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 I 

Abstract 

 

The aim of this thesis is to investigate if the machine learning based classification procedure, 

Random Forest, provides superior prediction performance compared to a logistic regression 

model fitted using the LASSO framework, when predicting outcomes in corporate takeover 

situations. This is done in the context of merger arbitrage, an event-driven investment strategy. 

The classification models are fitted using a training data set consisting of 5 922 OECD-

domiciled corporate takeover transactions and evaluated on a testing data set consisting of 1 481 

observations. Variable selection is based on the extensive research done within the field of 

takeover prediction. The results suggest that the random forest model outperforms the logistic 

regression model on all relevant validation measures, such as overall prediction accuracy, 

sensitivity, and specificity. Given that a vast majority of previous research has been done using 

logistic regression, this thesis provides cause for considering alternative and complementary 

classification procedures when attempting takeover prediction.  

 

Keywords – Random Forest, LASSO, Logistic Regression, Merger Arbitrage, Takeover 
Prediction  
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1 Introduction 

“Risk arbitrage is not about making money, it’s about not losing money. If you can minimize 

the downside, you get to keep all your earnings and that helps performance”  

– John Paulson, Paulson & Co   

Event-driven investment strategies constitute an approach employed by a vast range of 

prominent hedge funds across the asset management industry. Renowned firms such as AQR, 

Blackrock, and Allianz all have divisions dedicated to applying an event-driven investment 

scheme to generate returns. Even though this investment style is multifaceted and includes a 

comprehensive set of subcategories, the general method revolves around capitalising on special 

situation corporate events (Jetley & Ji, 2010). One such method exploits the effect public 

merger and acquisition announcements have on stock prices and is commonly referred to as 

merger arbitrage.  

In the public equities markets, announcement of a merger or acquisition usually has a significant 

positive impact on the price of the target company’s stock. This occurs since the offer most 

often includes a substantial bid premium, where the difference between the bid level and the 

target’s share price is referred to as the merger spread (also called arbitrage spread). Even 

though the stock price converges towards the offered level as the announcement dissolves into 

the market, the spread usually persists during the completion period since there is a non-zero 

probability that the takeover attempt fails. Given that the takeover attempt is successful, the 

spread will converge to zero as the deal approaches completion (Branch & Yang, 2003). Hence, 

there is an opportunity for investors to extract returns from this spread by analysing whether 

the deal will be completed or not. This investment approach is referred to as merger arbitrage. 

However, it should be noted that merger arbitrage does not abide by the classical definitions of 

financial arbitrage in that the strategy does not present a risk-free investment.  

The merger arbitrage strategy came about during the 1940s and was developed by Goldman 

Sachs senior partner Gustave Levy. The approach rose to particular prominence during the 

fourth big wave of mergers and acquisition that took place in the 1980s. Since inception, the 

rapidly evolving structures of financial markets have altered the prerequisites for the merger 

arbitrage strategy. Factors such as increased liquidity, new regulations with respect to market 
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transparency, and integration with international capital flows have provided a basis for merger 

arbitrageurs to sustain attractive returns (Melka & Shabi, pp. 3-9, 2013). To this background, 

significant efforts have been made to further analyse the nature of merger arbitrage returns.   

Baker and Savasoglu (2002) investigated the return profile of the strategy by constructing 

merger arbitrage positions for 1 901 transactions that took place over the period 1981 to 1996. 

The study concludes that a diversified portfolio of merger arbitrage positions can generate an 

abnormal return of 0.6-0.9% per month, beating the benchmark by 0.3% per month. The authors 

also make considerable efforts in investigating why these excess returns are not arbitraged 

away. They conclude that a contributing factor involves undiversified investors selling their 

positions in the target company to circumvent completion risk, while the amount of available 

merger arbitrage capital is limited.  

The process of executing a merger arbitrage strategy depends on the payment structure of the 

underlying transaction. If the transaction in question involves a simple cash payment, an 

investor can gain exposure by obtaining a long position in the target’s stock. In the case of a 

stock-for-stock transaction, an investor needs to compliment a long position in the target’s stock 

with a short position in the acquiring firm. Additionally, there are more complex payment 

structures, such as combinations of cash and stock payments, where the execution needs to be 

altered accordingly (Kirchner, pp. 13-22, 2009).  

A central aspect to consider when engaging in merger arbitrage is related to the payoff structure 

of the investment and this is most apparent in the case of taking a long position in a cash merger. 

The possible upside gains associated with such a position are usually limited to the merger 

spread and can therefore be considered fixed. Meanwhile, the downside is usually considerably 

larger since a failed takeover attempt would allow the target’s stock price to resume its pre-

announcement level. This payoff structure is clearly asymmetric and highlights the importance 

for merger arbitrageurs to adequately asses the probability that a takeover attempt will indeed 

be successful. 

Against this background, the subject of using quantitative methods to predict outcomes in 

corporate takeover situations have become a central aspect when studying merger arbitrage 

strategies. Previous research efforts rely heavily on conventional classification models, such as 

logistic regression, as a method to determine what variables influence the takeover outcome 

and to what extent these outcomes can be predicted with accuracy. However, the relatively 
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recent development of machine learning based classification procedures have not been adopted 

to the same extent. This raises the question if such classification procedures can improve the 

accuracy when trying to predict the outcome in corporate takeovers.  

The purpose of this thesis is to investigate if the machine learning based classification procedure 

known as random forest, is superior to a logistic regression model in predicting outcomes in 

corporate takeover attempts. Significant amounts of research have previously studied what 

variables provide the most predictive power when trying to forecast outcomes in such 

situations. Hence, this thesis focuses on evaluating and comparing different classification 

models by utilising predictive variables that previous research has shown maintain robust 

predictive properties. The underlying data sample consists of 7 403 transactions originating 

from OECD countries during a period stretching from 2000 to 2018.  

The underlying data sampling frame enforces several limitations on the conclusions drawn from 

the results presented in this thesis. Only those bids based on cash payments, stock-for-stock 

payments, or a combination of the two, are included in the data set. Furthermore, only 

transactions where the target company is listed on an OECD domiciled exchange are 

considered. In addition to this, transactions in which the target is a financial institution (i.e. 

banks, insurance companies or investment companies) or a real estate company, are excluded. 

Intra-group transactions are also excluded since the outcome determinants of these transactions 

are likely to differ significantly from transactions involving two non-related parties. Finally, 

minority investments where the acquiring entity does not seek controlling interest in the target 

company are exempted.  

The contents of this thesis are mainly targeting academics with basic knowledge of financial 

markets and corporate finance. Additionally, professionals in the asset management industry, 

particularly those employing merger arbitrage strategies, could view the results presented as 

valuable since the aim is to provide insight into how quantitative strategies can be used to 

determine outcomes in corporate takeover attempts.  

The disposition of the remaining contents of this thesis is as follows. Chapter 2 introduces the 

institutional setting of merger arbitrage. A general description of mergers and acquisitions is 

provided along with a formal definition of financial arbitrage and an outline of the merger 

arbitrage strategy. Chapter 3 provides a literature review containing an overview of relevant 

research produced within the field of takeover prediction and merger arbitrage. Subsequently, 
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chapter 4 presents a thorough description of the data collection procedure, discusses the 

variables used in the classification models, and reviews how missing data has been handled. 

Chapter 5 gives an overview of the applied empirical framework, outlining logistic regression 

based on the LASSO. In addition, the random forest procedure is introduced. In chapter 6, a 

range of descriptive statistics for the data sample is presented along with the model fitting 

results and a comparison of each model’s prediction performance. Finally, chapter 7 concludes 

this thesis and suggestions for further research are made.   
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2 Institutional Setting 

This chapter introduces the institutional setting for merger arbitrage. A general description of 

mergers and acquisitions is provided along with a formal definition of financial arbitrage and 

an outline of the merger arbitrage strategy. 

2.1 Mergers and Acquisitions  

Mergers and acquisitions (M&A) is a broad term referring to a range of corporate transactions 

in which companies or assets are consolidated to form one entity. Even though they are often 

used interchangeably, the term consolidation typically refers to the act of combining two 

companies of equal size, while merger is used when there is a significant size difference 

between the two companies (Gaughan, p.14, 2015). Mergers and acquisitions have become a 

central concept in corporate management and the strategic motives for such transaction are 

numerous.  

Growth is one of the most fundamental reasons for companies to engage in M&A. As opposed 

to organic growth avenues, M&A sometimes allows businesses to expand more rapidly and 

capital efficiently. In the eyes of the acquiring firm, M&A can also lead to synergies in which 

the combination of two firms is believed to be more profitable or strategically sound compared 

to stand-alone entities. Such synergies can for example take the form of cost reduction or cross-

selling opportunities. Furthermore, diversification is another aspect that has been used to 

motivate M&A activity, particularly during the conglomerate era that elapsed during the 1960s. 

In addition, vertical and horisontal integration are commonly quoted motivations that corporate 

management teams rely on to drive an active M&A agenda, but there are many other strategic 

rationales (Gaughan, pp. 125-169, 2015). While mergers and acquisition are an integral part of 

many firms’ development, transaction volumes tend to be cyclical. For example, transaction 

volumes are typically positively associated with rising stock prices, cheap financing costs, and 

a general sense of economic optimism (Goedhart, Koller & Wessels, pp. 445-449, 2010).  

2.2 Defining Financial Arbitrage and Merger Arbitrage 

The formal definition of financial arbitrage refers to the process of extracting risk-free returns 

from a self-financed investment scheme. Arbitrage is a fundamental concept in financial theory 

as it is closely linked to market efficiency. If price discrepancies between two equal financial 
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assets occur, market participants (i.e. arbitrageurs) will seek to exploit the discrepancy to 

generate returns. This in turn, forces the respective assets’ prices to return to their relative 

equilibrium levels. Hence, if an arbitrage opportunity indeed does occur, they are exploited and 

eliminated quickly (Byström, pp. 48-51, 2014).  

While this description of financial arbitrage adheres to the formal academic definition, 

practitioners use the term somewhat differently. When participants in the hedge fund universe 

discuss arbitrage, they usually refer to the act of buying two similar financial assets that they 

consider as mispriced relative to each other. This assumed imbalance can be exploited by taking 

a long position in the undervalued asset and a short position in the overvalued asset 

(BarclayHedge, 2012). In this regard, the trade is only risk-free as long as the assumed price 

imperfection holds true.  

With this in mind, it should be made clear that investments based on a merger arbitrage strategy 

are by no mean risk-free. However, the risks associated with merger arbitrage are different from 

those commonly acknowledged by conventional risk models focused on market risk (i.e. beta-

risk). Instead, the most severe risk aspect in merger arbitrage is that of event-risk, which is a 

consequence of the uncertainties associated with takeover attempts succeeding. A takeover 

attempt can fail due to a number of reasons, but insufficient transaction financing, antitrust 

blockage, and shifting economic fundamentals are a few possible reasons to why a transaction 

can fall through during the time between announcement and deal completion (Kirchner, p. 10, 

2009).  

