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Populärvetenskaplig sammanfattning
Herr O och Fru X spelar 15-spelet. Reglerna till 15-spelet är följande: Herr O börjar med att välja ett
heltal mellan 1 och 9, Fru X fortsätter med att välja ett annat tal mellan 1 och 9, och så vidare. Vinnaren
är den som först har samlat ihop tre tal vars summa är 15. Fru X känner att spelet är onödigt komplicerat
och upptäcker att 15-spelet kan representeras med tre-i-rad. Betrakta följande parti (läsaren uppmanas
att själv fylla i det motsvarande partiet i tre-i-rad):

Herr O Fru X

5 6
3 7
2 8
9 1

←→
2 7 6
9 5 1
4 3 8

Denna uppsats handlar inte om hur man kan representera spel, utan hur man kan representera
speciella matematiska strukturer som kallas grupper. Man kan inte vinna eller förlora i en grupp, men
likt spel har en grupp vissa regler som måste följas. Till exempel om g1 och g2 är två element i en grupp
så ska man kunna multiplicera ihop dem till ett element g1g2 som också ska vara ett element i gruppen.
Vi kommer till exempel att studera kvaterniongruppen Q8 som består av elementen ±1, ±i, ±j och ±k
med regeln

i2 = j2 = k2 = ijk = −1.
Denna formel är inhuggen på Broom Bridge, Dublin, platsen där matematikern Sir William Rowan Hamil-
ton promenerade vid tillfället då idén slog honom. Vi kommer använda Q8 för att definiera mer kom-
plicerade grupper med upp till 96 element. Vi kan då ta inspiration från Fru X och representera dessa
komplicerade grupper i lättförståliga termer. Mer specifikt beskriver representationsteori bland annat hur
grupper kan representeras som linjära avbildningar i vektorrum.

Herr O tycker sig ha hittat ytterliggare två representationer av 15-spelet i form av tre-i-rad (i den
andra representationen är tanken att man fyller i två stycken tre-i-rad samtidigt):

6 1 8
7 5 3
2 9 4

och

2 7 6
9 5 1
4 9 8

2 7 6
9 5 1
4 9 8

.

Fru X är inte imponerad. Herr O har i viss mån tagit den redan givna representationen och först roterat
den och sedan duplicerat den. Liknande situationer uppstår i representationsteori av grupper, där man
rigoröst kan definiera vad det betyder att en representation är unik och att man inte kan bryta ned den
i mindre representationer (som man kan göra i Herr O’s andra förslag). En sådan representation kallas
irreducibel. Dessutom kan man visa att givet en grupp, så finns det ett ändligt antal unika irreducibla
representationer.

Givet en representation av en grupp så existerar det en karaktär. En karaktär är ett betydligt sim-
plare objekt än en representation men som, förvånadsvärt nog, ändå ger mycket information om dess
underliggande representation. Karaktärerna för en grupp kan sammanfattas i en karaktärstabell.

Ett syfte i denna uppsats är att använda metoder från representationsteori för att hitta de irreducibla
representationerna av den förut nämnda gruppen med 96 element och bestämma dess karaktärstabell.
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Abstract

In this thesis we introduce some basic concepts in representation theory such as Schur’s Lemma, induced
representations and M-groups. These concepts are then used in particular on a group G96 of order 96,
in order to determine its irreducible representations and its character table. Furthermore, we show that
G96 is an M-group and contains a subgroup which is not an M-group itself.
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Introduction

This paper will introduce representation and character theory for a reader acquainted with basic
group theory. Chapters 1 - 4 introduce the basic concepts of general representation and character theory
for finite groups which are needed in later chapters. The results contained there can all be found in any
book introducing representation theory. In particular, the author has based these chapters on [3] and [4].
The proof of The Second Orthogonality Relation (Theorem 3.2) can be found as an exercise in [4].

Chapters 5 - 6 are based on [2], although Chapter 5 mostly serves as a recap on the basic theory of
the solvability of groups which can be found in most introductory texts on group theory, for example in
[1]. Chapter 7 is based on an exercise in [2].

As far as structure goes, Chapter 1 - 6 contains theory that prepares for the more practical Chapter
7, where the main analysis takes place. In Chapter 1 - 4 elementary concepts of representations of finite
groups (over C), character theory and induced representations are introduced. In Chapter 5, as stated,
the solvability of groups is discussed. In Chapter 6 the M-groups are defined and related to the concepts
of Chapter 5. Chapter 7 is devoted to practical use of the theory from Chapter 1 - 4 and gives a relevant,
and hopefully interesting, counterexample that is introduced in Chapter 6.
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1 Group Representations

In this paper we let G denote a group and V a vector space. We restrict our attention to G being finite
and V being finite-dimensional over the algebraically complete field C, the complex numbers. We define
the automorphism group Aut(V ) to be the group under composition of all bijective linear transformations
f : V → V . Generally, let Hom(V ,W ) be the set of linear transformations between the two vector spaces
V and W . The set of endomorphisms of V is End(V ) = Hom(V ,V ).

It is often convenient to fix a basis for V . Then we can associate every such automorphism by its
invertable n × n matrix, where n = dimV . Furthermore, Aut(V ) is isomorphic as a vector space to
GL(n,C), the general linear group of degree n over C.

We now state the - for our purposes - most central definition.

Definition 1.1. A representation of a group G is an ordered pair (θ,V ) where V is a vector space and
θ is a homomorphism of groups

θ : G→ Aut(V ).

Moreover, V is called a G-module and the dimension of θ is defined to be dimV .

Remark. By abuse of notation, we will often say θ is a representation of G without explicitly stating
its underlying G-module. Conversely, we will say that V is a G-module, with the assumption that a
representation (θ,V ) of G is defined such that V is a G-module with respect to this representation.

Example 1.1. (Principal Representation)
For any group G, the principal representation denotes the trivial homomorphism θ : G → Aut(C),

given by θg = 1 for all g ∈ G. Note that Aut(C) � C× = C− 0. The importance of this representation will
be apparent later.

Example 1.2. (Regular Representation)
For any group G, let V be a vector space with dimV = |G|. Choose a basis for V and index the basis

vectors by the elements of G, that is {ex}x∈G. If we let G permute the basis vectors by the action of left
multiplication we get the fruitful regular representation. Explicitly, define θ : G→ Aut(V ) by

θg
∑
x∈G

cxex =
∑
x∈G

cxegx,

where {cx} are complex coefficients.
An interesting feature of the regular G-module is that there exists a one-dimensional subspace that

is invariant under its representation. In fact, consider the the line spanned by the vector v =
∑
x∈G ex.

Since for any g ∈ G the map φ : x 7→ gx is a bijection of G, we can change the summation index in

θgv =
∑
x∈G

egx =
∑
y∈G

ey = v.

Similarly θg〈v〉 = 〈v〉 for any g ∈ G. It should be evident that 〈v〉 can, in itself, be regarded as a
G-module and that it is in some way isomorphic to the principal representation. These notions will be
discussed and made rigorous shortly.

Definition 1.2. Let (θ,V ) be a representation of G and V1 and subspace of V . If θgV1 = V1 for all
g ∈ G then V1 is called a sub-G-module of V .
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The reader might find it apparent that V1 is indeed a G-module, but we show this result for the sake
of clarity.

Lemma 1.1. Let (θ,V ) be a representation of G and V1 a sub-G-module of V . Then there exists a representation
(ϑ,V1) of G with V1 as a G-module.

Proof. For every g in G define ϑg = θg |V1 . Seeing that V1 is a sub-G-module, ϑg is a bijective linear map
from V1 to V1. Since θ is a homomorphism of groups then so is ϑ : G → Aut(V1). Thus (ϑ,V1) is a
representation of G.

Remark. For showing that V1 is a sub-G-module it is sufficient to check that θgv ∈ V1 for any v ∈ V1
and g ∈ G, since an injective endomorphism of a finite vector space must also be bijective. Note that 0
and V are always sub-G-modules of any G-module V . The following definition now seems natural.

Definition 1.3. Let V be a G-module. The sub-G-modules 0 and V are called the trivial sub-G-modules
of V and any other sub-G-modules are called proper. If V has no proper sub-G-modules then V is said
to be irreducible.

Theorem 1.1. (Maschke’s Theorem) Let (θ,V ) be a representation of G and V1 a sub-G-module of V . Then
there exists a complementary subspace V2 of V1 which is also a sub-G-module of V with respect to θ.

Remark. This theorem allows us to decompose a G-module V into a direct sum of irreducible sub-
G-modules V1, . . . ,Vk . In fact, if we suppose V is not irreducible, then Maschke’s theorem gives us a
decomposition V = V1 ⊕V2 of sub-G-modules V1 and V2. Since dim(V1) and dim(V2) are both strictly
less than dim(V ) and a one-dimensional G-module is always irreducible, the statement follows from
induction.

