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Abstract

Limited data storage capability is a large obstacle for saving data in high energy particle
physics. One method of partially circumventing these limitations, is trigger level analysis
(TLA) as used by the ATLAS experiment. The efficiency of TLA can be further increased
by doing effective data compression.

One class of artificial neural networks are called autoencoders, which may be used for
data compression. This thesis further tests the use of autoencoders for compression of
TLA data, while showing that it may however be difficult to generalize between different
datasets. The processing resources needed to compress TLA data in real time is shown
to fit well within the computing constraints available, and that the memory usage is
predictable.

The use of different compression techniques used sequentially, by so called float trun-
cation then followed by autoencoder compression is evaluated. It is shown that autoen-
coders show that same potential to be used on both uncompressed and float truncated
data. Compression artifacts from float truncation, called double quantization, are also
explained and analytically predicted.
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Chapter 1

Introduction

The enormous amount of data produced at high energy physics experiments demands
data compression in order to utilize as much of the limited data storage available. This
thesis will explore the use of autoencoder neural networks for compression on data from
the ATLAS experiment. More specifically, jets from the ATLAS detector’s trigger will be
the data of interest.

Eric Wulff has laid the foundation of using autoencoder compression for trigger jets.[1]
This thesis further tests similar compression on different datasets, as well as evaluating
the CPU and memory costs of compression with Wulff’s autoencoders. The source code
originally by Wulff, has been expanded upon and released under the Apache 2.0 license.1

This code also serves as the basis for a Google Summer of Code project2.
Furthermore, the ATLAS Software and Optimization Team (SPOT) has been working

with a data compression technique called float truncation. The latter half of this thesis
is devoted to evaluating the results of float truncation, but also to try to use autoencoder
compression on already float truncated jet data.

1https://github.com/Skelpdar/HEPAutoencoders
2https://hepsoftwarefoundation.org/gsoc/2020/proposal_ATLASMLcompression.html
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Chapter 2

Background: machine learning

The main method for data compression in this thesis is the so called autoencoder, a type
of neural network, as known from machine learning. The background theory for machine
learning and neural networks will be explained, ending the chapter with a definition of
autoencoders and its possible uses.

2.1 Artificial neural networks

An artificial neural network (ANN) is a directed graph of artificial neurons, or nodes,
that sends information between the nodes of the network. Nodes take inputs from other
nodes on one side, process the inputs and output them to the other side. The network as
a whole, has a side of input neurons and one side of output neurons. See Fig. 2.1. The
simplest network structure with a sequence of layers taking input from only the previous,
e.g. in Fig. 2.1, is called a feed-forward network.

For every node with n real inputs ui, there is a set of real weights wi. The output of
the node is calculated as σ(

∑n
i wiui), where σ is the so called activation function of the

node.[2] The outputs of the nodes are then further propagated through to network to the
next layer of nodes. By changing the weights, the collective behaviour of all nodes can

Figure 2.1: A typical feed-forward neural network with two hidden layers.[2]
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2.2. MACHINE LEARNING CHAPTER 2. BACKGROUND: MA-
CHINE LEARNING

make the network approximate any continuous function1[3]
By having one input {~x} and one known output data set {~y}, there are algorithms to

find and optimize the weights needed for the network to approximate the desired function.
This process is called training. Each pair of inputs and outputs (~x, ~y) are sequentially
evaluated in the network, shifting the weights slightly depending on the error between the
desired output ~y and the evaluated output ŷ, as defined by some error function E. The
error function used in this thesis is the mean squared error (MSE)[2]:

MSE =
1

n

n∑
k

(ŷk − yk)2 (2.1)

for a k-dimensional input/output space.
Overfitting occurs when the network is very well trained for only the input data,

but fails when working with data it has not been specifically trained on. The opposite
phenomenon, when the network fails to approximate the desired function, it is called
underfitting.

2.2 Machine learning

The most common learning algorithm for neural networks is gradient descent (GD) and
its variant stochastic gradient descent (SGD). In summary, they work by evaluating the
network for a data-point p, with an error function E, then updating the weights wi by:

wi+1 = wi − γ · ∇pE(wi)

where ∇E(wi) is the differential of the error function as a function of the weights and
γ is a constant called the learning rate. The method of updating the weights is called
back-propagation. By iterating this procedure, the weights can approach the desired
network. The learning rate decides how large the update is in every step and often has
to be carefully chosen for the training to converge quickly enough. The updating of the
weights is computationally costly, so instead the mean differential ∇{p}E(wi) of several
points are often used instead. One set of such points is called a mini-batch. Once the
whole dataset has been trained upon, it is said that one epoch has passed.

To keep weights from exploding in magnitude during training, weight decay will de-
crease the weights during training.[4] The weights wt at step t are updated as:

wt+1 = (1− λ)wt + update from SGD (2.2)

where λ determines the strength of the weight decay. Weight decay is one of many
methods called regularization techniques, methods that try to reduce overfitting but not
necessarily the training error.[2]

All variables that need to be chosen before training, are called hyperparameters. These
include the network structure, learning rate, weight-decay constant and so on. Training

1With some additional conditions on the activation function and on the function one tries to approx-
imate.
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2.3. CHOSEN IMPLEMENTATION CHAPTER 2. BACKGROUND: MA-
CHINE LEARNING

on many different networks with different hyperparametes, to see which yields the best
results, is called a hyperparameter scan.

The Adam training algorithm[5] is a variant of SGD, that implements momentum.
In short, momentum for weights gives them inertia during training, making them less
susceptible to sudden changes in the error during training and keeps them steadily moving
towards an error minimum. A variant of Adam that uses weight decay regularization
instead of the more common L2 regularization is AdamW.[4] AdamW has exclusively
been used in the thesis work that is used as basis for this work.[6]

2.2.1 Normalization

Normalization techniques are data pre-processing methods with the goal of speeding up
the training. They do not necessarily affect the theoretical properties of whether the
network will converge to the desired function, but rather a practical tool to make them
train quicker.

