2018 under the assumption that all of the synthesized spectra belong to unevolved
main-sequence stars. This allowed us to use the scaling relations from subsection 2.3.2 do define
approximated stellar properties for the synthesized spectra. However, we believe that to extend
the utility of the study presented in this work, the optimization procedure should be extended
to include a data-set formed both by giant and dwarf stars. We used only dwarf stars as most
of the SB2 systems seen in GALAH correspond to dwarf-dwarf pairs (Traven et al. 2020) and
also for the reasons explained in section 2.1.

A computationally feasible spectral synthesis involves many approximations that, while rea-
sonable, diverge from real spectra in several ways. For this work we used MARCS, a 1-D
hydrostatic model of stellar atmospheres under the assumption of LTE, in combination with
the spectral synthesis code turbospectrum and an atomic transition list with hyperfine splitting
information. The resulting spectra yielded by this model and code combination had an accuracy
high enough to be used in the simulations presented in this work, albeit some discrepancies in
the depth of some spectral lines that were evident. However, the spectral synthesis we carried
out did not account for e↵ects single stars might exhibit, such as asymmetric line profiles due
to pulsations or stellar spots, which could mimic the e↵ect of strongly blended binary spectra
and could produce a false positive binary identification. Furthermore we did not simulate any
e↵ects that might occur in very close binaries that undergo interactions (as we assumed that
our binaries are all pairs of non-interacting dwarf-dwarf stars), whose measurable e↵ects on the
spectra could manifest the binary nature of the system and which could be used to more accu-
rately classify them as SB2. This is, nevertheless, a rare occurrence. With respect to defects on
the spectra caused by the measurement process and instrumentation, only the noise through the
SNR parameter was modeled. For further research, we believe that other e↵ects, such as e.g.
continuum normalization e↵ects should be included, in order to make synthetic spectra more
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realistic.

In figures 5.8 and 5.9 we show the consequences from our pairing algorithm reflected on the
histograms of the recovered and non-recovered binary stars. The two parameters that saw the
largest impact on the histograms were binary-defining parameters: the luminosity ratio (which
is directly related to the primary mass and mass ratio) and the radial velocity di↵erence. This
was to be expected, as the binary nature of systems with small velocity separations and/or large
brightness di↵erences will be harder to detect due to the blending of both spectral components
and/or due to the disappearance of the secondary’s lines in observational noise. Most of the
e↵ects seen on the histograms corresponding to the whole sample are due to the conditions we
imposed in section 2.3 and whose e↵ect is shown in the plots contained in figure 2.5. We did not
separately investigate the e↵ects of inclination, eccentricity, or period of binary orbits, however,
these manifest themselves in the radial velocity separation distribution that we adopted for our
binary population based on observational studies (see e.g. Traven et al. 2020). Even if the
results we obtained were not unrealistic, a more sophisticated pairing algorithm or even a stellar
population simulation would have certainly yielded more accurate pairs of stars and therefore
histograms that better resemble a real binary population, such as the one shown in Traven et al.
2020.

In figure 5.10 we saw limiting values for the luminosity ratio and radial velocity di↵erence,
at ⇠ 0.2 and 8�10 km/s respectively, at which the recovery fell abruptly. We believe that while
the luminosity ratio is due to the partial or total disappearance of the secondary spectrum by
the much larger luminosity of the primary star (see Hogeveen et al. 1991 for a discussion on
the visibility of the secondary lines), the limiting value for �vrad is probably connected to the
resolving power of our synthetic spectra, where a higher resolving power will in principle enable
recovery down to lower values of radial velocity di↵erence due to sharper spectral lines and thus
less severe blending (Traven et al. 2020).

In this work we studied the general e↵ects of the optimization procedure on the whole binary
population. Furthermore, we investigated the e↵ect of varying the parameters on each of the
individual synthetic binary systems, the results of which are shown in figure 5.10. This allowed us
to extract confidence ranges of binary parameters for which the recovery was almost guaranteed
under almost any of the 360 analysis variations that we performed. With this information, we
put together a table of sub-sample of 40 bona fide binary stars that were recovered in more
than 90% of the performed analysis. This table is shown in Appendix A to serve as a guideline
for future works and when tracer binaries are needed in investigations of binarity for future
spectroscopic data-sets.

