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Abstract

Frequency Modulated Continuous Wave radar is used for object detection and lo-
calization, e.g., for surveillance purposes or for automotive systems. The amount
of radars is increasing, which leads to an increasing amount of radar interference.
The radar signals from different devices are uncoordinated and therefore difficult to
estimate beforehand. If several radars operate on the same frequency band, mutual
disruptions will occur. Interference can lead to false detections, i.e., ghost objects,
or missed detections. If identical radars are interfering with each other, a specific
type of interference, so called coherent interference, is present. This type of inter-
ference together with a phenomena called clock drift is simulated in this project, as
well as semi-coherent and non-coherent interference. Several mitigation algorithms
are used to reduce/eliminate the different types of interference.

Convolutional Neural Networks (CNNs) are commonly used to find structure and
patterns in data. By providing the network with clean data and data containing
interference, the network can be trained to detect where interference is occurring
and re-create the clean data set. Since the data containing interference has differ-
ent attributes than clean data, interference can be detected and mitigation can be
performed to reduce the interference.

Two CNN architectures, one shallow and one deep, are trained and evaluated using
simulated data and the performance of the models are compared with conventional
signal processing algorithms. The Signal-to-Interference-plus-Noise Ratio (SINR)
and Error Vector Magnitude (EVM) of the different algorithms are compared. Train-
ing the CNNs to minimize SINR generates models useful for object detection, even
when subject to a substantial amount of interference. By using Mean Square Er-
ror (MSE) as the objective function, the trained models are useful for interference
mitigation, but ghost objects are occasionally classified as true objects. Generally,
CNNs can be used as an alternative to common signal processing algorithms, espe-
cially when a majority of the data points are affected by interference. The complex
networks are able to identify the data containing information about the objects,
even when the data is hidden in a considerable amount of interference.
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Chapter 1

Introduction

1.1 Research Problem

Radar is primarily used for object detection and localization. The radar system
can be used for measuring distance, radial velocity, and Angle of Arrival (AoA)
for one or several objects within a certain area. High-resolution detection can be
obtained even in poor weather conditions such as fog or poor lightning, which is
one reason for using radars [Aydogdu et al., 2019a]. Radar is used when some kind
of object localization is needed and the applications include surveillance, weather
forecasting and driver assistance systems [Chang et al., 2019], [Rock et al., 2019b],
[Yeary et al., 2011].

The automotive industry is using radars in cars to localize objects such as humans,
other cars or objects besides the road. The amount of radars within a car and the
amount of cars with radars is increasing [Aydogdu et al., 2019b]. The demand for
high performance surveillance and reconnaissance has also increased, leading to an
increased amount of radars within this area as well [Chang et al., 2019]. To monitor
a large area, one radar may not be sufficient. Instead, a network of several radars
with overlapping surveillance areas can be employed, leading to more radars being
in use. Even though the network increases the size of the monitored area, the radars
might interfere with each other, causing disrupted signals [Nikolió et al., 2016]. To
handle the increasing amount of radars, it is crucial to detect when disturbances are
occurring and to know how they can be eliminated.

The disturbance includes interference by other radars or units which operate at the
same frequency band as the transmitted radar signal. The different radar systems
are not coordinated and, as they have similar properties, it is difficult to distinguish
the desired signals from the disturbance [Aydogdu et al., 2019b][Rock et al., 2019b].
According to [Aydogdu et al., 2019a], interference can for example generate false de-
tections or increase the noise floor which leads to an increase in missed detections.
In this report, the goal is primarily to detect interference from other radars, with
various characteristics, and remove it without disrupting the signals that carry cor-
rect information about the objects.

Disturbances must primarily be found in order to perform any type of mitigation.
However, the type of interference is not known in advance, since it can originate
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from different sources. Therefore, it can be difficult to find the correct algorithm to
remove the different types of interference and at the same time maintain the original
desired signal. Machine Learning (ML), which is an application of Artificial Intel-
ligence (AI), is the scientific study of algorithms and statistical models that can be
used to train a computer to perform desired tasks. In this report, it is desired to
examine if an AI-based algorithm can be trained to solve the interference problem
better than common signal processing algorithms.

1.2 Aim and Scope

The aim of this project is primarily to detect where in a radar signal interference is
occurring, and to remove as much of the interference as possible without disrupting
the desired signal. The interference can be divided into categories depending on
how similar the interfering and the interfered signals are. Handling similar, also
called coherent, interference together with a phenomena called clock drift is relevant
when identical radars are interfering with each other. Simulating and mitigating
this specific type of interference is a central part of this project.

To achieve this, a convolutional neural network is investigated and compared to sev-
eral signal processing algorithms in order to determine if the network can outperform
the other algorithms when mitigating interference. The type of radar investigated
in this project is a Frequency Modulated Continuous Wave (FMCW) radar. It is
assumed that the interference originates from other radars, which operates at the
same frequency band as the interfered radar.

1.3 Outline of the Thesis

Initially, the thesis contains background information about FMCW radars and the
signal model. Then, the theory behind object detection and interference is explained.
A convolutional neural network is then presented along with previous research in this
area. Other mitigation algorithms are also presented. Thereafter, a radar simulation
is explained, which is used to generate training, validation and testing data. The
simulated data is used to train several ML algorithms and their performances are
compared to each other, to conventional signal processing algorithms and to non-
interfered data. The results are then discussed to determine if any of the ML-
methods is desirable to use.
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Chapter 2

Theory

2.1 FMCW Radar Signal Model

A Frequency Modulated Continuous Wave can be used as a transmission signal in
radars. The low weight and the low power consumption of this system is advanta-
geous, as well as the low price compared to other radars [Kim et al., 2018]. Another
advantage is the simplicity of the system which enables a smooth implementation in
the hardware. Figure 2.1 shows the basic principles of an FMCW radar. Here, one

Figure 2.1: Schematic diagram of how an FMCW radar operates.

sinusoidal wave with a linearly increasing frequency is generated by a synthesizer
and transmitted using one or several antennas. This kind of pulse is commonly
denoted as a chirp. The same chirp that was transmitted is also sent to a mixer,
an analog component which multiplies two inputs, for further processing. After-
wards, the mixed signal, also denoted baseband signal or Intermediate Frequency
(IF) signal, is low-pass filtered and then digitized by an analog-to-digital converter.
The filtering is performed to avoid aliasing, which could occur if the analog signal
contains higher frequencies than the analog-to-digital converter can register due to
its sampling frequency. Subsequently, the signal is further processed.

If an object is present within the detection range of the radar, the transmitted
chirp is reflected by the object and registered by one or more receiver antennas on
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the radar. The signal that each antenna is measuring is denoted a channel. The
received signal, also called rx-signal, has the same appearance as the transmitted
signal, also called tx-signal, except for a time delay τ which depends on how far
from the radar the object is located [Sandeep Rao, 2016].

Figure 2.2 depicts the linearly increasing frequency over time of the transmitted
and the received signal. In this figure, fc denotes the starting frequency of the
sweep, τ is the time delay between the signals, fB is the absolute frequency differ-
ence between the signals and B is the bandwidth of the chirp. A chirp is usually
followed by an idle time, when the radar is inactive before chirping up again. The
figure illustrates three consecutive chirps. A series of multiple chirps forms a frame
where the size of one frame is equal to the number of chirps times the number of
samples in a chirp. By only using one chirp, the distance to an object can be mea-
sured. By extending the system to multiple chirps, the radial velocity of the object
can also be measured. A further extension to multiple receiving antennas enables
estimation of the AoA. By knowing the angle, the exact location of the object can
be specified, instead of just the radial distance between the object and the radar. A
summary of the different setups and what they can measure is presented below.

• One chirp and one antenna −−−−−−−−−−→ Distance

• Multiple chirps and one antenna −−−−−−→ Distance and radial velocity

• Multiple chirps and multiple antennas −→ Distance, radial velocity and AoA

The time delay τ , which depends on the distance to the object, gives rise to a
constant frequency difference between the signals. Obtaining a constant frequency
difference depending on the distance to the object is essential for object detection.

Figure 2.2: The linearly increasing frequency of the transmitted and the received waveform
for a frame containing three chirps. A detected object gives rise to the received signal.

The calculation of the absolute frequency difference between the transmitted and the
received signal is performed in the mixer. As stated previously, the function of the
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mixer is to perform a multiplication of incoming signals. The mixing of a transmitted
and a received signal can be visualized in Figure 2.3. The time difference τ in the
received signal gives rise to an baseband signal, with a constant frequency. The

Figure 2.3: A visualization of how the transmitted and the received signal are mixed.

mixing can mathematically be expressed as

cos(x) cos(y) = (cos(x+ y) + cos(x− y))/2, (2.1)

which states that a multiplication of two sinusoids creates one term where the fre-
quencies are added and one term where the frequencies are subtracted. In (2.1),
cos(x+ y) is filtered out by a low-pass filter connected to the analog-to-digital con-
verter, due to its high frequency content. The frequency of the baseband signal,
which is also called the beat frequency, will only consist of the absolute frequency
difference between the transmitted and the received signal, (x − y) in (2.1) or fB
in Figure 2.2. If multiple objects are present at different distances from the radar,
the baseband signal will consist of several sinusoids, each with a unique, constant
frequency [Sandeep Rao, 2016].

The derivation of the signal model, which is inspired by [Suleymanov, 2016], is
presented below. A more in-depth derivation can be read in [Suleymanov, 2016].
According to Figure 2.2, the frequency of the transmitted signal can for one chirp
be described by a linearly increasing function over time

f(t) = fc +
B

T
t = fc + αt, (2.2)

where T is the duration of one chirp, B is the bandwidth and α = B
T

denotes the
slope of the chirp. To extend this to multiple chirps, the time variable t can be
substituted to

t = mT + ts, (2.3)

5



where 0 < ts < T . Here, m denotes the m:th chirp and ts is the current time within
a chirp. t is then the current time within a frame.

The phase of the transmitted signal is used to mathematically describe the waveform.
The phase is inserted in the cos-expression to generate the wave. For one chirp, the
phase can be expressed by regarding the frequency change over time according to

φ(ts) = 2π

∫ ts

0

f(t)dt = 2π

∫ ts

0

(fc + αt)dt = 2π

(
fcts +

αt2s
2

)
+ φ0, (2.4)

where φ0 is the initial phase of the wave. The normalized transmitted signal for one
chirp can then be described by

xt(ts) = cos(φ(ts)) = cos

(
2π

(
fcts +

αt2s
2

))
. (2.5)

When one receiving antenna is used, the only difference between the transmitted
and the received signal is a time delay τ , if only one object is present. The delay
arises because it takes time for the signal to travel between the radar and the object.
If the object is moving, the velocity will contribute to the delay. The total delay is

τ(ts) =
2(D + vt)

c
=

2(D + v(mT + ts))

c
, (2.6)

where D is the distance to the object, v is the radial velocity of the object and
c is the speed of light. The factor 2 occurs due to the signal travelling back and
forth from the radar. The received signal is therefore mathematically constructed
according to

xr(ts) = cos(φ(t− τ)) = cos

(
2π

(
fc(ts − τ) +

α(ts − τ)2

2

))
. (2.7)

As stated previously, the frequency of the baseband signal is solely the absolute
difference between the transmitted and the received signal. The transmitted signal
is mixed with the received signal in the mixer, which means that a multiplication of
the two signals is performed and creates the baseband signal

xm(ts) = xt(ts)xr(ts)

∝ cos

[
2π

(
fcts +

αt2s
2

)
− 2π

(
fc(ts − τ) +

α(ts − τ)2

2

)]
∝ cos

[
2π

(
fcτ + αtsτ −

ατ 2

2

)]
.

(2.8)

By inserting the expression for τ from (2.6) into (2.8) and by making the simplifica-
tions performed in [Suleymanov, 2016] to remove negligible terms, an approximation
of the baseband signal for one receiving antenna is

xm(ts,m) = cos

(
2π

(
2αD

c
ts +

2fcvm

c
T

)
+

4πfcD

c

)
. (2.9)

Equation (2.9) is valid if only one receiving antenna is present. For multiple an-
tennas, a term depending on the antennas is included and the baseband signal is
approximated as

xm(ts,m) = cos

(
2π

(
2αD

c
ts +

2fcvm

c
T +

dk sin(θ)

λ

)
+

4πfcD

c

)
(2.10)
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according to [Suleymanov, 2016]. Here, θ is the AoA of the localized object, λ is
the wavelength of the signal, d is the distance between two neighbouring receiving
antennas and k is the antenna that is regarded. If only one antenna is used, k is set
to 0 and (2.10) becomes (2.9). The AoA-estimation is explained in more detail in
section 2.2.4.

2.2 Signal Processing for Object Detection

2.2.1 Basics About Fourier Transforms

When processing the baseband signal, its frequency content is estimated using a
Discrete Fourier Transform (DFT). DFTs have a limit to their resolution, deter-
mined by the amount of samples inserted into it. In the mathematical definition of
the DFT,

Xj =
N−1∑
n=0

xn · e−
i2π
N
jn =

N−1∑
n=0

xn ·

[
cos

(
2π

N
jn

)
− i sin

(
2π

N
jn

)]
, (2.11)

N is the number of samples for the data inserted in the DFT. The output {Xj} =
X0, ..., XN−1 has the same size as the input {xn} = x0, ..., xN−1. When using the
expression on radar signals, xn consists of samples from the baseband signal seen in
(2.10). All continuous frequencies lying in the interval [Xj, Xj−1] will be represented
by the same value, Xj, in the discrete domain (referred to as a bin). There is not
an infinite amount of bins, so roundings to the closest value must occur. This puts
constraints on the signal model, since distances, velocities and angles can no longer
be represented perfectly. Objects too close to each other will have distances in the
same bin, effectively merging them into one object. The result is that only one ob-
ject will be detected. Increasing the number of samples, and thereby the resolution,
comes with a performance trade-off, which in the case for the DFT is substantial
with a computational complexity of O[N2]. For example, doubling the amount of
samples will require four times as much computing power.