The simplest normalization technique is by making the data have a mean value of
zero and a standard deviation of one. Intuitively, this is because weights are initialised
randomly between zero and one, and would have to be increased many times if they
needed to approach large values.

In this thesis, we will not use the standard normalization technique for all data. Some
distributions with large ranges and high distribution peaks, can benefit from undergoing
a logarithm instead of just a division by the standard deviation. The logarithm can
sometimes preserve more features of the distribution, instead of creating a sharp peak
around zero.2 This can have beneficial effects on training, but is something that simply
has to be tried to see whether it is effective or not.

2.3 Chosen implementation

PyTorch[7] is an open-source Python library for machine learning. It supports most
common machine learning algorithms, with possibility for distributed computing (using
the gloo, mpi and nccl frameworks) and graphics card utilization (through CUDA). Such
techniques for optimising the training are important, as training can be very time con-
suming. The data format of trained models in PyTorch can also be made to run on FPGA
electronics[8], proving useful for particle physics experiments.

2.4 Autoencoders

An autoencoder is a network that is designed to reconstruct its input, i.e. the input and
target output datasets are the same. The sub-class of autoencoders that are of interest
for compression, are those with a hidden layer that is smaller than the input layer, called
the latent space. See Fig. 2.2.

If such a network manages to train and reconstruct the input data, it means that
the latent space is a representation of the data that carries all information needed. The

2See the normalization of mass and transverse momentum later in the thesis.
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2.4. AUTOENCODERS CHAPTER 2. BACKGROUND: MA-
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Figure 2.2: A typical 4-3-4 autoencoder.

latent space thus holds a compressed version (dimensionality-reduced) version of the data,
where the left part of the network compresses to the latent space, while the right part
decompresses the data. As the networks will not train perfectly, the compression and
decompression will be a lossy process. (That is, the autoencoder does not perfectly learn
the identity function.) And the decompressed data will be deformed.

The metric to evaluate the quality that the data retains from being compressed and
decompressed is the residual. For an original real value x, that goes to x̂ after being
evaluated in the network, the residual is defined as:

residual =
x̂− x
x

(2.3)

The ambition is for the residuals of the dataset to all be zero, which indicates that the
network perfectly compresses and decompresses the data.
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Chapter 3

Background: data from the ATLAS
experiment

This chapter will briefly explain the physics background to the thesis, motivating the data
compression to be made, as well as explaining the specific physics of interest. It will touch
upon the current searches for new physics, the ATLAS experiment, how measurement data
is chosen to be saved (triggering) and how this relates to data compression.

3.1 The Standard Model

The standard model of physics (SM) is a theory of the fundamental particles and forces
in physics. It includes three groups of fundamental particles: The quarks, the leptons and
the bosons, shown in Fig. 3.1.

The three forces described by the SM are: The electromagnetic force, the weak force
and the strong force. The quarks interact with the strong force, mediated by gluons,
following a theory called quantum chromodynamics(QCD).

The SM is not considered complete, as it fails to describe some phenomena of our
universe, e.g. dark matter as known from astronomy.[10] Particle physics theory and
experiments try to extend the SM, to explain these phenomena.

3.2 Kinematics of relativistic particles

The kinematics of relativistic particles can be described by the four momentum (E, p1, p2, p3),
where E is the particle energy and pi are the momentum components. This form of de-
scribing it is useful to simplify transformations in special relativity, as discussed in e.g.
Martin and Shaw’s Particle Physics.[11]

Energy conservation imposes that the sum of the four momenta of incoming particles
equals exactly the sum of outgoing four momenta. Four momentum is therefore preserved
in a collision. For two particles head-on in a collider, the momentum that is transverse
to the particle beam will be zero. The transverse momentum thus becomes a measure
of momentum, that ignores all the momentum that is parallel to the beam. A particle
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3.3. JETS CHAPTER 3. BACKGROUND: DATA
FROM THE ATLAS EXPERIMENT

Figure 3.1: Particles in the standard model of physics.[9]

from the collision with a non-zero transverse momentum will imply the existence of one
or more particles that cancel out the transverse momentum.

The invariant mass m0 of a particle, independent of the frame it is observed in, cor-
responds to its rest mass. By measuring the four momenta of all outgoing particles from
a particle decay, one will therefore also be able to infer the invariant mass of the particle
decaying. This technique is used to find the masses of particles that decay very shortly
after their production, as they can not be detected directly. See Fig. 3.2.

Another equivalent description of the four momenta uses the energy E, the trans-
verse momentum pT , the azimuthal angle φ and the pseudo-rapidity η. The transverse
momentum is relative to the particle beam. The psuedo-rapidity η is defined by:

η = − ln(tan(
θ

2
)) (3.1)

where θ is the angle from the beam, whereas φ is the angle around the beam. It is
convention that the angular distance between particles with angles (φ1, η1) and (φ2, η2) is
defined as:

∆R =
√

(φ2 − φ1)2 + (η2 − η1)2 (3.2)

3.3 Jets

A property of quarks due to the strong interaction of quantum chromodynamics (QCD), is
that they are never observed in isolation and instead they are rather found in groups, in so
called hadrons[13]. Quark-antiquark pairs with sufficient energy may split up, fragmenting
into two or more streams of hadrons (if energetically possible).[11] This process is called
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3.4. THE ATLAS EXPERIMENT CHAPTER 3. BACKGROUND: DATA
FROM THE ATLAS EXPERIMENT

Figure 3.2: Diagram of a dark matter mediator, being created and then decaying.[12]

hadronization. The stream of hadrons will have limited transverse momentum relative
to each other, keeping most of them moving in the same direction, allowing detectors to
identify them as so called jets (i.e. the hadronization is not isotropic).[13]

A jet can approximately be described by a single jet axis if one would not take into
account all the individual particles in the jet, instead seeing the jet as a single central
particle-like object.