6.3 Machine learning algorithms and the detection method

We showed that the combined use of t-SNE and DBSCAN allows for an e�cient recovery of
binary stars from a set of stellar spectra, as previously done in Traven et al. 2016; Traven et al.
2020. As explained in chapter 3, t-SNE is one of the leading machine learning algorithms for
dimensionality reduction. Even though t-SNE has performed remarkably for the purpose of this
work, it still presents some drawbacks, such as the poor handling of data with a large number
of intrinsic dimensions (Maaten and G. Hinton 2008), its slow computation times (mostly in
its non-approximated implementation) or the strong dependency of the final projection of the
selected perplexity value. One of the possible alternatives to t-SNE, a recently developed di-
mensionality reduction method called UMAP (McInnes et al. 2018), short of Uniform Manifold
Approximation and Projection, is claimed to have all the benefits that t-SNE presents, mainly
the proper modeling of similarities as distances and the clear separation between the clusters
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in the low-dimensional embedding. UMAP focuses on solving some of the di�culties that t-
SNE presents, such as its di�culties with the high number of intrinsic dimensions or its slow
computation (UMAP is on average one order of magnitude faster than t-SNE). Furthermore,
McInnes et al. 2018 claims that UMAP is capable of a better preservation of the local and large
scale structure of the high-dimensional data-set on the lower-dimensional representation. For
a comprehensive testing and review of UMAP, we refer the reader to Becht et al. 2018 (the
testing is done using data from single-cell transcriptomics). We believe that using UMAP in
combination with DBSCAN could yield at least equally good results, while being faster and
easier to implement.

DBSCAN has been widely used and tested in many areas of research as well as astronomy
(Tramacere and Vecchio 2013; Traven et al. 2016; Shou-kun et al. 2019) and has been highly
regarded as very useful in a wide range of situations and purposes due to its ability to detect
clusters of varying morphologies. However, it has some drawbacks. Even if we circumvented the
di�culties present in the mode selection, there is still an issue with the DBSCAN modes: they
target a specific density of data-points to determine the clusters. Moreover, as we have seen on
figure 4.6, even the mode that yields the best recovery misses a cluster due to its lower density of
data-points. This is an issue with the current implementation of DBSCAN based on Ester et al.
1996, which does not contemplate a data-set with clustering at di↵erent density levels. Yet this
would be required to fully recover all of the binary clusters that have been properly separated in
individual islands by t-SNE, as shown in the resulting projections from the simulations. In the
recent years there have been, however, improvements on the original DBSCAN that specifically
targeted this issue. One of this e↵orts is called Varied Density Based Spatial Clustering of Appli-
cations with Noise or VDBSCAN for short (P. Liu et al. 2007). It finds all of the necessary modes
by computing first the distance of each point to its k-th nearest neighbor, which in turn allows
the algorithm to distinguish the di↵erent levels of density present in the input data and it is able
to target and detect all clusters by applying DBSCAN with the selected modes on the data-set.
Other solutions to the density issue involve di↵erent algorithms, such as OPTICS (Kriegel et
al. 2011), a density based algorithm which has been designed to overcome the aforementioned
varying-density problem or Mean-Shift clustering (Fukunaga and Hostetler 1975), which follows
a di↵erent approach for the cluster detection while keeping the most of the benefits of DBSCAN.

In subsection 4.1.4 we described the algorithm we designed to determine whether the clusters
detected by DBSCAN were formed by binary or single stars. For this purpose we introduced the
binary ratio in equation 4.1, which is a simple prescription that uses a user-specified threshold
value which we set as 0.9 in our analysis. If the ratio of binaries in a given clusters is larger than
the threshold value, then all of the stars in that DBSCAN cluster are automatically marked
as binaries. For such a high value the behavior of the method is expected to be quite stable,
although in some occasions where the binary clusters are not properly isolated by t-SNE or there
is a density miss-match with the neighboring points, it could happen that the method introduces
false positives in the detection. However, even if that is the case, their amount will be equal or
lower than 10% of the stars.