2.3 The General Merger Arbitrage Strategy 

The basic idea behind a merger arbitrage strategy is to exploit the often persisting difference 

between the offered consideration and a target company’s stock price in a corporate takeover 

situation (Branch & Yang, 2003). The execution method and the resulting payoff will however 

differ depending on the applied payment structure of the underlying transaction. Presented 

below, is an expose of how a merger strategy can be implemented in the presence of cash 

payments, stock-for-stock payments, and other more complex structures.   

2.3.1 Merger Arbitrage with Cash Payment Transactions 

In a corporate takeover, cash payment is the simplest method for settling the financial 

obligations of the transaction. The acquiring firm assumes control over the target company’s 
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stock in exchange for a cash payment. As previously mentioned, the difference between the 

target’s stock price and the offered consideration is referred to as the merger spread. The spread 

is usually positive but can in some instances become negative (i.e. the stock price is higher than 

the offered bid per share). As an example, this can occur if market participants believe that 

rivalry bids, at higher bid premiums, will emerge. Assuming a transaction with cash payment, 

arbitrageurs seek to exploit the merger spread by taking a long position in the target’s stock and 

hold it until the transaction is completed. Alternatively, the arbitrageur can exit the position 

before the completion date. Given that a transaction with cash payment is successful and that 

the target’s stock price converges to the offered consideration, an investor receives a return 

equal to the merger spread obtained at entry, assuming no transaction costs (Kirchner, pp. 13-

14, 2009).  

2.3.2 Merger Arbitrage with Stock-For-Stock Payment Transactions 

Stock-for-stock payment structures entail a more complex transaction profile that warrants a 

more complicated execution strategy. In such a deal, the owners of the target company receive 

payment in the form of shares in the acquiring firm, where the offer stipulates a fixed conversion 

rate of shares. As a consequence, the total consideration of the transaction varies depending on 

the price of the acquiring firm’s stock. Hence, an arbitrageur cannot merely acquire a long 

position in the target’s stock. Instead, such a long position must be complemented with a short 

position in the acquiring firm’s stock. The payoff from this type of trade will be determined by 

the cash-flow difference between the two positions (Kirchner, pp. 20-22, 2009).  

2.3.3 Merger Arbitrage with Other Payment Structures 

In addition to the above-mentioned transaction payment structures, several other methods can 

be applied in corporate takeovers. A mix of cash and stock payment is quite common if the 

acquiring firm wants to limit dilution or have insufficient funds to finance a pure cash 

settlement. Furthermore, stock-for-stock methods can be extended to include so called collars. 

These can be applied to impose upper and lower limits to form a range in which the acquiring 

firm’s stock price can fluctuate, hence giving a more certain indication of the dollar value of 

the transaction (Kirchner, p. 35, 2009).   
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2.4 The Return Profile of the Merger Arbitrage Strategy 

As discussed earlier, the return profile of a merger arbitrage strategy is asymmetric. Assuming 

that an arbitrageur takes a long position in the underlying stock of a company subject to a 

takeover attempt with a cash payment structure, the potential gain is usually capped at the given 

merger spread at entry. Meanwhile, if an arbitrageur engages in such a position and the takeover 

attempt fails, the price of the target’s stock usually reverts to levels close to the pre-

announcement level. This in turn would cause a negative return that is substantially greater than 

the positive outcome. Additionally, at least in theory, the target’s stock price could go to zero, 

which would incur even greater losses for the arbitrageur. In this aspect, the payoff 

characteristics of a merger arbitrage strategy are similar to that of selling put options on an 

index (Mitchell & Pulvino, 2001).  

Previous research, such as the comprehensive study by Mitchell and Pulvino in 2001, examines 

the return profile of the merger arbitrage strategy. The authors investigate the return profile by 

calculating monthly returns for a passive portfolio taking merger arbitrage positions in 4 750 

transactions in the United States over a period stretching from 1963 to 1998. They conclude 

that the strategy generates excess returns amounting to 9.3% per annum compared to their 

benchmark. When accounting for transaction costs, the excess return decrease to roughly 3.5% 

per annum. In addition, the authors conclude that returns generated from merger arbitrage are 

uncorrelated with the overall market during times of flat or expanding market levels. However, 

during periods of falling markets, the correlation is significant. While these results are 

interesting in their own right, the underlying reasons are not thoroughly addressed by Mitchell 

and Pulvino. 

With a similar approach, Baker and Savasoglu (2002) investigate returns from a few different 

merger arbitrage portfolios covering 1 901 transactions from 1981 to 1996 in the United States. 

Depending on portfolio construction, the authors find excess returns in the range of 0.6-0.9% 

per month, corresponding to 7-10% per annum. Furthermore, Baker and Savasoglu make 

considerable effort in trying to explain why these excess returns exists. Using a regressions 

analysis approach, they find a significant correlation between merger arbitrage returns and deal 

completion risk as well as target size. Additionally, they find evidence that the excess returns 

can partly be attributed to undiversified investors selling their positions in the target company 

to avoid completion risk. Meanwhile, the fairly limited number of arbitrageurs, and their 

respective capital pools, require a premium for absorbing the completion risk.  
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3 Literature Review 

This chapter provides a literature review containing an overview of relevant research 

produced within the field of takeover prediction and merger arbitrage.  

3.1 Hoffmeister and Dyl (1981) – Predicting Outcomes of Cash Tender Offers  

Hoffmeister and Dyl (1981) set out to create a statistical model, based on multivariate 

discriminant analysis, that is able to predict outcomes in cash tender offers. The examined 

period stretches from 1976 to 1977 and the analysis focus on the United States. The initial 

sample contained 313 tender offers, of which 267 utilised a cash payment structure. After 

removing transactions with insufficient data for the 17 predictive variables used, 84 transactions 

remained. Included predictive variables measure various financial conditions, vulnerability to 

takeover attempts, management attitude and the target firms’ standing within their respective 

industries.  

After fitting a range of models, the authors find that the management’s attitude towards the 

takeover attempt, along with target size (i.e. market capitalisation), are the most influential 

factors. At the same time, other variables such as the level of bid premiums, are discarded as 

insignificant.  

3.2 Walkling (1985) – Predicting Tender Offer Success: A Logistic Analysis 

Walkling (1985) applies a logistic regression approach with the purpose of predicting outcomes 

in corporate takeover attempts. The author acknowledges that previous research, such as that 

of Hoffmeister and Dyl (1981), conclude that management attitude is the primary determinant 

for the outcome variable, while no support can be found for bid premiums having a meaningful 

influence. Walkling asserts that the latter conclusion contradicts fundamental principles of 

economic theory, which in turn begs the question as to why bid premiums exist at all.  

The logistic regression relies on a data sample consisting of 158 cash transactions that took 

place from 1972 to 1977. Furthermore, the sample is divided into a training and testing sample 

to validate the final model’s prediction accuracy. Predictive variables considered by the author 

are bid premium size, management attitude, percentage of shares owned by the acquiring party, 

solicitation fees and rivalry bids. In accordance with previous research, the author finds that 
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positive management attitude significantly increases the probability of a successful outcome. 

In addition, Walkling concludes that there is a positive correlation between the probability of 

successful takeovers and solicitation fees and acquiring party ownership. In contradiction to the 

results produced by Hoffmeister and Dyl (1981), Walkling finds that the level of bid premiums 

in fact play a significant role in determining the outcome variable. Moreover, he attributes this 

contradiction to failure in accurately defining the bid premium variable, where previous 

research does not account for leakage of transaction announcement information.  

3.3 Mitchell and Pulvino (2001) – Characteristics of Risk and Return in Risk 

Arbitrage 

The 2001 study performed by Mitchell and Pulvino was briefly discussed in section 2.4. This 

study is comprehensive and has a somewhat different flavour compared to that of Hoffmeister 

and Dyl (1981) and Walkling (1985). The authors investigate the risk and return profile of the 

merger arbitrage strategy by analysing 4 750 mergers and acquisition that took place in the 

United States from 1963 to 1998. While the main focus of the study is on the return profile of 

merger arbitrage (as outlined in section 2.4), Mitchell and Pulvino also discuss predictive 

variables other than market risk and transaction costs that can be used to predict outcomes in 

takeover situations. They find that variables such as payment structure, management attitude 

and target market capitalisation have a significant impact on the probability that corporate 

takeover attempts are successful.  

3.4 Baker and Savasoglu (2002) – Limited Arbitrage in Mergers and Acquisition  

As mentioned in section 2.4, Baker and Savasoglu (2002) make considerable efforts to explain 

why the merger arbitrage strategy can generate abnormal excess returns by analysing 1 901 

transactions from 1981 to 1996. They are able to trace the excess returns to the supply of stock 

in the underlying target companies, where existing investors tend to sell their positions after a 

takeover is announced to avoid completion risk. They also conclude that there are only a limited 

number of arbitrageurs active in the market, and the magnitude of their capital is not sufficient 

to arbitrage away the excess returns.  

The authors also investigate what variables provide most explanatory power when it comes to 

predicting the outcomes in a corporate takeover attempts. Six predictive variables are included 

in the most extensive model. Out of the entire set of variables, three variables show statistical 
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significance at the 5% level, namely management attitude, the market capitalisation of the 

acquiring firm, and the market capitalisation of the target company.   

3.5 Branch and Yang (2003) – Predicting Successful Takeovers and Risk 

Arbitrage 

Branch and Yang (2003) use a stepwise logistic regression model to analyse what factors are 

most relevant when trying to predict the outcome in corporate takeovers. The underlying data 

sample consists of 1 097 transactions with either cash, stock-for-stock or collar payment 

structures during the period 1991 to 2000. They cover a range of predictive variables but pay 

special attention to the importance of payment type. The authors find that payment type, the 

interaction between management attitude and post-announcement stock price performance, the 

relative size difference between the acquirer and target company, management attitude, 

leverage, and percent sought to be significant at the 10% level.  

3.6 Branch and Wang (2009) – Takeover Success Prediction and Performance 

of Risk Arbitrage 

Branch and Wang (2009) further investigate the role of different factors in corporate takeover 

prediction using logistic regression. The authors use a data sample consisting of 1 165 

transactions over a period stretching from 1994 to 2003. After analysing eleven predictive 

variables, they conclude that five variables are significant at the 10% level. These are the target 

company’s stock price performance prior to the transaction announcement, management 

attitude, merger spread, the relative size difference between the acquiring firm and the target 

company, and rivalry bids. 

In addition, Branch and Wang show that using a logistic regression model on a pair-matched 

sample, in the setting of takeover prediction, results in biased parameter estimates. As a remedy, 

they suggest using a weighted logistic regression model to remove the bias and in extension, to 

improve prediction performance.  
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3.7 Jetley and Ji (2010) – The Shrinking Merger Arbitrage Spread: Reasons and 

Implications 

In their study from 2010, Jetley and Ji investigate how the merger spread developed over the 

period 1990 to 2007. The authors base their conclusions on a data set containing 2 182 

transactions and find that the average merger spread decreased by roughly 400 basis points (1 

basis point = 0.01%) during 1990-1995 and 2002-2007. However, they also assert that out of 

these 400 basis points, 40-50 might be attributable to a decrease in trading costs.  