The identification of jets from raw calorimeter data or particle constituents can be
done using jet clustering algorithms, such as the anti-kt algorithm.[14] This thesis will not
be concerned with the identification of jets, but rather only by jets that have only been
clustered by the anti-kt algorithm with a radius of 0.4.

The energy and momentum of a jet is the sum of the individual energies and momenta
from the constituent particles (from the calorimeter detector cells). For the direction of
the jet, the azimuthal angle φ and pseudo-rapidity η is sufficient. This description of a
jet does not consider the shape of it, but can none the less be sufficient for analysis.

A particle scattering through a resonance occurs when a particle collision creates a
particle (the resonance or mediator particle) that shortly decays. See Fig. 3.2. For
unstable particles that then decay into e.g. two partons (quarks or gluons) and generate
jets, this probability is described by a Breit-Wigner distribution.[13] The probability of
creating such a resonance particle is larger if the center-of-mass energy of the colliding
particles is near the mass of the resonance particle.[13] The way of identifying the mass
of such resonance particles that are too short lived to be detected directly, is instead to
find the energies where such a resonances occurs.

3.4 The ATLAS experiment

The Large Hadron Collider (LHC) at CERN, Genéve, is a particle accelerator that accel-
erates protons (and heavy ions) to collision energies of 14 TeV. One of the larger particles
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Figure 3.3: Cross section of the ATLAS detector.[15]

detectors at the LHC is ATLAS[15], a cylindrical detector built around the collision point,
consisting of four layers, from inmost to outmost:

1. Charged particle tracker;

2. EM-calorimeter;

3. Hadronic calorimeter;

4. Muon spectrometer.

see Fig. 3.3.
A tracker is a detector component that measures the momentum of charged particles

through their track curvature. Calorimeters instead scatter the particles inside the de-
tector, to measure their energy. This removes most of the kinetic energy of the particle,
causing them to not travel further through the detector. The EM-calorimeter absorbs
the energy of charged particles interacting electromagnetically, while hadronic calorime-
ter absorbs the energy of all hadrons. The calorimeter is segmented into many individual
calorimeter cells, allowing one to measure in which directions that particles deposit their
energies. In the outer muon spectrometers, most charged particles except the muons will
have been absorbed in the calorimeters, permitting the detection and measurement of the
momentum of the muons.

3.4.1 The ATLAS trigger

The number of proton-proton interactions within the ATLAS detector can surpass 109

per second, making it impossible to save all collision events, due to limitations in both
processing power and storage. A selection of which events to save for further analysis is
done by a system called trigger. The ATLAS trigger has to work quickly to cope with
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3.4. THE ATLAS EXPERIMENT CHAPTER 3. BACKGROUND: DATA
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Figure 3.4: In this analysis, the dijets saved by the trigger (in blue) is prescaled for low
mass dijets, to match the falling distribution expected from QCD. All events are shown
in red.[18]

the high collision rate without too much backlog. The trigger at ATLAS is split into two
sequential parts: First the events pass through the Level-1 (L1) trigger implemented in
hardware, which reduces the number of events to a rate of 100 kHz, based on a rough
event reconstruction from the calorimeters and muon detectors. The software-based High
Level Trigger (HLT) then reduces the L1 selected events that can be stored to disk in full
to about 1 kHz [16].

The HLT reads data from the calorimeters and groups the energy measured in calorime-
ter cells into three-dimensional topological clusters. The clusters are then grouped into
jets, using the anti-kt jet clustering algorithm. The HLT bases some of its decisions on
whether to keep an event based on the transverse energy ET (transverse to the beam) of
the measured jets. [17]

It is known from QCD that a lot of jets will be created during proton collisions, that
are not from resonances or other signals. We refer to these jets as the QCD background.
At many energies the QCD background is large, which then requires high statistical
certainties to be able to identify signals above the background.

Due to the limited bandwidth of 1 KHz, it is not possible to save all low-pT single
jet events. To preserve the distribution of background jets known from QCD, the trigger
only saves a known fraction of low-pT events, from which the expected number of jets
can be extrapolated, so called pre-scaling. Events from resonances above the QCD back-
ground may also be discarded by this process, as they are prescaled by the same factor as
background. The consequence of this is a larger statistical error on the number of events
at lower dijet invariant masses, which makes it more difficult to identify jet resonances
over the already large QCD background. An example of prescaling is seen in Fig. 3.4.
The key to successfully identifying resonances over the large background, is noting that
the QCD background is smooth and that the trigger saves resonance events properly (i.e.
not discarding them more than the background).
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Figure 3.5: Estimated storage capacity in black, with expected needs in scattered points
above, from two different models. [20]

3.5 Trigger level analysis

By only saving a certain interesting part instead of the full event, we can increase the
number of events saved while still fitting within the storage limitations. By then only
saving the small set of information concerning only the partial reconstructions of jets by
the HLT, we gain access to much higher statistics for low mass dijet resonances, increasing
the number of events saved by a hundred-fold[19], with only a small increase in storage
resources. This technique is called trigger level analysis (TLA).

The reduced set of information stored contains jets reconstructed in the HLT trigger,
without any raw calorimeter cell data or tracking data. It does however contain data
about the shape and quality of the identified jets.