Proof of Theorem 1.1. Let W be the orthogonal complement of V1. Let p : V → V1 be the orthogonal
projection onto V1. We construct a new function p̂ : V → V by conjugating p with the elements of G and
then taking the average:

p̂ =
1
|G|

∑
x∈G

θ−1x pθx.

Since V1 is invariant under θ, we have for any x ∈ G and v ∈ V1

θ−1x (pθxv) = θ
−1
x (θxv) = v.

This implies that p̂(v) = v and p̂ is a projection onto V1 along some complementary subspace
ker p̂ =: V2. We wish to show that V2 is a sub-G-module of V . The key to this fact lies with that p̂
commutes with θg for any g ∈ G:

θ−1g p̂θg =
1
|G|

∑
x∈G

θ−1g θ
−1
x pθxθg

=
1
|G|

∑
x∈G

θ−1xg pθxg

=
1
|G|

∑
y∈G

θ−1y pθy = p̂

⇐⇒ p̂θg = θg p̂.
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Take any u ∈ V2, then θgu ∈ V2 ⇐⇒ p̂θgu = 0 ⇐⇒ θg p̂u = 0 which holds since u is in the kernel of
p̂. Therefore, V2 is a sub-G-module and V = V1 ⊕V2.

Now we introduce a concept describing when representations of a given group should be considered
equivalent.

Definition 1.4. A G-homomorphism between two representations (θ,V ) and (θ′ ,V ′) of a group G
is a linear map f : V → V ′ such that f ◦ θg = θ′g ◦ f holds for all g in G. If f is bijective, then
it is called a G-isomorphism and we say that (θ,V ) is G-isomorphic to (θ′ ,V ′). We denote this by
(θ,V ) �G (θ′ ,V ′).

Remark. The linear map f : V → V ′ being a G-homomorphism is equivalent to the diagram

V V ′

V V ′

f

θg θ′g

f

being commutative for all g in G.

Remark. By further extending the abuse of notation introduced earlier, we might simply write θ �G θ
′

or V �G V
′ .

Remark. With a fixed basis for G-modules V and V ′ , consider the matrices A(g) and B(g) corresponding
to the representations θg and θ

′
g respectively. If V is G-isomorphic to V ′ then it implies that there exists

an invertible matrix T such that B(g) = TA(g)T −1 holds for all g in G.

We are now prepared for a both theoretically and practically powerful result. It reveals a dichotomy
of G-homomorphisms between irreducible G-modules.

Theorem 1.2. (Schur’s lemma) Let (θ,V ) and (θ′ ,V ′) be two irreducible representations of a group G and
let f : V → V ′ be a G-homomorphism. Then f is either the trivial map f = 0, or a G-isomorphism and
(θ,V ) �G (θ′ ,V ′). Furthermore, if (θ,V ) = (θ′ ,V ) then f = λ1V for some λ in C.

Proof. Suppose that f , 0. We first show that the irreducibility of V and V ′ implies that kerf = {0} and
imf = V ′ .

f , 0 =⇒ {0} ⊂ kerf ( V .

v ∈ kerf =⇒ f θg (v) = θ
′
gf (v)

=⇒ θg (v) ∈ kerf .

Similarly:

f , 0 =⇒ {0} ( imf ⊂ V ′ .
v′ ∈ imf =⇒ v′ = f (v), for some v ∈ V

=⇒ θ′g (v
′) = θ′gf (v) = f θg (v)

=⇒ θ′g (v
′) ∈ imf .
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Hence both kerf and imf are sub-G-modules of irreducible V and V ′ respectively, which implies that
kerf = {0} and imf = V ′ . But this just says that f is bijective =⇒ f is a G-isomorphism and V �G V

′ .
Now we turn our attention to the special case (θ,V ) = (θ′ ,V ). In this case f is a endomorphism of

V . Here we use the property that V is a vector space over the algebraically closed field C. Hence f has
an eigenvalue λ ∈ C. Noting that λ1V is also a G-homomorphism implies that the difference (f −λ1V )
is also a G-homomorphism.

The key property of this G-homomorphism is that it has a nonzero kernel, since an eigenvector
corresponding to λ is an element of it. The irreducibility of V and a similar argument as above forces
ker(f −λIV ) = V , which implies that f = λ1V .

Two things are now worth mentioning.
First, suppose we have two representations (θ1,V1) and (θ2,V2) of a group G. Then we can naturally

define another representation of G with G-module equal to the (external) direct sum V1 ⊕ V2. Simply
define θ : G→ Aut(V1 ⊕V2) by

θg (v1,v2) = (θ1gv1,θ
2
gv2),

and verify that θ is indeed a homomorphism of groups. Let us denote θ = θ1 ⊕θ2.
Secondly we can, with the help of Maschke’s theorem and the remark following it, go in the converse

direction. Given any G-module V we can decompose it into irreducible sub-G-modules, V =
⊕m

i=1Vi .
Unfortunately, this decomposition is not unique. For a trivial example, consider the group G = 1 and
G-module C2. Any two non coinciding lines will work as irreducible sub-G-modules and decompose C2.

Suppose we instead gather up all Vi that are G-isomorphic to each other. That is, let V =
⊕n

i=1Wi ,
where W1 is the direct sum of precisely those Vi which are G-isomorphic with V1. Let Vj be the first
sub-G-module not included in this direct sum. Now let W2 be the direct sum of precisely those Vi which
are G-isomorphic with Vj . Continue in this way until all Vi are included.

This is called the canonical decomposition. We will later show that it does not depend on the initial
irreducible decomposition and is thus unique.

Some questions of interest: how can we systematically determine if a given representation is irre-
ducible or not? And how many different (up to G-isomorphism) irreducible representations does there
exist for a given group G? The answers to both of these questions will follow in the next chapter.
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2 Character Theory

Definition 2.1. Let (θ,V ) be a representation of a group G. The character of this representation is the
function χ : G→ C given by

χ(g) = trθg .

We say that a character is irreducible if its underlying representation is irreducible.

Remark. To clarify, fix a basis for V . Now χ(g) is well-defined and equals the trace of the matrix
corresponding to θg . Note the independence of the choice of basis, implied from the well-known similarity
invariance, tr (XY ) = tr (YX), and also from the fact that the trace of a matrix equals the sum of its
eigenvalues.

It is remarkable just how much essential information of a representation we can retrieve from its
character. We begin with some properties.

Lemma 2.1. Let χ be the character of a representation (θ,V ) of G and let g ∈ G.

i. χ(1) = dim(V ),

ii. χ(g−1) = χ(g),

iii.
∣∣∣χ(g)∣∣∣ ≤ χ(1),

iv. χ is a class function on G.

Proof.

i. χ(1) = trθ1 = tr 1V = dim(V ).

ii. Let m = |G| and let λ be an eigenvalue of θ. Then λm is an eigenvalue of (θg )m = θgm = θ1 = 1V .
Hence λ is an mth root of unity =⇒ λ−1 = λ. Now let {λk} be the eigenvalues of θg . We evaluate:

χ(g−1) = trθ−1g =
∑
k

λ−1k =
∑
k

λk = χ(g).

iii. ∣∣∣χ(g)∣∣∣ =
∣∣∣∣∣∣∣∣
∑
k

λ
k

∣∣∣∣∣∣∣∣ ≤
∑
k

∣∣∣λk ∣∣∣ =
i.
dimV =

ii.
χ(1).

iv. We must show that χ is constant on each conjugacy class of G, that is for any x ∈ G we have
χ(xgx−1) = χ(g). This follows directly from the similarity invariance of the trace with the substitu-
tion g̃ = xg and x̃ = x−1.

Remark. Given two representations (θ1,V1), (θ2,V2) with characters χ1,χ2 respectively, let the corre-
sponding matrices of θ1g and θ2g be A1 and A2 respectively (with respect to some choice of basis for V1

and V2). The corresponding matrix of (θ1 ⊕θ2)g is simply

[
A1 0
0 A2

]
and has character χ1 +χ2.
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Given a group G, let Cclass be the set of class functions and let IrrG ⊂Cclass be the set of irreducible
characters. We regard Cclass as a vector space over C by setting

(α1ϕ1 +α2ϕ2)(g) = α1ϕ1(g) +α2ϕ2(g), α1,α2 ∈ C and ϕ1,ϕ2 ∈Cclass.

If Cl(g1), . . . ,Cl(gr ) are the conjugacy classes of G, then Cclass has dimension r . Furthermore, we equip
Cclass with an inner product

〈ϕ1,ϕ2〉 =
1
|G|

∑
g∈G

ϕ1(g)ϕ2(g).