Our chosen combination of machine learning methods works remarkably well for the discovery
of binary spectra in spectroscopic data. However, as shown on the examples from chapter 4,
figures 4.2 and 4.6, we still miss those binaries that are mixed with the single stars. Traven
et al. 2020 partially solved this issue on real data by using the Cross-Correlation Function
method, recovering more binaries than with the combination of t-SNE and DSBSCAN alone.
These binaries lie on the edges of large clusters in their projection, probably due to them being
somewhat di↵erent from the stars in that cluster, but not enough to be placed on a separate
cluster. This behavior is clearly seen in our analysis as well, e.g. on the t-SNE analysis of
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the baseline configuration in figure 5.1, where fairly large groups of undetected binaries lie
on the edges of the main single star clusters. Nevertheless, it would not be possible or at
least very di�cult to detect all of the binaries in the data-set, as some of them have spectra
that are almost indistinguishable due to a combination of e.g. low luminosity ratio or small
radial velocity di↵erences. This is also one of the reasons why, in order to simulate a realistic
spectroscopic data-set, we use a larger relative number of input binary stars compared to what
can be extracted as SB2 from a real survey, as we know that some of this input binaries will
not be possible to recover. However, we are still hugely underestimating the overall number
of multiple systems among FGK stars, which under some circumstances could amount to the
majority of the observed stellar population according to some estimates (Raghavan et al. 2010;
Duchêne and Kraus 2013).

Performance improvements

Because the developed method and extracted conclusions are intended for use on real spectro-
scopic data, we suggest several improvements and further explorations that could alleviate such
an e↵ort. The computations presented in this work took approximately 1500 CPU hours on an
Intel(R) Core(TM) i7 3.40GHz 8-core machine. Of the total time, around 80% was spent on the
t-SNE projections and the other 20% was used to prepare the spectral sample for the analysis
and for the DBSCAN parameter space search. To achieve a faster and more e�cient imple-
mentation of the presented method, we suggest two main changes to improve the performance:
firstly, to examine the relation between the DBSCAN modes and the number of data-points and
quantify it, either by exploring the consequences of resizing the t-SNE projection or by finding
an analytical expression to relate minPts, ✏ and the total amount of data points. This would
reduce the number of modes to be tested to a few instead of 100 or more. Secondly, although the
used t-SNE implementation, FIt-SNE, served our purposes well, real surveys manage amounts
of data that are several times the size of the data-set used in this work, and will only grow in size
in the future. For that reason, we believe that the next step could be to use a GPU accelerated
implementation of t-SNE, already available in Python as a package called TSNE-CUDA (Chan
et al. 2018). This accelerated implementation promises performance improvements up to 4500x
when compared to the standard t-SNE implementation or up to 18x when compared to FIt-SNE.

6.4 Best practices

For a great starting point when analyzing a spectral sample of an amount and wavelength range
comparable to the one used in this work, we suggest the usage of the following parameters:

· Spectral region: we have showed that the regions between 450 and 550 nm present the
best and most stable recovery figures, even under high levels of noise. For this reason, we
suggest their usage in a comparable analysis.

· Perplexity: although the default range in the literature suggests a value between 5 and 50,
for the purposes of binary star detection, we suggest values between 15 and 30, which we
believe yield the best results.

· Signal-to-noise ratio: a high SNR regime is not a necessity and could even be disadvanta-
geous under some parameter combinations. We have proven that spectra with SNR values
between 50 and 100 are ideal for SB2 spectra identification.

· DBSCAN modes: even if the values for ✏ and minPts are dependent on the density of each
individual cluster found in the examined t-SNE projection, for a properly scaled t-SNE
projection we suggest the usage of values ✏ 2 [0.2, 0.3] and minPts around 1% of the total
amount of binaries in the data-set. We recommend that for a given dataset, the t-SNE
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projection axes from this work ([-10, 10]) should be scaled by a factor
p
F , where the total

number of data-points in a given data-set is equal to by N = F · 105, where 105 is the
number of data-points used in this work.

Analysis of unexplored data

The end goal of the method developed in this work is to extract binary stars from unexplored
spectral data. One should, however, consider that when applying this method to real data,
the number of recovered binaries could be considerably lower. Real spectra are plagued with
problems and issues from the measurement and data reduction: continuum normalization issues,
telluric lines, wavelength-dependent noise, wavelength calibration issues etc.

This analysis on real data with the method presented in this work could be complemented or
upgraded by inserting artificially created binary spectra based on measured single-star spectra
found in the data-set to serve as tracers. Using the study we performed on the individual
binaries presented in section 5.4, we showed which binary pairs are recovered almost under any
circumstance and which are those that mark the limit of the detectability ranges for the chosen
variable parameters (spectral range, perplexity and SNR). Furthermore, we can avoid simulating
any kind of issues and defects on the spectra by simply creating artificial SB2 spectra through
combination of carefully selected real single star spectra contained in the data-set to be studied.
This automatically introduces the imprint of observations and instrumentation on the created
binary spectra and allow for them to be very similar to the real ones in the data-set. Because
their nature is known, they can be easily traced in t-SNE projection and therefore one would, in
the ideal case, be certain that the stars located around the tracer binaries in the corresponding
well-isolated islands (or even within the main single star islands if chosen appropriately) are
indeed binary stars as well.