Even though searches for dijet resonances below the TeV have been performed and
are ongoing, increasing the amount of data collected, especially in the high-luminosity
upgrade of the LHC, might yield further insights and discoveries. One motivation for this
kind of searches is that particles mediating interactions between the SM and dark matter
may decay into dijets and have masses below 1 TeV. Searches for dijet resonances below
one TeV, using TLA and a similar technique, have been done by both ATLAS and CMS
respectively. Both of these searches did not find any new resonances so far [17] [18].

Storage limitations are going to become more severe after the high luminosity upgrade.
In Fig. 3.5, it is seen that the growth in expected storage needs outpace that of the budget
for disk space. Compression of jets in the trigger would serve a dual purpose, reducing
the space needed to store the final events but also to save space in the limited band-width
between the different computational units.

The rest of this thesis will concern improvements to the TLA technique in terms of
compressing the TLA data[1] even further, so that a larger number such partial events
can be saved in future iterations of this search.
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Chapter 4

Compressing ATLAS jets

This chapter will explore two methods of data compression, using autencoders and so
called float truncation. The use of the autoencoder compression will be tested and evalu-
ated, while the concept of float truncation will be introduced for the next chapter, where
autoencoder compression will be chained together with float truncation.

4.1 Compressing trigger jets for TLA

Autoencoders have shown potential to be used as a compression for trigger jet data. To
counteract the storage limitations, data compression would further increase the effective-
ness of TLA. E. Wulff has explored compression of jet four-momenta and 27-dimensional
ATLAS jet trigger data.[1]

The networks studied are all linear feed-forward networks, trained with the AdamW
optimization algorithm and using weight decay for regularization. The networks were
all implemented using the PyTorch[7] Python library, interfaced through the fastai[21]
library.

The following sections will cover compression of different datasets, evaluating their
compression and reconstruction abilities, as well as measurements of their real-time pro-
cessor and memory usage.

4.1.1 4D TLA autoencoder compression

Compression of jet four-momenta down to three dimensions has been successfully applied
in a network with layers 4-200-200-20-3-20-200-200-4, with tanh as the activation func-
tion.[1] The best results from that search, with a dataset here on called the N-tuples,
can be seen in Fig. 4.1. These are a set of leading jets (the jets with largest transverse
momentum in a collision) provided by Brian Reynolds (Ohio State University).[1]. Their
residuals can be seen in Fig. 4.2 and trained to a MSE = 5.246327 · 10−7.

The same procedure with a TLA dataset will now be described. It contains all jets
from a sample of trigger data, not just leading jets. Fig. 4.3 shows the distriubutions of
the input data.

The data is then normalized to speed up training, using the same scheme as for the
N-tuples in Wulff’s thesis when compressing 4-dimensional input.[1] φ and η are simply
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Figure 4.1: Input and decompressed data in the N-tuples dataset.

Figure 4.2: Residuals and their correlation in the N-tuples dataset.[1]
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Figure 4.3: Four momenta of TLA data.

Learning rate Epochs
1 · 10−3 10
1 · 10−4 100
1 · 10−5 100
1 · 10−6 until the error stop decreasing

Table 4.1: Training procedure for 4D TLA data.

subtracted by their respective mean and divided by their respective standard deviation.
For the variables pT and m with a wide spectrum of values and a sharp peak, a logarithmic
normalization was applied. See Fig. 4.4

The network used is a linear feedforward autoencoder with layers:

4− 200− 200− 20− 3− 20− 200− 200− 4

which yields a 4/3 compression ratio. It has tanh as its activation function and a weight
decay constant λ = 1 · 10−6. The initial learning rate and the number of trainings epochs
are describe in Table. 4.1.

The residuals show that the network fails to train on the TLA dataset, which was not
tried in Wulff’s thesis. For m the values can be as much as 50 % away from their original
values. Comparably the N-tuples dataset has residuals mostly below 0.5 %, as seen in
Fig. 4.2. The two most poorly trained variables m and pT show some very strong and
complex correlations. Looking at the correlations in Fig 4.2 there are no such complex
structures.
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Figure 4.4: Normalized four momenta of TLA data.

Figure 4.5: Residuals and correlation of residuals, from four-momenta variables in TLA
data.
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4.1.2 Discussion on non-triviality of compressing four-momenta

One can wonder why this data set did not train well, while the N-tuples did. For a network
to learn the representation of jet four-momenta, there should naively be no theoretical
differences depending on the data set.

To compress an inherently 4D data set to 3D, there has to be some underlying structure
to it for the network to learn. Lack of such structure in the TLA data set is a possible
cause of the failed training. Inferring any knowledge about the internal structure of the
data is likely most easily done by training on it rather than a priori methods. However,
methods from the mathematical field of information theory could be beneficial to possibly
distinguish features of a dataset that suggest whether or not that it can be compressed
efficiently.

A 27-dimensional network compressing a similar TLA data set can be found in E.
Wulff.[1] With additional variables somewhat correlated with the four-momentum, the
27D network successfully manages to learn a latent space representation of it, with resid-
uals mostly below 8%. Whatever the cause, the poor training of the 4D TLA dataset
suggests that any set of four-momenta can not naively be trained using a only a simple
network and training procedure such as this.

One prime candidate to try to improve, is the learning capacity of the network. The
capacity for the network to learn a latent space representation of the data can be improved
by increasing the number of layers in the network, finding an optimal learning rate and
decreasing the weight decay constant.[2] Hyperparameter scans to find the optimal choices
for these should naturally be done, but they are time and computing demanding. Addi-
tional learning capacity by means of larger networks has to have the real-time evaluation
in the trigger in mind, as large amounts of data need to be evaluated quickly and with
reasonable memory overhead.