Showing that 〈·, ·〉 is in fact an inner product follows directly:

i. (Conjugate symmetry)

〈ϕ1,ϕ2〉 =
1
|G|

∑
g∈G

ϕ1(g)ϕ2(g)

=
1
|G|

∑
g∈G

ϕ2(g)ϕ1(g) = 〈ϕ2,ϕ1〉,

ii. (Linearity in the first argument)

〈α1ϕ1 +α2ϕ2,φ〉 =
1
|G|

∑
g∈G

(α1ϕ1(g) +α2ϕ2(g))φ(g)

= α1〈ϕ1,φ〉+α2〈ϕ2,φ〉,

iii. (Positive definite)

〈ϕ,ϕ〉 = 1
|G|

∑
g∈G

∣∣∣ϕ(g)∣∣∣2 ≥ 0

with equality ⇐⇒ ϕ = 0.

The first main goal of this section is proving the following fundamental result, which will in turn answer
both questions posed at the end of the last section.

Theorem 2.1. (The First Orthogonality Relation) If χ,χ′ ∈ IrrG, then

〈χ,χ′〉 =

1, if χ = χ′ .
0, if χ , χ′ .

Remark. In other words, IrrG is an orthonormal set in Cclass. Furthermore, we have found an upper
bound

∣∣∣IrrG∣∣∣ ≤ r, where r is the number of conjugacy classes of G. In fact, IrrG is also a basis for Cclass

and
∣∣∣IrrG∣∣∣ = r . This result will be the second main goal of this section.

Remark. A small note on the equality of characters is needed.
Two characters χ,χ′ coming from two representations (θ,V ), (θ′ ,V ′) respectively (both of course repre-
sentations of the same group G) are considered equal if they are equal as functions from G to C. How
equality of characters affect G-isomorphism between their respective representations, and vice versa, will
be covered in this section.
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In order to prove Theorem 2.1 the coming result is crucial.

Theorem 2.2. (The Schur Relations) Let (θ,V ) and (θ′ ,V ) be two irreducible representations of a group G.
Fix a basis for V and V ′ . With respect to this basis, let A(g) = (ars(g)) and A′(g) = (a′pq(g)) be the matrix
representations of θg and θ

′
g respectively, for any g ∈ G. Define a function S by

S(p,q, r, s) =
∑
g∈G

a′pq(g
−1)ars(g).

If (θ,V ) �G (θ′ ,V ′), then S = 0.
On the other hand, if (θ,V ) = (θ′ ,V ′), then

S(p,q, r, s) =

 |G|
dimV , if p = s and q = r .
0, otherwise.

Proof. Let n = dimV and n′ = dimV ′ and consider the linear transformation εxy from V to V ′ which is
- with respect to the chosen basis - given by the n′ ×n matrix Exy which has entry at (x,y) equal to 1 and
zeros as the rest of the entries. Define another linear transformation fxy : V → V ′ by

fxy =
∑
g∈G

θ′g−1εxyθg .

First we show that fxy is actually a G-homomorphism. Secondly, we show how fxy and S relates to each
other. Lastly, we use Schur’s lemma.
We evaluate for any h ∈ G

fxyθh =
∑
g∈G

θ′g−1εxyθgh =
∑
g∈G

θ′hg−1εxyθg = θ
′
hfxy ,

where in the second equality we used the bijection g 7→ gh of G. Hence fxy is indeed a G-homomorphism.
Note that the properties of εxy are never used here.
The corresponding matrix of fxy equals

∑
g∈G

(a′pq(g
−1))Exy(ars(g)) =

∑g∈Ga′px(g−1)ays(g)

p,s

= (S(p,x,y, s))p,s.

Now suppose (θ,V ) �G (θ′ ,V ′). Schur’s lemma (Theorem 1.2) forces fxy = 0 for all 1 ≤ x ≤ n′ and
1 ≤ y ≤ n, which is just to say that S = 0.
Suppose instead our two representations are equal, then by Schur’s lemma once again, fxy = λ1V for
some λ ∈ C. If p , s, then it follows directly that S(p,q, r, s) = 0. Suppose instead from now on that p = s.
Evaluating the trace of fxy in two ways yields

λn = trλ1V = tr fxy =
n∑
p=1

S(p,x,y,p)

=
∑
g∈G

n∑
p=1

apx(g
−1)ayp(g)

=
∑
g∈G

(ayx(1)) = |G| (1V )y,x.
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Therefore,

x , y =⇒ λ = 0 =⇒ fxy = 0,

x = y =⇒ λ =
|G|
n

=⇒ fxy =
|G|
n
1V .

Lastly, evaluating S(p,q, r,p) as the element at entry (p,p) of the matrix of fqr , we get our desired
conclusion.

We are now in a position of proving a weaker version of the first orthogonality relation, as a corollary
of the Schur relations.

Corollary 2.1. Let χ and χ′ be irreducible characters of representations (θ,V ) and (θ′ ,V ′) respectively. Then

〈χ,χ′〉 =

1, if χ = χ′ .
0, if (θ,V ) �G (θ′ ,V ′).

Proof. If χ = χ′ then 〈χ,χ′〉 = 〈χ,χ〉 shows us that we can without loss of generality suppose (θ,V ) =
(θ′ ,V ′). Keeping with the notation of the proof of the Schur relations gives us

|G| 〈χ,χ〉 =
∑
g

∑
p,r

app(g
−1)arr (g)

=
∑
p,r

S(p,p, r, r) =
∑
p

S(p,p,p,p)

=
∑
p

|G|
dimV

= |G| .

If (θ,V ) �G (θ′ ,V ′) then similarly from the Schur relations:

|G| 〈χ,χ′〉 =
∑
p,r

S(p,p, r, r) = 0.

All that is left now for proving the first orthogonality relation is the following.

Lemma 2.2. Let χ and χ′ be irreducible characters of representations (θ,V ) and (θ′ ,V ′) respectively. Then

χ = χ′ =⇒ (θ,V ) �G (θ′ ,V ′).

Proof. Striving for a contradiction, suppose that. (θ,V ) �G (θ′ ,V ′). Keeping with the notation from the
Schur relations,

0 =
∑
p,r

S(p,p, r, r) =
∑
p,r

∑
g∈G

a′pp(g
−1)arr (g)

=
∑
g∈G

∑
p

a′pp(g
−1)


∑
r

arr (g)

 =∑
g∈G

χ(g−1)χ(g)

=
∑
g∈G

χ(g)χ(g) =
∑
g

∣∣∣χ(g)∣∣∣2 .
8



But clearly χ(1) > 0.  

The first orthogonality relation now follows directly.

Proof of Theorem 2.1. Lemma 2.2 gives that (θ,V ) �G (θ′ ,V ′) =⇒ χ , χ′ and the rest follows from
Corollary 2.1.

We will now prove the general version of Lemma 2.2, which shows just how close of a connection the
character of a representation has with the concept of G-isomorphism.

Theorem 2.3. Let (θ,V ) and (θ′ ,V ′) be two representations of a group G, with character χ and χ′ respec-
tively. Then

(θ,V ) �G (θ′ ,V ′) ⇐⇒ χ = χ′ .

Proof. First suppose (θ,V ) �G (θ′ ,V ′). Take a G-isomorphism f : V → V ′ and simply deduce that the
characters are equal:

χ(g) = trθg = tr f −1θ′gf = trθ′g = χ
′(g).

Now suppose that χ = χ′ . Let n = max{dimV , dimV ′}. If n = 1 then χ and χ′ are irreducible and the
result is Lemma 2.2.
Suppose now n > 1. By Maschke’s Theorem (Theorem 1.1) we can decompose V and V ′ into some direct
sum of irreducible sub-G-modules

V = V1 ⊕ · · · ⊕Vm
V ′ = V ′1 ⊕ · · · ⊕V

′
r .

Let Vi and V
′
j have irreducible characters χi and χ

′
j respectively. By the remark following Lemma 2.1 we

have that

χ = χ1 + · · ·+χm
χ′ = χ′1 + · · ·+χ

′
r .

With the help of the inner product, we find that 〈χ,χ1〉 = 〈χ′ ,χ1〉 ⇐⇒
∑
i〈χi ,χ1〉 =

∑
j〈χ′j ,χ1〉. By

Lemma 2.2, the number of sub-G-modules in these decompositions of V and V ′ that are G-isomorphic
to V1 is equal. Therefore we get

V �G V1 ⊕ · · · ⊕V1︸        ︷︷        ︸
〈χ,χ1〉 times

⊕Ṽ

V �G

︷        ︸︸        ︷
V1 ⊕ · · · ⊕V1⊕Ṽ ′

for some sub-G-modules Ṽ and Ṽ ′ . Since 〈χ,χ1〉 ≥ 〈χ1,χ1〉 = 1 we have that max{dim Ṽ , dim Ṽ ′} < n.
By induction over n we are done.

We now present, as a corollary, an easy method of deciding if a given representation is irreducible or
not. This result is of great practical use.

Corollary 2.2. Let (θ,V ) be a representation of a group G with character χ. Then

(θ,V ) is irreducible ⇐⇒ ‖χ‖ = 1.