To make the calculations more computationally feasible, the number of samples
can be chosen as a power of two (2N), which enables the use of the Fast Fourier
Transform (FFT) instead. With a computational complexity of O[N logN ], the
FFT is more efficient than the DFT. Obtaining 2N samples can either be done by
changing the parameters of the model accordingly, or by adding zeroes to the signal
before performing the FFT, referred to as zero padding. Zero padding the signal
increases the number of bins, which makes it easier to distinguish nearby peaks
in the spectrum. However, zero padding only enables interpolation between exist-
ing values, and not extrapolation in order to find values outside the current range.
Therefore, it is essential to have a relatively large amount of samples before perform-
ing zero padding. Otherwise, information at the end points will be lost. Also, the
actual resolution of the FFT has not increased, meaning that if the number of data
samples in use are not enough to separate two distinct frequencies, zero padding will
not solve the problem.
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Another problem with FFTs is spectral leakage. The spectral estimate of a si-
nusoid computed using the DFT or the FFT does not only contain one spike and
then zeros, instead it will have a dominant peak which is smudged out over several
bins. Spectral leakage occurs due to finite windowing of the data, since the data set
is never infinitely large. The FFT of a rectangular window, which means that the
data points are not scaled when performing the FFT, is a sinc function. The sinc
function has relatively high side lobes, which causes spectral leakage. A window,
e.g., Hann or Hamming, can be used when performing an FFT to reduce the height
of the sidelobes and hence reduce the spectral leakage. However, the resolution will
be worse since any window has a wider main lobe than the rectangular window.
It becomes a trade-off between having a good resolution and having less leakage.
Figure 2.4 shows the effect of zero padding and the effect of the spectral leakage.
A Hanning window is used to create the FFT-spectrum in the figure and spectral
leakage is still occurring.

(a) An AoA estimation without zero padding
Estimated AoA: 25.4◦

(b) An AoA estimation with zero padding
Estimated AoA: 35.1◦

Figure 2.4: AoA estimation with and without zero padding - Object AoA: 35.0◦

Performing FFTs is the core to estimating the range, velocity and angle of arrival
in an FMCW radar. To locate and track objects, three major steps are made.

1. Transmit a chirp and perform an FFT on the baseband signal to calculate the
distance to the object. This is called a Range-FFT.

2. Transmit several chirps and perform a second FFT on the result from the first
step to calculate the radial velocity. This is called a Doppler-FFT.

3. Use multiple receiving antennas and perform a third FFT on the result from
the second step to calculate the AoA. This is called an Angle-FFT.

Below, a more detailed explanation and derivation of these steps can be read.

2.2.2 Range Estimation

The range to an object is measured by transmitting a chirp and then measuring the
time it takes to detect a returning signal. This time can be expressed as

τ =
2D

c
, (2.12)
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where the time τ depends on the distance the signal is travelling and on the speed
of the signal, which is the speed of light. The expression is the same as the one in
(2.6) for v = 0 since the velocity of the object is not taken into consideration when
estimating the distance. If one object is present, the baseband signal will contain
only one frequency, which is equal to the frequency difference between the transmit-
ted and the received signal, fB in Figure 2.2.

The frequency difference fB can be calculated from the equation of a straight line
according to

fB = ατ, (2.13)

where α is the slope of the chirp declared in (2.2) [Sandeep Rao, 2016]. Several
objects will give rise to several constant frequencies which are proportional to the
distance between the objects and the radar. The frequency spectrum of the baseband
signal is estimated with an FFT. To calculate the distance to an object, the beat
frequency, which is the frequency at the peak value of the FFT spectrum, is inserted
in

fB = ατ = α
2D

c
=⇒ D =

fBc

2α
. (2.14)

After the FFT, the x-axis consists of discrete bins which are normalized frequencies
in the range [−π, π]. The number of bins is equal to the number of samples in the
chirp if zero padding is not occurring, otherwise the number of bins can be altered
by choosing the amount of zeros inserted at the end of the signal. To make the
normalized frequencies depend on the sampling frequency fs, the x-axis is scaled
according to

f =
n · fs
N

(2.15)

for each bin n. Here, N is the number of samples in the chirp, n is the current bin
that is scaled and fs is the sampling frequency, which is equal to

fs =
N

T
, (2.16)

since fs denotes the amount of samples per second. Then, (2.14) can be seen as
another re-scaling of the x-axis, so it displays the distance that each frequency
corresponds to.

2.2.3 Radial Velocity Estimation

By sending out multiple consecutive chirps, the radial velocity of a detected object
can be estimated. The range of the object will not change significantly between the
chirps because of the small time difference. However, the velocity of the detected
object will generate a phase change between the waves of the different chirps. The
reflected waves will enter the radar with different phases, depending on the velocity of
the object. Hence, the reflected wave for the second chirp will approximately contain
the same frequency as the first chirp, but with another phase [Sandeep Rao, 2016].
The phase difference for two different waves is illustrated in Figure 2.5.
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Figure 2.5: Two reflected waves with a phase difference resulting in baseband signals with
a phase difference.

Figure 2.5 shows that the two baseband signals have the same frequency, but dif-
ferent phases. The brighter rx-wave in Figure 2.5 reaches the radar slightly later
than the darker rx-wave. The phase of the tx-wave is different at time point τ + ∆τ
compared to time point τ . The phase of the baseband signal depends on the phase
of the tx-wave and on the phase of the rx-wave, which causes the phase difference
of the two baseband signals.

The phase shift between consecutive chirps is the same for any two chirps and
it can be calculated by performing an FFT with input from the different chirps
composing the frame. The input is in the form of a Range-FFT from each chirp.
The result of this process is a Range-Doppler spectra which is a matrix with the
dimensions N×M where M is the number of chirps and N is the number of samples
per chirp, if no zero padding is occurring. A visualization of the process can be seen
in Figure 2.6 where each baseband signal has a certain phase. The beat frequency
is constant when the frequency difference between the transmitted and the received
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signal is constant. Each chirp gives rise to a baseband signal which is inserted col-
umn wise in a matrix. Column wise FFTs are performed for a range estimation.
Then, row wise FFTs are performed for a radial velocity estimation. The result is
one peak for each detected object where the row of the object corresponds to the
range and the column corresponds to the velocity. The Doppler-FFT is shifted in
frequency to change the range from [0, 2π] to [−π, π] in the normalized frequency
domain. This enables detection of negative velocities.

Figure 2.6: The basic principle of FMCW-radar. The transmitted and received waveform
at each input channel are mixed. The data is then subject to a series of Fourier transforms,
providing information of the location of potential objects.

As before, the x-axis of the FFT consists of normalized frequencies. The conversion
from bin to non-normalized frequency is the same as before, where each bin is mul-
tiplied with the sampling frequency and divided with the total amount of samples.
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However, the total amount of samples is now M since the FFT is performed across
the chirps, and not for each chirp at a time. The sampling frequency is the amount
of chirps during one second and can be expressed as

fchirps =
1

T
, (2.17)

where T is still the duration of one chirp. The bins are converted to frequencies
according to

ωv =
m · fchirps

M
(2.18)

for each bin m.

The phase difference between the chirps corresponds to a motion of the object
of distance vT , which is how far the object has travelled during the chirp time
[Sandeep Rao, 2016]. This means that the signal has travelled an extra distance
of 2vT . To convert distance to phase, it is essential to know that a shift of one
wavelength λ corresponds a phase shift of 2π for a sinusoid. To convert the extra
distance to a phase shift, it is scaled according to

ωv =
2π

λ
2vT, (2.19)

where λ is the wavelength of the carrier frequency. The radial velocity can then be
calculated from the phase according to

v =
λωv
4πT

, (2.20)

where ωv is the frequency with the highest peak in the FFT.

2.2.4 AoA Estimation

To calculate the AoA, several receiving antennas are used and the phase difference
between the antennas depends on the AoA and on the distance d between two neigh-
boring antennas. A uniform linear array of antennas can be built by placing the
antennas on a line according to Figure 2.7. Other constellations are also possible,
especially if it is desired to measure the elevation of an object, compared to the
radar, instead of only measuring the displacement sideways. Note that the distance
d between the antennas is not the same as the distance D between the radar and an
object. Detected objects are usually positioned in the far-field of the radar, meaning
that the reflected waves can be approximated as being parallel. By assuming that
the reflected signal consists of parallel waves, the calculations are simplified. The
antennas will register the signal at different times due to a path length difference
between the waves. The phase difference between three neighbouring antennas is
presented in Figure 2.6 as the input channel phase. The incoming waves will have
different phases when reaching the antennas due to the extra path length.

By using trigonometry, the path difference between adjacent antennas, x in Fig-
ure 2.7, is equal to d sin(θ) where θ is the AoA [Richards et al., 2015]. The phase
difference ωa, due to the AoA, of two adjacent antennas is

ωa =
2πd

λ
sin(θ) (2.21)
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Figure 2.7: The angle of arrival generates path differences between the waves that the re-
ceiving antennas in the radar detect. The path difference between two neighboring antennas
is denoted x.

according to the same re-scaling principle as in (2.19), because a phase shift of one
wavelength corresponds to a phase shift of 2π.

It is assumed that the antennas are placed at a distance of d = λ
2

from each other.
This placement gives the user the widest possible field of view, which is −90 to 90
degrees. The final expression for calculating the angle from the phase difference ωa
is

θ = sin−1
(
λωa
2πd

)
(2.22)

[Suleymanov, 2016]. This result can then be used to calculate the Cross Range
(CR), which relates the angle to a distance. The CR, defined as

CR = D · sin(θ), (2.23)

describes how far the object is located sideways relative to the radar. This is simply
another way of expressing the AoA depending on the distance between the radar
and the object. The CR is visualized in Figure 2.8, where the blue point represents
an object at a distance D from the radar.

Figure 2.8: Definition of cross range.
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2.2.5 Limitations to the Resolution

The resolution of the measurements depend on the chosen system parameters. The
resolution for the range measurement is improved if the amount of samples per chirp
(N ) is large. The amount of chirps (M) determines the resolution for the velocity
measurement, where many chirps produce data with good resolution. The amount of
antennas determines the resolution in the angular direction. The maximum distance
that can be detected depends on the sampling rate of the analog-to-digital converter
and is expressed as

dmax =
fsc

4α
. (2.24)

The maximum radial velocity that can be measured is

vmax =
λ

4T
. (2.25)

The limitation of the velocity is due to an ambiguity that arises for phase differ-
ences greater than π. If it is allowed to measure a phase difference greater than π,
it is impossible to know if the object is moving towards or away from the radar.
The restriction on ωv creates a restriction on the maximum measurable velocity, see
Figure 2.9. In the case where the velocity of the object being measured is greater
than vmax, information regarding both the velocity and the direction of movement
will be lost [Sandeep Rao, 2016].

Figure 2.9: A phasor diagram depicting the restrictions to phase measurements. Without
a limitation on the maximum measurable phase difference, it would not be possible to
distinguish if an object is moving away from or towards the radar.

The measurement for the angle is slightly different from range and radial veloc-
ity estimation, due to (2.22) being non-linear. The non-linearity implicates that
resolution is worse for objects far out to the sides and better for angles close to 0◦.
In Figure 2.4a, an example with eight antennas is shown, where every stem in the
plot represents the location for an antenna bin. For objects right in front of the
radar, the resolution is good, where it is possible to determine an object’s angular
position without generating large round-off errors. At the sides however, the reso-
lution is poor.
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Having this poor resolution in the angular domain is a fundamental limitation, but
it should in theory be possible to tell apart an object between two bins. An object
between two bins would have both of the bins indicating an object, but one bin
would have a slightly higher power than the other, indicating that it is closer to
that bin. Either one could try to figure out the relationship between relative bin
power and the position of an object, or one could utilize the zero padding concept
discussed at the start of Section 2.2.

2.2.6 Mirroring in FFTs

In a 1D-FFT, only the magnitude of the frequency is regarded, i.e., how much of
each frequency a wave contains. This is because the data at the receiver is solely
in the real domain. The magnitude is mirrored to the negative half plane because
a pure sinusoid consists of a positive and a negative frequency according to Euler’s
formula. For each frequency, the spectrum will therefore show two peaks, one in the
negative and one in the positive plane. In the Range-FFT, a peak corresponds to a
distance and negative peak would correspond to a negative distance, which has no
meaning. Therefore, half of the spectrum is discarded so only the positive half is
used in further processing.

For the Doppler and Angle FFT, it would be unfortunate if the negative spec-
trum had to be omitted, since negative angles and velocities can occur. However,
mirroring only happens when one takes an FFT of a purely real signal. Since the
output of the first FFT is complex, there is no need to discard data when performing
Doppler and Angle FFTs.

2.3 Visualization of Radar Data

2.3.1 The Range-Doppler Map

Perhaps the most common way to visualize a radar signal is to plot it after the
second FFT, creating a so called Range-Doppler (RD)-map. Here, the velocity and
the distance to the object can be observed. The angle remains unknown however,
meaning that objects with the same velocity and distance will appear at the same
location in this type of plot, see Figure 2.10. An RD-map has velocity on the x-axis
and range on the y-axis. A bright spot, for example the one in Figure 2.11 implicates
that an object is present and the distance and the velocity can be read by observing
the coordinates of the spot. For example, the detected object in Figure 2.11 is 250 m
away from the radar and has a velocity of -13 m/s. An RD-map is sometimes subject
to smearing where objects are present. This is due to spectral leakage generated in
the FFT, which was explained in Section 2.2.1. Smearing can also be a consequence
of an object not being a point source. Then, the distance to the object will be spread
out over several bins because different parts of the object falls in different bins after
a range-FFT. The same applies for the velocity if an object contains moving parts
with different velocities, e.g., a human walking and swinging the arms.
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Figure 2.10: All objects at a distance, d, from the radar and with an equal velocity, v, will
appear in the same bin in an RD-map.

(a) An RD-map without noise. The object
smearing is caused by leakage in the FFT.

(b) Same RD-map as in (a), but with white
Gaussian noise. The object smearing is still

present, but is below the noise floor.

Figure 2.11: RD-maps with and without white Gaussian noise.