Comparing the data of the TLA versus N-tuples data in figures 4.6 and 4.7, the data
shows no apparent obvious structural differences that would impact training, though
the success of compressing them shows major differences. How the whole 4D dataset is
structured is difficult to visualise, but is what truly shows the internal structure between
the four variables. A high-entropic sparsely distributed dataset would be difficult to find
a latent space representation of, while if the dataset was approximately some 4D smooth
manifold it would be simpler. This further encourages information theoretic and manifold
learning approaches to the problem, by investigating entropy estimation techniques.[22]
A possible source of internal structure could come from compressing dijets, three-jets or
N-jet events simultaneously, instead of only single jets.

We did not investigate this matter further in this thesis, because our goal was to use
more realistic variable sets that went beyond the jet four-momentum.

4.1.3 27D TLA data

A dataset that is a more realistically to be used, consists of the TLA jets but also including
all variables about the shape and quality of the jets. This dataset will be refered to as the
27D TLA dataset, as it is effectively 27-dimensional. The only data missing from the full
description of the trigger jet, is data of variable size, which is difficult to accommodate in
a neural network with constant input size.

16



4.1. COMPRESSING TRIGGER JETS
FOR TLA

CHAPTER 4. COMPRESSING AT-
LAS JETS

Figure 4.6: TLA mass data to the left and N-tuples energy data to the right.

Figure 4.7: TLA pT data to the left and N-tuples pT data to the right.
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This dataset was extensively explored in Wulff[1] and will only be briefly recapitulated
here. The residuals of the best training achieved, are for the four momentum seen in Fig.
4.8.

Figure 4.8: Residuals from the 27D TLA autoencoder compression.[1]

4.1.4 Performance analysis

If real-time compression is to be used in the HLT, it must be optimized to fit the CPU and
working-memory constraints of the hardware available. The processing time for one single
event averaged to 235 ms, in 2015.[19] As this might not be the limit for the measurements
starting in 2021 or the High Luminosity-LHC in 2026[23], it only gives a rough idea of
the current processing-time limitations. Furthermore, this estimate is complicated by the
fact that the processing-time per event does not scale linearly with luminosity.

The acceptable residuals from compression are naturally dependent on the analysis to
be done on the data. A 0.5 % error might not be usable for precision measurements, but
might be acceptable in searches for resonant excesses in invariant mass distribution.[24]
A useful analysis to find concrete limits for the wanted residuals, would be to try to find
resonances on compressed data, including seeing whether resonances disappear or false
resonances appear.
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Figure 4.9: CPU-cycles needed to compress and decompress one single 27D-jet. Note the
small relative difference on the vertical axis.

Single jet processing time

Compression will in practice not be done only on four-momenta, but rather on the other
variables of the jets as well. The dataset is in practice 27-dimensional, because some
vectors of variable length are not compressed, as the autoencoders need inputs of constant
dimensions.

As the speed of compressing and decompressing a single jet will be heavily dependent
on the processor in question, a more useful metric is the CPU-cycles used during the
process, which would only be dependent on the CPU architecture (x86 for the following
tests). The Python library hwcounter carefully measures the elapsed CPU-cycles, but does
not filter out overhead from background processes that might run on the same threads.

Fig. 4.9 shows the cpu-cycles needed to compress and decompress a single jet in a
network of size:

27− 200− 200− 200−X − 200− 200− 200− 27

where X is the latent space dimension and with activation function σ = LeakyReLU.1

Multiplying the average number of jets in an event (which is about 4.61) by the time
needed to compress and decompress a jet, we find that all of an events jets would take
about 6 µs (on a 3 GHz processor for example) to compress and decompress. This is only
a rough estimate, because in practice one would compress raw data from the trigger rather
than the processed saved samples used here. Also, decompression wouldn’t be done right
away, but rather the data would be saved after only compression of course. The small
time scales involved suggests that it fits well within the time constraints of the HLT.

Single jet memory usage

Table 4.2 shows the memory overhead2 of compressing and decompressing single jets, with
the network in the previous subsection. One can see clearly that the differences are small,

1LeakyReLU =

{
x if x > 0

0.01x otherwise
2Technically, the size of the memory heap allocated by the program.
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Latent space dimension Memory overhead (bytes)
8 115242149
10 115239753
12 115239753
14 115239753
16 115239825
18 115241262
20 115239753

Table 4.2: Memory usage when compressing and decompressing 27D jets, not including
the data itself.

as the number of weights are not very different between the different networks, all being
around 115 MB.

With latent space dimension X, the number of weights are:

# = 2 · 27 · 200 + 4 · 200 · 200 + 2 ·X · 200 = 170800 + 400 ·X

The relative sizes are thus weakly dependent on X. The file sizes of the trained networks
all average around 2 MB each, suggesting that most of the memory overhead does not
come from the network itself.

4.2 Sampling data

In the remainder of the chapter, an alternative method for compressing data is discussed.
The compression method of float truncation works by decreasing the precision of floating
point numbers by simply removing their least significant digits. This compression is
currently studied by the ATLAS Collaboration. Later, the thesis will be dedicated to
chaining this compression technique together with the autoencoders, seeing what effects
this has on the residuals. A complete explanation of the float truncation to be used is
found in appendix D.

4.2.1 Floating point numbers

A floating point number (float), i.e. a non-integer value with decimals, is digitally stored
as m · 2e, where m is called the mantissa and e is called the exponent, much like normal
scientific notation. According to the IEEE standard for floating point numbers[25], a
single precision float consists of 32 bits, with 23 for the mantissa and 8 for the exponent,
with a single last bit controlling the sign of the number. This 32 bit single precision float
is what is usually called a float in C++ or Python (it is not in the standards, but rather
the most common implementations).