9



Proof. If (θ,V ) is irreducible, then by definition χ ∈ IrrG. By the first orthogonality relation, the norm of
χ equals one.
Conversely, suppose ‖χ‖ = 1. Decompose V as a direct sum of n irreducible sub-G-modules, V =⊕n

i=1Vi . If the character of Vi is χi , then χ =
∑n
i=1χi and

1 = ‖χ‖2 =
∑
i,j

〈χi ,χj〉 ≥
n∑
i=1

〈χi ,χi〉 = n.

In other words, V has no proper sub-G-module and (θ,V ) is irreducible.

Remark. Here we aim to clarify the inequality given in the proof, for the sceptic reader. We keep with
the notation of the previous proof. The number of sub-G-modules in our decomposition G-isomorphic
to V1 equals 〈χ,χ1〉. Gathering these up into a direct sum yields W1, and so forth (as was explained in
the last paragraph of Chapter 1). Thus

V =
m⊕
j=1

Wj , m ≤ n.

After a possible renaming of the Vi ’s we can assume that

Wj �G

〈χ,χj 〉⊕
k=1

Vj =: 〈χ,χj〉Vj .

And so we arrive at

V �G

m⊕
j=1

〈χ,χj〉Vj ,

χ =
m∑
j=1

〈χ,χj〉χj .

Furthermore,

‖χ‖2 =
m∑
j=1

〈χ,χj〉2 ≥
m∑
j=1

〈χ,χj〉 = n.

Example 2.1. (Characters of the Principal and Regular Representation) The principal representation (θ1,C)
of any group G given by θ1g = 1 has the trivial character χ1 = 1.

Consider now the regular representation (θ,V ) of G. Recall that the basis of V is indexed by the
elements of G. With respect to this basis, the matrix corresponding to θg is a permutation matrix.
Evaluating the regular character is easily done:

χ(g) = number of 1’s in the diagonal of θg

=
∣∣∣{h ∈ G | gh = h }∣∣∣ = |G| , if g = 1.

0, otherwise.

10



Now let {χi}ri=1 be the the set of irreducible characters coming from the set (up to G-isomorphism) of
irreducible G-modules {Vi}ri=1, respectively. Then

〈χ,χi〉 =
1
|G|

∑
g∈G

χ(g)χi(g
−1) =

1
|G|
χ(1)χi(1) = χi(1),

and so

V �G

r⊕
i=1

χi(1)Vi =
r⊕
i=1

dim(Vi)Vi ,

χ =
r∑
i=1

χi(1)χi =
r∑
i=1

dim(Vi)χi .

Remark. Informally, this shows that, for a given group G, the regular representation contains every
(up to G-isomorphism) irreducible G-module and that the regular character contains every irreducible
character. This result seems reasonable for two reasons.
Firstly, the dimension of the regular representation, |G|, is quite large, so the complex structure is expected.
Secondly, the structure of the regular representation is, in some sense, exactly equal to the structure of its
underlying group. The only difference is that the binary operation now occurs in the more rich setting of
a vector space. It should then come as no surprise that every irreducible representation - that captures
some aspects of the structure of G - is found in the regular representation.

We have seen that the span of the orthonormal set IrrG = {χi}ri=1 contains the subspace of Cclass
consisting of the characters. Shortly we will show that actually 〈IrrG〉 = Cclass. We will end this section
by proving the uniqueness of the canonical decomposition. Surprisingly, both these results share a lemma.

Lemma 2.3. Let (θ,V ) be an irreducible representation of a group G, with character χ. Let ϕ be a class
function of G. Define a map f : V → V by

f =
∑
g∈G

ϕ(g)θg−1 .

Then f is a homothety f = λ1V with λ = |G|
dimV 〈ϕ,χ〉.

Proof. Evidently we must show that f is a G-homomorphism and then use Schur’s lemma. The fact that
f is linear follows from θg being linear. Now we evaluate for any h ∈ G

f θh =
∑
g∈G

ϕ(g)θg−1h = θh
∑
g∈G

ϕ(g)θh−1g−1h

= θh
∑
g∈G

ϕ(hgh−1)θg−1 = θhf .

In the third equality we used the bijection g 7→ hgh−1 of G and in the last equality we used ϕ being a
class function. By Schur’s Lemma =⇒ f = λ1V for some λ ∈ C. We compute λ by the trace of f

dim(V )λ = tr f =
∑
g∈G

ϕ(g)χ(g−1)

= |G| 〈ϕ,χ〉.
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Theorem 2.4. The orthonormal set IrrG forms a basis for the vector space Cclass of class functions of G.

Proof. The first orthogonality relation (Theorem 2.1) says that IrrG = {χi}ri=1 is a linearly independent
and orthonormal set. Let ϕ be any class function and suppose that 〈ϕ,χi〉 = 0 for any i ∈ {1, . . . , r}, in
other words ϕ ∈ 〈IrrG〉⊥. If we can show that ϕ = 0, then Cclass = 〈IrrG〉 ⊕ 〈IrrG〉⊥ = 〈IrrG〉 and we are
done.
Let (θ,V ) be the regular representation of G and {(θj ,Vj )}mj=1 be an irreducible decomposition of V .
Define ϕ0 : V → V by

ϕ0 =
∑
g∈G

ϕ(g)θg−1 .

We want to show that ϕ0 = 0 and for that end we expand

ϕ0 =
∑
g∈G

ϕ(g)
m⊕
j=1

θ
j
g−1

=
m⊕
j=1

∑
g∈G

ϕ(g)θj
g−1

=
m⊕
j=1

0 = 0.

The third equality is Lemma 2.3 used m times. In particular for the basis {eg }g∈G of V we have

0 = ϕ0(e1) =
∑
g∈G

ϕ(g−1)θge1 =
∑
g∈G

ϕ(g−1)eg

=⇒ ϕ(g−1) = 0, for any g ∈ G =⇒ ϕ = 0.

Theorem 2.5. Let V be a G-module and let {V ′j )}
m
j=1 be an irreducible decomposition of sub-G-modules. Let

{Vi}ri=1 be the distinct (up to G-isomorphism) irreducible G-modules, with respective characters {χi}
r
i=1. Define

Wi as the direct sum of those V
′
j which are G-isomorphic to Vi . Then the decomposition

V =W1 ⊕ · · · ⊕Wr

does not depend on the original decomposition.

Remark. The decomposition V =W1 ⊕ · · · ⊕Wr is precisely the canonical decomposition. Note that
some Wi may be zero.

Remark. It is interesting that when we apply a character as the class function in Lemma 2.3 we naturally
get this proof.

Proof. Let θ be the representation of the G-module V and let the character of Vi be χi for i = 1, . . . , r .
Fix such an i, and define fi : V → V by

fi =
dimVi
|G|

∑
g∈G

χi(g)θg−1 .
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The function above is defined without any mention of the original decomposition. When we restrict fi
with the Vi ’s we can use Lemma 2.3

fi |Vk =

1, if k = i.
0, if k , i.

=⇒ fi |Wk
=

1, if k = i.
0, if k , i.

and so fi is the projection of V onto Wi . Since fi is independent from the original decomposition, then
so is the decomposition V =W1 ⊕ · · · ⊕Wr .

13



3 Selected Results on Irreducible Characters

This chapter will be covering what impact the inherent structures of a group G has on its irreducible
representations and characters. All the following results will come to use later. Chapter 2 gave us the
following.

Corollary 3.1. Let {Cl(gi)}ri=1 be the conjugacy classes of a group G. Then r =
∣∣∣IrrG∣∣∣ .

Proof. The set indicator functions {1Cl(gi )}
r
i=1 is a basis for the vector space Cclass. The result now follows

from Theorem 2.4.

Theorem 3.1. (The Degree Equation) Let G be a group, then

|G| =
∑
χ∈IrrG

χ(1)2.

Proof. Recall from Example 2.1 that the regular character χ′ of G is given by

χ′ =
∑
χ∈IrrG

χ(1)χ.

Evaluating at g = 1 gives

|G| = χ′(1) =
∑
χ∈IrrG

χ(1)2.

Theorem 3.2. (The Second Orthogonality Relation) Let Cl(h) be a conjugacy class of a group G. Then∑
χ∈IrrG

χ(h) ·χ =
|G|∣∣∣Cl(h)∣∣∣1Cl(h),

where 1Cl(h) is the indicator function of Cl(h).

Remark. Recall from Lagrange’s Theorem that |G|
|Cl(h)| =

∣∣∣CG(h)∣∣∣ where CG(h) is the centralizer of h in G.

Proof. The indicator function 1Cl(h) is a class function of G. By Theorem 2.4 we can express 1Cl(h) in the
basis of irreducible characters as

1Cl(h) =
∑

χ∈IrrGG

aχχ,

with coefficients

aχ = 〈1Cl(h),χ〉 =
1
|G|

∑
g∈G

1Cl(h)(g)χ(g)

=

∣∣∣Cl(h)∣∣∣
|G|

·χ(h).

The result now follows directly.
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Let us now define an important subset of IrrG.