2.3.2 The Range-Angle Map

The Range-Angle (RA)-map functions similarly to the RD-map, but with angles
being displayed instead of velocities. Analogously to Figure 2.10, multiple objects
with different velocities would not be distinguishable if they were at the same dis-
tance and angle from the radar. The RA-map is plotted with distance to the object
on the y-axis, cross-range on the x-axis and peak intensity on the z-axis. An exam-
ple of an RA-map can be seen in Figure 2.12. The bright spot corresponds to an
object being present at a distance of 300 m from the radar and with a cross-range
of approximately 50 m. The RA-map is also subject to smearing due to spectral
leakage.
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(a) An RA-map with white Gaussian noise,
shown from above.

(b) Same RA-map as in (a), but shown from the
side.

Figure 2.12: An RA-map shown from two different angles

2.3.3 The Range-Doppler-Angle Cube

The Range-Doppler-Angle (RDA)-cube displays the distance, velocity and AoA of
an object. This requires all three dimensions to be used, which may make it a bit
more cumbersome to analyze. This is further exacerbated by the angle estimation
being non-linear, as described in Section 2.2.5. It can be hard to visualize all points,
especially the ones in the middle of the cube. It is also necessary to turn the cube
in order to observe the exact values of the object. Figure 2.13 shows an RDA-cube
with sparse data points for the sake of visualization. One detected object is seen in
the lowermost angle bin.

Figure 2.13: An RDA-cube with white Gaussian noise, where the point with the highest
power corresponds to the position of the real object.
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2.4 Disturbance from other radars

FMCW radars are becoming more popular, mainly due to the rapidly growing de-
mand for smart and self-driving cars. Since many car manufacturers have developed
their own technologies, the outgoing radar signals are different which makes inter-
ference even harder to combat since it can have different appearances and effects.
For surveillance purposes, where the installed radars might be of very similar na-
ture, other problems arise, where the interfering radar signal might sometimes be
indistinguishable from a true object signal. Furthermore, the signal pulse from the
interfered radar, from now on denoted the victim radar, has to be reflected from
an object and return back, and it can be shown that the signal amplitude of the
reflected wave is proportional to D−4, where D is the distance between the object
and the radar. The area, material and shape of the object also affects the signal
amplitude. The signals from the interfering radars, from now on denoted aggressor
radars, have not necessarily reflected off anything, and the signal power is therefore
only proportional to D−2. This can sometimes lead to cases where the interference is
several orders of magnitude larger than the desired object signal. Figure 2.14 gives
an idea of how the victim radar might be affected by interference.

Managing the interference is becoming more and more important - especially consid-
ering that the radar sector likely will continue to grow [Chang et al., 2019]. In the
following parts of the report, several approaches to eliminating radar interference
are modeled and discussed.

Figure 2.14: Schematic representation of interference from other radars.
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2.4.1 Signal Model for Interference

It is always the baseband signal, which arises from mixing the aggressor and the
victim signals, that is further processed, and not the two high-frequency signals.
As mentioned previously, the frequency of the baseband signal only consists of the
frequency difference between the victim wave and any incoming wave, in this case
an aggressor wave. Because both the aggressor wave and the victim wave contain
linearly increasing frequencies, the baseband signal will have a linear frequency. An
example of how the baseband frequency is calculated be seen in Figure 2.15.

Figure 2.15: How the frequency of the baseband signal is calculated in the IF-domain, from
mixing of the aggressor and the victim.

The aggressor contains a linearly increasing frequency according to

f(t) = αat+ f0, (2.26)

where f0 is the starting frequency. It has the same appearance as the transmitted
signal in Figure 2.2. The chirpyness constant, αa, is defined by

αa =
f1 − f0
Ta

, (2.27)

where f1 is the highest frequency of the chirp and Ta is the duration of the aggressor
wave. The chirpyness constant has the same meaning as the slope α for the victim.

The frequency of the aggressor’s baseband signal is a linear function, seen in the
lowermost graph in Figure 2.15. The linear function can be described by

fIF (t) = kIF t− kIF τa, (2.28)
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where τa is the point in time where the baseband signal is equal to 0, fIF (τ) = 0,
and kIF is the slope of the frequency of the baseband signal. Because the phase in
the time domain is the integral of the frequency function (φ′(t) = 2πf(t)), the phase
of the disturbance is equal to

φ(t) = φa+2π

∫ t

0

f(t′)dt′ = φa+2π

∫ t

0

(kIF t
′−kIF τa)dt′ = φa+2π

(
kIF
2
t2 +−kIF τat

)
,

(2.29)
where φa is the initial phase at the starting point of the wave. The final normalized
expression of the aggressor wave is

x(t) = cos[φ(t)] = cos

[
φa + 2π

(
kIF
2
t2 +−kIF τat

)]
(2.30)

[Toth et al., 2018]. The baseband signal of the interference usually operates over
a wide frequency band where different types of radars disturb each other, caus-
ing interference over several frequencies. Because many frequencies are affected,
the interference will be spread out in the RD-map. The effects of interference are
disruptions in the form of glitches and an elevation of the noise floor. The noise
floor can be seen as a sum of all of the noise and interference within the system.
If no object is present, the signal only consists of noise and interference, which
forms the noise floor. Interference can in turn lead to false detections and to a de-
crease in sensitivity which makes it harder to detect objects that reflect weak signals
[Yang and Mani, 2020]. A reduction of the interference can increase the Signal-to-
Noise Ratio (SNR), which describes how strong the energy of signal is compared
to the energy of the noise. The parameter Signal-to-Interference-and-Noise Ratio
(SINR) can also be regarded. Here, the energy of the signal is compared to the
energy of the noise and the interference. These metrics are explained more detailed
in Section 3.3.1.

There are some generalizations to the different types of interference that the victim
radar can expect to receive. These are non-coherent interference, semi-coherent in-
terference and coherent interference. The properties of these types of disturbances
differ and give rise to different effects.

2.4.2 Non-Coherent Interference

Non-coherent interference is the type of interference that occurs when the victim and
the aggressor radar have completely different characteristics. This interference
becomes very random in the eyes of the receiving radar, with few patterns and
with different properties for all disturbances received. An illustration of this type
of interference and its RD-map is shown in Figure 2.16.
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(a) A visualization of non-coherent interference
in the frequency domain and in the IF-domain.

(b) An example of an RD-map with
non-coherent interference.

Figure 2.16: Non-coherent interference in the frequency domain and in an RD-map. An
increased noise floor is present in the entire RD-map.

2.4.3 Semi-Coherent Interference

Semi-Coherent interference occurs when the victim and the aggressor radar have
slightly different characteristics. This type of interference can be seen in Fig-
ure 2.17. Semi-coherent interference can be viewed as an intermediate between
non-coherent and coherent interference. In Figure 2.17, the interference does not
occur in the whole RD-map. This is due to the frequency difference between the
aggressor and the victim not being as large as for non-coherent interference. A
larger frequency spread of the baseband signal means that the interference covers
more of the RD-map. It is possible that semi-coherent interference covers the whole
RD-map, but it is more likely that this happens for non-coherent interference. Both
semi-coherent and non-coherent interference will increase the noise floor and it will
be harder to detect objects, where the interference is present. This can be seen by
comparing the RD-maps without noise in Figure 2.11 with the interfered RD-maps
in Figure 2.16 and Figure 2.17.
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(a) A visualization of semi-coherent interference
in the frequency domain and in the IF-domain.

(b) An example of an RD-map with
semi-coherent interference.

Figure 2.17: Semi-coherent interference in the frequency domain and in an RD-map.
There is an increased noise floor in a part of the RD-map.

2.4.4 Coherent Interference

Coherent interference occurs when the victim and the aggressor radar have iden-
tical characteristics. When two identical radars are interfering with each other,
coherent interference arises. This case is the most difficult one to deal with, since
the interference becomes indistinguishable from a true object signal. Coherent in-
terference is shown in Figure 2.18. If the interference is coherent, there will be no

(a) A visualization of coherent interference in
the frequency domain and in the IF-domain.

(b) An example of an RD-map with coherent
interference.

Figure 2.18: Coherent interference in the frequency domain and in an RD-map. There
are only two objects in front of the radar, but the coherent interference makes it look like

three.

difference between the transmitted, received and interfered wave form except for
time delays. The baseband signal from the aggressor and the victim would therefore
result in a wave with a constant frequency, f. Putting that into (2.29), the phase of
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the baseband signal would become the difference between the phase of the aggressor
and the phase of the victim according to

φm(t) =

(
φa + 2π

∫ t

0

fdτ

)
− φv = φa − φv + 2πf · t, (2.31)

where φv and φa is the initial phase for the victim and aggressor radar respectively.
The resulting expression for the baseband signal then becomes

xm(t) = cos[φm(t)] = cos(2πtf + φa − φv). (2.32)

The FFT of above expression would result in a single peak at frequency f, which is
exactly what one would expect from a true object. A Doppler-FFT would find the
phase difference between consecutive chirps, which is φa−φv. A constant range and
a constant phase difference will look like an object in the RD-map. However, this
is not a true object, but interference, hence creating a so called ghost object in the
RD-map. A ghost object has the appearance of a true object, but it is generated by
an aggressor. There is a possibility of separating a ghost object from a true object,
by using a hardware phenomena called clock drift, see Section 2.4.5.

2.4.5 Clock drift

Clock drift is a phenomena that occurs due to different internal clocks within differ-
ent radars. A radar has an internal clock which determines when the radar should
chirp and when to be inactive, given a frequency. The internal clocks between radars
are similar, but not exactly the same because it is not physically possible to create
identical copies due to hardware limitations. Even if chirps of two different radars
have the same properties on paper, they will be perceived differently by each of the
radars. Coherent interference with clock drift can be seen in Figure 2.19 where the
victim and the aggressor have the same properties, but are perceived differently.
The figure depicts a coherent interference signal subject to clock drift, together with
the victim radar’s transmitted wave. The effect of the clock drift is that the ag-
gressor chirp will be perceived like it lasts for a longer/shorter period of time than
the victim chirp, according to the victim. This will primarily affect the slope of
the aggressor, since the slope depends on how long the chirp is, given a constant
bandwidth. The clock drift will also affect the subsequent aggressor chirps since
they will start slightly sooner/later depending on when the previous chirp ended.

The slope in the IF-domain will affect the beat frequency since this will be spread
out over a few values instead of being constant as it would be without the clock drift.
The frequency spread is seen by comparing Figure 2.18 with Figure 2.19. The phase
of the baseband signal will also be altered since it depends on when the aggressor
chirps start, relative to the victim chirps, and this will be affected by the clock
drift. Instead of one constant phase shift between two consecutive chirps, the phase
shift will be slightly changed depending on which chirp that is considered. The first
aggressor chirp in one frame will start approximately when the victim chirp starts.
The last aggressor chirp in the same frame will be more displaced as compared to
the last victim chirp, and this will generate a larger phase shift. The result is a ghost
object which is more spread out than a ghost object without clock drift. Figure 2.20
shows two examples with different amounts of clock drift.
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(a) A visualization of coherent interference with
clock drift in the time-frequency domain and in

the IF-domain.

(b) An example of an RD-map containing
coherent, interference with clock drift. The
interference creates a smeared ghost object.

Figure 2.19: Coherent interference with clock drift in the frequency domain and in an
RD-map.

(a) Example of an RD-map with a ghost object
that has 20 PPM clock drift.

(b) Example of an RD-map with a ghost object
that has 5 PPM clock drift.

Figure 2.20: Two RD-maps with objects where the data is subject to different amounts of
clock drift.
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Clock drift is a drawback in the radar system, since it is expected that products with
the same specifications behave in the same way. The flaw can however be used when
training a neural network. The slight variation of the chirps from different radars
makes it possible to distinguish received radar signals, sent from the victim radar,
from interfering signals. Received radar signals will have a constant frequency and a
constant phase shift between the chirps. Interfering signals will have frequencies and
phase shifts smeared over several values due to the clock drift. The difference can be
used to train a neural network for interference detection and mitigation. Without
the clock drift, it would be more difficult to determine if the receiving antennas are
detecting true signals or interfering signals, since the signals would look the same.

2.4.6 IF-band

It can be desirable to only regard frequencies within a certain range from the trans-
mitted frequencies, instead of regarding every possible frequency that can be de-
tected by the radar. This range is termed the IF-band and it determines which
frequencies should be included in the baseband signal. The width of the IF-band is
the noted the IF-bandwidth.

Only certain parts of the aggressor is affecting the victim, depending on how close
their frequencies are. The victim radar is only affected when the frequency of the
aggressor falls into the IF-bandwidth of the victim. The IF-band determines how
far a detection can occur. All frequencies that exceed the IF-band are filtered out
and therefore not affecting the baseband signal.

The IF-band is usually set from 0 Hz to the frequency corresponding to the max-
imum detectable range, dmax in (2.24). By restricting the maximum intermediate
frequency, aliasing is prevented because frequencies above the maximum detectable
frequency are not regarded. The IF-band results in an efficient detection because of
the frequency limitation [Murali et al., 2018]. The effect of the IF-band is shown in
Figure 2.21. The IF-band can exclude different amounts of interference, depending
on which type of interference that is regarded. When the frequency of coherent in-
terference is present close to the victim frequency, the IF-band will have no impact
at all, since all interference frequencies lies within the band. An example of this
type of interference is seen in Figure 2.19. However, if the delay between the victim
signal and the aggressor signal is large, there will not be any part of the aggressor
within the IF-band and the whole aggressor signal will be excluded. Coherent in-
terference usually either affects many samples in a frame or no samples at all, if the
interference lasts for the entire frame.

The baseband signal of non-coherent interference has more high frequency content,
which will be excluded since it is present outside the IF-band. The high frequency
content can be seen in Figure 2.16. So for non-coherent interference, the IF-band
causes a substantial amount of interference to be excluded since the frequency dif-
ference between the victim and the aggressor can be large. This can lead to a few
samples being interfered at a time, instead of one entire chirp being subject to in-
terference.
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Figure 2.21: How the IF-bandwidth limits the amount of disturbance that is regarded in
the baseband signal.

The effect of the IF-band on semi-coherent interference is an intermediate of the
cases above.