Since the merger spread is a key determinant in the return profile of the merger arbitrage 

strategy, the authors investigate the reasons for the observed decline. Jetley and Ji conclude that 

the shrinking merger spread is caused by increased interest in the merger arbitrage strategy, as 

well as a reduction in risks associated with corporate takeovers. In addition, they claim that the 

decreased spread is of permanent nature, suggesting to investors looking to invest in merger 

arbitrage strategies to focus on returns achieved post 2002 rather than over a more extended 

period.  

Finally, the authors conclude that the variables that have a significant impact on the outcome 

in corporate takeovers are payment structure, bid premium, management attitude, trading 

volumes in the target company’s stock one day after announcement, and the target company’s 

market capitalisation. All of these variables are statistically significant at the 5% level.  

3.8 Summary of Findings in Previous Literature 

The previous research covering takeover prediction and merger arbitrage outlined above 

constitute the basis for variable selection in this thesis, and a thorough expose of considered 

variables is presented in section 4.3. Existing research is consistent with regards to some 

explanatory variables, where there is broad agreement concerning the importance of 

management attitude and the importance of size variables such as target size (either in total 

target market capitalisation or relative difference to the acquiring party). However, conclusions 

related to bid premiums as a determining factor are somewhat ambiguous. Hoffmeister and Dyl 

(1981) assert that bid premiums are not a significant factor when determining the outcome in a 

corporate takeover attempt. Subsequent research, such as that of Walkling (1985) as well as 

Jetley and Ji (2010), conclude that bid premium levels are in fact relevant when predicting 
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takeover outcomes. The authors of these studies attribute the contradictive results to failure in 

accurately specifying the bid premium variable.  

As takeover prediction and merger arbitrage has evolved as a research field, a range of 

intuitively appealing variables have been showed to carry explanatory power. Payment 

structure is a recurring factor that has been deemed significant in several studies, such as 

Mitchell and Pulvino (2001) and Branch and Yang (2003). In addition, other variables such as 

merger spread, rivalry bids, solicitation fees, leverage, percent sought, and acquirer ownership 

have proven to contribute with predictive value. However, some of these variables are only 

investigated in single studies and therefore academic consensus is not thoroughly established. 

The above outlined studies are to a degree different in nature. While all of them investigate 

factors relevant for takeover prediction, the approaches applied and the specific areas of 

analysis vary. Mitchell and Pulvino (2001) and Baker and Savasoglu (2002) particularly focus 

on the return profile of merger arbitrage, Jetley and Ji (2010) comprehensively investigate the 

merger spread, and the remaining studies introduce and investigate new predictive variables. It 

should also be noted that the above outlined studies mostly perform analysis on in-sample data 

with focus on variables selection. Hence, prediction accuracy on out-of-sample data is not 

exhaustively addressed. To this background, the analysis presented in this thesis is of different 

flavour, where focus is on developing and comparing classification models with the purpose of 

maximising prediction accuracy. This aspect introduces some difficulties when comparing the 

results in this thesis to previous research.   
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4 Corporate Takeover Data Sample 

This chapter provides a thorough description of the data collection procedure along with an 

outline of the variables used in the classification models. In addition, missing data and class 

imbalance is discussed. The chapter finishes with an overview of the applied data partitioning 

procedure.  

4.1 Data Collection and Inclusion Criteria 

The data sample underlying this thesis includes 7 403 transactions that took place during a time 

period stretching from 2000 to 2018. The interval was set to cover periods of economic 

expansion and contraction with the purpose of limiting the influence of economic cycles. 

Furthermore, all transactions contained in the data sample are those where the target company 

was listed on an OECD domiciled exchange. The decision to include transactions from all 

OECD countries was made to ensure a sufficient number of observations to allow for dividing 

the data into distinct training and testing data samples (see section 4.6 for more detail). It can 

be noted that this is a substantially larger data set compared to those used in most of the studies 

outlined in chapter 3. Transactions involving target companies categorised as financial 

institutions (i.e. banks, insurance companies or investment companies) or real estate companies 

were excluded from the final data sample. Additionally, intra-group transactions were also 

excluded from the data sample since the outcome determinants in these transactions are 

expected to differ significantly from transactions involving two non-related parties. Finally, 

only transactions where the acquiring party sought to buy at least 40% of the target company 

and opted for total ownership exceeding 50%, were included in the final data sample. This was 

done since a majority ownership agenda is a prerequisite for a merger arbitrage strategy to be 

plausible.  

All corporate takeover data was obtained using the MA function in the Bloomberg terminal. 

The following Bloomberg MA search criteria were used to extract the data:  

• Exchange – the target company must be listed on an OECD domiciled exchange, 
where all OECD countries as of March 2020 were included (total of 36 countries). 

• Percent sought – the acquiring firm must attempt to buy at least 40% of the target 
and have an ambition to gain a majority share.  
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• Payment type – only transactions based on cash payment, stock-for-stock payment, 
or a combination of the two were extracted.  

• Deal status – the transaction must be labelled completed, terminated, or withdrawn.  

• Time frame – all transactions announced during the time period 2000 to 2018.  

4.2 Response Variable 

The response variable, outcome, used in this thesis is binary since a transaction either succeeds 

or fails. The response variable has been coded to assume the value “1” when the takeover 

attempt was successful and “0” when the takeover was terminated or withdrawn. These 

outcome labels were extracted from Bloomberg and are defined in the following way:  

• Completed – a completed deal has been consummated and no longer needs 
approvals. 

• Terminated/withdrawn – a terminated deal has been dissolved and does not 
continue. 

4.3 Predictive Variables 

The predictive variables used in the classification models in this thesis rely on the research 

outlined in chapter 3. An outline of each predictive variable is presented below. Comprehensive 

definitions and related information regarding these variables can be obtained using the HELP 

MA function in the Bloomberg terminal.  

4.3.1 Completion Time 

Completion time describes the number of days that elapsed between the date when the 

transaction was announced and the date when the transaction was completed or 

terminated/withdrawn. This is a numeric variable that in theory can take any value greater than 

zero. The average completion time, measured as the number of days elapsed, for all transactions 

in the data sample is 126 days. As long completion times can be associated with uncertainty 

and increased event risk, it seems reasonable to assume that this variable has a significant 

impact on whether or not a transaction is successful.  
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4.3.2 Rivalry Bids 

This variable indicates if any third-party rivalry bids were made during the course of transaction 

completion. It is a binary variable that assumes the value “0” if there were no rivalry bids and 

the value “1” if rivalry bids arose during the completion period. In the total data sample, only a 

small portion of the transactions, roughly 2%, were countered with rivalry bids.     

4.3.3 Total Deal Value 

The total deal value measures the total dollar value of the entire offer, including all disclosed 

payment types and is measured in millions of US dollars. Even though previous research is 

somewhat inconclusive regarding the impact of deal size, the complexity associated with large 

transactions could potentially affect the probability of a takeover attempt being successful. Note 

that total deal values are inflation adjusted.    

4.3.4 Payment Type 

As outlined in section 2.3, a range of payment structures can be employed in M&A attempts, 

and cash payments are regarded as the simplest method. The payment variable is binary and 

assumes the value “0” if the transaction used a stock-for-stock payment structure or a mix of 

stock-for-stock and cash payment. Meanwhile, the variable assumes the value “1” if the 

transaction was a pure cash payment offer. Since cash payment structures are easier for 

investors to understand compared to more complex setups, and because cash structures provide 

a fixed dollar value offer that can be evaluated, this variable might provide predictive quality 

to the classification models. Approximately 65% of the transactions in the data sample rely on 

pure cash payment settlements.  

4.3.5 Attitude 

A corporate takeover attempt can broadly be classified as friendly or hostile. The former refers 

to offers where the target company’s board of directors or management team recommend the 

owners to accept the offer. However, if the board of directors or management team recommend 

the owners to reject the offer and the acquiring firm keeps pursuing the target, the takeover 

attempt is considered hostile. In the data sample, 91% of the transactions are considered 

friendly, indicating that hostile takeovers are relatively uncommon.  
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4.3.6 Bid Premium 

The typical bid premium that an acquiring firm has to pay in order to acquire a public company 

lie in the range of 30-40% (PwC, 2016). This premium is committed in order to convince the 

target’s owners to sell their respective shares. Meanwhile, the acquiring party can motivate 

buying the shares at a premium to the current market valuation for any of the reasons outlined 

in section 2.1. Bid premiums for each transaction have been exported from Bloomberg and are 

calculated as the difference between the offered consideration and the target’s average share 

price one week before the transaction is announced. In the data sample, the average premium 

paid over the entire period is roughly 32%.  

4.3.7 Financial Leverage 

Levels of financial leverage in a target company, and its impact on deal completion, is another 

aspect that previous research has investigated. Several measurements have been used to 

quantify the level of financial leverage. This thesis uses the net-debt to equity ratio to quantify 

financial leverage, but other ratios such as debt to assets or net debt to operating profit could be 

employed as well.  

4.3.8 Percentage Sought 

As previously mentioned, only transactions where the acquiring firm sought to acquire at least 

40% of the outstanding shares and had an ambition to gain majority ownership, have been 

included in the data sample. The variable is numeric and can take on any value in the range of 

40-100%.  

4.3.9 Private Equity 

This binary variable indicates if the acquiring party was a strategic buyer (i.e. another company) 

or a financial sponsor (i.e. private equity firm). The variable assumes the value “0” if the 

acquiring party was a strategic buyer and the value “1” if the takeover attempt was conducted 

by a financial sponsor. In the data sample, the vast majority of the transactions (roughly 80%) 

entails a strategic buyer.  

4.4 Missing and Excluded Data 

The geographic perimeter of this thesis was set to ensure that a large data sample could be 

obtained, hence allowing the classification models, in particular the random forest model, 
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sufficient amounts of data to be trained on. The initial data set contained 19 127 transactions. 

However, this number was reduced down to 7 403 transactions after removing observations 

where data was missing for one or several variables. Initially, different means of data 

imputations were considered, but later rejected since 7 403 observations seemed sufficient in 

relation to the number of predictive variables used.  It can be noted that eliminating observations 

due to missing data for one or several variables has the potential of introducing systematic 

errors in the data sample. That is, if there is a dependency between the probability of a 

transaction being successful and missing data for the transactions, observations will be 

eliminated in a non-random order. This in turn could cause bias in the classification models. 

Potential bias should be kept in mind when evaluating the results presented in thesis. However, 

it is the author’s opinion that the data set provides support for missing data occurring in a fairly 

random order.  

Transactions where the completion time was less than one day were excluded since these could 

not provide useful for an arbitrageur. Additionally, all transactions where the target company 

was classified as a financial institution or real estate company were excluded. Companies 

belonging to these sectors are quite different compared to operational companies (e.g. retailers 

or industrial companies) in terms of general accounting practices and particularly in their use 

of leverage. Hence, including these companies would distort the usage of leverage as a 

predictive variable. For example, in the transaction where Bank Austria acquired UniCredit 

Bank, the recorded leverage ratio of the target was over 1 000, which is not comparable to a 

reasonable leverage ratio for an operational company.  