Definition 3.1. Let G be a group. Define the linear characters of G as the set

LinG = {χ ∈ IrrG | dimχ = 1}.

Remark. If a representation (θ,V ) has a linear character χ we can identify θ by its character in the
following sense:

θ : G→ AutV

�

χ : G −−−→ C×

Theorem 3.3. Let G be a group. Then G is abelian if and only if LinG = IrrG.

Proof.

G is abelian ⇐⇒ |G| = the number of conjugacy classes of G

⇐⇒ |G| =
∣∣∣IrrG∣∣∣

⇐⇒
∣∣∣LinG∣∣∣ = ∣∣∣IrrG∣∣∣ .

The second and third equivalences follow from Corollary 3.1 and Theorem 3.1, respectively.

Definition 3.2. Let χ be a character of a group G. Define the kernel of χ as

kerχ = {g ∈ G | χ(g) = χ(1)}.

Definition 3.3. Let (θ,V ) be a representation of a group G. The representation is called faithful if
kerθ = 1. In other words, if θ is an embedding.

We are interested in faithful representations. By the following theorem, this property is entirely
captured by characters.

Theorem 3.4. Let (θ,V ) be a representation of a group G with character χ. Then

kerθ = kerχ.

Proof. If g ∈ kerθ =⇒ θg = 1V =⇒ g ∈ kerχ. For the harder implication, now let g ∈ kerχ. Let
the dimension of V equal n. Restricting our representation to (θ|〈g〉,V ) we get a representation of the
abelian subgroup 〈g〉. Consider a decomposition into irreducible representations

θ|〈g〉 =
n⊕
i=1

θi .

By Theorem 3.3, θi is one dimensional and has a character χi(g) (identified with θig ) equal to an mth
root of unity, where m = |G|. We arrive at

n = χ(1) = χ(g) = χ1(g) + · · ·+χn(g)

which implies that χi(g) = 1 and θi(g) = 1C =⇒ θ(g) = θ|〈g〉(g) = 1V .
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We will now discuss how the characters of a quotient group G/N preserve or provide characters of
the original group G.

Theorem 3.5. Let G be a group with a normal subgroup N . Then there exists a bijective correspondence
between the set of irreducible representations of G/N and the set of irreducible representations of G which
contain N in their kernel.

Remark. By our abuse of notation, Theorem 2.3 and Theorem 3.4, the bijective correspondence given
above gives rise to another bijective correspondence between IrrG/N and {χ ∈ IrrG | N ⊂ kerχ}.

Proof. Given an irreducible representation (θ,V ) of G/N , define a representation (θ̃,V ) of G by θ̃g =
θgN . This makes θ̃ into a homomorphism. In fact,

θ̃gh = θghN = θgNhN = θgNθhN = θ̃g θ̃h.

An invariant sub-G-module of V with respect to θ̃ is easily seen to be invariant with respect to θ which
implies that θ̃ is irreducible. If x ∈N then

θ̃x = θxN = θN = θ̃1

and x ∈ ker θ̃. Likewise, suppose we have another irreducible representation (θ′ ,V ′) of G/N which gives
an irreducible representation (θ̃′ ,V ′) of G by the above mapping. It is easy to see that a G-isomorphism
between θ̃ and θ̃′ is also a G-isomorphism between θ and θ′ . Thus this mapping of representations is
injective up to G-isomorphism.
Conversely, now let (θ,V ) be an irreducible representation of G such that kerθ ⊃ N . If gN = hN =⇒
g−1h ∈N =⇒ θg−1h = θ1 and so θg = θh. This means we can define a representation (

˜
θ,V ) of G/N by

˜
θgN = θg . Similarly one checks that

˜
θ is irreducible and that this mapping of representations is injective

up to G-isomorphism. Also, both of these maps are bijective, since
˜
θ̃ = θ (which holds in both orders of

applying the tildes).

Remark. The representation θ̃ will be called the lifted representation of θ. The character χ̃ of θ̃ will
likewise be called the lifted character of χ, where χ is the character of θ.

Recall that G′ denotes the derived subgroup of G. We can completely describe those irreducible
characters that contain G′ in its kernel.

Lemma 3.1. Let (θ,V ) be an irreducible representation of a group G with character χ. Then

G′ ⊂ kerχ ⇐⇒ χ ∈ LinG.

Proof. If G′ ⊂ kerχ, by Theorem 3.5
θ1 = ˜

θG′ = 1V .

But
˜
θ is an irreducible representation of the abelian quotient group G/G′ and by Theorem 3.3

˜
χ ∈ LinG/G′ =⇒ dimV = 1 =⇒ χ ∈ LinG.

Suppose now that χ ∈ LinG and let x ∈ G′ . By the identification of linear characters we have that

χ(x) = χ(1) ⇐⇒ θx = θ1.

Since
θg−1h−1gh = θ1

holds for all g,h ∈ G we have that θx = θ1 and the proof done.
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Remark. Note the special case when G is abelian. Then G′ = 1 and every irreducible character contains
G′ in its kernel. The conclusion of Theorem 3.3 follows.

The following results show the connection between characters of a group and the normal subgroups.

Lemma 3.2. Let G be a group. Then
1 =

⋂
χ∈IrrG

kerχ.

Theorem 3.6. Let G be group with a normal subgroup N . Then

N =
⋂
χ∈IrrG
N⊂kerχ

kerχ.

Corollary 3.2. Let G be a group. Then
G′ =

⋂
χ∈LinG

kerχ.

Remark. Lemma 3.2 is needed for Theorem 3.6 which implies Corollary 3.2. Naturally, we prove them
in the opposite order.

Proof of Corollary 3.2. Direct use of Theorem 3.6 with the identification of Lemma 3.1 yields the conclu-
sion.

Proof of Theorem 3.6. Using the identification of characters described in the remark following Theorem
3.5 we have that ⋂

χ∈IrrG
N⊂kerχ

kerχ =
⋂

χ∈IrrG/N

ker χ̃.

Using the fact that ker χ̃/N � kerχ we get that⋂
χ∈IrrG/N

kerχ =
⋃
g

{gN } ⇐⇒
⋂

χ∈IrrG/N

ker χ̃ =
⋃
g

gN.

Finally, by Lemma 3.2 we have that
⋂
χ∈IrrG/N kerχ = {N } from which the result follows.

Proof of Lemma 3.2. The trick is, once again, to consider the regular representation (θ,V ). Let χ be
the regular character and {χi}ri=1 the irreducible characters of G. By Example 2.1 χ =

∑r
i=1χi(1)χi .

The evaluation of the regular character shows that θ is faithful and kerχ = 1. Now suppose that
g ∈

⋂r
i=1kerχi . Then

χ(g) =
r∑
i=1

χi(1)χi(g)

=
r∑
i=1

χ(1)2 = |G| = χ(1)

=⇒ g ∈ kerχ.

The third equality follows from The Degree Equation (Theorem 3.1).
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4 Induced Representations

Given a representation (θ,V ) of a group G and a subgroup H of G we consider the restriction
ϑ = θ|H . Intuitively, the less complicated subgroup H may not need the full complexities of the G-
module V (considered on its own right as an H-module) and so may have a proper sub-H-module W
of V . Note that this might even happen even if V is irreducible when regarded as a G-module. Our
hope is that some structure of the representations of G can be retrieved from the representations of its
subgroups.

Let T be a set of left-coset representatives of H in G and define for any t ∈ T , Wt to equal θtW .
This definition is actually independent on the choice of representatives. In fact, let s ∈ tH =⇒ s = th for
some h ∈H , then

θsW = θtθhW = θtϑhW = θtW =Wt .

Therefore, we can well-define WtH =Wt and arrive at the following definition.

Definition 4.1. If H is a subgroup of a group G with representations (ϑ,W ) and (θ,V ) respectively, such
that ϑ = θ|H and W is a sub-H-module of V . The representation (θ,V ) is said to be induced by (ϑ,W )
if

V =
⊕

tH∈G/H
Wt .

In this case, we will also say that (ϑ,W ) induces (θ,V ).

Remark. Note that G acts on {Wt}t∈T by permuting θgWt = θgtW =Wgt and the action is transitive.

Remark. Let us examine how θ relates to ϑ in a situation like this. First put v =
∑n
i=1 vi where vi ∈Wti

and T = {ti}ni=1 is a set of representations of H in G. Further write vi = θtiwi for some wi ∈W . For each
i there is a j and an hi ∈H such that gti = tjh. Putting this all together yields

θgv = θg
n∑
i=1

θtiwi =
n∑
i=1

θgtiwi =
n∑
i=1

θtjhiwi

=
n∑
i=1

θtjϑhiwi .

Lemma 4.1. Let H be a subgroup of G. If two representations (ϑ1,W1) and (ϑ2,W2) of H induces the
representations (θ1,V1) and (θ2,V2) respectively, then the representation (ϑ1⊕ϑ2,W1⊕W2) of H induces the
representation (θ1 ⊕θ2,V1 ⊕V2) of G.