2.5 Machine Learning - Artificial Neural Networks

A Neural Network (NN) is used to train a computer to solve various tasks, e.g.,
classification, language processing, and facial recognition. The network can be seen
as a mathematical function with inputs and outputs. An NN consists of layers in
the form of an input layer, an output layer and hidden layers between the input and
the output. The inputs and outputs of the hidden layers are never examined, only
what comes out of the output layer is examined. In that sense, the information to
and from hidden layers are only used within the NN and never investigated, and
therefore they are hidden to the observer. The hidden layers are compositions of
simple functions and consist of hidden units which are activated if the input is strong
enough. The input determines if an activation will occur and how strong it is. In
each unit, the input is manipulated by a function, called an activation function, and
the output is further sent to the following layer. The units in one layer are connected
to send and receive signals from units in other layers.

In a fully connected NN, every node in one layer is connected to every node in
the previous layer and to every node in the next layer. The input layer sends in-
formation to the first hidden layer, where the units can be activated and further
send information to the next layer.The strength of the signal to one unit depends on
the output from previous units, but also on the weights connected to the outputs.
The previous units are more or less important to the next unit and the level of im-
portance is quantified as a weight, where a greater weight leads to a larger impact
[Lavrenko and Goddard, 2016a].
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2.5.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of a deep neural network using
the convolution operation with a certain filter and the input data. It is mostly used
for pattern recognition because of the ability to find edges and patterns. Compared
to other types of NNs, a CNN is less complex because it focuses on a specific type
of detection. Instead of examining everything that is sent to the network and how
it is structured, it scouts for patterns [O’Shea and Nash, 2015]. This yields a sys-
tem with fewer parameters which does not require as much computational power
as a fully connected NN. Another advantage with CNNs is that they are useful in
the spectrogram domain, which tells how the frequencies in a signal vary over time
[Rock et al., 2019b]. CNNs are beneficial because pattern recognition is the key
concept in detecting radar interference since the waves subject to interference have
a different pattern than clean waves. The network can find useful features from
the pattern in the input data. An illustration of how a CNN can look is presented
in Figure 2.22. The detected pattern for every unit depends on the structure of

Figure 2.22: A typical CNN architecture

a sliding filter. The filter covers a few data points at a time and the convolution
between the filter and the affected data points is calculated and sent to a unit in a
consequent layer. Some filters are used to detect vertical lines, some detect curves
and other characteristics can also be detected. Every unit is connected to a certain
filter, which makes it specialized in detecting a certain pattern. There is a huge
variety of filters and hence a huge variety of detectable characteristics. The features
and characteristics of an object describes the object. So if the correct characteristics
can be detected, the object can be classified [O’Shea and Nash, 2015].

The layers in a CNN are fairly basic in the beginning, but gradually gains complex-
ity because the last layers gain information from more units than the first layers.
The first layer may only find specific lines, which are sent to the next layer that
can connect the lines to more meaningful patterns and in turn further send the
information to a subsequent layer. The features become more abstract deeper into
the network and and goes further away from the physically visible edges and lines,
which the first layers handle.

2.5.1.1 Activation Function

An activation function takes an input to a unit and returns an output depending
on the input and on the chosen activation function. The purpose of the activation
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function is to introduce non-linearities to the NN. The non-linearities are important
because otherwise the network would only be adding together a series of linear
combinations using weights, which would result in a model that would probably not
be powerful enough to learn the complex functional mappings required to reach the
desired results. The result would be a linear combination of linear functions, which
would generate the same result as only having one layer. There are several different
activation functions, but the most common one is the Rectified Linear Unit, ReLU.
It takes the output from the previous node and removes the negative values through
the function

R(Z) = max(0, Z), (2.33)

where Z is the output from the previous layer, and R(Z) is the input to the new
layer.

2.5.1.2 Batch Size

The Batch Size (BS) determines the number of samples sent to propagate through
the network at once, during training. After each propagation, the weights of the
NN are updated, and the next batch is sent through. A small BS usually leads to a
network that trains faster, since the weights are updated more often. However, the
network might miss out on some patterns that are only present over a large chunk
of data. When all batches have been fed to the network, an epoch has passed.

An NN that is fed with all the data at once is fed with a batch. If the network
is fed with anything less than the full data set (BS 6= number of samples in training
set), it is fed with a mini-batch.

2.5.1.3 Training the Network and Updating its Weights

Training a network is done by successively sending data through the network, calcu-
lating a model error, and then using that model error to update the network weights
backwards, layer by layer. This process is called back propagation, and it is always
performed when training deep neural networks. To calculate the model error, one
uses an objective function, a function which determines how good a set of weights
are based on some optimization criteria. The error is then used to calculate the
new weights. The choice of objective function can determine if the training will
take seconds, hours, or weeks, depending on the efficiency of the function. This
choice is also highly dependent on the type problem the network should solve. The
most common way of updating the weights is using an optimization function based
on gradient descent [Zhang, 2019]. For a CNN, updating the weights corresponds
to updating the values inside the convolutional kernels, as illustrated in Figure 2.23.

The amount of data used for the updates is adaptable and it can determine how ac-
curate or fast each update is. Every update has a high accuracy if many data points
are used, but a larger amount of data points makes the update slower. Fluctuations
may occur when iterating though few data points, but the process is overall faster
than iterating through all data points in a batch. When optimizing using gradient
descent, it is not the absolute error that used to update the weights, but rather
its derivative. The weights are updated in the direction of the gradient, to find the
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Figure 2.23: The figure illustrates how the convolutional kernel works. The darker numbers
are the weights of the matrix, which are all multiplied with their corresponding number.
The size of the green area is equal to the kernel size.

weights that give rise to the optimal value of the objective function. When updating
using one data point,

∆wi,j = −η ∂E

∂wi,j
(2.34)

is added to the weights, where wi,j is a weight in the network, E is the error and η is
a constant which determines how much the weights should update on every iteration,
denoted the learning rate. The learning rate influences how quickly a model adapts
to the training set. Choose it too small and the model might get stuck at a local
minimum since the steps taken to minimize the function are too small. But if the
learning rate is chosen it too large the model might never converge since it passes
the minimum with the large steps. There are several methods that use an adaptive
learning rate to remedy the choice of the learning rate. The weights of the network
are updated until the gradient is sufficiently small.

2.5.1.4 Over- and Underfitting

While it sounds like a good idea to increase the number of hidden layers and pa-
rameters to get a more accurate network, it can lead to overfitting, i.e., making the
network fit the training data too well. This will lead to the network not being able
to generalize to validation, test, or real data and only work well on training data.
Overfitting can be detected if the network produces a model that handles training
data well, but performs poorly on new data [O’Shea and Nash, 2015].

The problem of overfitting can be solved by reducing the complexity of the network,
e.g., the number of layers and parameters. Then, the model will not be as specialized
on the training set. A larger training set can also reduce the risk of overfitting since
it is more likely that a large training set will not contain specific characteristics that
the validation, test and real data do not have [Lavrenko and Goddard, 2016b].
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2.5.1.5 Batch Normalization

Batch normalization is a technique for improving the speed, stability and perfor-
mance of a neural network. By normalizing the mini-batches sent to each layer to
have zero mean and unit variance, the training speed increased. Batch normalization
enabled the choice of a larger learning rate, which made the training go faster. An-
other advantage is that the initialized parameters do not have to be chosen carefully
due to batch normalization [Ioffe and Szegedy, 2015].

2.6 Previous Research

Noise reduction using CNNs on automotive radar signals has been made with good
result, where object peaks have been preserved and the SNR has increased signifi-
cantly, in [Rock et al., 2019b]. CNNs provided a larger increase in SNR compared to
conventional signal processing methods. However, the CNN caused distortion of the
peak values which obstructs further processing, e.g., angular estimation or object
classification. Simulated data was used in this project with the maximum number
of interfering radars being three.

In [Rock et al., 2019a] CNNs were used for automotive radar interference mitiga-
tion on real data, with added simulated interference. By comparing SINR-values,
the CNN outperforms classical mitigation methods. The SINR-value of the pre-
dicted RD-map is even greater than the SINR-value of the non-interfered RD-map,
which means that real world noise have been removed as well, and not only inter-
ference.

In [Ristea et al., 2020], interference mitigation was also performed on automotive
radar signals with neural networks. Here, fully Convolutional Networks (FCNs)
were used instead of CNNs. More information about FCNs can be found in, e.g.,
[Long et al., 2015]. In [Ristea et al., 2020], two types of FCNs were trained; one
shallow network with fewer layers and convolution blocks, and one deeper network
with more layers and convolution blocks. The input to the networks consisted of a
spectrogram of the baseband signal, with the output being a range profile, which
gives the same information as a Range-FFT, i.e., at which distance an object is
present. The result from both of these networks were compared to a baseline zero-
ing algorithm. When evaluating the results, the deep FCN outperformed the other
algorithms and almost performed as good as an oracle based on the true labels.
The shallow network outperformed the baseline for most of the evaluation metrics.
These tests were performed with simulated data with one interfering radar being
present. The deep FCN also generated promising results when tested on real data.

In [Akeret et al., 2017], a special type of CNNs have also been used for classification
purposes in the radio frequency domain. The algorithm achieved excellent result
on simulated data where the true object locations were known. When training the
model on real data, the algorithm performed slightly worse, but it can be due to the
fact that the true object locations had to be estimated. Inaccurate estimation of true
objects would make the network train on incorrect data and generate a worse model.
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The phenomena clock drift has not been mentioned in any of the articles. Di-
viding the interference into categories to study the different types has not been
done either. In this project, handling different types of interference, and especially
handling coherent interference subject to clock drift contributes with novelty in this
area. By both simulating data to make it resemble real-world data which espe-
cially contains interference from identical radars, and mitigating the interference,
this project presents a more in-depth examination of interference mitigation.
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Chapter 3

Methods

The following section will discuss the various approaches to the methods that were
implemented for interference mitigation. Section 3.1 describes how the simulated
data needed for the machine learning was created. Section 3.2 describes the different
interference mitigation algorithms that were implemented, both the signal processing
ones, as well as the CNNs. Finally, Section 3.3 describes the methods used to
evaluate the results.

3.1 Generating Simulated Data

To properly evaluate different algorithms, information about object location and
interference type needs to be known in advance. Then, it is possible to compare
the prediction from each algorithm with the true values and determine which has
the best result. Furthermore, the approach used to train the CNN required data
marked either clean or interfered. Therefore, a simulation environment was created,
where all the model parameters could be adjusted, and data could be generated. For
every run, a few selected parameters were randomized from a uniform distribution.
All of the randomly selected parameters used in the simulation environment can be
seen in Table 3.1, along with the maximum and minimum values the parameters
could have. The full bandwidth was always used when generating both the victim
and the aggressor, hence all of the generated radar signals chirped up over the same
bandwidth B. The assumption of all radars using the full bandwidth is commonly
occurring for applications where radars are restricted to narrow frequency intervals
due to regulatory requirements. The slope of the frequency over time was then only
determined by how long the signal was. A shorter signal had a steeper slope as it
had a shorter amount of time to go from the lowest to the highest frequency. This
is visualized in Figure 2.16, where the victim signal is lasting over a shorter period
of time than the aggressor and therefore has a steeper slope.

To make it as hard as possible for the CNNs to distinguish ghost objects from
true objects, the coherent interference was generated to make ghost objects mimic
true objects. The interference amplitude was chosen to always be equal to the victim
amplitude, to assure that the energy of the ghost objects was the same as the energy
of the true objects. When coherent interference was present it lasted for every chirp
in a frame. This was also done in order to mimic true objects, since true objects are
always present in all chirps, and not only in some of them.
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To keep track of where the true objects were located, object masks were gener-
ated. These masks stored information about where in the different visualization
maps the objects occurred. The strength of the signal was not shown in the masks,
but only the object positions. An area of 3x3 data points marked the position of
each object. Noise masks were also generated, which kept track of where objects
were not present. The two masks can be seen as inverses of each other.

Table 3.1: Parameters randomized for every simulated frame.

Parameter Name Minimum Value Maximum Value

Object Parameters

No. Interfering Radars 1 3
Number of Objects 1 20

Object Distance 0 dmax
Object Velocity -vmax/2 vmax/2

Object AoA -90◦ 90◦

Non-Coherent Interference

Interference Chirp Time 1.2·Victim Chirp Time 1.8·Victim Chirp Time
Interference Idle Time 1.2·Victim Idle Time 1.8·Victim Idle Time
Interference Amplitude 0.1·Amplitude 199.9·Victim Amplitude

Semi-Coherent Interference

Interference Chirp Time 0.98·Victim Chirp Time 1.02·Victim Chirp Time
Interference Idle Time 0.98·Victim Idle Time 1.02·Victim Idle Time
Interference Amplitude 0.1·Victim Amplitude 199.9·Victim Amplitude

Coherent Interference

Clock Drift -20 PPM 20 PPM
Interference Amplitude 1·Victim Amplitude 1·Victim Amplitude

The data in the simulation was generated according to the signal model presented
in Section 2.2. White Gaussian noise was also added, to resemble real-world data.
Interference mitigation was performed for each of the three disturbance types. The
training data fed to the CNN consisted of all three types of disturbances. For each
frame, a disturbance type was randomly selected, as well as a starting time and
an end time for the interference. There was an equal probability of generating
non-coherent, semi-coherent and coherent interference for every aggressor radar. So
one interfering radar generated one type of disturbance that lasted for a random
amount of time within a frame, except for the coherent interference, which lasted
for all chirps in a frame. Only the interference with frequencies present within the
IF-band was taken into account and further processed, because frequencies outside
the IF-band were larger than the maximum detectable frequency.
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When performing the three FFTs for estimating the range, velocity and AoA of the
objects, zero padding was only performed in the angle-direction. In real radars, the
amount of chirps and the amount of samples per chirp is usually a lot greater than
the number of receiving antennas, meaning that zero padding is most useful in this
direction. A Hann window is used in all FFTs.

The simulated data was compared to real-world data collected with a radar, to
determine if the simulation could be generalized to handle real problems. The com-
parison was only performed qualitatively, by regarding the RD- and RA-maps. The
real-world data was raw data collected from a commercial radar system. The aim
was to create the simulated data to resemble real data. Modelling how objects reflect
radar signals was however very tricky, and depends on a lot of parameters, such as
distance to the radar, object area, and if the object has both stationary and moving
parts. From real-data observations, objects had a very similar signal strength and
a decision was made to train networks primarily for the case where amplitudes re-
mained constant. Networks were however trained for the case of varying amplitude
as well, just to make sure that the amplitude being constant was not the sole reason
that the network could learn.