Additionally, intra-group transactions were excluded since the outcome determinants of those 

transactions are deemed vastly different to transactions including unrelated parties. As an 

example, the transaction where Canary Wharf Group Plc acquired Canary Wharf Group 

Investment Holdings Plc was excluded for this reason.   

4.5 Data Issues Related to Class Imbalance 

The primary purpose of this thesis is to develop classification models that can be used to predict 

outcomes in corporate takeover attempts. Given the nature of corporate takeovers, where a 

majority of the attempts are indeed successful, issues related to class imbalance in the data are 

introduced. In binary classification, class imbalance problems occur when the model has vastly 

fewer observations belonging to one class (i.e. negative outcomes) compared to the other class 
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(i.e. positive outcomes) in the training/fitting procedure. Most classification algorithms aim to 

maximise the overall prediction accuracy. However, if the classes occur is a skewed ratio, this 

procedure can lead to incorrect results. Consider the example of extreme class imbalance, where 

the classes occur in the ratio of 1:100. Given that the algorithm seeks to maximise overall 

accuracy, it can produce a 99% overall accuracy by simply classifying all observations to the 

majority class. In many classification domains, such as credit card fraud detection and medical 

trials, the minority class is usually of much greater interest compared to the majority class (Ali, 

Ralescu & Shamsuddin, 2015). In these instances, class imbalance can evoke real problems. 

To this background, significant efforts have been made to develop various remedies. These 

solutions can usually be divided into two main approaches, namely data-level approaches and 

algorithm approaches. The former includes different sampling methods, such as over-sampling 

or under-sampling, to rebalance the class ratio distribution to become more even. Meanwhile, 

the latter approach involves optimising the algorithm to focus on accurately predicting the 

minority class (Ali, Ralescu & Shamsuddin, 2015). 

While class imbalance can be problematic for the scope of this thesis, the ratio between 

successful and negative corporate takeovers is not that extreme. In the total data sample, the 

two classes roughly occur in the proportions 82% successful and 18% unsuccessful. Hence, no 

explicit effort is made to deal with class imbalance.   

4.6 Data Partitioning 

This thesis will compare the predictive quality of two different classification models: a LASSO 

logistic regression model and a random forest model (see chapter 5 for detail). To compare the 

respective models’ ability to predict corporate takeovers, each model is trained (i.e. fitted) on a 

training data set and then evaluated using a testing data set that has not been seen by the models. 

The data partitioning is done by randomly selecting 80% of the observations from the total data 

sample to be used in the training stage, while the remaining 20% constitute the testing data set. 

Since the total data sample is sufficiently large, the random subset selection procedure manages 

to produce two subsets with similar class proportions. In the training data set, 82.1% of the 

observations have a positive outcome, and in the testing data set the corresponding quantity is 

81.2%.   
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5 Empirical Framework 

This chapter introduces the empirical framework applied throughout the thesis, outlining 

logistic regression based on the LASSO procedure and the general structure of random forest 

models. 

5.1 Classification 

In statistical modelling, linear regression is a common approach when the analysed response 

variable takes the form of a continuous quantitative variable (e.g. income or body height). 

However, if the response variable dealt with is categorical, such as the outcome in corporate 

takeovers, linear regression models are insufficient. Instead, models referred to as classification 

models are employed. These models use the information contained in one or several predictive 

variables (quantitative or categorical) to assign an observation to a specific class. Furthermore, 

binary classification refers to the situation where the response variable belongs to one of two 

classes, and multinomial classification refers to assigning an observation to three or more 

classes (Hastie et al., p. 127, 2013).  

There are a vast number of models used in the domain of classification, all of which are 

appropriate in different classification settings. This thesis employs two different classification 

procedures, namely logistic regression and random forest. The logistic regression approach has 

acted as the backbone in many of the studies described in chapter 3. However, the usage of 

random forest models in predicting corporate takeovers is rather limited in previous literature. 

5.2 Logistic Regression 

Logistic regression can be used to model the probability that a response variable belongs to a 

certain category given a set of predictive variables. In the context of this thesis, the response 

variable, Y, assumes the value “1” if the transaction is successful and the value “0” if the 

transaction fails. Logistic regression uses the logistic function to map any real number to a 

corresponding value in the range [0,1], which in turn can be interpreted as a probability (Hastie 

et al., pp. 130-133, 2013). The logistic regression model with a binary response variable is given 

by the probability that the response variable assumes the value “1”, indicating the positive 

outcome (Basto, Pereira & da Silva, 2015): 
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 Pr(Successful	takeover) = Pr(𝑦4 = 1) = 𝜋4 =
𝑒89:

1 + 𝑒89:
 (1) 

 

where 𝛽 is a column vector containing a set of regression coefficients and 𝑥4 is the i:th row in 

a matrix containing n elements with p predictive variables. However, the logistic regression 

model in (1) is not linear in x. To overcome this, we apply a logit transformation, which in terms 

of 𝜋, can be expressed as (Basto, Pereira & da Silva, 2015): 

 ln ?
𝜋(𝑥4)

1 − 𝜋(𝑥4)
A = 𝑥4𝛽 = 	𝛽B + 𝛽C𝑥C + 𝛽D𝑥D + ⋯+ 𝛽F𝑥F (2) 

 

Hence, the logistic regression model described in (1), has a logit that is linear is x, and the logit 

can be viewed as a function that converts a linear combination of predictor variables (that can 

take on any real number) into the scale of probabilities (i.e. a value between 0 and 1). Finally, 

the model fitting is done by estimating the parameters in 𝛽 using maximum likelihood. This 

procedure involves maximising the following log-likelihood function (Basto, Pereira & da 

Silva, 2015): 

 

𝑙(𝛽) =H[𝑦4 log(𝜋4) + (1 − 𝑦4) log(1 − 𝜋4)]
L

4MC

	

=H[𝑦4 log N
𝜋4

1 − 𝜋4
O + log(1 − 𝜋4)]	

L

4MC

	

=HP𝑦4𝑥4𝛽 − logQ1 + 𝑒89:RS
L

4MC

 

(3) 

 

5.2.1 Model Selection Using LASSO 

Performing variable selection in linear or logistic regression can be a cumbersome task. In 

particular, if the analysis uses a large set of predictive variables, a vast range of models can be 

specified. Furthermore, fitting regression models with many predictive variables introduces 

problems related to overfitting. Overfitting means that the specified model efficiently explains 

the training data but performs badly when trying to predict data unique to the model (i.e. testing 

data). This issue arises since adding more predictive variables will improve the model fit, 

however, at the expense of increased model complexity (Sheather, p. 227, 2009).  
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The data sample underlying this thesis contains data for nine predictive variables. Additionally, 

to account for interplay between variables, all interaction terms are considered, bringing the 

total number of predictive variables to 45. Hence, an efficient strategy is warranted for dealing 

with model specification, and in extension, overfitting. There are several viable methods for 

dealing with overfitting, where a common approach involves penalising the model likelihood 

for having many parameters. This allows for analysing the trade-off between model complexity 

and model fit. Using this approach, one could in theory fit all possible model combinations and 

evaluate them based on a quantity such as the Akaike information criteria (AIC) or the Bayesian 

information criterion (BIC) (Sheather, pp. 230-236, 2009). However, doing this for a large 

number of models can be inefficient and yield subjective results. Another alternative is to 

include all predictive variables in the model and then apply procedures that constrain the 

estimated regression coefficients, shrinking the coefficients towards zero. This is referred to as 

regularisation or shrinkage methods, and one well-known such technique is called the Least 

Absolute Shrinkage and Selection Operator (LASSO) (Hastie et al., pp. 214-215, 2013).   

The LASSO is a relatively recent regression procedure that performs variable selection and 

model estimation simultaneously by introducing a shrinkage penalty that forces the regression 

coefficients towards zero. More specifically, the log-likelihood function being maximised is the 

following (Basto, Pereira & da Silva, 2015): 

 𝑙T		U (𝛽) =HP𝑦4𝑥4𝛽 − logQ1 + 𝑒89:RS − 𝜆HW𝛽XW
F

XMC

L

4MC

 (4) 

 

where 𝜆 is a tuning parameter that is determined individually. Similar to ordinary logistic 

regression, LASSO regression opts for coefficient estimates that fit the data well. However, the 

second term in (4), the shrinkage penalty, is small when the coefficients 𝛽C, … , 𝛽F are small. 

This results in the regression coefficient estimates shrinking towards zero and forcing some 

coefficients to become exactly zero (given that 𝜆 is sufficiently large). In this respect, the 

LASSO regression procedure performs variable selection (Hastie et al., pp. 219-227, 2013). 

Note that equation (4) represents the log-likelihood function for the logit LASSO. When the 

LASSO procedure is applied in the domain of regular linear regression, the first term in equation 

(4) is replaced by an expression for the residual sum of squares. 
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For LASSO regression to achieve the desired properties described above, the value of 𝜆 needs 

to be determined. When 𝜆 = 0, the shrinkage penalty has no effect and the procedure is 

equivalent to ordinary regression, and as	𝜆 → ∞ all coefficients converge to zero. One 

conventional method for determining the level of the tuning parameter is k-fold cross-

validation. In short, this method randomly splits the training data sample into k roughly equal 

sized groups (also called folds), where the first group is used for validation and the remaining 

k – 1 groups are used for fitting. The misclassification error, the rate at which the model 

incorrectly classifies observations, is calculated using the fitted model on the first group (also 

called held-out fold) that was not used in the fitting process. This operation is performed k 

times, each time using a new group for validation, resulting in k estimates of the 

misclassification error. Finally, the cross-validation error is obtained by taking the average of 

the k estimated classification errors. This method can be applied to determine the tuning 

parameter for LASSO regression by choosing a sequence of different values for 𝜆 and then 

calculate the cross-validation error for each value of 𝜆. The tuning parameter is subsequently 

set to the sequence value that achieves the lowest cross-validation error. Finally, the LASSO 

regression model, (4), is fitted using the value of 𝜆 that was obtained in the cross-validation 

stage (Hastie et al., pp. 181-228, 2013).  

5.3 Random Forest 

Random forest is a machine learning based framework that can be employed in a vast range of 

classification problems. The mechanics of random forest algorithms are rather intuitive and 

involve combining a multitude of distinct decision trees (i.e. a “forest”), which combined 

creates a consensus prediction by means of a majority vote. The random forest framework was 

first introduced by Breiman in 2001 and have since risen to prominence due to several 

convenient features such as being able to handle large data sets with many predictive variables, 

combined with the ability to recognise non-linear relationships.  

5.3.1 Decision Trees 

A decision tree contains a sequence of binary splitting rules organised in the structure of a tree. 

At each split (also called node), a test for a certain attribute with a binary outcome is made and 

each branch represents the outcome of that test. In the context of this thesis, the test could be 

formulated as: “does the bid premium exceed 30%?” (which has a binary answer). This process 

is continued for an arbitrary number of nodes until the terminal node, also called leaf node, is 
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reached. In the tree structure, each terminal node represents a classification label (e.g. 

successful or failed takeover). The process of growing a decision tree is called recursive binary 

splitting, a process that uses the classification error rate as a criterion for making the split at 

each node (Hastie et al., pp. 303-316, 2013).  