Proof. Let T be a set of left-coset representatives of H in G. It follows that (θ1 ⊕ θ2)|W1⊕W2
= ϑ1 ⊕ ϑ2

and

V1 ⊕V2 =

⊕
t∈T

θ1tW1

⊕
⊕
t∈T

θ2tW2


=

⊕
t∈T

(θ1tW1 ⊕θ2tW2)

=
⊕
t∈T

(θ1 ⊕θ2)t(W1 ⊕W2) =
⊕
t∈T

(W1 ⊕W2)t .
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We now show that the regular representation of a group can always be induced from any of its
subgroups.

Lemma 4.2. Let (θ,V ) be the regular representation of G with H any subgroup of G and ϑ the restriction of
θ to H . Then there exists a representation (ϑ,W ) of H that induces (θ,V ). Furthermore, (ϑ,W ) is the regular
representation of H .

Proof. Let T be a set of left-coset representatives of H in G. Naturally define W = 〈eh〉h∈H which is
trivially invariant under ϑ and a sub-H-module of V . In fact, W is the regular H-module. A simple
verification shows that ⊕

t∈T
Wt =

⊕
t∈T

θtW =
⊕
t∈T
〈eth〉h∈H = V .

We now evaluate the character of an induced representation.

Theorem 4.1. Let H be a subgroup of a group G with T a set of left-coset representatives of H in G. Suppose
that the representation (ϑ,W ) of H , with character ϕ, induces the representation (θ,V ) of G with character
χ. Then

χ(g) =
∑
t∈T

t−1gt∈H

ϕ(t−1gt).

Proof. Let {ej }nj=1 be a basis for W . Extend this to a basis {ftj } for V where ftj = θtej for t ∈ T and
j = 1, . . . ,n. In the basis {ei} let the matrix of ϕh equal (aij (h)). For a given ftj we evaluate

θgftj = θgtej = θt̃hej = θt̃ϕhej

= θt̃
n∑
k=1

akjek =
n∑
k=1

akjft̃k

where t̃ ∈ T and h ∈H is uniquely defined by

gt = t̃h.

We see here that if t , t̃ then we get no contribution to the character χ. In fact, θg permutes θgWt ,Wt .
In the case that t = t̃ ⇐⇒ t−1gt ∈H we get a contribution ajj . Putting this together yields

χ(g) =
∑
t∈T

t−1gt∈H

n∑
i=1

aii =
∑
t∈T

t−1gt∈H

ϕ(h) =
∑
t∈T

t−1gt∈H

ϕ(t−1gt).

With the intention of generalizing this result for class functions on H we make the following definition.

Definition 4.2. Let H be a subgroup of a group G with T a set of left-coset representatives of H in G.
Let ψ be a class function on H and define a function ψo : G→ C by ψo(h) = ψ(h) for h ∈ H and zero
otherwise. The function ψG : G→ C defined by

ψG(g) =
∑
t∈T

ψo(t−1gt)

is called the induction map of ψ to G.
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Remark. By Theorem 4.1, if (ϑ,W ) is a representation of a subgroup H , with character ϕ, which induces
a representation (θ,V ) of G with character χ, then the induction map behaves as expected, namely
ϕG = χ.

Remark. If t−1gt ∈ H then the mapping t−1gt 7→ h−1t−1gth is a bijection of H and ψ, being a class
function, gives ψ(t−1gt) = ψ(h−1t−1gth). Also, t−1gt ∈H ⇐⇒ h−1t−1gth ∈H . Putting all this together
yields a different way of writing the induction map of ψ:

ψG(g) =
1
|H |

∑
h∈H

∑
t∈T

ψo((th)−1gth).

Furthermore, since G = ∪t∈T tH we get the often useful form

ψG(g) =
1
|H |

∑
x∈G

ψo(x−1gx).

Lemma 4.3. If H is a subgroup of G with a class function ψ on H , the the induction map ψG is a class
function on G.

Proof. For any x ∈ G we have that

ψG(x−1gx) =
∑
t∈T

ψo((xt)−1gxt)

=
∑
t∈T ′

ψ(t−1gt) = ψG(g),

where T ′ = {xt | t ∈ T } is another set of left-coset representatives of H in G.

The following result will be used in later chapters.

Lemma 4.4. (Transitivity of Induction Map) If H and K are subgroups of G with H contained in K . Then
if ψ is a class function on H we have that

(ψK )G = ψG.

Proof. Note that by Lemma 4.3, ψK is a class function on K and (ψK )G is well defined. If g < K then
x−1gx < K =⇒ x−1gx <H for any x ∈ K . Hence

(ψK )o(g) =
1
|H |

∑
x∈K

ψo(x−1gx)

holds for all g ∈ G. Now we evaluate

(ψK )G(g) =
1
|K |

∑
y∈G

(ψK )o(y−1gy) =
1
|K |

∑
y∈G

1
|H |

∑
x∈K

ψo((xy)−1gxy)

=
1
|H |

∑
y∈G

ψo(y−1gxy) = ψG(g)

where we in the third equality used the bijection xy 7→ y of G, for any x ∈ K .
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At this point in time, we do not know that if ψ is a character of a representation of a subgroup
H of G, then its induction map ψG is necessarily a character of G. If we knew that there existed a
representation of G, induced by the original representation of H , then Theorem 4.1 would answer this
question in a positive way: yes, ψG is indeed a character of G.

The proof of existence and uniqueness (up to G-isomorphism) of the induced representation will end
this chapter. Amazingly enough, one could show that ψG is a character given that ψ is a character
without the proof of existence. The following result (which is also of great practical use) is the key point
of this argument.

Theorem 4.2. (Frobenius Reciprocity Theorem) Let H be a subgroup of G and let ψ and ϕ be class functions
on H and G respectively. Then

〈ψ,ϕ|H 〉 = 〈ψG,ϕ〉.

Remark. To clarify, the inner product on the left hand side is on the space of class functions of H , while
the right hand side is on the space of class functions of G.

Theorem 4.3. If H is a subgroup of G and ψ a character of some representation of H . Then the induction
map ψG is a character of some representation of G.

Proof of Theorem 4.3. From Lemma 4.3 we know that ψG is a class function of G, and so

ψG =
∑
χ∈IrrG

aχχ

where aχ = 〈ψG,χ〉. Now ψG is a character if and only if aχ is a non-negative integer for every χ ∈ IrrG.
By Frobenius reciprocity, 〈ψG,χ〉 = 〈ψ,χ|H 〉 equals a non-negative integer, since ψ is a character of
H .

Proof of Frobenius Reciprocity Theorem. Simply evaluating the right hand side yields

|G||H | 〈ψG,ϕ〉 = |H |
∑
g∈G

ψG(g)ϕ(g)

=
∑
g∈G

∑
x∈G

ψo(x−1gx)ϕ(g)

=
∑
g∈G

∑
x∈G

ψo(g)ϕ(xgx−1)

=
∑
g∈G

∑
x∈G

ψo(g)ϕ(g)

= |G|
∑
h∈H

ψ(h)ϕ(h) = |G||H | 〈ψ,ϕ|H 〉.

Let us now prove the uniqueness and existence of the induced representation. We begin with showing
uniqueness, which follows directly.

Theorem 4.4. (Uniqueness) Let H be a subgroup of G with representation (ϑ,W ) of H and representations
(θ,V ) and (θ′ ,V ′) of G. If both (θ,V ) and (θ′ ,V ′) are induced by (ϑ,W ), then (θ,V ) is G-isomorphic to
(θ′ ,V ′).
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Proof. Let ψ, χ and χ′ be the characters of (ϑ,W ), (θ,V ) and (θ′ ,V ′) respectively. By Theorem 4.1,
χ = ψG = χ′ , and so by Theorem 2.3, (θ,V ) �G (θ′ ,V ′).

For showing the existence we need the following Lemmas.

Lemma 4.5. Let H , with representation (ϑ,W ), be a subgroup of G, with representation (θ,V ) that is induced
by the representation of H . Suppose that W ′ is a sub-H-module with respect to (ϑ,W ), then the representation
with H-moduleW ′ induces a representation with G-module V ′ such that V ′ is a sub-G-module with respect to
(θ,V ).

Proof. Let T be a set of left-coset representations of H in G. Define V ′ =
∑
t∈T θtW

′ . Since V =
⊕t∈T θtW , the sum of V ′ is also direct:

V ′ =
⊕
t∈T

θtW
′ .

Furthermore, we see that V ′ is invariant with respect to θ:

θgV
′ =

⊕
t∈T

θgtW
′ =

⊕
t∈T ′

θtW
′ = V ′ ,

with T ′ = gT being another set of left-coset representations. The restriction to H of the representation
with G-module V ′ is clearly the representation with H-module W ′ , since θ|H = ϑ.