3.2 Interference Mitigation

When performing interference mitigation, several different algorithms were used and
compared. These included basic zeroing algorithms, both perfect and non-perfect,
non-mutual data cancellation and CNNs. The non-perfect zeroing algorithm was
constructed by us, from scratch. The other algorithms were implemented by us, but
the idea behind the algorithms came from different articles. The aim was to first
and foremost detect in which chirps and samples interference was occurring. The
second step was to eliminate the interference from these samples without disrupting
the rest of the signal and without causing new discrepancies. Figure 3.1 shows data
before and after zeroing has been performed.

(a) Signal before the zeroing algorithm. (b) Signal after the zeroing algorithm.

Figure 3.1: The idea of the zeroing algorithm. The data subject to interference is zeroed
out. Note the different scale in the figures.
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3.2.1 Zeroing

Zeroing is the most straightforward interference mitigation technique, which simply
sets all the interfered data points to zero. By doing this, only data that was not
subject to interference was further processed with FFTs and the rest of the data
processing chain. Due to the simple, yet intuitive nature of the algorithm, it is
often used as a minimum requirement that any given implemented algorithm must
outperform, i.e., a baseline algorithm. In this report both perfect zeroer, i.e., a
zeroing algorithm that knows about the exact location of interference in advance,
and a non-perfect one, i.e., an algorithm that tries to find interfered samples, have
been implemented.

3.2.1.1 Non-Perfect Zeroing Algorithm

Although zeroing is rather straightforward in theory, in practice it might prove
difficult to accurately pinpoint exactly where the data has been interfered, and where
to cut the signal. A common method is to create a threshold line perpendicular to
the y-axis, and remove all data above said line. This was done when creating the
non-perfect zeroing algorithm. The problem then evolved to choosing the threshold.
Some alternatives involved regarding a combination of the mean and the median
of the signal. Then it was assumed that the interference was distinguishable from
the true signal, e.g., with a higher amplitude of the signal wave. However, if the
signal was not interfered, there would be be unwanted losses of real signal because
a threshold would be set regardless of presence of interference. It was therefore
essential to figure out if the signal contained interference, as well as figuring out
where the threshold would be put to determine where in the signal the interference
was present.

Classifying Interfered Data

A simple, yet effective way of checking for interference in data was to look at the
maximum amplitude value of the data in a chirp. If the maximum value was greater
than some value, ξ, then the chirp was marked as interfered, otherwise it was marked
as non-interfered. This method was useful when the amplitude of the interference
was substantially greater than the amplitude of the non-interfered signal. A good
starting point for deciding the value of ξ would be to set it to the mean or the
median of the data times some constant β. Since interference disturbed a minority
of the samples in a data set, the median was more robust than the mean, because the
amplitude of the interfering wave had a large impact on the mean. ξ was therefore
chosen to be

ξ = β · xmed, (3.1)

where xmed was the median of the input data and β was empirically determined
by studying which threshold level that detected most of the interference without
classifying non-interfered data as interference.

Choosing the Threshold

If the data was classified as interfered, a threshold was designed, where the idea
was that every data point above the threshold should be discarded. The absolute
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value was taken on the data fed into the algorithm, and from here, it was possible to
study the cumulative sum of data points. This was done by dividing the y-axis into
discretized blocks (the red dashed lines in Figure 3.3a), and then adding up the cu-
mulative number of data points (samples) present above each line. The cumulative
sum was calculated by starting from the highest dashed line and going downwards.
The first bin therefore contained the number of data points between the top-most
red line and the second one from the top. The second bin contained the data points
between the top-most red line, and the third line from the top, and so on. Figure 3.2
depicts the cumulative sum of points against bin number and the figure has a dis-
tinct, arched look for data with interference. It drastically increases at the end of the
plot. This is due to the fact that true data points had an amplitude similar to each
other while the interfered data points had a much greater amplitude in this data set.

By finding the maximum value of the second derivative of the cumulative sum,
also known as the knee point, the optimal location for the threshold was found.
This trend seemed to be general, and it was not unexpected. If interference was
present, there would only be some data points in the low-numbered threshold bins,
but the majority of the points would be at the bottom where the desired signal lied.
This was true even for chirps with a great amount of interference, since the sample
points of the interfered waves were spread out over a larger number of bins while
the true sample points were concentrated to only a few bins. A larger spread meant
that it was less likely that many data points ended up in the same bin. When one
encountered the discretized region where the true signal lied, the cumulative number
of points drastically increased, meaning that the threshold value should be set right
before said threshold value, see Figure 3.2.

To avoid having non-interfered outlier points in the data zeroed out by the thresh-
old, the algorithm only zeroed out the data if more than 3 points in an interval of
15 were above the threshold. The horizontal bins that the y-axis was divided into
can be seen in Figure 3.3, along with a figure of the chosen threshold for this data
set.

Figure 3.2: Knee point for a cumulative sum for an interfered waveform, where the bin
number (13) indicates which bin in the discretized domain one should choose as threshold.
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(a) Plot with all the bins (red-dashed lines). (b) Choosing the bin number indicated in Fig-
ure 3.2 yields the threshold, marked with a black
line.

Figure 3.3: Plots showing the discretized blocks and the chosen threshold for this data set.

3.2.2 Non-Mutual Data Cancellation

Non-Mutual Data Cancellation (NMDC) is a mitigation technique where one ex-
ploits the predictable magnitude response from objects in the frequency domain.
The technique is thoroughly described in [Wagner et al., 2018]. In short, by assum-
ing that an object was present in all chirps in a frame, a non-linear operator, e.g.,
the min-operator could be used over every sample to suppress data that was not
consistently present in all chirps. The idea was that every chirp had information
about an object, but only some chirps were affected by interference. By only ex-
tracting the information about the object and discarding everything else, the aim
was to eliminate the interference while not disrupting data about the object. An
illustration of the algorithm is presented in Figure 3.4.

The data inserted in the algorithm had been transformed with an FFT and was
consequently in the frequency domain. Initially, the data was split into amplitude
and phase, and only the amplitude was regarded. The min-operator operated on the
first sample of every chirp and returned the smallest amplitude value among these.
Then it operated on the second sample of every chirp, and this procedure continued
until all samples in all chirps had been regarded. The data that was not one of the
smallest values was discarded. The phase remained unchanged. Then, the smallest
amplitude values were stacked into a matrix of the same size as the input data. The
last step was to combine the new amplitude data with the original phase data. It
was assumed that the amplitude of the interference was greater than the amplitude
of the non-interfered data, and would therefore never be included in the result from
the operator. So, only a small amount of data was used for further processing.
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Figure 3.4: Illustration of how the NMDC algorithm works. Chirps are denoted C and
samples are denoted S.

3.2.3 Convolutional Neural Networks

3.2.3.1 Inputs to the Neural Network

Generally, one wants to give the network data that is as relevant as possible for the
task. Therefore, if the task is to denoise RD-images, the input layer of the network
is fed with a training set consisting of RD-maps with interference. For the larger
training runs, the input to the network consisted of a data set containing 500 inde-
pendently created frames (meaning that a new type of interference was created for
every frame), and was validated against 75 exclusively created frames for validation.
Finally, the model was evaluated against a test set, also containing 75 exclusive
frames.

The input to the network was specifically in the form of complex matrices with
a certain size. More data was generated for the 2D-maps than for the 3D-maps
due to the limited computational power. The parameters used for generating the
2D-maps are presented below. The amount of samples per chirp was set to 800.
But due to mirroring in the FFT, half of these were discarded, so the number of
samples per chirp used in the RD-map, N, was 400. The amount of chirps, M, was
set to 256. The amount of antennas was set to 8, but zero padding was performed
to increase the number of bins in the angular direction, so the final amount of angle
bins, K, was set to 400.

When generating the RDA-cube that was used for training, 100 samples per chirps
were used. Since half of the samples were discarded, N was equal to 50. M was
set to 32 and 8 antennas were used, but since zero padding occurred here, the final
amount of angle bins, K, was set to 50. Table 3.2 summarizes all the input sizes
used.
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Table 3.2: Input sizes for the different maps. The numbers in brackets are what remains
after the first FFT, where half of the samples are discarded.

Sample Type RD RA RDA

Samples per chirp 800 (400) 800 (400) 100 (50)
Number of chirps 256 0 32

Number of antenna bins 0 400 50

3.2.3.2 Preprocessing of the Data

Before the data was sent to the network, it was subject to standardization in order
to increase the training speed. This was done using a standard zero-mean method
which scale the mean of the data to zero, and its standard deviation to one, according
to

x̃ =
x− x̄
σ

, (3.2)

where σ is the standard deviation, and x̃ denotes the scaled data.

3.2.3.3 Network Hyper-Parameters

Neural networks generally have a lot of tuneable parameters, such as kernel size, the
number of hidden layers, learning rate etc. An idea would be to just try all the pos-
sible parameter configurations, called grid searching. However, grid searching as a
way of finding suitable network structures might be flawed, since networks of higher
complexity more often suffer from over-fitting, hence requiring extra precautions
such as regularization to overcome the problem [Bishop, 2006]. However, since in-
vestigating every combination imaginable was, and usually is, unfeasible, grid search
was used as an indicator of what might be a good starting point. An idea of what
the most suitable model for the data would be was found in [Rock et al., 2019b],
where a grid search had been performed for mitigation of automotive radar data.
Some of the combinations they found most suitable was used in this thesis, see Table
3.3.

Table 3.3: CNN parameters for the different models.

Model
Name

Kernel
Size

Layers Kernels Parameters

Shallow 2D (3x3) 4 2 160
Deep 2D (3x3) 6 16 10002

Shallow 3D (3x3x3) 4 2 452
Deep 3D (3x3x3) 6 16 35680

It might seem like a good idea to have as many parameters as possible in the net-
work, to train the model as accurately as possible. To do this, the number of layers
and the number of units per layer could be increased. However, there are several
drawbacks associated with a large amount of parameters. First of all, the com-
putational complexity increases drastically as the number of parameters increases
meaning that training the network would take time, a long time. The low amount
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of parameters is one of the reasons for the choice of using a CNN instead of a dif-
ferent type of NN because the computational resources available could not handle a
massive network. The sparsity of a CNN reduces the amount of parameters so less
resources are needed.

Another reason for using fewer parameters is to avoid overfitting to the training
data. A more complex system finds patterns in the training data that might not oc-
cur in the validation- or test data. It is not desirable to have a system that performs
exceptionally well on data it has been trained on.

3.2.3.4 Training the Network

A schematic of the network structure used in this project is presented in Figure 3.5.
The learning rate for the network, η, was set to 0.00005. The BS for the training
data was two, which means that two frames were inserted in the network at a time.
The chosen optimization algorithm used in the network was Adaptive Moment Es-
timation (Adam), which used adaptive learning rates, η. The learning rates were
adapted by regarding the previous gradients in the optimization process. By using

Figure 3.5: The architecture of the CNNs that were used.

previous gradients, faster convergence is enabled, compared to only using the gra-
dient for the current data point [Zhang, 2019]. Also, the risk of getting stuck in a
local minimum is reduced. The hyper-parameters β1 and β2, which determine how
important the previously calculated gradients are when updating the weights, were
set to β1 = 0.9 and β2 = 0.999. These specific values had shown good results in
[Kingma and Ba, 2014], where more information about Adam can be found.

Each hidden layer consisted of performing the convolution operation, then per-
forming batch normalization on the data and later passing the data to the acti-
vation function. The network was trained and evaluated against input data which
only contained the signal from the objects, without noise or interference, see Fig-
ure 2.11a for an example of this type of data. The result of this was that the network
was rewarded for suppressing noise, since noise was not present in the target data.
However, this means that the network trained against objects that were subject to
leakage, and as a result were smeared. For every batch, the loss was printed, and
if the loss did not improve for 50 epochs the program stopped. At the end of each
run, the losses were plotted in order to see if the CNN had converged.
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3.2.3.5 Objective Functions

SINR

The SINR function calculated the SINR using the predicted map from the model,
together with the noise- and object masks from the training set, i.e, the true positions
of the objects. By using a noise- and object mask where the location for the object
and noise were stored, a SINR estimation was calculated using

SINR = 10 log

( 1
NO

∑
{n,m}∈O |S̃RD[n,m]|2

1
NN

∑
{n,m}∈N |S̃RD[n,m]|2

)
, (3.3)

where NO is the number of objects in the object mask, NN is the number of data
points in the noise mask, O denotes where objects are present, N denotes where
noise is present and S̃RD is the predicted RD-map. Since the SINR only increases
significantly when the predicted object lies within the true object mask, location
precision was enforced. If an algorithm would decrease the SINR, it would indicate
that the algorithm added noise to the data.

Mean Squared Error

The Mean Squared Error (MSE) loss measures the mean square error between each
element in the input and the target according to

MSE =
1

n

n∑
i

(xn − yn)2. (3.4)

In the equation, xn is the prediction and yn is the target. This objective function
aims to rebuild the target map, which includes the leakage from the FFT:s. So
instead of only regarding the object positions, which the SINR objective function
did, MSE regarded the entire map. The aim with this objective function was to
make the whole predicted map similar to the whole clean map, rather than just
regarding the data points containing objects.

3.3 Evaluating the Result

The CNN-models were evaluated using a simulated test set, containing a mix of all
types of interference. Each 2D-model was evaluated for both 2D-maps: the RD-
map and the RA-map, to find out if training on one type of map could produce
a network that could handle another type of map. Three evaluation metrics were
chosen: SINR, EVM and ROC-curve, and all of them are explained below.