An example of a simple decision tree structure and its prediction procedure, in the context of 

corporate takeover prediction, is presented in Figure 1. First, a new observation is submitted 

into the root node (i.e. the first node in the tree) that tests whether or not the bid premium 

exceeds 30%. Assuming that the answer to this is “Yes”, the left-hand branch is followed down 

to the first internal node, which in turn tests if the transaction uses a cash payment structure. 

Once again, assuming that the answer to this test is “Yes”, the left-hand branch is chosen. This 

is procedure is done again for the second internal node. Assuming it is a friendly takeover 

attempt, a terminal node representing the class “Successful” is reached. Hence, the tree predicts 

the outcome to be successful given the input data. This example assumes a simple tree structure, 

but in real applications the structure would usually be more complex.  

 

 
Figure 1: Simplified example of a single decision tree.  

The node at the top of the hierarchy is referred to as the root node. Furthermore, the nodes labelled 
“Payment type?” and “Attitude?” are examples of internal nodes. The nodes at the bottom of the tree 
are the terminal nodes. 
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Even though the usage of decision trees in classification is appealing due to its simplicity, it has 

some major disadvantages. Decision tree structures can become extensively complex, leading 

to overfitting, and in turn, poor generalisation of the underlying data. Furthermore, decision 

trees often generate high variance, meaning that minor changes in the data result in vastly 

different tree structures. This is a consequence of the hierarchical nature of decision trees, where 

errors occurring in splits high up in the structure affects all subsequent splits. Furthermore, 

recursive binary splitting is an example of a greedy approach. This means that at any given 

level of the decision tree building, the locally optimal split is made at each node, rather than 

looking ahead and choosing a split that would lead to a globally superior tree (Friedman, Hastie 

& Tibshirani, p. 312, 2017). However, by generating and combining a multitude of trees using 

certain procedures, these disadvantages can be handled, for example by using random forests. 

5.3.2 Random Forest 

Random forest models are based on decision trees but do not suffer from the same level of high 

variance that is often observed when using single tree structures in classification problems. 

Consider a data set consisting of n independent observations, 𝑍C, … , 𝑍L, each with a variance 

of 𝜎D. The variance of the arithmetic average, 𝑍̅, is then equal to 𝜎D/𝑛. Hence, taking the 

average of the set of observations decreases the variance and therefore increases the precision. 

With this in mind, one could in theory collect several training data sets, construct a prediction 

model for each training set, and then simply average out the results from each model to form 

an aggregated prediction. This is not a plausible solution since we usually only have one or a 

few training sets. Instead, so called bootstrapping procedures can be used to take repeated 

samples from the same training data set. The bootstrap training samples can then be used to fit 

N individual decision trees, which combined constitutes the random forest model. On average, 

each tree uses roughly two thirds of the observations in the data sample. The observations not 

used when fitting the trees are referred to as out-of-bag (OOB) observations. In extension, the 

OOB observations can be used to calculate the OOB error rate, which is a valid estimate of the 

overall classification error. The random forest model then makes predictions using a majority 

vote procedure based on the predictions from each decision tree (Hastie et al., pp. 316-321, 

2013).  

A simplified random forest is presented in Figure 2. In this example, Tree 1 predicts the class 

“Successful takeover”, Tree 2 predicts “Failed takeover”, and Tree N predicts “Successful 

takeover”. Finally, the majority vote, based on the N trees in the random forest, makes an 
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aggregate prediction of “Successful takeover”. Note that this is a simplified example and in 

reality, one would usually use a far greater number of trees when constructing a random forest 

model.  

 

 
Figure 2: Simplified example of a random forest model consisting of N decision trees.  

In this simplified example, the first decision tree classifies the observation as “Successful”, the second 
tree makes the prediction “Failed”, and the Nth tree classifies the observation as “Successful”. A final 
prediction is made by means of majority vote based on each individual decision tree. In this case, a 
majority of trees classified the observation as “Successful”, leading the random forest to predict 
“Successful takeover”.  

 

Another important aspect of the random forest model is how it builds trees and how the 

hierarchy is decided. At every instance when a split is considered (i.e. at each node) a random 

sample of m (also called mtry) predictors are chosen from the total set consisting of p predictive 

variables. This is done at each new split and 𝑚 ≈ e𝑝 is commonly used. The reason for only 

allowing the model to choose between m predictive variables, as opposed to all of them, is to 

ensure that the distinct trees are uncorrelated. If the model was allowed to choose between all 

p predictive variables, the variable with most predictive power would occur high up in the 

hierarchy in most of the trees generated. As a result, many of the trees would look similar and 

be substantially correlated, which in turn would lower the variance decreasing effect of 

averaging the predictions from many trees (Hastie et al., pp. 320-321, 2013). 
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Another parameter that needs to be specified for the random forest is ntree, the number of trees 

generated. In theory, one would ideally use an infinitely large number of trees to increase the 

model’s stability. Breiman (2001) showed that increasing the number of trees does not overfit 

the data. However, there are practical limitations to growing an infinitely large random forest, 

particularly with regards to memory requirements and the time it would take to train the model. 

Meanwhile, using a low number of trees could also present challenges related to the correlation 

between trees. In practice, common values for ntree range between 50-500.  

As mentioned in section 5.3.1, decision trees are easy to visualise and interpret using the tree 

structure diagram. However, when combining a large number of trees into one model, this 

feature is somewhat lost. Even though the random forest model is more difficult to visualise, 

an importance summary for the included predictive variables can easily be obtained using a 

variable importance plot.  This graphical representation ranks the predictive variables based on 

Mean Decrease Gini or Mean Decrease Accuracy. The former is a quantity measuring the 

reduction in a predictive variable’s Gini impurity, which referrers to the probability that an 

observation is misclassified at a specific node. Meanwhile, the latter measures the reduction in 

prediction accuracy given that a certain predictive variable is removed (Hastie et al., p. 312, 

2013). See Figure 3 for an example of a variable importance plot.  

 

 
Figure 3: Example of a variable importance plot. 

The left panel ranks the predictive variables according to Mean Decrease Accuracy and the right panel 
ranks each variable with regards to Mean Decrease Gini.   

 

5.4 Evaluating Prediction Accuracy Using the Confusion Matrix 

One tool frequently used when evaluating the prediction performance of classification models 

is the confusion matrix. A schematic depiction of the confusion matrix is given in Table 1. This 
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structure is convenient when evaluating classification models because several validation 

measures can be derived from the data contained in the confusion matrix. These statistics are 

briefly described below.  

Table 1: Schematic depiction of a confusion matrix. 

TP = True positive, FN = False negative, FP = False positive, TN = True negative.  

  Actual 
  Negative outcome Positive outcome Total 

Pr
ed

ic
tio

n Negative outcome True negative False negative TN + FN 

Positive outcome False positive True positive FP + TP 

Total TN + FP FN + TP TP + FN + FP + TN 
 

The overall prediction accuracy can be calculated according to (5) and is simply the ratio 

between the total number of correctly classified observations to the total number of 

observations. This statistic gives an overall measure of the model’s ability to classify 

observations correctly.   

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁	 
(5) 

 

While the overall accuracy is interesting, it does not provide insight into the model’s ability to 

classify the respective classes correctly. Therefore, overall accuracy is complemented with two 

additional statistics, namely specificity and sensitivity. The former is calculated according to (6) 

and describes the share of unsuccessful transactions being correctly classified by the model. 

Meanwhile, the latter is calculated by (7) and indicates the model’s ability to classify the 

successful transactions correctly.   

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	 
(6) 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	 
(7) 
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6 Descriptive Statistics and Empirical Results 

This chapter presents a range of descriptive statistics for the collected data sample. 

Furthermore, results from the respective model fitting procedures are discussed. The chapter 

is concluded with a comparison of each model’s prediction performance and the results are 

discussed. 

6.1 Descriptive Statistics 

The cyclical nature of mergers and acquisitions described in section 2.1 is evident in the data 

sample. The number of transactions in the data sample per year is presented in Figure 4, where 

periods of recession (e.g. 2002 and 2008-2009) are associated with lower transaction volumes.  

 

 
Figure 4: Number of transactions per year in the total data sample with the average number of 
transactions per year represented by the blue line. 

This graph highlights the cyclical nature of mergers and acquisition. The data shows how volumes tend 
to decrease during times of recession, for example during the economic contraction in the early 2000s 
and the global financial crisis in 2008-2009.   

 

The median total deal value per year (inflation adjusted) is presented in Figure 5. There is an 

evident trend of increasing total deal values over the analysed period, with the median over the 

entire period being roughly 144 million USD. Hence, the data sample suggests that both 

volumes, in terms of number of transactions, and deal value has increased since the year 2000.  
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Figure 5: Inflation adjusted median total deal value per year (MUSD) with the median deal 
value over the entire period being represented by the blue line.  

The data suggest a clear trend of transaction getting larger in absolute terms with regards to the sample 
period stretching from 2000 to 2018. Note that all values are inflation adjusted according to the overall 
inflation rate for the OECD region.  

 

Furthermore, a boxplot describing how bid premiums have evolved over the measured period 

is presented in Figure 6 (note that outliers have been excluded from the graph). The data sample 

suggests that the median bid premium has remained fairly constant since the year 2000. 

However, it is interesting to note that the variation in bid premium levels, measured by the 

height of each box, seems to increase during recession year. This is most evident for the years 

2002, 2009 and 2012.  

 

 
Figure 6: Median bid premium (measured in percent) per year excluding outliers. 

The data suggest that bid premiums have remained relatively constant over the sample period, however 
with increased variation during recession years.  
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Figure 7 presents how completion time (in days) has developed over the sample period. Once 

again, there seems to be a correlation between completion time and the general economic cycle, 

where periods around 2001, 2008 and 2012 exhibit faster completion times.  

 

 
Figure 7: Median completion time (measured in days) per year excluding outliers. 

The data indicate fairly constant completion times over the sample period, however with transactions 
being finalised quicker during recession years.  

 

Table 2 describes the distribution for the response variable (i.e. outcome) for the entire data set. 

The proportion of successful takeover attempts varies considerably over the sample period and 

amounts to roughly 82% for the entire data set, corresponding to 6 062 transactions.  

Table 3 shows proportions for the categorical variables private equity, payment type and 

attitude for each year in the sample period. Even though there is some variation, the proportion 

of friendly takeover attempts seems to be rather consistent over time. However, there is 

significant variation in the proportion of cash payment transactions carried out per year over 

the sample period. Additionally, it is interesting to note that private equity sponsored takeovers, 

in absolute and relative terms, has increased substantially since the year 2000. 
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Table 2: Distribution of total, completed and failed number of transactions per year. The bottom 
row refers to the entire sample period. 

The proportion of corporate takeover attempts being successful varies significantly from year to year. The 
lowest share of completed transactions occurred in 2008 and highest share of transactions completed was 
in 2002.  