Lemma 4.6. Let H be a subgroup of G. Suppose that a representation (ϑ,W ) of H induces a representation
(θ,V ) of G and that (ϑ′ ,W ′) �H (ϑ,W ), then there exists a representation (θ′ ,V ′) of G that is induced by
(ϑ′ ,W ′).

Proof. Let T be a set of left-coset representatives of H in G. Let W ′t =W
′ and the external direct sum

V ′ = ⊕t∈TW ′t of copies of W ′ (formally, we define W ′t = t ×W ′ and identify each W ′t with W ′ ). Let
f :W →W ′ be an H-isomorphism. Extend f ∗ : V → V ′ by

f ∗(vt) = f
∗(θtw) = f (w) ∈W ′t

for any vt ∈ V ′t and vt = θtw for some w ∈ W . It is evident that f ∗ is a linear bijection. Define
θ′g : V → V by

θ′g = f
∗θg (f

∗)−1.

It follows directly from the definition that θ′ is a homomorphism and its restriction to H equals ϑ′ . All
we need to check now is that

V ′ =
⊕
t∈T

W ′t

⇐⇒ (f ∗)−1V ′ = (f ∗)−1
⊕
t∈T

θ′tW
′

⇐⇒ V =
⊕
t∈T

(f ∗)−1θ′tW
′

=
⊕
t∈T

θt(f
∗)−1W ′

=
⊕
t∈T

θtW =
⊕
t∈T

Wt

which holds by hypothesis.
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The desired Theorem of existence now follows easily.

Theorem 4.5. (Existence) Let H be a subgroup of G and (ϑ,W ) a representation of H , then there exists a
representation (θ,V ) of G that is induced by (ϑ,W ).

Proof. We can by Lemma 4.1 assume without loss of generality that (ϑ,W ) is irreducible. Let (ϑ′ ,W ′) be a
representation in the canonical decomposition of the regular representation of H , such that (ϑ′ ,W ′) is H-
isomorphic to (ϑ,W ). By Lemma 4.2, the regular representation of H induces the regular representation
of G, which by Lemma 4.5 gives an induced representation of (ϑ′ ,W ′). By Lemma 4.6, this gives an
induced representation of (ϑ,W ).

Remark. With existence and uniqueness proven, we can from this point speak of the induced represen-
tation of (ϑ,W ), when (ϑ,W ) is a representation of a subgroup H of G.

We end this section with explicitly stating a method of how to use these results in practice, for finding
the irreducible characters for a given group G.

Formula.

i. Find a subgroup H of G with left-coset representatives T .

ii. If H is normal, then compute the irreducible characters {χi} of G/H and lift them up to respective
irreducible characters {χ̃i} of G

iii. Compute the irreducible character {ψi} of H and their respective induction map characters {ψGi }
of G.

iv. Given an induction character ψG, compute 〈ψG,ψG〉 to see how far off it is from being irreducible.
If the norm equals one, then ψG is irreducible.

v. Use any known irreducible character χ of G and compute with Frobenius reciprocity Theorem
(for easier computations), 〈ψG,χ〉 = 〈ψ,χ|H 〉 = n. If n > 0 then continue from step iv. with the
character (ψG −nχ) until it hopefully produces a new irreducible character of G.
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5 A Note on Solvable Groups

Let us for the moment step back from the theory of representations and recap some facts from
elementary group theory. Specifically, let us define what a solvable, supersolvable and a nilpotent group
is. In the next chapter, the results in this chapter will be used to show the connection between M-groups
and solvable groups.

Definition 5.1. A group G is called solvable if there exists a sequence, called a normal series, of proper
subgroups {Gi}ni=1 of G such that

1 = G0 /G1 / · · · /Gn = G

and the quotient group Gi /Gi−1 is abelian for all i = 1, . . . ,n.

Lemma 5.1. If N is a normal subgroup of G and suppose that N and the quotient group G/N are both
solvable, then G is solvable.

Proof. By hypothesis, there exists normal series

1 =N0/ · · · /Nm =N

N/N =H0/N/ · · · /Hk/N = G/K

with subgroups Hi of G all containing N (by the Correspondence Theorem). The Third Isomorphism
Theorem gives that

Hi+1/N
Hi /N

�Hi+1/Hi

and we have a normal series
1 =N0 / · · · /Nm /H1 / · · · /Hk = G.

Lemma 5.2. If G is solvable, then G′ , G.

Proof. In a normal series of G, we have in particular that G/Gn−1 is abelian. But G′ is the smallest
subgroup of G such that its quotient with G is abelian.

=⇒ G′ ⊂ Gn−1 ( G.

Remark. By induction, it follows readily that G(r) = 1 for some r > 0.

Definition 5.2. A group G is called supersolvable if there exists a sequence, called a supernormal
series of proper subgroups {Ni}ni=1 of G such that

1 =N0 /N1 / · · · /Nn = G

with Ni /G and the quotient group Ni /Ni−1 is cyclic for all i = 1, . . . ,n.

Lemma 5.3. A supersolvable group is solvable.

Proof. It follows directly from the definitions.
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Definition 5.3. A group G is called nilpotent if it equals the direct product of its Sylow subgroups.

Lemma 5.4. A nilpotent group is supersolvable.

Proof. Let G be a nilpotent group with Sylow subgroups {Pi}ni=0, so that

G = P0 · · ·Pn.

Clearly, each Pi is normal in G. Define Ni =
∏i
j=0 Pj for i = 0, . . . ,n where we for i = 0 regard the product

as empty and N0 = 1. A product of normal subgroups is also normal, therefore

1 =N0 /N1 / · · · /Nn = G

is a normal series of G. Furthermore,

|Ni /Ni−1| = |Pi | = p
ni
i

for some prime pi and ni > 0. If ni = 1 then the quotient group is cyclic. Otherwise, if we can find a
supernormal series

1 =H0 /H1 / · · · /Hr = Pi
then by the correspondence theorem applied to each Pi we have a supernormal series for G.
We show this by induction over n = ni . As the p-group P = Pi has a nontrivial center Z(P ) which contains
an element g of order p, where |P | = pn. Set H0 = 〈g〉 which is normal in P (since g ∈ Z(P )). Now, P /H0
has order pn−1. By induction and the correspondence theorem, we can find a supernormal series

1 =H0/H0 /H1/H0 / · · · /Hr /H0 = P /H0

which we can lift up to get a supernormal series of P ,

1 =H0 /H1 / · · · /Hr = P .

Lemma 5.5. If G is a group such that G′ ⊂ Z(G), then G is nilpotent.

Proof. Let |G| = pm1
1 · · ·p

mn
n be the prime decomposition of the order of G. Suppose for each pi that a

Sylow pi-subgroup Pi of order p
ni
i is actually the only Sylow pi-subgroup in G. Then two different Sylow

subgroups have trivial intersection and the product of all Sylow subgroups of G, P1 · · ·Pn, is a subgroup
with order

|P1 · · ·Pn| = |P1| · · ·|Pn| = |G| =⇒ P1 · · ·Pn = G

and G is nilpotent.
Thus all that is left to show is that if P is a Sylow p-subgroup then it is the unique Sylow p-subgroup of
G. From the Sylow theorems, this is implied if P is normal in G, since all Sylow p-subgroup are conjugate
with each other. The normalizer NG(P ) = N is the largest subgroup of G that contains P as a normal
subgroup. Our claim is that N = G.
By the Sylow theorems, P is the unique Sylow p-subgroup of N . Now if g ∈ NG(N ) so that gNg−1 = N
then gP g−1 = P and g ∈N . Therefore the normalizer of N in G is N itself.
If g ∈ Z(G) then of course gNg−1 =N =⇒ g ∈NG(N ) =N and by the hypothesis we have the following

G′ ⊂ Z(G) ⊂N ⊂ G.
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The quotient group N/G′ is a subgroup of the abelian G/G′ which implies that in fact

N/G′ /G/G′ =⇒ N /G.

Thus, the normalizer of N is G, but G = NG(N ) =N .
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6 M-groups

In this section we will define what an M-group is. It is defined using the induced representation,
but is actually closely related to the theory of solvable groups. Indeed, we will here show that the set of
M-groups contains all supersolvable (and nilpotent) groups and is contained in the set of solvable groups.

It follows almost directly from the definitions that subgroups of supersolvable and solvable groups
are supersolvable and solvable, respectively. Interestingly, this is not a feature that is shared with the
M-groups. That is, there exists a subgroup of an M-group that is not itself an M-group. This example
will be the main topic in the following chapter.

Now for the main definition and some important consequences.

Definition 6.1. Let G be a group with a representation (θ,V ). The representation (θ,V ) is called
monomial if θ is a direct sum of induced representations,

θ =
⊕

ψGi ,

where each ψi is a one-dimensional representation of some subgroup Hi of G. Furthermore, a group G
is called an M-group if every irreducible representation of G is monomial.

Remark. A one-dimensional representation is trivially monomial. Hence by Theorem 3.3.3, abelian
groups are M-groups.