The length of the mantissa is what determines the accuracy of the floating point
number, where a float with exponent e and a mantissa of m bits will have an accuracy of
2e · 2−m−1, dividing each interval that different exponents rule into 2m subdivisions.
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Figure 4.10: Residuals from float-truncation on jet four-momenta, from a 23- to 7-bit
mantissa. The dataset shown here is a sample provided by the ATLAS Collaboration for
evaluating the float truncation, one with experimental data and one from monte carlo
simulations. Worth noting is that the residuals are similar for experimental data and
monte carlo simulations.

4.2.2 Float truncation

The most simple way of compressing floating point numbers is to reduce their precision, so
called downcasting or truncation, by reducing the length of the mantissa. The following
subsection will later explore what effects downcasting from a 23-bit mantissa to a 7-bit
(m = 7) mantissa has on the data.

For an example of float truncation from a 23 to 8 bit mantissa, being applied on
the four-momenta of single jets, see Fig. 4.10. Here we see that the residuals are below
2−7−1 ≈ 0.004, with most values having a smaller residual. This matches what is expected
from theory.

It is worth noting is that the data before float truncation is not really continuous,
as they are floats as well, albeit of much more accurate resolution. Due to the precision
being much higher, it can be treated as continuous to simplify the notation in the following
subsections.

4.2.3 Quantization

Artifacts may appear in the data after float truncation, if it is then followed by making it
a histogram, see Fig. 4.11. The artifacts of so called double quantization will be described
in this chapter, beginning first with defining quantization formally. Moving away briefly
from the special case of float truncation to quantize some continuous data, the general
case will be described. Here a quantization function q brings some probability distribution
function (PDF) to a set of discrete, quantized, values that are equally spaced. To quantize
a number to a lower precision ∆ by simple rounding, we use the quantization function

q∆(x) = ∆

⌊
x

∆
+

1

2

⌋
(4.1)
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Figure 4.11: Raw data for jet φ in black against it being float truncated in orange. The
double quantization artifacts are visible as high peaks.

This will round upwards for numbers in the exact centre of the interval. If the incoming
probability density function is continuous (or close to it for all intents and purposes) those
central values would have a negligible effect on the results.

For float truncation, ∆ = 2−m ·2e for an m-bit mantissa, i.e. the precision for the least
significant bit (LSB) in the interval for some exponent e.

4.3 Double quantization

After this aggressive float truncation has been applied on the data, binning it in a new
histogram may yield strange artifacts. See Fig. 4.11. Peaks and troughs are created that
do not seem to fit the original distribution. This effect is called double quantization and
appears when data is quantized twice in succession. It is worth pointing out here is that
binning data in a histogram, is technically the same procedure as sampling it to a lower
precision, with the half of the bin width as precision.

To intuitively explain this phenomena, Fig. 4.12 shows part of the phi spectrum. The
original data in black is compressed to two decimal places, to the positions of the blue
lines. When binning this already compressed data to the orange histogram, peaks and
troughs appear due to the new bins being able to pick up several or fewer of the underlying
discrete data points. If the discrete data and the the binning is out-of-rhythm, this effect
may occur.

To clearly see the phenomenon of double quantization artifacts, consider a uniform
distribution on [0, 1], see Fig. 4.13, that is first rounded to two decimals and the rebinned.
This shows that the phenomenon will clearly appear, even though the input distribution
is constant. See Fig. 4.13. Analytical expressions for double quantization on a uniform
distribution can be found in appendix E.3

3This effect of double quantization is used in image forensics to determine whether an image has been
compressed twice.[26]
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Figure 4.12: Clear peaks from double quantization in φ. Raw data in black, double
quantized data in orange. The blue lines represent the positions that values are rounded
to during float truncation.

Figure 4.13: A uniform distribution (blue) being rounded to two decimal places and then
double quantized into 13 bins (orange). This shows clearly shows the peak and troughs
artifacts of double quantization.
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Chapter 5

Chaining compression

5.1 Chaining compression

5.1.1 Float truncation chaining

To show the effects of training an autoencoder on float truncated data, data samples
were provided by the ATLAS experients software optimization team (SPOT). The data
in question is not TLA data, but rather a simulated dataset containing top-antitop events
including jets, that contain 15 variables related to jets. The data can be seen in appendix
A. The double quantization effects are clear in some of the histograms, but one should
remember that these are merely artifacts from making histograms of the float truncated
data.

The data is thus compressed in the following way:

Original data→ Float truncation→ AE compression→ AE decompression

The reason for not doing this in another possible compression order, is that it is likely
float truncated trigger data that will be actually available for further compression and
not the other way around, with no stream of uncompressed data coming from the trigger.

The autoencoder was a linear feed-forward network with shape:

15− 200− 200− 200− 10− 200− 200− 200− 15

with LeakyReLU as the activation function and a weight decay constant λ = 10−2.

5.1.2 Normalization

The normalization for the four momentum is similar to the TLA data, while the other
variables are simply subtracted by their mean and divided by their standard deviation.
See appendix B for all normalized data distributions. In the following results section, it
will be seen that the four momentum is trained most poorly and might be needing more
careful normalization pre-processing. The full normalization scheme can also be found in
appendix B.
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Figure 5.1: Residuals of the four momenta in the 15-10-15 autoencoder trained on float
truncated data. (With negligible tails after 15 %)

Figure 5.2: Some residuals from the 15-10-15 training that are not symmetric around 0.

5.2 Results

The model trained to a MSE = 0.000280, after about 12 hours (exclusively trained on
a CPU). All residuals and some chosen correlation plots (out of 120) can be found in
appendix C.

The residuals are all mostly below 10 % while most are even below 1 or 2 %. This
shows that enough structure in the need is preserved during float truncation, to allow
compression by the autoencoder. Fig. 5.1 shows the residuals of the four momenta, that
are all compressed mostly below 10 %.