3.3.1 Signal-to-Interference-plus-Noise Ratio

SINR was evaluated using (3.3), and the metric is suitable for determining how well
an algorithm has managed to enhance the object peaks relative noise and inter-
ference. Since the metric only increased when the algorithm predicted a peak at
the correct location, it also worked as an objective function. A large SINR-value
implicated that the signal strength was greater than the strength of the noise and
the interference.
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3.3.2 Error Vector Magnitude

The Error Vector Magnitude (EVM) is a metric defined as

EVM =
1

NO

∑
{n,m}∈O

|SRD[n,m]− S̃RD[n,m]|
|SRD[n,m]|

, (3.5)

where SRD is the clean Range-Doppler map and S̃RD is the predicted Range-Doppler
map and NO is once again the number of objects. The result was summed over all
object peaks, so during evaluation the predicted object peaks were extracted from
the Range-Doppler map, and compared to the object peaks in the clean map. The
object masks determined which data points were counted as objects. Only these
data points were used in the EVM calculation. The input and the output of the
network consisted of complex-valued data points and the normalized sum of the
difference between the points is the EVM. EVM gave information about how close
the magnitude of the predicted objects and the magnitude of the true objects were,
i.e., how well the predicted object signal strength captured the signal strength of the
true objects. EVM also gave information about the phase error of the prediction.
The phase error determines how suited the data is for further processing, where a
low phase error means that the prediction has not distorted the data. A low phase
error in the RD-domain meant that the data could be used for AoA-estimation; and
vise versa for the RA-domain, where the data could be used for velocity estimation.
A small EVM meant that the predictions matched the target better, see Figure 3.6
for a visualization of the metric. In the figure, it can be seen that the metric can be
divided into a magnitude error and a phase error.

Figure 3.6: Definition of EVM, non-normalized.
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3.3.3 Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve evaluates a measurement based
on its True Positive Rate (TPR), plotted against its False Positive Rate (FPR) at
various threshold settings. It evaluates how well a classifier labels the true objects
as true ones and the interference as false objects. The threshold is initially set high,
and then the classifier does not label anything as positive. Then, the threshold
is gradually lowered until all of the data points are labeled as positive. If the
predictions are perfect, the ROC will not have any false positives, represented by the
green line in Figure 3.7. If the predictions are good, it is expected that the likelihood
of finding true positives is higher than the likelihood of finding false positives, which
gives the curve a concave appearance, see the blue line in the figure. If the predictions
are completely random, the result is a straight line, represented by the red line in the
plot. The ROC-curve for the predictions was evaluated as the mean for all frames’
TPR and FPR in the test set. The ROC-curve is generated by iteratively building

Figure 3.7: A ROC-curve, indicating how a perfect, good and random predictor is defined.

an object mask from the various algorithms, where all the objects above a certain
threshold is included. When the true object mask is built, a 3x3 grid is built around
the object in order to combat the smearing that is present, and the same is done
when iteratively constructing the object mask from the algorithms.
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Chapter 4

Results

Section 4.1 presents the quantitative results, i.e., the numerical values and a ROC-
curve produced by the evaluation metrics presented in Section 3.3. Section 4.2
contains qualitative assessments of the results, which includes various visualization
maps from the different algorithms. Here, maps of both real and simulated data
are presented. Only RD- and RA-maps are displayed since these are the maps that
contribute with most information about the performance of the algorithms.

4.1 Quantitative Evaluation Metrics

Table 4.1 shows the EVM and SINR metrics where the input to the algorithms con-
sists of RD-maps. In Table 4.2 the inputs are instead RA-maps. Finally, in Table 4.3
the inputs to the algorithms are RDA-maps. The numbers in bold indicate where
the highest SINR-values and the lowest EVM-values are produced.

In Table 4.1, it can be seen that when evaluating SINR on RD-maps (see the left-
most columns), the CNNs generate higher SINR-values than the other algorithms.
The deep CNN trained on SINR generates a substantially greater SINR than the
other algorithms, both for evaluation on RD-maps and on RA-maps. The EVM for
the deep CNN on the RD-map is also very large. Overall, it looks like it is difficult
to obtain both a high SINR and a low EVM. The deep CNN trained on MSE seems
to be the model that generates a high SINR and a low EVM, when evaluated on the
RD-maps. All CNNs generate an EVM greater than or equal to one when they are
evaluated on RA-maps (see the rightmost columns). The only algorithm that in-
creases the SINR without inflating the EVM is NMDC, when evaluated on RA-maps.

One observation that can be made by investigating Table 4.1 and Table 4.2 is that
the performance of the CNNs is better when the model is evaluated with the same
type of map as it has been trained on.
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Table 4.1: Results from training on RD-inputs.

Algorithm SINR RD EVM RD SINR RA EVM RA

Non-interfered 39.8 dB 0.0180 17.9 dB 0.101
Interfered 25.9 dB 0.215 17.7 dB 0.101

True zeroing 32.5 dB 0.317 14.2 dB 0.336
Zeroing 21.3 dB 0.857 8.34 dB 0.922
NMDC 46.9 dB 0.521 18.7 dB 0.498

Deep CNN Models

CNN SINR 135 dB 74.9 62.2 dB 1.01
CNN MSE 67.7 dB 0.155 18.9 dB 1.00

Shallow CNN Models

CNN SINR 91.5 dB 6.56 0.599 dB 1.00
CNN MSE 56.4 dB 0.61 12.0 dB 1.00

By regarding Table 4.2, it can be seen that NMDC increases the SINR the most
and the EVM is one of the lowest among the algorithms, when performing the
evaluation on RD-maps. For RD-maps, no CNN has managed to outperform the
interfered spectrum. When RA-maps are used for evaluation, the deep CNN trained
on MSE generates the lowest EVM and the SINR is slightly increased.

Table 4.2: Results from training on RA-inputs.

Algorithm SINR RD EVM RD SINR RA EVM RA

Non-interfered 39.8 dB 0.0180 17.9 dB 0.101
Interfered 25.9 dB 0.215 17.7 dB 0.101

True zeroing 32.5 dB 0.317 14.2 dB 0.336
Zeroing 21.3dB 0.857 8.34 dB 0.922
NMDC 46.9 dB 0.521 18.7 dB 0.498

Deep CNN Model

CNN SINR 18.1 dB 1.06 28.5 dB 0.993
CNN MSE 16.0 dB 0.997 18.7 dB 0.0953

Shallow CNN Model

CNN SINR 24.1 dB 1.75 26.0 dB 1.02
CNN MSE 24.6 dB 2.08 18.6 dB 0.317

When analyzing Table 4.3, it is once again seen that the deep CNN trained on SINR
generates the highest SINR, but also the highest EVM. NMDC, the shallow CNN
trained on MSE and the deep CNN trained on MSE are the algorithms that increase
the SINR without having an EVM greater than one.
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Table 4.3: Results from training on RDA-inputs.

Algorithm SINR RDA EVM RDA

Non-interfered 23.2 dB 0.0680
Interfered 19.5 dB 0.258

True zeroing 19.3 dB 0.358
Zeroing 13.1 dB 0.868
NMDC 23.2 dB 0.674

Deep CNN Models

CNN SINR 47.8 dB 8.92
CNN MSE 25.2 dB 0.742

Shallow CNN Models

CNN SINR 39.3 dB 1.30
CNN MSE 24.4 dB 0.774

The ROC-curve for the CNNs and the signal processing algorithms is presented in
Figure 4.1. A high TPR while maintaining a low FPR is desired. The non-perfect
zeroing algorithm stands out from the rest as it starts to deviate early from the y-
axis and from the other algorithms, meaning that it generated more false positives
than the other ones. The deep CNN trained on SINR follows the y-axis the longest,
so the amount of false positives is low. For this algorithm and for the shallow CNN
trained on MSE, it takes a while to reach a TPR of one, i.e., classifying all true
objects as true. The shallow CNN trained on SINR and the deep CNN trained on
MSE follow each other and these are the models that classify all true objects as true
first, since they reach a TPR of one before the other models. The perfect zeroing
algorithm performs better than the non-perfect zeroing algorithm but worse than
the other ones. NMDC has one of the steepest curves until a TPR of 0.9 is reached;
afterwards the FPR increases more than before.
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Figure 4.1: ROC-curve from the different algorithms with RD-inputs. The right box shows
a zoomed in version of the curve.

4.2 Qualitative Comparison of the Maps

RD-maps showing data subject to coherent interference are seen in Figure 4.2. Fig-
ure Figure 4.2a shows the clean RD-map. The interference is present in Figure 4.2b
as a ghost object at (115, -10) in. It is a ghost object since it is not present in the
clean RD-map in Figure 4.2a. NMDC manages to partially remove the interference
while preserving the other objects and decreasing the noise floor, but some arte-
facts are present at (115, -10) in Figure 4.2c. Figure 4.2d shows the result after the
perfect zeroing algorithm, which has not been able to make any predictions at all.
The non-perfect zeroing in Figure 4.2e performs better, but the noise floor is higher
than in the interfered RD-map and artefacts are present. The deep CNN trained on
SINR manages to preserve all of the objects while removing the ghost object and
decreasing the noise floor.

Figure 4.3 depicts the output from the algorithms with data subject to non-coherent
or semi-coherent interference that lasts over the entire RD-map. Figure 4.3a shows
data without interference and noise, and Figure 4.3b shows the data with both in-
terference and noise. Both NMDC, Figure 4.3c, and the perfect zeroing algorithm,
Figure 4.3d, manages to suppress the interference and reduce the noise floor while
preserving the objects. However smearing in the velocity direction occurs in both
figures. The non-perfect zeroing algorithm finds some objects but a lot is buried
under the noise floor in Figure 4.3e. The deep CNN trained on MSE finds all true
objects and reduces the noise floor more than the other algorithms, see Figure 4.3f.
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(a) The clean RD-map, without noise and in-
terference.

(b) RD-map with noise and interference.

(c) RD-map after the NMDC algorithm. (d) RD-map after perfect zeroing.

(e) RD-map after non-perfect zeroing. (f) RD-map after the deep SINR-based CNN.

Figure 4.2: Performance comparison of the algorithms for a coherent interference.
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(a) The clean RD-map, without noise and in-
terference.

(b) RD-map with interference and noise.

(c) RD-map after NMDC. (d) RD-map after perfect zeroing.

(e) RD-map after non-perfect zeroing. (f) RD-map after deep CNN trained on MSE.

Figure 4.3: Performance comparison of the algorithms for non/semi-coherent interference.
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Figure 4.4 shows RA-maps from the different algorithms, where the data has been
subject to non-coherent or semi-coherent interference over the entire map. The two
bright points in Figure 4.4a shows where two objects are located and Figure 4.4b
shows the RA-map without noise or interference. Here, object smearing in the
angular direction is present since the objects are not present at only one or a few
data points. Figure 4.4c shows the same data as the previous figures, but with
noise and interference. The deep CNN trained on MSE manages to reduce the noise
floor the most but the object smearing is still present, see Figure 4.4e. NMDC, in
Figure 4.4d, and the deep CNN trained on SINR, in Figure 4.4f has approximately
the same noise floor level but the CNN generates more distinct object peaks.

(a) The RA-map noise mask. (b) The clean RA-map, without noise and inter-
ference.

(c) RA-map with noise and interference. (d) RA-map after NMDC.

(e) RA-map after the deep MSE-CNN. (f) RA-map after the deep SINR-CNN.

Figure 4.4: Performance comparison of the algorithms in the RA-domain. Here, non-
coherent interference is present in the form of an elevated noise floor.
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Figure 4.5 shows RA-outputs where the data has been subject to coherent interfer-
ence. The clean RA-map in Figure 4.5a only shows one object but the interfered
RA-map in Figure 4.5b contains two objects. The object that is not present in the
clean RA-map is a ghost object due to the coherent interference. Neither the NMDC-
model, in Figure 4.5c nor the CNN-model, in Figure 4.5d, manages to mitigate the
ghost object present approximately 150 m from the radar.

(a) The clean RA-map, without noise and inter-
ference.

(b) RA-map with interference and noise.

(c) RA-map after NMDC. (d) RA-map after the deep CNN trained on MSE.

Figure 4.5: A typical result in the RA-domain for the different algorithms. Coherent
interference is present as a ghost object at a range of approximately 150 m from the radar.
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Figure 4.6 shows the result after evaluating test data containing coherent interference
with an amplitude greater than the victim signal. Interference mitigation has been
performed on coherent interference with a small amount of clock drift. By comparing
Figure 4.6d with Figure 4.6a, the interfered map contains an object at (135, 22),
which is not occurring in the noise mask, hence it is a ghost object generated by
the interference. The ghost object has not been successfully removed by any of the
algorithms. The deep CNN trained on SINR in Figure 4.6c has some artifacts at
that coordinate, but it performs slightly better than NMDC in Figure 4.6b, which
contains a brighter ghost object and more artifacts in the background.

(a) An RD-map containing noise and coherent
interference.

(b) RD-map after NMDC.

(c) RD-map after the deep CNN trained on
SINR.

(d) Noise mask for the data.

Figure 4.6: RD-maps after different mitigation algorithms for data containing coherent
interference with a small clock drift. This is presented as a ghost object at (21, 146).
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Figure 4.7 shows an example of when a CNN has been able to completely miti-
gate coherent interference while NMDC has not. The evaluation data in the figure
contains coherent interference with a higher amplitude than the victim signal. By
comparing the noise mask in Figure 4.7d with the interfered signal in Figure 4.7a,
it can be seen that the two brightest objects in the interfered RD-map are not true
objects, but ghost objects with different amounts of clock drift. Here, the deep CNN
trained on SINR in Figure 4.7c performs better than NMDC in Figure 4.7b since
more artifacts are present in the map from NMDC.

(a) An RD-map containing noise and coherent
interference.

(b) RD-map after NMDC.

(c) RD-map after the deep CNN trained on
SINR.

(d) Noise mask for the data.

Figure 4.7: RD-maps after different mitigation algorithms for data containing two types
of coherent interference with different amounts of clock drift.
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To show that the simulation environment is able to produce data similar to real
data, Figure 4.8 presents one RA-map with real-world data, one RA-map with sim-
ulated data where the aim is to make the simulated data resemble real data, and
one RA-map consisting of a prediction from the deep CNN trained on SINR. There
is one ghost object 26 m from the radar due to coherent interference. When eval-
uating the CNN by comparing Figure 4.8a and Figure 4.8c, the noise floor has
decreased substantially and the coherent interference present at a range of 26 m is
eliminated. Most of the true objects have however also been eliminated by the CNN.