6.5 Conclusions

This work presented a method capable of detecting and automatically identifying binary stars
from a sample of stellar spectra by using a combination of two state-of-the-art machine learning
algorithms: the dimensionality reduction technique t-SNE and density-based clustering algo-
rithm DBSCAN. We selected a sub-sample of only dwarf stars from GALAH DR2, who were
further assumed to be single, unevolved, main-sequence stars. Basing our data-set on the stars
from the GALAH survey, allowed us to synthesize stellar spectra with realistic stellar configura-
tions. The final synthetic spectroscopic sample we generated is comprised of 100000 single stars
and 5000 binaries (whose spectra were constructed by combining single-star spectra). The gener-
ated synthetic spectroscopic survey was used to test and optimize our identification method and
the reason behind the usage of self-generated data in this work is that, because the single/binary
nature of each synthesized spectrum was known a priori, contrary to a real spectroscopic survey.
Through variation and testing of 360 di↵erent combinations of machine learning parameters,
signal-to-noise ratio and the spectral range, we investigated their e↵ects on the t-SNE projec-
tions and subsequent automatic identification performed by DBSCAN on our synthetic data-set.
Furthermore, we performed a secondary optimization procedure through a self-designed algo-
rithm to maximize the recovery ratio of binary stars in each of the examined t-SNE projections,
which allowed us to overcome one of the major di�culties regarding the usage of DBSCAN.

Using a quality measure of our method in the form of the ratio of recovered binary stars we
were able to determine how the di↵erent parameters influence the amount and type of success-
fully identified binary stars. We conclude that an optimal combination of perplexity, SNR and
DBSCAN mode can be found for each of the studied spectral ranges such that they always yield
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a recovery of ⇠ 70% or higher, with a promising average absolute recovery of binary systems of
57%. Furthermore, while we showed that the best perplexity values lie within the range recom-
mended in the literature, we found that that is not the case for the noise, as a moderate amount
of it (corresponding to SNR between 50 and 100) can have a beneficial e↵ect in the detection of
binarity especially in the bluest spectral regions with higher abundance of spectral lines.

We also showed that spectral ranges lying blueward of the H-↵ line present a higher stability
against the variation of the parameters used in this method, with small variations in the yielded
recovery. This suggests a benefit of using bluer spectral regions for binary detection regardless
of the other parameters used.

In our analysis, we saw that those binaries that get more easily avoid detection are those
that present heavily blended lines and/or whose secondary spectrum is concealed by noise due
to low values of radial velocity di↵erence and luminosity ratio, respectively. Furthermore, we
studied the e↵ect of the most important parameters on the individual binary systems, for which
we found that systems of twins with presenting stellar parameters corresponding to a sub-solar
mass for Te↵ and log g were recovered in more than 90% of the simulations.

Based on our results, we provided a list of recommended starting values for a similar analysis
and suggestions on how to apply our method to a real spectroscopic survey. Moreover, we give in
Appendix A a list of 40 binaries that were successfully detected in 90% or more of our simulations
to serve as suggestions for possible tracers when using our approach for detection of binary stars
in spectroscopic data-sets.
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Appendix A

Bona fide binaries

In this Appendix we present a table containing the parameters belonging to a sub-sample of 40
binaries from those that were recovered on 90% of the carried analysis or more. We hope that
these bona fide binary systems can serve as a guide for the investigation of binarity in future
spectral surveys because as we have shown, the stars presented in table A.1 can be identified by
the method described in this work under almost any circumstance.