5.3 Discussion of results

If the four momenta are too important to be compressed with errors of this magnitude, one
could keep them in the following manner, saving them as well as using them to compress
the latent space. A compression done in the following scheme:

Float truncated Four-mom

Other variables Autoencoder Output

If A variables out of a total N are saved, then the compression ratio is of course slightly
worse at N/(X + A), where X is the latent space dimension.

As PyTorch casts the truncated floats back up to a 32-bit representation when evaluat-
ing the autoencoders, it would be important to see if it is viable to float truncate the latent
space, as that is what is saved in the end. If the autoencoder manages to decompress a
float truncated latent space, then this procedure promises even further compression gains.
However if the autoencoder does not naively manage to decompress the float truncated
latent space, there might be network structures that can incorporate, and train on, a float
truncation step in the middle of the network.
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Chapter 6

Outlook

In this thesis, the use of autoencoder neural networks for compression of trigger jets at
the ATLAS experiment, has been further explored, following the work of Eric Wulff.[1]
This compression is motivated by the limited bandwidth in the ATLAS trigger and the
limited data storage possibilities, with the goal to increase the number of events stored
with the trigger level analysis technique.[18]

Wulff’s work[1] shows that compression ratios up to almost three are possible for TLA
using autoencoder compression. This thesis highlights that the compression of every type
of dataset requires specific fine tuning. It is also the case that datasets holding similar
variables can be easier or more difficult to compress, depending on the data’s structure;
these differences may be hard to quantify.

The CPU and memory usage comparisons show that the resources needed are not
strongly dependent on the latent space size, indicating that the compression abilities are
a more impactful metric to look for when choosing the latent space size.

Float truncation is a simple lossy compression technique that compresses data by
reducing the precision of floating point numbers. A technique that is currently being
evaluated for use in the ATLAS experiment is reviewed in this thesis, and truncated
data used as input for autoencoder compression. This thesis shows that autoencoder
compression is also applicable, even on already compressed low precision, float truncated
data.

6.1 Further studies

Just as in the chapter about chaining AEs and float truncation, chaining with other
compression algorithms can be explored. The zfp[27] compression algorithm is a recent
development that show potential for effective and quick compression of high-dimensional
data.

As the residuals of some variables might have tighter requirements on their bounds,
one could use other error functions to accommodate just that. One could imagine a
weighted version of the MSE, so that important variables yield a larger error than those
weaker requirements on the errors. To determine the weights, an approach of differentiable
programming through both the compression and physics analysis steps could possible be
used.[28]
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6.1. FURTHER STUDIES CHAPTER 6. OUTLOOK

Lossless compression on the latent space might be less effective than on the non-
compressed data itself. It would be valuable to measure how much less effective, and
whether lossless compression on its own yields better compression ratios than lossy and
lossless compression together.

Improved compression performance may be achieved by compressing several jets at
the same time, as there might be some additional structure in the relations between jets.
This could be done either through larger input-dimensions holding dijets, three-jets etc.,
or using recurrent neural networks to compress N-jets sequentially.
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Appendix A

15-dimensional float truncation data

The 15-dimensional dataset for training on float truncated data holds the following vari-
ables:

pt m ActiveArea4vec phi JVFCorr Width
eta ActiveArea4vec eta ActiveArea4vec pt FracSamplingMax EMFrac
phi ActiveArea4vec m Jvt FracSamplingMaxIndex Timing

Figure A.1: Data with and without float truncation, in orange and black respectively.

Figure A.2: Data with and without float truncation, in orange and black respectively.
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APPENDIX A. 15-DIMENSIONAL
FLOAT TRUNCATION DATA

Figure A.3: Data with and without float truncation, in orange and black respectively.

Figure A.4: Data with and without float truncation, in orange and black respectively.

Figure A.5: Data with and without float truncation, in orange and black respectively.
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Appendix B

15-dimensional normalized float
truncation data

Figure B.1: Normalized float truncated data.

Figure B.2: Normalized float truncated data.
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APPENDIX B. 15-DIMENSIONAL
NORMALIZED FLOAT TRUNCA-
TION DATA

Figure B.3: Normalized float truncated data.

Figure B.4: Normalized float truncated data.

Figure B.5: Normalized float truncated data.
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Appendix C

15-dimensional float truncation
compression residuals

Figure C.1: Residuals from compressing the already float truncated data.

Figure C.2: Residuals from compressing the already float truncated data.

Figures C.6, C.7 and C.8 show some chosen correlations between residuals.
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SION RESIDUALS

Figure C.3: Residuals from compressing the already float truncated data.

Figure C.4: Residuals from compressing the already float truncated data.

Figure C.5: Residuals from compressing the already float truncated data.
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Figure C.6: Residuals from 15-10-15 AE compression on float truncated data.
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SION RESIDUALS

Figure C.7: Residuals from 15-10-15 AE compression on float truncated data.
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SION RESIDUALS

Figure C.8: Residuals from 15-10-15 AE compression on float truncated data.
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Appendix D

The float truncation algorithm

Following is an explanation of the float truncation in practice, as implemented in the
ATLAS offline software ATHENA[29]. This is to show that it matches the theoretical
description of rounding that the thesis assumes.

A 32-bit floating point number is (usually) stored in the following way:
s eeeeeeee mmmmmmmmmmmmmmmmmmmmmmm

where s is the sign, e the exponent bits, and the m:s a 23-bit mantissa. The trick is to
see this not as a floating point number, but to see it as a long integer. Doing this, allows
one to use integer arithmetic and bit-wise logical operations on the float.

Rounding the float to a 7-bit mantissa requires two steps, first adding half the size of
the least significant bit. I.e. a number that is 1 at the eight mantissa bit:
0 00000000 00000001000000000000000

Then the float is rounded down, to the nearest 7-bit mantissa number below, by zeroing
all mantissa digits after the 7:th:
x xxxxxxxx xxxxxxx0000000000000000

This matches the description of rounding used in the theoretical sections.