Figure 4.9 shows one RD-map with the same real-world data as in Figure 4.8, one
RD-map with simulated data and one RD-map with a prediction from the deep
CNN trained on SINR. It is seen that the simulated maps resemble the real ones, in-
dicating that the simulation environment can be used to produce realistic data. By
comparing Figure 4.9c with Figure 4.9a, it can be seen that the CNN has once again
been able to decrease the noise floor substantially and the coherent interference is
completely removed. However, the algorithm has also removed a few true objects
since the number of stationary objects are fewer in Figure 4.9c than in Figure 4.9a.

(a) An RA-map containing real-world data with
stationary objects and coherent interference

present as a ghost object 26 m away from the
radar.

(b) A simulated RA-map, which is supposed to
mimic the real-world RA-map in (a).

(c) A prediction made on the data in (a)
from the deep CNN when it has been trained

on SINR.

Figure 4.8: RA-maps of real-world data, simulated data and a prediction of the objects.

54



(a) An RD-map containing real-world
data with stationary objects and a ghost
object at (8, 26), generated by coherent

interference.

(b) A simulated RD-map, which is
supposed to mimic the real-world

RD-map in (a).

(c) A prediction of the data in (a)
from the deep CNN when it has

been trained on SINR.

Figure 4.9: RD-maps of real-world data, simulated data and a prediction of the objects.
The bright red spot at (0,0) in (a) is due to reflections from the inside of the radar dome.
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The final test was to vary the signal strength of the objects, by decreasing the power
for objects far away from the radar. The result of this is presented in Figure 4.10.
By comparing Figure 4.10a with Figure 4.10d, it can be seen that many objects are
buried under the noise floor in the interfered map and therefore hard to see. The
CNN trained on MSE, in Figure 4.10c, decreases the noise floor and finds all of
the objects, but the map also contains bright spots where objects are not present.
NMDC, in Figure 4.10b, finds the objects without generating any other bright spots,
but the noise floor is higher than for the CNN.

(a) An RD-map containing noise and
non-coherent interference.

(b) RD-map after NMDC.

(c) RD-map after the deep CNN trained on
EVM.

(d) Clean RD-map.

Figure 4.10: RD-maps after different mitigation algorithms for data containing
non-coherent interference. The object amplitudes depend on the distance to the radar.
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Chapter 5

Discussion

This section will discuss the results seen in the previous section. Section 5.1 dis-
cusses the signal processing algorithms and the CNNs ability to deal with non-
coherent, semi-coherent and coherent interference, as well as what happens when all
are present at the same time. Section 5.2 discusses the CNNs, how they responded
to different inputs and the hyper-parameters that were chosen. Section 5.3 discusses
the evaluation metrics used for this project. Section 5.4 discusses what happened
when the models were used on real radar data.

5.1 Evaluating on Different Disturbance Types

5.1.1 Non-Coherent Interference

Non-coherent interference is characterized by randomness and spontaneousness. This
often results in fewer samples being disturbed in a frame, since the interference ap-
pears in small bursts, rather than acting consistently over the entire frame. Due to
the IF-band, high frequency content in the baseband signal is excluded and therefore
fewer samples are considered interfered. Furthermore, the disturbed samples often
appear with a larger amplitude than the non-interfered samples, making the inter-
ference easier to locate. Multiple aggressors do seemingly not make it harder for the
algorithms, compared to only one aggressor. The zeroing algorithms are therefore
useful here, since it is easier to identify interference, and removing it comes with few
drawbacks.

NMDC works very well, since non-coherent interference is not present at the same
samples for all chirps in a frame. Hence, there are usually some samples in the
chirps that are not interfered, and these are used to reconstruct the zeroed-out sig-
nal. NMDC also manages to remarkably reduce the amount of white noise in the
data, which is expected since it is only the noise with the lowest amplitude over all
chirps that is included in the reconstructed signal.

The CNNs outperform the tested signal processing algorithms, both by strictly
assessing the metrics and by observing the figures. The CNNs only really struggles
when there are objects present below the noise floor. However, this is the case for
the other algorithms as well.
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5.1.2 Semi-Coherent Interference

Semi-coherent interference disturbs more samples where interference is present, and
it is more common that the interference lasts over a more extensive part of a chirp.
This is due to the fact that the aggressor and the victim have similar properties.
Many aggressors increase the probability of many samples in a frame being dis-
turbed, which the NMDC algorithm struggles with. Classifying data as interfered
also becomes more difficult, especially if there are many interfering radars present
because then the interference will not appear in small bursts. The perfect zeroing
algorithm removes more data than in the non-coherent case since more samples are
interfered, which causes the algorithm to perform worse here.

5.1.3 Coherent Interference

Adding coherent interference to an RD map does not significantly decrease the SINR
like the other interference types. This is because the signal strength of the inter-
fering signal has been adjusted to be equal to the strength of an object in order
to make it harder to distinguish the two. A successful removal of a ghost object
does not increase the SINR significantly. The SINR as an evaluation metric should
therefore not be as highly regarded, since noise reduction plays a bigger role for the
metric in this case.

Interference subject to clock drift is smeared in the spectra, see Figure 4.2a. This in
conjunction with the signal strength of the ghost objects being the same as for true
objects results in a lower energy density for the smeared objects. The true objects
are therefore slightly more intense in the RD-map than their interfered counterparts,
when clock drift is present. To make sure that the CNNs simply did not learn by
just checking the amplitude of the signal, evaluations with higher powered coherent
disturbances were performed, for instance in Figure 4.9. The network managed to
remove those disturbances as well, indicating that the networks can handle different
interference amplitudes.

When all samples in a frame are interfered, the perfect zeroing algorithm virtu-
ally removes all data samples, which makes the RD-map very difficult to interpret,
see Figure 4.2d. When coherent interference is present within the IF-band, a huge
amount of samples are interfered and hence discarded by the zeroing algorithm.
The NMDC algorithm manages to lower the interference amplitude slightly, but the
ghost object is still clearly visible in the RD map, see Figure 4.2e. The non-perfect
zeroing algorithm is struggling with distinguishing ghost objects and real objects,
and as a result the algorithm does basically nothing to remove interference.

The CNNs manage to successfully remove almost all ghost objects, where the only
remains are fragments, making them seemingly the best for denoising coherent inter-
ference out of the tested alternatives, see Figure 4.2f. However, when the clock drift
is too small, the networks, as well as the signal processing algorithms occasionally
fail to remove the interference. In Figure 4.6, a ghost object with very little clock
drift is present. When the clock drift is too small, the disturbance does not visibly
drift in frequency, meaning that it will have no vertical smearing, i.e., no smearing
in the range direction. There will still be drifts in phase, which results in horizontal
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smearing, but it will be very small, and sometimes too small to distinguish from a
real object. When there is no frequency drift, the ghost object remains in the same
samples over all chirps, exactly like a real object, which results in difficulties for
both the NMDC algorithm and the CNNs, see Figure 4.6. In cases where there is
enough clock drift for the signal to change its primary frequency bin, the network,
as well as NMDC, performs a lot better, suppressing the interference almost com-
pletely, see Figure 4.7. This indicates that the network have learned to mitigate
interference in a similar manner as the NMDC algorithm. However, due to leakage
in the FFTs, nearby frequency bins also register values. When the NMDC algorithm
takes the minimum value over all samples, the amplitude of the remaining signal
will be proportional to the amount of leakage in the FFT, since the minimum value
will be what leaks out from the primary frequency bin. This is why the NMDC
does not manage to remove the coherent interference entirely. However, the CNNs
do, showing that it has learned to identify coherent interference. Since the coherent
interference used in this project has been chosen to affect all chirps in a frame, the
main advantage of NMDC disappears. This algorithm is useful when not all chirps
contain interference, since it uses the non-interfered samples to reconstruct the true
signal. If all chirps contain interference, so will the reconstructed signal.

5.1.4 A Combination of the Interference Types

The algorithms and the networks were evaluated against a test set where the in-
terference types were randomized. In one frame, due to the possibility of several
aggressor radars, several different types of interference could occur. It was noted
that even if a frame had a lot of non-coherent interference, the kind of interference
that signal processing algorithms are good at mitigating, a single source of coher-
ent interference severely limited the signal processing algorithms ability to mitigate
any type of interference. This is mainly due to the zeroing algorithms removing all
contaminated samples, which means that if coherent interference is detected, a lot
of data is removed. The NMDC algorithm is not as affected, since the likelihood of
interference occurring over every chirp is still unlikely. However, the NMDC algo-
rithm does still not manage to remove coherent interference to the extent that the
network could.

In the RD-domain, a CNN is seemingly the best option for the combined test set,
outperforming all the signal processing algorithms in the quantitative measurements
seen in Table 4.1. The deep CNN generates an increase of SINR of 109.1 dB com-
pared to the interfered signal when the network is trained on SINR and fed with
RD-maps according to the table. When the network is trained on MSE, the EVM
is decreased by 0.06. These are the best results when evaluating on RD-maps, if
only one metric is regarded at a time. A qualitative assessment of Figure 4.2 and
Figure 4.3 further supports that CNNs are preferable over the other algorithms.
Furthermore, a CNN is also the best performing mitigation technique in the ROC-
analysis, giving more true positives for any given threshold level than the other
algorithms, see Figure 4.1. We believe that the great performance of the CNNs is
mainly attributable to the ability to find and eliminate the coherent interference
and reduce the noise floor. In terms of mitigation of the non-coherent and semi-
coherent interference, the result of the signal processing algorithms are similar to
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the result of the network. A qualitative assessment of Figure 4.2 and Figure 4.3 also
shows that it is a lot easier to see the peaks in the maps from the CNN rather than
from its signal processing counterparts. The CNNs are however a lot worse in the
RA-domain, often failing at removing the interference, see Table 4.2.

5.2 Evaluating the CNNs

5.2.1 Input to the Network

5.2.1.1 Analyzing the Different Input Maps

The input to the network could be one of three things; the RD-map, the RA-map or
the RDA-map. Due to computational limitations, the number of data points used
in the RDA-map had to be scaled down substantially.

From the beginning, the aim was to train and validate data from the data cube and
handle the three object metrics (range, velocity and AoA) simultaneously. However,
it was observed that the computational power needed to process the huge amount
of data was not available. In order to train on the cube at all, the amount of data
points had to be reduced substantially. The RD-map consisted of N × M data
points, where N is the number of samples per chirp and M is the number of chirps
in a frame. The RA-map consisted of N × K data points, where K denotes the
amount of angular bins. K was greater than the amount of antennas due to zero
padding. By generating the cube according to the original idea, with the same pa-
rameters as for the 2D-maps, the cube would consist of N ×M × K data points.
By converting this to numbers, the RD-map consisted of 400 × 256 = 51 200 data
points. The RA-map consisted of 400× 400 = 160 000 data points. The RDA-map
would consist of 400 × 256 × 400 = 40 960 000 data points. Training on 2D-maps
required a lot of computational power and each training lasted for one to two days
using a RTX 2070 Super GPU, depending on the amount of training data and the
number of epochs. The original size of the 3D-maps would be 256 or 400 times
the size of the 2D-maps, so the training time would increase substantially. It was
desired to perform several different trainings and to include the massive cube would
not be possible. To be able to train on the cube within a reasonable amount of time,
the number of data points had to be reduced significantly. With a reduced amount
of data points, the final RDA-map consisted of 50× 32× 50 = 80 000 data points,
which is more similar to the amount of data in the 2D-maps.

It was decided that training the model on the two 2D-maps would give more in-
formation than training it on one 3D-map with a significantly reduced amount of
data points. The 2D-maps would in total give information about the range, velocity
and AoA, which was the aim of the model. The 3D-map had fewer parameters in
all three directions which impaired the resolution in every direction. Zero padding
could increase the resolution, but this would require more computational power, so
this was limited to the angle-direction. Plots of the cube did not contribute to any
gain in information since it was difficult to visualize anything but the outer edges.
Visualizing RD-maps and RA-maps was more useful. The cube does however seem
promising, so for future work, with more computational power, training on a full-
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sized cube might be a better option than training on the 2D-maps separately.

Looking at Table 4.2, it is clear that a model trained on RA inputs does not yield a
good result in the RD-domain. Conversely, the network trained on RD-maps man-
aged to mitigate interference in the RA-domain, see Table 4.1, once again indicating
that RD-data is the best input to the network. This could perhaps be due to the
networks training on object masks, which do not consist of any object smearing.
The objects in the RA-maps are more smeared than the ones in the RD-maps, so
the object masks are worse at capturing the objects in the RA-maps. This is further
discussed in Section 5.2.3.

5.2.1.2 Varying the Amplitude of the True Objects

Keeping the object amplitude constant in the training data made it easier for the
networks to find the objects, indicating that they learned how to find values with
a similar signal strength. However, the networks did learn how to combat coherent
interference with equal or higher signal strength, indicating that they also had deeper
understanding of interference mitigation. When the object signal strength varied,
the CNNs performed worse. The networks still managed to learn the task, as visible
in Figure 4.10, but they struggled with finding objects below the noise floor, which
the NMDC-algorithm was more successful at. The networks were however very
difficult to train for these scenarios, often failing to improve after just 50 epochs
into the run. To improve the chances for the networks to succeed, a much larger
network is proposed, but currently lies outside the scope for what is possible with
the available hardware. Furthermore, trying to make the object peaks more uniform
in amplitude before feeding it to the network by pre-processing could perhaps also
make it better. The variable amplitude case reassembled reality better, but it was
harder for both the signal processing algorithms, as well as the network, to deal
with.