The given parameters are, in order: the total amount of times the given system was recovered,
the e↵ective temperature of the primary and secondary star, the surface gravity of the primary
and secondary, the average metallicity of the system, the masses of the primary and secondary
components, the mass ratio of the system and the radial velocity di↵erence.
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Recoveries Te↵,A Te↵,B log gA log gB [Fe/H] MA MB q �vrad LB/LA

341 4615.43 4609.46 4.49 4.56 0.08 0.53 0.53 1.0 20.31 1.0
346 4650.33 4613.36 4.4 4.62 -0.04 0.54 0.53 0.98 40.2 0.92
344 4676.69 4651.03 4.58 4.69 -0.06 0.57 0.54 0.95 -17.87 0.8
338 4706.82 4634.72 4.46 4.61 0.15 0.57 0.54 0.94 -12.63 0.77
346 4720.22 4635.04 4.63 4.64 0.01 0.57 0.56 0.98 41.47 0.91
336 4738.58 4666.63 4.65 4.67 0.04 0.59 0.55 0.92 64.78 0.69
347 4754.69 4628.1 4.35 4.64 -0.01 0.58 0.55 0.95 28.2 0.8
344 4772.53 4745.07 4.7 4.71 0.01 0.58 0.58 0.99 -17.3 0.96
342 4787.51 4640.41 4.56 4.65 0.1 0.63 0.56 0.9 52.08 0.61
340 4802.85 4662.61 4.6 4.7 -0.04 0.61 0.58 0.95 -19.11 0.78
345 4821.33 4709.23 4.56 4.57 0.19 0.61 0.6 1.0 -13.9 0.99
344 4829.79 4760.62 4.55 4.57 0.05 0.62 0.58 0.94 45.92 0.74
344 4842.09 4680.72 4.59 4.61 0.05 0.62 0.57 0.91 25.66 0.67
347 4855.82 4763.21 4.48 4.76 -0.03 0.65 0.6 0.92 -36.34 0.68
350 4863.69 4845.76 4.62 4.67 0.09 0.65 0.65 1.0 20.37 0.99
336 4879.74 4696.59 4.57 4.72 0.11 0.64 0.57 0.89 15.32 0.58
352 4896.55 4870.3 4.59 4.66 0.11 0.65 0.64 0.98 -31.57 0.92
337 4911.40 4785.0 4.71 4.73 0.13 0.65 0.6 0.93 -24.38 0.73
336 4921.55 4875.57 4.46 4.54 0.14 0.64 0.62 0.96 11.87 0.84
336 4930.10 4770.48 4.75 5.02 0.15 0.64 0.6 0.94 -18.62 0.76
336 4946.34 4713.78 4.61 4.71 -0.15 0.65 0.58 0.9 41.02 0.61
338 4959.97 4765.1 4.6 4.6 0.04 0.69 0.61 0.88 -27.21 0.57
347 4968.62 4884.65 4.51 4.55 0.15 0.67 0.62 0.92 -39.05 0.69
341 4983.76 4934.27 4.63 4.68 0.23 0.7 0.64 0.92 -23.62 0.69
345 5004.17 4870.3 4.57 4.66 0.12 0.68 0.65 0.96 -39.64 0.84
349 5020.97 4889.46 4.43 4.58 0.15 0.7 0.65 0.93 -38.84 0.71
345 5036.75 4682.72 4.7 4.76 0.12 0.68 0.59 0.86 32.73 0.51
349 5051.39 4887.56 4.41 4.51 0.19 0.7 0.65 0.93 40.11 0.72
336 5063.18 4719.14 4.64 4.65 -0.12 0.69 0.59 0.86 48.96 0.51
336 5080.18 4918.84 4.28 4.74 0.15 0.73 0.67 0.91 -13.95 0.67
339 5096.98 5080.52 4.57 4.57 0.17 0.75 0.73 0.98 -12.68 0.91
347 5109.97 5013.21 4.65 4.75 0.44 0.74 0.71 0.97 -32.19 0.86
345 5127.10 4878.08 4.47 4.77 0.06 0.71 0.63 0.89 31.53 0.58
347 5142.68 5108.14 4.49 4.68 0.28 0.76 0.71 0.94 37.16 0.75
336 5156.28 4814.42 4.46 4.53 0.39 0.72 0.62 0.85 48.38 0.48
342 5193.73 4983.34 4.44 4.62 0.18 0.75 0.68 0.91 50.83 0.65
349 5222.96 5130.48 4.41 4.48 0.25 0.76 0.76 1.0 32.68 1.0
339 5268.27 5224.45 4.52 4.59 0.31 0.8 0.76 0.95 -36.77 0.79
337 5332.19 5224.56 4.59 4.79 0.19 0.81 0.74 0.91 14.04 0.67
337 5572.42 5455.86 4.3 4.39 0.46 0.89 0.88 0.98 -32.01 0.93

Table A.1: Stellar parameters of a sub-sample of 40 binary systems that were recovered in 90%
or more of our simulations.
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