Year Total takeovers Completed Failed % Completed % Failed 
2000 275 203 72 73.8% 26.2% 
2001 442 375 67 84.8% 15.2% 
2002 269 238 31 88.5% 11.5% 
2003 316 271 45 85.8% 14.2% 
2004 282 235 47 83.3% 16.7% 
2005 353 309 44 87.5% 12.5% 
2006 464 363 101 78.2% 21.8% 
2007 504 399 105 79.2% 20.8% 
2008 363 260 103 71.6% 28.4% 
2009 294 227 67 77.2% 22.8% 
2010 285 227 58 79.6% 20.4% 
2011 321 274 47 85.4% 14.6% 
2012 408 349 59 85.5% 14.5% 
2013 425 351 74 82.6% 17.4% 
2014 421 355 66 84.3% 15.7% 
2015 555 443 112 79.8% 20.2% 
2016 520 437 83 84.0% 16.0% 
2017 470 381 89 81.1% 18.9% 
2018 436 365 71 83.7% 16.3% 
Total 7 403 6 062 1 341 81.9% 18.1% 
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Table 3: Proportions for the categorical variables private equity, payment type and attitude per 
year. The bottom row refers to the entire sample period.  

The data suggest fairly constant levels of friendly takeover attempts per year in the data sample. There is 
a clear trend towards a larger share of private equity sponsored transaction. Additionally, there is 
considerable variation with regards to payment type over the sample period, however with pure cash deal 
being most prominent.  

Year % Private equity % Cash payment % Other payment % Friendly % Hostile 
2000 8.4% 55.3% 44.7% 92.0% 8.0% 
2001 8.6% 55.0% 45.0% 94.3% 5.7% 
2002 13.0% 53.9% 46.1% 94.8% 5.2% 
2003 15.8% 57.0% 43.0% 94.6% 5.4% 
2004 13.5% 61.3% 38.7% 92.2% 7.8% 
2005 19.0% 63.5% 36.5% 91.5% 8.5% 
2006 23.9% 70.3% 29.7% 89.0% 11.0% 
2007 27.0% 71.4% 28.6% 92.7% 7.3% 
2008 17.4% 67.2% 32.8% 89.8% 10.2% 
2009 15.3% 50.7% 49.3% 96.3% 3.7% 
2010 19.6% 67.0% 33.0% 86.3% 13.7% 
2011 19.9% 67.0% 33.0% 87.9% 12.1% 
2012 18.4% 68.4% 31.6% 89.7% 10.3% 
2013 23.3% 69.4% 30.6% 90.4% 9.6% 
2014 20.9% 60.6% 39.4% 90.5% 9.5% 
2015 21.4% 61.4% 38.6% 88.5% 11.5% 
2016 26.9% 72.1% 27.9% 87.1% 12.9% 
2017 27.7% 74.3% 25.7% 91.5% 8.5% 
2018 26.1% 66.1% 33.9% 88.8% 11.2% 
Total 20.1% 64.6% 35.4% 90.7% 9.3% 
 

6.2 Results From The Logistic Regression Model Using LASSO 

In the subsequent sections, fitting of the logistic regression model on the training data sample 

using the LASSO procedure is described. Furthermore, the LASSO tuning parameter is assed 

and variable inclusion is discussed. Lastly, the prediction accuracy of the final model is 

evaluated by applying it to the testing data set.   

6.2.1 Model Fitting and Tuning 

As described in section 5.2.1, an important aspect in the LASSO fitting procedure is deciding 

the value of the tuning parameter, 𝜆, that minimises the cross-validation error. This error rate 

was calculated for a sequence of values using cross-validation with k = 10. The results are 

presented in Figure 8. The grey dotted line furthest to the left indicate the value of 𝜆 that 

minimises the cross-validation error and the corresponding value will be used when fitting the 
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final model. Figure 9 provides additional information with regards to the tuning parameters 

impact on the coefficient estimates, where several of the coefficients are quickly reduced down 

towards zero as 𝜆 increases.  

 

 
Figure 8: Cross-validation error as a function of 𝝀. 

This plot describes the cross-validation error as a function of the tuning parameter. The values in the 
top row refers to the number of non-zero coefficients in the model given a certain level of the tuning 
parameter, and the bottom row are the actual values of the tuning parameter. The red dots constitute the 
cross-validation curve and the grey bars suggest a confidence interval around the point estimates. The 
dotted vertical line furthest to the left indicates the value of 𝜆 that minimises the error rate, and the 
dotted line to the right suggests the value of 𝜆 that shrinks the model the furthest so that the error rate 
is still within one standard error of the minimum value. The graph suggests that there are at least 24 
coefficients that are relevant (including the intercept), and this number is decreased to 20 coefficients 
given one standard error. 	

 

 

 
Figure 9: Coefficient estimates plotted as a function of 𝝀. 

Each line in the above plot represent an individual coefficient. The majority of all coefficient are 
reduced down towards zero quickly, while only a few remain far from zero as the tuning parameter is 
increased.  
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The ten largest coefficients are presented in Table 4 and a comprehensive table containing 

estimates for all 46 coefficients can be found in Appendix I. Table 4 suggests that attitude is 

the most influential variable in determining the outcome in a corporate takeover attempts since 

this coefficient deviates the furthest from zero (in absolute terms). It is also interesting to note 

that among the ten largest coefficients, a majority are associated with interactions between 

variables.  

Table 4: The ten largest estimated coefficients from the LASSO procedure.  

The notation used in the variables column in this table is the following: variable names written “stand-
alone” refers to the actual variable, while variable names separated by a “:” refer to the interaction between 
the two variables.  

Variable Coefficient 
attitude 1.383439000 

Intercept 1.164750000 
attitude:percent_sought 0.016443220 

time_completion:rivalry_bid 0.004947137 
payment_type:percent_sought 0.002633868 

time_completion 0.002288839 
payment_type:bid_premium 0.001120152 

bid_premium 0.000807709 
leverage:pe 0.000052795 

time_completion:percent_sought 0.000045367 
 

6.2.2 Final Model Prediction Performance 

The model described in section 6.2.1 is applied to the testing data set to evaluate its prediction 

performance. Each observation is classified as “successful” if the predicted probability of a 

successful outcome is larger than 50%. The prediction results, in the form of a confusion matrix 

and additional statistics, is presented in Table 5. Overall prediction accuracy is 84.2%, which 

can be compared to the No Information Rate value amounting to 81.2%. The latter quantity 

refers to the largest proportion of the two outcome classes and can be interpreted as the accuracy 

one would achieve by simply guessing “successful outcome” for each observation. Hence, the 

model is able to classify the response variable with higher accuracy than what would be 

obtained by guessing. This conclusion is also confirmed by the 95% confidence interval for the 

overall accuracy. However, while sensitivity is close to 98%, the specificity is much lower at 

roughly 26%. This suggest that the model performs well when classifying successful takeover 

attempts, but less well when classifying failed takeover attempts. Low specificity could be the 

result of a number of factors, such as a rather substantial class imbalance (see section 4.5). 
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Meanwhile, in accordance with the interpretation of the No Information Rate above, simply 

guessing “successful outcome” for each observation would give a specificity of 0%.   

Table 5: Confusion matrix and other validation statistics for the LASSO logistic regression model. 

The overall accuracy in combination with the 95% confidence interval suggest that the logistic regression 
model, based on the LASSO procedure, is able to classify the response variable correctly for 84.2% of the 
observations. While sensitivity is almost 98%, the specificity only reaches about 26%. 

  Actual  Overall Accuracy 84.2% 
  Failed Successful Total  95% CI 82.3% - 86.0% 

Pr
ed

ic
tio

n  Failed 73 28 101  No Information Rate 81.2% 

Successful 206 1 174 1 380  Sensitivity 97.7% 

Total 279 1 202 1 481  Specificity 26.2% 
 

6.3 Results From The Random Forest Model 

The sections below outline the model fitting and tuning procedure of the random forest model 

applied to the training data sample. The parameter controlling the number of predictive 

variables considered at each split, m, is discussed along with the number of decision trees used 

in the final model. Additionally, variable importance is examined and prediction performance 

of the final model is evaluated on the testing data sample.  

6.3.1 Model Fitting and Tuning 

Following the discussion in section 5.3.2, specifying the number of predictive variables 

considered at each decision tree split, m, out of the entire set consisting of p predictive variables, 

is an important aspect when tuning a random forest model. Figure 10 displays the out-of-bag 

(OOB) error rate as a function of m. The graph suggests that the OOB error is minimised when 

m is set to three, which is in accordance with the common approach of setting 𝑚 ≈ e𝑝.  
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Figure 10: Out-of-bag error as a function of m.  

This plot describes how the out-of-bag error is impacted by the number of predictive variables 
considered at each decision tree split. As previously described, the random forest model randomly 
selects a number of predictive variables from the total set of variables each time a split is considered. 
This is done to ensure that all the distinct trees are not correlated. The training data sample suggest that 
m = 3 is the optimal choice, which is in accordance with the commonly used 𝑚 ≈ e𝑝  rule of thumb. 

 

Figure 11 shows how the random forest model’s performance is impacted by the number of 

distinct decision trees used. The black line represents the total OOB error rate for the model 

and the green and red dotted lines represent the misclassification error for the classes 

“completed” and “failed” transactions, respectively. Hence, it can be concluded that the 

respective error rates stabilise at a fairly low number of trees. As described earlier, one would 

ideally use an infinite number of trees in the final model. However, using a very large number 

of trees would not be computationally plausible. Even though Figure 11 suggests that a low 

number of trees could be used (e.g. 50 trees), the final model is specified to consist of 300 trees 

since this still allows for quick running times given the size of the sample and number of 

predictive variables.  
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Figure 11: Error rates as a function of the number of decision trees. 

The black solid line represents the out-of-bag error for the random forest model as a function of the 
number of decision trees generated. The dashed green line represents the misclassification error for the 
class “completed transaction” and the red dashed line represents the equivalent error rate for the class 
“failed transaction”. The plot suggest that the respective error rates stabilise at roughly 50 trees.  

 

Figure 12 contains a variable importance plot that is based on the fitted random forest model. 

All predictive variables are ranked in a descending order with regards to Mean Decrease 

Accuracy and Mean Decrease Gini. Both measurements suggest that the variables attitude, 

completion time and total value contribute to the model’s performance. Meanwhile, the 

interpretation for the remaining variables is somewhat ambiguous.  

 

 
Figure 12: Variable importance plot for the random forest model. 

The variable importance plots ranks each predictive variable in a descending order with regards to Mean 
Decrease Accuracy (left panel) and Mean Decrease Gini (right panel). Both measurements suggest that 
attitude, completion time and total value are important variables, while there is not a consistent 
interpretation with regards to the other variables.  

 

Finally, Figure 13 presents a histogram showing the distribution of the number of nodes (i.e. 

tree size) in each decision tree included in the random forest model. This plot suggests that 
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many of the trees are relatively large, possibly suggesting that there is significant interaction 

between variables, which in turn leads to complex tree structures. This is in accordance with 

the results presented in section 6.2.1, where a majority of the most influential predictive 

variables were interaction terms.  