5.2.2 Deep vs Shallow Model

The deep model performed better across all evaluations, but the shallow model did
not fall too far behind considering the size of the model, see Table 4.1. For an
embedded system with limited computational power, it is much more feasible to go
with the smaller variant, even if it performs slightly worse. It does not manage at
all to denoise data in the domain for which it was not been trained on however, so
one would have to choose which domain to use in order to make it work. In the
case of the cube, the network also performs impressively well, coming in just short
of the deeper model, see Table 4.3. When regarding Table 4.2, the shallow model
has higher SINR when evaluated on RD-inputs compared to the deep one. However,
both of the models fail to increase the SINR as compared to the interfered signal,
so none of these are in fact useful in this case. When the models are evaluated on
RA-inputs, the deep model performs slightly better than the shallow one.
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5.2.3 Objective Functions

5.2.3.1 SINR

The SINR objective function is, as visible in (3.3), only evaluating the results against
an object- and noise mask. Since the object mask only tracks objects in a 3x3 grid,
the object smearing in the clean input maps is not included in the evaluation. An
example of a noise mask, which is the inverse of an object mask, can be seen in
Figure 4.7d. Because of the 3x3 grid, the model trains to disregard the smearing.

Rather than recreating the clean input data (which consists of smearing), the CNNs
are trained to implicitly find object locations in the data. Since the clean input
maps are free of noise, the CNN also learns to denoise the image. From qualitative
assessment of the figures, it seems that the SINR-based networks have learned to
adapt a threshold to the interfered image, and only include the data above the line.
This works when all the objects are above the noise floor, which might not be the
case for very interfered environments. It seems that this threshold is very accurate,
based on its success in finding ghost objects with very little clock drift, something
that the other algorithms or the other objective function did not manage to the
same extent. A reminder that ghost objects with clock drift have a lower energy
density, which makes the object peak intensity slightly lower.

However, the MSE objective function does not use the object mask to find ob-
jects, but rather just subtracts the output of the network from the clean data. The
best result from this metric is therefore obtained when the output from the network
is identical to the input, i.e., smearing is still present in the peaks. Since a well-
trained SINR-based CNN will have learned to disregard the smearing in the peaks,
the EVM might become exceptionally large for a CNN trained against the SINR,
even if all interference and noise have been mitigated, see Table 4.1.

The SINR-based networks also have a lot of variance in the way the object is repre-
sented in the prediction. The predicted objects are all of difference size and intensity,
a pattern that seems random, but might be due to the relative noise floor around
each object in the maps with noise and interference.

In Figure 4.4, it is made clear that an object is heavily smeared in the spectrum,
which has consequences for the signal processing algorithms. The NMDC for in-
stance manages well with removing most noise, but does not manage to narrow
down the object location. The SINR-based CNN does a much better job at this,
mostly due to it training against the true positions of the objects, rather than the
actual, smeared out peaks. The smearing is however also present in the interference,
which means that learning how the smearing behaves is important in order to miti-
gate it.

In the RA-domain, it was discovered that the network was most of the time not
capable of getting rid of coherent interference, and instead classified it as objects,
showing that this network structure is not suitable for interference mitigation in this
domain. This is likely due to the network not being trained against the non-linear
nature of the smearing.

62



5.2.3.2 MSE

Training the networks on MSE resulted in a better EVM and slightly worse SINR,
as visible in Tables 4.1 and 4.2. This is likely due to the object smearing that the
network has learned to recreate, see Figure 4.2f. Overall, the MSE-based network
generates the best result in Figure 4.3, where the detected objects are all similar
looking in the plots and have a unison intensity. MSE-based networks are also a
lot better at finding objects in heavily disturbed frames than its SINR counterpart,
which indicates that MSE-based networks have managed to learn how to mitigate
interference, rather than just detecting objects. It is however not as good at mit-
igating coherent interference with low clock drift, sometimes missing ghost objects
that look to similar to true ones.

Figure 4.4 and Figure 4.5 show mitigation in the RA-domain when non-coherent
and coherent interference is present respectively. By comparing Figure 4.4e with
Figure 4.5d, it is clear that the deep CNN trained on MSE performs well when it
comes to mitigating non-coherent interference but it is not able to remove the co-
herent interference.

Since the MSE-networks have been trained with smeared plots, these networks are
in theory a much better fit in the RA-domain, seeing as combating smearing is cru-
cial for learning interference mitigation in this domain. The non-linear nature of
the smearing however makes it difficult for the network to fully learn. In qualitative
assessments, it seems like the network has not managed to learn how to remove in-
terference, but rather just how to reduce noise in the spectrum. It might be that the
non-linearity in the smearing is difficult for the network to learn, and that making
changes to the network structure could yield better results.

5.3 Comparison of the Evaluation Metrics

The quantitative measurements, EVM and SINR, are not enough to determine if a
model is good or bad. For instance, a lower EVM is desirable, but the worse case
does not seem to be when the EVM is large, but rather when it is around 1.0. When
the metric starts to reach higher values than one, it is an indication that the model
has learned to identify the objects, and also how to remove object smearing from
them, yielding a much higher EVM. An EVM around one happens either by pure
chance, or when all of the prediction values are equal to zero, see (3.5), where the
latter seems to be the most common case. An EVM equal to one is therefore an
indication that the model has not managed to learn how to mitigate the interference,
instead it does not do any predictions at all. A large SINR in combination with this
often means that the model has learned noise reduction, i.e., decreased the noise
floor, but not how to mitigate the interference. This can be observed in Figure 4.5d,
where the noise floor has been reduced, but the coherent interference is still present.
Table 4.2 quantitatively presents these results, where the EVM is close to one when
the SINR is high.

Looking at Table 4.2, the EVM from the clean and the interfered domains are
seemingly the same. They do differ, but only moderately, indicating that the inter-
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ference somehow is suppressed in the RA-domain in comparison to the RD-domain.
The data set used for evaluation is the same for both domains, it is only the FFTs
performed on the data that differ. A possible explanation is that the object mask
was set to be the same in both the RD- and RA-domain, i.e., a 3x3 grid around ev-
ery object. In the RA-domain however, the energy is spread out over a much larger
amount of samples, see Figure 4.4c for an example. During the SINR-calculation, a
lot of the energy was therefore not taken into account since only a 3x3 grid was re-
garded. It is possible that the models would learn better if interference was adjusted
for the RA-domain, since right now the non-coherent and semi-coherent interference
are low in amplitude for this domain. Coherent interference seems to be at the
correct amplitude though, as visible in Figure 4.5. This has the upside of enforcing
object precision, which can be seen in Figure 4.4f.

SINR, EVM and the ROC-curve are using object masks and the metrics are only
regarding the data points that the object masks label as objects. Hence, the masks
play an important role in the evaluation metrics. The size of the object grid in the
mask, (3x3) seems reasonable when regarding the clean RD-map in Figure 4.3a and
the noise mask in Figure 4.7d because one object in the mask covers the size of a true
object. The size of the grid could however further be investigated to more optimally
capture the shape of the true objects. The grid could for instance be made smaller
to include less smearing. Generally, the chosen grid should reflect what properties
that are desired to be investigated.

The same characteristics of the object/noise mask, with a 3x3 grid, are used for
the RA-maps, shown in Figure 4.4a. However, this noise mask does not match the
shape of the objects in the clean RA-map due to the substantial angular object
smearing. This is probably the explanation of why both the SINR and EVM in
Table 4.2 are lower than for the RD-map. An object mask that would capture the
object smearing, i.e., a banana shaped grid, would perhaps increase the value of
both metrics. An idea could be to use an object mask where data points with a
power higher than a certain threshold would be classified as objects. This would
generate an arbitrary grid that could perhaps suit more maps than just the RD-map.

The reason to evaluate with ROC-measurements mainly stem from wanting to see
how many false alarms every algorithm generated. The curve shows how accurately
a true object is classified as true and a false object classified as false. This is an
important metric for radar systems, since radars are common within the automotive
and military sector, where a false alarm can have steep consequences. The ROC-
curve also shows how accurate the different algorithms can be, since a true positive
can become a false positive if it predicts the wrong location for an object.

Deciding which model that is the best from strictly assessing the ROC-curve de-
pends on the use case. The graphs in Figure 4.1 show that different models are
preferable for different use cases. If it is more important to have few of false posi-
tives, but as a trade-off miss some true positives, the deep SINR-model is preferable
since it follows the y-axis the most. If finding all the objects is more important, but
as a trade-off have more false positives, the deep-EVM is better.
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5.4 Validation on Real Data

Neural networks can be very sensitive to the input it is fed with. Even if the sim-
ulated inputs are just slightly off from what the real world looks like, the network
might not function at all. In Figure 4.9, an example of what real world data looks like
is shown, side by side with what the simulator is able to reproduce. In Figure 4.9c,
the result of what happens when real data is fed into the deep SINR-based network
is shown. The CNN has successfully managed to detect and remove the coherent
interference present at around (8, 26), which is a great feat for the network. It has
however managed to remove some of the true objects as well, for example one at (0,
8). For the plot shown, the number of data points are very few in comparison to
what the network has trained on, which might limit the performance. Furthermore,
the network has been trained on objects being randomly distributed in distance,
velocity and AoA, which is not true in the real world, since many objects are likely
to be stationary in front of the radar. Also, for real data, the signal power decreases
as the distance to the radar increases. This has not been modelled in this project
and that could make a difference for the predictions.

Figure 4.8 shows real data and how it is handled in the RA-domain. The deep
CNN has not been able to make an accurate prediction at all, see Figure 4.8c. The
coherent interference present at the range of 26 m is removed, but so are many true
objects as well. The network has lowered the noise floor, but it has not been able to
recreate the true objects. Overall the networks have struggled with RA-inputs on
simulated data, so it is not a big surprise that they fail on real data.

The fact that the CNN has been able to remove the coherent interference, with-
out being trained on real data, is promising. Using labelled real data as training
data would possibly improve the performance of the model. This could perhaps also
improve the RA-prediction.
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Chapter 6

Conclusion

Two different CNN architectures, a deep and a shallow one, have been trained for
a variety of hyper-parameters and evaluated against some conventional signal pro-
cessing algorithms, with the aim to detect and mitigate FMCW radar interference.
To create the necessary amount of data required to enable machine learning, a sim-
ulation environment was built according to the signal model. It has been shown
that is is possible to build a simulation of coherent interference with clock drift, as
well as simulating semi-coherent and non-coherent interference. The novelty that
this project contributes with is modelling especially coherent interference with clock
drift and training CNNs to mitigate it.

Besides altering the size of the CNN-models, two different objective functions were
used: SINR and MSE. The input to the network was also altered between RD-maps,
RA-maps and RDA-maps and the aim was to estimate range, velocity and AoA to
several objects in heavily interfered environments.

Different varieties of interference were evaluated against the network and the sig-
nal processing algorithms, and it was concluded that the networks outperformed its
signal processing counterparts both in quantitative metrics, and in qualitative as-
sessment. This was mainly due to the problems caused by the coherent interference
type, which inhibited the signal processing algorithm far more than the network,
who successfully managed to learn how to remove them.

By comparing the two objective functions SINR and MSE, it can be concluded
that training to minimize SINR produced a model that is useful for object detec-
tion, since it was great at distinguishing true objects from ghost objects, but it
struggled with identifying objects below the noise floor. By minimizing MSE in-
stead, the generated model became better at mitigating interference, which enabled
the detection of objects below the noise floor. However, it became less robust at
detecting and eliminating ghost objects. In summary, training on SINR reduced the
amount of false positives and training on MSE increased the probability of detection.

Future research within this area can consist of collecting more real data to train
and evaluate models outside a simulation environment. Also, using labelled real
data as training data would perhaps make the CNNs perform better on real data.
Continued investigation into modelling the amplitude of objects in front of the radar
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could also contribute to making simulated data more realistic. An increased amount
of computational power would make it possible to investigate a network with full-
scaled RDA-cubes as input to the network, instead of using down-scaled maps. It
could also enable the training of more massive networks that might manage to find
the non-linear patterns present in the RA-domain. These networks may handle vari-
able amplitudes better than the ones tested in this project. Testing different types
of object- and noise masks might improve the results, especially in the RA-domain.
A more detailed investigation of the three interference types (non-coherent, semi-
coherent and coherent) and their effects could also be performed to perhaps have
different mitigation techniques for different types of interference. Otherwise, it may
be relevant to focus on mitigating the most common interference type to limit the
complexity of the system.

67



Bibliography

[Akeret et al., 2017] Akeret, J., Chang, C., Lucchi, A., and Refregier, A. (2017).
Radio frequency interference mitigation using deep convolutional neural networks.
Astronomy and computing, 18:35–39.

[Aydogdu et al., 2019a] Aydogdu, C., Carvajal, G. K., Eriksson, O., Hellsten, H.,
Herbertsson, H., Keskin, M. F., Nilsson, E., Rydström, M., Vanäs, K., and
Wymeersch, H. (2019a). Radar interference mitigation for automated driving.
arXiv:1909.09441.

[Aydogdu et al., 2019b] Aydogdu, C., Garcia, N., Hammarstrand, L., and Wymeer-
sch, H. (2019b). Radar communications for combating mutual interference of
FMCW radars. arXiv:1807.01497, pages 1–6.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer, New York.

[Chang et al., 2019] Chang, C., Woo, A., Forry, H., Sherman, J., Recht, M., Clark,
R., and Levin, R. (2019). Hisar-300: An advanced airborne multi-mission surveil-
lance radar. In 2019 IEEE Radar Conference (RadarConf), pages 1–6.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normaliza-
tion: Accelerating deep network training by reducing internal covariate shift.
arXiv:1502.03167.

[Kim et al., 2018] Kim, J., Chun, J., and Song, S. (2018). Joint range and angle
estimation for FMCW MIMO radar and its application. arXiv:1811.06715.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv:1412.6980.

[Lavrenko and Goddard, 2016a] Lavrenko, V. and Goddard, N. (2016a). Gen-
eralisation and Evaluation, Lecture, Introductory Applied Machine Learning
INFR10069, delivered in 3 october 2019, University of Edinburgh.

[Lavrenko and Goddard, 2016b] Lavrenko, V. and Goddard, N. (2016b). Neural
Networks, Lecture, Introductory Applied Machine Learning INFR10069, delivered
in 18 november 2019, University of Edinburgh.

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolu-
tional networks for semantic segmentation. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3431–3440.

68



[Murali et al., 2018] Murali, S., Subburaj, K., Ginsburg, B., and Ramasubrama-
nian, K. (2018). Interference detection in FMCW radar using a complex base-
band oversampled receiver. In 2018 IEEE Radar Conference (RadarConf18),
pages 1567–1572, Oklahoma City.
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