TYP AV DOKUMENT					DOKUMENTBETECKNING		
\square	Examensarbete		Kompendium		LUTFMS-3391-2020		
	Delrapport		Rapport				
INSTITUTION							
Matematikcentrum. Matematisk statistik, Lunds universitet, Box 118, 221 00 LUND							
FÖRFATTARE							
Ludvig Hassbring och Jessica Nilsson							
DOKUMENTTITEL OCH UNDERTITEL							
Machine Learning for FMCW Radar Interference Mitigation							
Frequency Modulated Continuous Wave radar is used for object detection and localization, e.g., for							
surveillance purposes or for automotive systems. The amount of radars is increasing, which leads to an							
increasing amount of radar interference. The radar signals from different devices are uncoordinated and							
therefore difficult to estimate beforehand. If several radars operate on the same frequency band, mutual							
disruptions will occur. Interference can lead to false detections, i.e., ghost objects, or missed detections. If							
identical radars are interfering with each other, a specific type of interference, so called coherent interference,							
is present. This type of interference together with a phenomena called clock drift is simulated in this project,							
as well as semi-coherent and non-coherent interference. Several mitigation algorithms are used to							
reduce/eliminate the different types of interference. Convolutional Neural Networks (CNNs) are commonly							
use	used to find structure and patterns in data. By providing the network with clean data and data containing						
interference, the network can be trained to detect where interference is occurring and re-create the clean data							
set	. Since the data con	taining interfe	erence has differen	t attributes the	an clean data, interference can be		
det	tected and mitigation	can be perfo	ormed to reduce the	e interference	. Two CNN architectures, one shallow		
and	d one deep, are trair	ed and evalu	lated using simulat	ed data and t	he performance of the models are		
cor	mpared with convent	ional signal p	processing algorith	ms. The Signa	al-to-Interference-plus-Noise Ratio (SINR)		
and	d Error Vector Magn	tude (EVM)	of the different algo	orithms are co	mpared. Training the CNNs to minimize		
SIN	NR generates model	s useful for o	bject detection, eve	en when subje	ect to a substantial amount of		
inte	erference. By using I	Aean Square	Error (MSE) as the	e objective fui	nction, the trained models are useful for		
inte	interference mitigation, but ghost objects are occasionally classified as true objects. Generally, CNNs can be						
use	used as an alternative to common signal processing algorithms, especially when a majority of the data points						
are affected by interference. The complex networks are able to identify the data containing information about							
the objects, even when the data is hidden in a considerable amount of interference.							
NYCKELORD							
FMCVV radar, interference mitigation, convolutional neural network							
DOKUMENTITIEL OCH UNDERTITEL - SVENSK OVERSATTNING AV UTLANDSK ORIGINALTITEL							
UTG	IVNINGSDATUM	ANTAL SID		SPRÅK			
					_		
år 2	020 mån 05	1		svenska	a 🖂 engelska 🗌 annat		

ÖVRIGA BIBLIOGRAFISKA UPPGIFTER	ISSN
	ISBN
	2020·F42
	2020.242

I, the undersigned, being the copyright owner of the abstract, hereby grant to all reference source permission to publish and disseminate the abstract.

Signature Luling Jermon Nilsson

Date 2020-06-04