D.1 Matching

During float compression, the order of jets within an event may change. That is, a leading
jet may not for example still be the leading jet after float compression.

Then to compare the compression of individual jets between two datasets, there has
to be a matching process to see which jet is which before and after compression (as jets
here do not contain an unique identifier).

The most simple metric to determine whether to jets travel in the same direction is
by their angular separation ∆R. For jets this is a sufficient condition for matching, as
jets do not overlap. Leptons however may overlap, and further matching conditions are
needed. A simple measure is to also consider the relative change in pT , which will match
most, but not all, leptons correctly.

D.2 Other residuals
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D.2. OTHER RESIDUALS APPENDIX D. THE FLOAT TRUN-
CATION ALGORITHM

Figure D.1: Residuals for float compression on electrons, matched by ∆R < 0.01 and
∆pT/pT < 0.005. The tails on the residuals are likely due to incorrect matching.

Figure D.2: Residuals for float compression on muons, matched by ∆R < 0.01 and
∆pT/pT < 0.005. The tails on the residuals are likely due to incorrect matching.
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CATION ALGORITHM

Figure D.3: Residuals for float compression on photons, matched by ∆R < 0.01 and
∆pT/pT < 0.005. The tails on the residuals are likely due to incorrect matching.

42



Appendix E

Double quantization

Figure E.1: The blue crosses show the position of peaks from double quantization on a
uniform distribution on [0, 1], as a function of the number of equidistant bins on [0, 1].
The orange crosses are the expected peaks from the pure analytical case.

Analytical expressions for double quantization effects have been derived before.[26]
Here follows a proof in one dimension, for a double quantization analytical expression
from rounding twice, as in Eq. 4.1.

Assume we have a continuous probability distribution function x(t). It is first quan-
tized by the rounding:

q∆1(x(t)) = ∆1

⌊
x(t)

∆1

+
1

2

⌋
(E.1)
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to a precision of ∆1. It is then followed by a second quantization of precision ∆2:

q∆1,∆2(x(t)) = ∆2

⌊
∆1

∆2

⌊
x(t)

∆1

+
1

2

⌋
+

1

2

⌋
(E.2)

Let z be a point in the the image of q∆1,∆2 , let us solve for the u in the domain of x(t)
that map to z, i.e. q∆1,∆2(u) = z.

z

∆2

≤ ∆1

∆2

⌊
u

∆1

+
1

2

⌋
+

1

2
<

z
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+ 1 (E.3)
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The set of u that map to z is trivially a connected set on the domain of x(t),
[umin, umax]. To solve for umin:⌊

umin

∆1

+
1

2

⌋
=

⌈
z

∆1

− ∆2

2∆1

⌉
(E.6)

⇒ umin = ∆1

(⌈
z

∆1

− ∆2

2∆1

⌉
− 1

2

)
(E.7)

Similarily for umax:

umax = ∆1

(⌈
z

∆1

+
∆2

2∆1

⌉
− 3

2

)
(E.8)

The size of the domain for some point z is then defined as:

n(z) = umax − umin = ∆1

(⌈
z

∆1

+
∆2

2∆1

⌉
−
⌈
z

∆1

− ∆2

2∆1

⌉
− 1

)
(E.9)

which is the final expression. This is a (most often non-constant) periodic function, that
varies how much of the input domain that contributes to the final quantized binning,
depending on the bin’s position z. For a uniform distribution, bins coinciding with a
maximum of n will be peaks and those coinciding with the minimum will be troughs.
This explains the periodicity of the peaks independent of the original PDF. However, the
size of the peaks will be dependent on the PDF, as every bin will have a height:

H(z) =

∫ umax

umin

x(t)dt (E.10)

In Fig. E.1, we see a large overlap between simulated peaks and what is expected
from this analytical expression, with notable exceptions for some partitions of [0, 1] where
the simulation yielded no peaks. The boundary also doesn’t match, which is explained
by that n(z) doesn’t expect the distribution to end outside of [0, 1].
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E.0.1 Magic binning numbers

The scatter plot in E.1 shows that for some choice of bins, we get no large effects from
the double quantization artifacts. There is therefore a posibility to choose the binning
to minimize these effects. These magic numbers depend on the precision of both the
precisions, ∆1 and ∆2 and must therefore be known. If one is unable to choose the
bin-size freely, these effects are inevitable.

Even more complications arise in float point truncation, where the precision of the
values varies. If one wants to use equidistant binning, over the intervals of several expo-
nents, it might be difficult to remove these peaks and troughs. If one allows different bin
sizes on different intervals, one could choose a specific magic number width of the bins,
tailored to the precision of that certain interval.

E.0.2 Effects and applications

An important investigation following the artifacts is whether they have any pathological
effects in later usage of the data. Whether things are rebinned in later analysis steps
where the artifacts cause problems or maybe in calibration. When binning the data for
visualisation it is merely a visual nuisance, but the effect is worth keeping in mind when
working on float truncated data to see whether it affects analysis.

Observation of double quantization in data is a sign that it has undergone quanti-
zation twice, whether it has been turned into a histogram or whether it has been float
truncated. The observation of these artifacts is therefore a tool to investigate the data
quality, enabling one to see the previous compression steps.[26]

For uniformly distributed data, the artifacts for a bin centered at z can be removed by
multiplying the bin-height by ∆2/n(z). Similar de-noising methods could be constructed
for other input distributions and one could imagine that a PDF-estimation of doubly
quantized data could somehow be used to mitigate some of the artifacts. Autoencoders
smooth out peaks and troughs from double quantization, so these analytic de-noising
techniques is not explored further in this thesis.
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