 

 
Figure 13: Histogram displaying the number of nodes in the decision trees included in the 
random forest model.  

The average number of nodes included in each tree for the random forest is roughly 660. This suggest 
fairly complex tree structure, which might be a consequence of significant interaction between 
predictive variables.  

 

6.3.2 Final Model Prediction Performance 

The prediction performance of the random forest model outlined above was evaluate on the 

testing data set. The prediction results are summarised in a confusion matrix, accompanied with 

some additional statistics, in Table 6. The overall prediction accuracy is 85.2%, which again 

can be compared to the No Information Rate value amounting to 81.2%. Additionally, a 95% 

confidence interval for the overall prediction accuracy is displayed. Similar to the logistic 

regression model, the sensitivity is high, reaching roughly 98%. However, the specificity is 

considerably lower at roughly 29%. Hence, the random forest also has problems in classifying 

the failed transactions accurately.   
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Table 6: Confusion matrix and prediction quantities.  

The random forest is able to classify 85.2% of the observations correctly. While the sensitivity of 98.3% 
can be considered high, the specificity is considerably lower at 28.7%. Hence, the model experience 
difficulty in classifying the failed takeover attempts correctly. 

  Actual  Overall Accuracy 85.2% 
  Failed Successful Total  95% CI 83.2% - 86.9% 

Pr
ed

ic
tio

n  Failed 80 21 101  No Information Rate 81.2% 

Successful 199 1 181 1 380  Sensitivity 98.3% 

Total 279 1 202 1 481  Specificity 28.7% 
 

6.4 Model Comparison 

A comparison of the two classification models outlined above is presented in Table 7. When 

subjected to the testing data sample (i.e. data not seen by the models), the random forest 

achieved better prediction performance on all relevant measures compared to the logistic 

regression model. Both models have problems related to low specificity. However, it should be 

noted that even though the random forest only outperformed the logistic regression model by 

one percentage point on overall prediction accuracy, specificity was almost three percentage 

points higher. This suggest that the random forest does not only perform better in terms of 

overall accuracy, but also surpasses the logistic regression model’s ability to correctly classify 

failed corporate takeover attempts. Additionally, these results could indicate that the response 

variable’s two classes are not entirely linearly separable. That is, in the context of the underlying 

data, the random forest uses a preferred method for dividing the predictor space by more 

effortlessly acknowledging non-linear and complex data structures. For comparison, Table 7 

also contains prediction validation statistics for an ordinary logistic regression model including 

all predictive variables and the respective interaction terms (see Appendix III for coefficient 

estimates). As with the other models, the ordinary logistic model was fitted on the training 

sample and evaluated on the testing sample. Table 7 shows that the ordinary logistic regression 

model and the LASSO based equivalent produce similar prediction results in terms of overall 

accuracy, sensitivity and specificity. However, it should be noted that the ordinary model uses 

46 predictive variables (including the intercept) even though only 12 coefficients are significant 

at the 5% level. For comparison, the LASSO based model only uses 25 predictive variables. 

Hence, the LASSO model and the ordinary model produce similar results in terms of prediction, 

however, the ordinary model is significantly more complex and therefore more prone to 
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overfitting the data. It can also be noted that the random forest model outperforms the ordinary 

logistic regression model on all validation statistics.  

Table 7: Comparison of prediction performance for the random forest model, the LASSO logistic 
regression model, and an ordinary logistic regression model including all predictive variables and 
interaction terms.  

The model comparison suggest that the random forest outperforms the LASSO logistic regression model 
on all relevant measures. It is particularly interesting to note that the specificity obtained by the random 
forest is considerably higher than that of the LASSO model. This in turn could suggest that the underlying 
relationships in the data are better described by the predictor space partitioning approach employed by the 
random forest compared to the logistic regression model. For comparison purposes, an ordinary logistic 
regression model is included in the table. This model performs similarly to the LASSO version, however, 
at the expense of higher model complexity.   

 Random Forest LASSO Regression Logistic Regression 
Overall Accuracy 85.2% 84.2% 84.0% 

95% CI 83.2% - 86.9% 82.3% - 86.0% 82.1% - 85.8% 
No Information rate 81.2% 81.2% 81.2% 

Sensitivity 98.3% 97.7% 97.2% 
Specificity 28.7% 26.2% 26.3% 

 

6.5 Analysis and Discussion of Results 

There is broad consensus in previous research supporting that management attitude and target 

size are important determinants of corporate takeover outcomes, as outlined in chapter 3.  The 

results presented in this thesis reinforce this assertion. Table 4 and Figure 12 show that 

management attitude is one of the most important predictive variables in terms of contributing 

to prediction accuracy for the LASSO logistic regression model and the random forest model. 

This interpretation makes logical sense since hostile takeover attempts can trigger various forms 

of takeover defence strategies that seek to impede the acquiring party from being successful. 

Furthermore, the variable importance plot for the random forest suggest that total deal value, 

which can be seen as a proxy for target size, also ranks high in terms of predictive contribution. 

Concerning the somewhat contradictory results regarding the usage of bid premium as a 

predictive variable outlined in chapter 3, the above results support the conclusions made by 

Walkling (1985) and Jetley and Ji (2010), namely that bid premium in fact is a significant 

determinant of the outcome variable. This in turn makes sense intuitively. If bid premiums do 

not impact the probability of a takeover attempt being successful, the natural question is why 

bid premiums exist at all.  
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Chapter 3 also discuss research on the importance of payment structure as a predictive variable, 

where Mitchell and Pulvino (2001) and Branch and Yang (2003) show that the underlying 

payment structure in a takeover has significant impact on the outcome variable. However, this 

conclusion is not firmly supported by the results presented in this thesis. On the contrary, the 

variable importance plot in Figure 12 suggests that payment type carries little explanatory 

power. It could be argued that cash transactions are easier for investors to understand and in 

turn increase the probability of the takeover being successful. Be that as it may, it could very 

well be argued that institutional investors possess a level of sophistication that should allow 

them to accurately evaluate terms of more complex structures. Additionally, the payment type 

variable occurs among the top ten most influential variables in the LASSO model, however not 

standalone but in interaction with the variables percent sought and bid premium. This in turn 

suggests that payment type in combination with other variables could be relevant when 

predicting the outcome variable.  

The random forest model suggest that completion time contributes significantly to the 

prediction accuracy. This result appears to be reasonable since the variable is closely linked to 

completion risk and is in line with the results Baker and Savasoglu (2002) report. Furthermore, 

the LASSO model suggests an interaction between completion time and rivalry bids. Branch 

and Wang (2009) conclude that rivalry bids have a significant impact on the outcome variable, 

though it should be noted that the authors use a 10% significance level. The relatively low 

coefficient estimate for the rivalry bid variable in the LASSO model and moderate importance 

indicated by the random forest, suggest that the results in this thesis do not firmly support the 

variable as having a significant impact. Finally, the results above indicate that the variables 

percent sought and financial leverage contribute to the overall prediction accuracy to some 

extent. However, there is weak support for claiming that transactions where the acquiring party 

is a private equity firm would affect the outcome variable in a notable way.   

As described in section 3.8, much of the previous literature discussed in this thesis is focused 

on variable selection and the return profile of merger arbitrage. Only Hoffmeister and Dyl 

(1981) and Walkling (1985) report out-of-sample validation statistics. The former study 

performed out-of-sample validation using several model specifications on testing data samples 

consisting of 7-33 observations. Overall prediction accuracy ranges from 54.5% to 84.8%, 

sensitivity ranges from 33.3% to 100.0%, and specificity ranges from 28.6% to 100.0%. These 

statistics are not reliable due to the limited number of out-of-sample observations, which is also 
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highlighted by the authors. The latter study reports an overall accuracy of 76%, a sensitivity of 

73.7%, and a specificity of 83.3% on the out-of-sample set consisting of 50 transactions from 

one isolated year. Once again, the small testing sample limits the reliability of the results and 

are not entirely comparable to those presented in section 6.2.2 and 6.3.2. This is because 

validation performed on a small testing sample, stretching over a short period of time, can be 

heavily influenced by the random composition resulting from the sub-sampling procedure.    

Finally, the models fitted in this thesis are optimised to achieve the maximum overall prediction 

accuracy. However, given the asymmetric return profile of the merger arbitrage strategy, this 

approach might be faulty if the purpose is to develop an investment strategy. Assuming that an 

investor takes a long position in a target company and the takeover attempt fails, the potential 

losses are usually far greater than the potential gains in case of a positive outcome. In this 

respect, predicting the negative outcomes accurately might be more important than correctly 

classifying the positive outcomes. Hence, if the models described above are to be used in an 

applied trading strategy, the models should be optimised to maximise the expected returns of 

the investment strategy rather than only maximising the overall prediction accuracy.  
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7 Concluding Remarks 

This chapter concludes this thesis by returning to the initial research question posed in 

chapter 1. Additionally, suggestions for further research related to re-sampling methods and 

trading applications are made.  

7.1 Conclusion 

The purpose of this thesis was to investigate if machine learning based classification procedures 

provide superior prediction performance compared to LASSO logistic regression models when 

predicting the outcome in corporate takeover situations. The models were fitted using a training 

data set consisting of 5 922 OECD-domiciled transactions and evaluated on a testing data set 

consisting of 1 481 observations. At the outset, variable selection was based on the extensive 

research already done within the field of takeover outcome prediction. The random forest model 

utilised all predictive variables previously shown to carry explanatory power in the analysed 

classification setting. Furthermore, variable selection for the logistic regression model was 

conducted by applying the LASSO procedure. Some of the predictive variables, such as target 

size and management attitude, were shown to carry significant explanatory power, reinforcing 

results from previous research. Meanwhile, other variables discussed in earlier literature were 

somewhat ambiguous in terms of predictive ability when applied to the data sample underlying 

this thesis.  

With a focus on model comparison, the results presented in this thesis suggest that the random 

forest model outperforms the logistic regression model on all relevant validation measures, 

particularly with regards to specificity. This conclusion indicates that the outcome variable is 

not entirely linearly separable and that the random forest, in the context of the underlying data, 

divides the predictor space more efficiently by more easily acknowledging non-linear data 

structures. Given that a significant amount of previous research has been done using logistic 

regression, this thesis might provide cause for considering alternative and complementary 

classification procedures when analysing and predicting the outcomes in takeover events. 

Finally, given that both models achieved an overall prediction accuracy higher than the 

corresponding No Information Rate on out-of-sample data, there is evidence supporting that 

merger arbitrageurs stand to gain from using quantitative prediction models when evaluating 

investment opportunities.  
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7.2 Suggested Further Research 

One palpable shortcoming in both the random forest model and the logistic regression model is 

that of low specificity. Therefore, further research into methods for improving the specificity 

scores could provide useful in terms of prediction performance. As briefly mentioned in section 

4.5, one such method might entail various forms of re-sampling procedures. Additionally, the 

only machine learning approach applied in this thesis was the random forest framework. Since 

there is a range of other machine learning based classification methods, it might be of interest 

to evaluate other such models. For example, one could apply a neural network approach and 

evaluate how the prediction performance compares to that of the random forest.  

Finally, a natural and crucial next step in enabling the models presented in this thesis to be used 

in an applied investment strategy, would be to consider how to adjust the models to account for 

the asymmetric merger arbitrage return profile. One approach could entail optimising the 

respective models to maximise expected returns of the merger arbitrage strategy rather than 

overall prediction accuracy. That is, optimise overall accuracy in tandem with specificity and 

sensitivity in a system that accounts for asymmetric returns.  
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9 Appendix 

Appendix I – Comprehensive List of LASSO Logistic Regression Coefficients 

Table 8: Comprehensive list of coefficient estimates for the logistic regression model based on the 
LASSO procedure. 

The notation used in the variables column in this table is the following: variable names written “stand-
alone” refers to the actual variable, while variable names separated by a “:” refer to the interaction between 
the two variables. 

Variable Coefficient 
Intercept 1.164750000 

time_completion 0.002288839 
rivalry_bid 0.000000000 
total_value -0.000011147 

payment_type 0.000000000 
Attitude 1.383439000 

bid_premium 0.000807709 
leverage 0.000000000 

percent_sought -0.025160240 
pe 0.000000000 

time_completion:rivalry_bid 0.004947137 
time_completion:total_value -0.000000032 

time_completion:payment_type -0.000875017 
time_completion:attitude -0.004881499 

time_completion:bid_premium 0.000000000 
time_completion:leverage 0.000000000 

time_completion:percent_sought 0.000045367 
time_completion:pe -0.001993792 

rivalry_bid:total_value -0.000103726 
rivalry_bid:payment_type 0.000000000 

rivalry_bid:attitude -1.204725000 
rivalry_bid:bid_premium 0.000000000 

rivalry_bid:leverage 0.000000000 
rivalry_bid:percent_sought -0.008192736 

rivalry_bid:pe 0.000000000 
total_value:payment_type -0.000007119 

total_value:attitude 0.000000000 
total_value:bid_premium 0.000000000 

total_value:leverage 0.000000000 
total_value:percent_sought 0.000000000 

total_value:pe 0.000000000 
payment_type:attitude -0.035156000 

payment_type:bid_premium 0.001120152 
payment_type:leverage 0.000034174 

payment_type:percent_sought 0.002633868 
payment_type:pe -0.290252600 
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Variable Coefficient 
attitude:bid_premium 0.000000000 

attitude:leverage 0.000000000 
attitude:percent_sought 0.016443220 

attitude:pe -0.067609710 
bid_premium:leverage 0.000000000 

bid_premium:percent_sought 0.000000000 
bid_premium:pe 0.000000000 

leverage:percent_sought 0.000000026 
leverage:pe 0.000052795 

percent_sought:pe 0.000000000 
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Appendix II – Pearson Correlation Matrix 

Table 9: Pearson correlation matrix for all predictive variables. 

TC = Total to completion, RB = Rivalry bid, TV = Total value, PT = Payment type, A = Attitude, BP = 
Bid premium, L = Leverage, PS = Percent sought, PE = Private equity.  

  TC RB TV PT A BP L PS PE 
TC 1.000 -0.039 0.170 -0.098 -0.054 -0.012 -0.002 -0.022 -0.016 
RB -0.039 1.000 0.002 0.059 -0.066 -0.009 0.027 0.051 0.018 
TV 0.170 0.002 1.000 -0.083 -0.120 -0.027 0.002 0.074 -0.030 
PT -0.098 0.059 -0.083 1.000 -0.073 0.085 -0.003 -0.123 0.320 
A -0.054 -0.066 -0.120 -0.073 1.000 -0.007 -0.002 -0.019 -0.040 

BP -0.012 -0.009 -0.027 0.085 -0.007 1.000 0.001 0.068 -0.021 
L -0.002 0.027 0.002 -0.003 -0.002 0.001 1.000 0.008 0.005 

PS -0.022 0.051 0.074 -0.123 -0.019 0.068 0.008 1.000 -0.059 
PE -0.016 0.018 -0.030 0.320 -0.040 -0.021 0.005 -0.059 1.000 
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Appendix III – Comprehensive List of Logistic Regression Coefficients 

Table 10: Comprehensive list of coefficient estimates for the ordinary logistic regression model. 

The notation used in the variables column in this table is the following: variable names written “stand-
alone” refers to the actual variable, while variable names separated by a “:” refer to the interaction between 
the two variables. Note the following notation for the significance levels for each estimated coefficient: 
*** = 0, ** < 0.001, * < 0.01, ^ < 0.05. 

Variable Coefficient Std. Error P-Value  
(Intercept) 2.098000 0.838000 0.012280 * 

time_completion 0.003757 0.002088 0.071896 ^ 
rivalry_bid 0.032910 2.399000 0.989054  
total_value -0.000050 0.000047 0.281988  

payment_type -1.140000 0.611400 0.062294 ^ 
attitude 1.324000 0.668200 0.047562 * 

bid_premium 0.008409 0.006558 0.199772  
leverage -0.000816 0.001004 0.416634  

percent_sought -0.040200 0.008456 0.000002 *** 
pe 0.932100 0.657400 0.156253  

time_completion:rivalry_bid 0.006405 0.003031 0.034574 * 
time_completion:total_value 0.000000 0.000000 0.107133  

time_completion:payment_type -0.001308 0.000896 0.143982  
time_completion:attitude -0.006246 0.001050 0.000000 *** 

time_completion:bid_premium -0.000005 0.000007 0.409337  
time_completion:leverage -0.000002 0.000001 0.162460  

time_completion:percent_sought 0.000052 0.000018 0.004981 ** 
time_completion:pe -0.002455 0.000859 0.004278 ** 

rivalry_bid:total_value -0.000145 0.000104 0.162106  
rivalry_bid:payment_type 0.099730 0.570400 0.861197  

rivalry_bid:attitude -1.392000 0.594000 0.019089 * 
rivalry_bid:bid_premium 0.001336 0.008651 0.877287  

rivalry_bid:leverage -0.000181 0.000346 0.600304  
rivalry_bid:percent_sought -0.009794 0.023120 0.671786  

rivalry_bid:pe 0.137400 0.496400 0.781928  
total_value:payment_type -0.000010 0.000011 0.377414  

total_value:attitude 0.000001 0.000011 0.954945  
total_value:bid_premium 0.000000 0.000000 0.779833  

total_value:leverage 0.000000 0.000000 0.988605  
total_value:percent_sought 0.000000 0.000000 0.381414  

total_value:pe 0.000006 0.000025 0.797534  
payment_type:attitude -0.182700 0.256000 0.475554  

payment_type:bid_premium 0.000573 0.002050 0.780049  
payment_type:leverage 0.000122 0.000306 0.690984  
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Variable Coefficient Std. Error P-Value  

payment_type:percent_sought 0.017240 0.005854 0.003237 ** 
payment_type:pe -0.603300 0.396400 0.128009  

attitude:bid_premium -0.001671 0.002848 0.557325  
attitude:leverage -0.000071 0.000313 0.820813  

attitude:percent_sought 0.021530 0.006536 0.000988 *** 
attitude:pe -0.103600 0.249800 0.678422  

bid_premium:leverage -0.000001 0.000003 0.821287  
bid_premium:percent_sought -0.000052 0.000060 0.380839  

bid_premium:pe 0.000178 0.002090 0.932286  
leverage:percent_sought 0.000011 0.000008 0.204488  

leverage:pe 0.000179 0.000324 0.580605  
percent_sought:pe -0.006561 0.005104 0.198671  
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Appendix IV – R Code 
 

# Load packages 

library(randomForest) 

library(readxl) 

library(caret) 

library(ggplot2) 

library(glmnet) 

library(Rcpp) 

library(e1071) 

library(ROSE) 

library(tidyverse) 

library(stringr) 

 

# Import data 

master.data <- read_excel("file path", sheet = 5, range = "B3:Q7406", col_names = TRUE) 

data <- read_excel(“file path", sheet = 5, range = "G3:P7406", col_names = TRUE) 

raw.data <- read_excel("file path", sheet = 5, range = "G3:P7406", col_names = TRUE) 

 

# Data manipulations 

master.data$year <- substring(master.data$announce_date, 1, 4) 

data$rivalry_bid <- as.factor(data$rivalry_bid) 

data$payment_type <- as.factor(data$payment_type) 

data$outcome <- as.factor(data$outcome) 

data$attitude <- as.factor(data$attitude) 

data$pe <- as.factor(data$pe) 
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# Data partitioning 

set.seed(123) 

data.set.size <- floor(nrow(data) * 0.8) 

index <- sample(1:nrow(data), size = data.set.size) 

data.training <- data[index, ] 

data.testing <- data[-index, ] 

data.training <- as.data.frame(data.training) 

data.testing <- as.data.frame(data.testing) 

data.training.x <- model.matrix(outcome ~ .^2, data.training)[ ,-1] 

data.training.y <- data.training$outcome 

data.testing.x <- model.matrix(outcome ~ .^2, data.testing)[ ,-1] 

data.testing.y <- data.testing$outcome 

 

# Random forest model 

set.seed(222) 

mtry <- tuneRF(data.training[ ,-5], data.training[ ,5], stepFactor = 0.5, plot = TRUE, ntreeTry 
= 300, trace = TRUE, improve = 0.05) 

mtry_opt <- mtry[,"mtry"][which.min(mtry[,"OOBError"])] 

rf.1 <- randomForest(outcome ~ ., data = data.training, mtry = mtry_opt, ntree = 300, 
importance = TRUE) 

print(rf.1) 

plot(rf.1, family = "serif", main = NULL) 

importance(rf.1) 

varImpPlot(rf.1, family = "serif", main = NULL) 

hist(treesize(rf.1), breaks = 50, ylim = c(0,30), main = NULL, xlab = "Tree size (number of 
nodes)") 

rf.1.pred <- predict(rf.1, data.testing, type = "response") 

confusionMatrix(rf.1.pred, data.testing$outcome, positive = "1") 
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# LASSO logistic regression model 

set.seed(254) 

lr.1 <- glmnet(x = data.training.x, y = data.training.y, family = "binomial", alpha = 1) 

plot(lr.1, xvar = "lambda") 

cv <- cv.glmnet(data.training.x, data.training.y, type.measure = "class", family = "binomial", 
alpha = 1) 

plot(cv) 

cv_opt <- cv$lambda.min 

lr.1.pred <- predict(lr.1, s = cv_opt, newx = data.testing.x, type = "response") 

lr.1.pred <- as.factor(ifelse(lr.1.pred > 0.5, 1, 0)) 

confusionMatrix(lr.1.pred, data.testing$outcome, positive = "1") 

predict(lr.1, family = "binomial", alpha = 1, s = cv_opt, type = "coef") 

 

# Standard logistic regression model 

glm <- glm(outcome ~ .^2, data = data.training, family = binomial) 

summary(glm) 

glm.probs <- predict(glm, newdata = data.testing, type = "response") 

glm.prediction <- as.factor(ifelse(glm.probs > 0.5, 1, 0)) 

confusionMatrix(glm.prediction, data.testing$outcome, positive = "1") 