A monomial representation has a simple interpretation in its matrix form, when a suitable basis is
defined. Each induced ψGi has exactly one non-zero entry in each column and row, which means that the
direct sum shares this property. Such a matrix is called a monomial matrix. A special case of monomial
matrices are the permutation matrices, where each such non-zero entry equals 1. Given an monomial
matrix (and representation) we can set all such non-zero entries to 1 and get a permutation matrix (and
a so called permutation representation). We will later on in this chapter return to the permutation matrix
and use some of its properties for further understanding of the monomial representation.

Definition 6.2. LetM be the set of groups such that if G ∈M then

i. All subgroups and homomorphic images of G are inM

ii. If G is not abelian then there exists an abelian normal subgroup A of G such that A ( Z(G).

Our first goal of this chapter is showing thatM is actually a subset of the set of M-groups.
We start with a technical Lemma, which the reader might find obvious. In a way it connects the lifted

representation introduced in Chapter 3 with the induced representation.

Lemma 6.1. Suppose that A is a normal subgroup of some group G with a representation (θ,V ) of G, such
that A ⊂ kerθ. Suppose further that the representation (

˜
θ,V ) of the quotient group G/A is monomial, then the

representation (θ,V ) is also monomial.

Proof. Let K denote the quotient group G/A and let T be a set of left-coset representatives of A in G.
By hypothesis,

˜
θ =

⊕
ψKi for some one-dimensional representations ψi of some subgroups of K . By the

correspondence theorem, let the subgroup of ψi be Hi /A where Hi is some subgroup G containing A.
Let i be fixed, and denote for simplicity ψ = ψi and H =Hi .
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We have that

ψK (gA) =
1

|G : A|

∑
x∈K

ψo(x−1(gA)x)

=
|A|
|G|

∑
t∈T

ψo(t−1gtA)

=
1
|G|

∑
x∈G

ψo(x−1gxA).

Now lifting it up yields
˜(ψK )(g) =

1
|G|

∑
x∈G

ψ̃o(x−1gx) = ψ̃G(g)

and so the result follows, since ψ̃i is a one-dimensional representation of subgroup Hi of G and

θ =
⊕

ψ̃Ki =
⊕

ψ̃i
G.

Lemma 6.2. Suppose that A is a normal subgroup of some group G with an irreducible representation (θ,V )
of G. Consider the canonical decomposition of V regarded as an A-module

V =W1 ⊕ · · · ⊕Wm

then the following holds:

i. G acts transitively on {Wi} by the action g 7→ θgWi .

ii. If H is defined as the subset of G that fixes W1, then H is a subgroup of G and W1 is an irreducible
H-module with respect to some representation (ψ,W1) of H . Furthermore, ψG = θ.

Proof.

i. Let Vi be an A-module representative of the A-ismorphism class of irreducible A-modules which
is included in the direct sum of Wi . Meaning Wi is A-isomorphic to a direct sum of a number of
Vi ’s. Consider the sub-A-module

Ui =
⊕
{θxV1 | x ∈ G, θxV1 �A Vi}.

Clearly Ui ⊂ Wi . Since V is irreducible as a G-module, we have that V =
⊕

Ui , which implies
that Ui =Wi .

Now we show if θxV1 �A θyV1 for some x and y in G, then so is θgxV1 �A θgyV1 for any g in G. If
f : θxV1→ θyV1 is an A-isomorphism then θgf θg−1 : θgxV1→ θgyV1 is also an A-isomorphism.
In fact, if a ∈ A then for any v1 ∈ V1

θgf θg−1(θaθgxv1) = θgf θg−1agθxv1 = θgθg−1agf θxv1
= θaθgf θxv1 = θa(θgf θg−1 )(θgxv1)
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where the third equality uses the normality of A. So if for some i, we have θxV1 �A θyV1 �A Vi
then θgxV1 �A θgyV1 �A Vj for some j . Which implies that θgWi ⊂Wj . If we can show equality,
then the irreducibility of G would imply that the action is transitive.

If θgWi ⊂Wj then dimWi ≤ dimWj and Wi ⊂ θg−1Wj ⊂Wk for some k, by the same argument
as above. Repeating this process for the finite {Wi} eventually yields dimWj ≤ dimWi and so
θgWi =Wj .

ii. If h1 and h2 are elements of H , then θh1h2W1 = θh1W1 =W1 so h1h2 ∈H and H is a subgroup of
G. By i. we can choose a set T = {ti} such that θtiW1 =Wi . Now

tiH = tjH ⇐⇒ θti t−1j
W1 =W1 ⇐⇒ ti = tj

and hence T is a set of left-coset representatives of H in G. If W1 were not irreducible as an
H-module, then the induced representation of this proper sub-H-module would yield a proper
representation of G, which contradicts the irreducibility of G. Hence, W1 is an irreducible H-
module with respect to the representation ψ = θ|H and⊕

ti∈T
θtiW1 =

⊕
i

Wi = V =⇒ ψG = θ.

Now we are ready for the first main theorem of this chapter.

Theorem 6.1. If G ∈M then G is an M-group.

Proof. We proceed by proving with induction over the order of G.
If |G| = 1, then G is trivially an M-group.
Suppose now that the statement holds for all groups of order less than |G|. Let (θ,V ) be an irreducible

representation of G. If θ is not faithful, then the quotient group G/ kerθ is of smaller order than G, and
by our induction hypothesis the representation (

˜
θ,V ) is monomial. Lemma 6.1 implies that (θ,V ) is also

monomial and we are done. Suppose from now on that θ is faithful.
If G is abelian, then (θ,V ) is again monomial, so we suppose further that G is not abelian. By the

definition of M, there exists an abelian subgroup A of G that is not contained in the center of G. If
dimV = n and V is regarded as an A-module, then following the notation as in Lemma 6.2 and its
proof, we can decompose

V =
m⊕
i=1

Wi =
n⊕
i=1

Vi ,

with the first decomposition being the canonical decomposition and the second an irreducible decom-
position into one-dimensional sub-A-modules. We claim that m > 1 which is equivalent to that not all
{Vi}ni=1 are A-isomorphic. Suppose, in hope of a contradiction, that they are all A-isomorphic.

Set φi : V1→ Vi to be an A-isomorphism. Let Vi = Cvi for some vi ∈ V and take a ∈ A. Set

θav1 = λv1,

φiv1 = γivi

29



for some λ,γi ∈ C− 0. But now we get

θavi = θaγ
−1
i γivi = θaγ

−1
i φiv1

= γ−1i θaφiv1 = γ
−1
i φiθav1

= γ−1i φ1λv1 = γ
−1
i λγivi = λvi ,

and so for any v ∈ V we have θav = λv. This implies that for all x ∈ G we have that

θx−1ax = θx−1λθx = λ = θa.

Recall that θ was assumed to be faithful, and so x−1ax = a. Since this holds for all x in G, a ∈ Z(G) =⇒
A ⊂ Z(G), which is the sought contradiction. Now with m > 1, the subgroup H defined in Lemma 6.2
is a proper subgroup of G and W1 is an irreducible H-module with representation ψ such that ψG = θ.
Also, since H is a proper subgroup, our induction hypothesis gives that ψ is monomial, and

ψ =
⊕

ψHi

=⇒ θ = ψG = (
⊕

ψHi )
G

=
⊕

(ψHi )
G =

⊕
ψGi .

where the second to last equality follows from Lemma 4.4.1 and the last equality is the transitivity of
the induction map (Lemma 4.4.4). Hence, the irreducible representation (θ,V ) is monomial and G is an
M-group.

We can now prove our first inclusion of M-groups into the theory of solvable groups.

Corollary 6.1. If a group G is supersolvable, then G is an M-group.

Proof. We show that the set of all supersolvable groups G is included inM and so the result follows from
Theorem 6.1. Clearly, subgroups and homomorphic images of a supersolvable group is also supersolvable.
It remains to show that if G is not abelian, then there exists an abelian normal subgroup A that is not
contained in the center of G. From the supernormal series

1 =N0 / · · · /Nn = G

we can choose some Gi ⊂ Z(G) and Gi+1 ( Z(G). Indeed, the center is properly contained in G. The
quotient group Gi+1/Gi is of prime order, hence a cyclic group. It is now a standard result that A = Gi+1
is indeed an abelian group. For the doubting reader, the following argument is included.

Since Gi ⊂ Z(G) =⇒ Gi ⊂ Z(Gi+1) we take x ∈ Gi+1 −Gi and show that x ∈ Z(Gi+1). The coset xGi
generates Gi+1/Gi and so for each y ∈ Gi+1 we can write y = xkg for some g ∈ Gi and

yx = xkgx = xk+1g = xy.

Therefore Z(Gi+1) = Gi+1 and Gi+1 is abelian.

From Lemma 5.4 and Lemma 5.5, if the derived normal subgroup G′ is contained in the center of
G, then G is an M-group. Note that in this case, both G′ and the quotient G/G′ are both abelian. This
property can be generalised.
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Theorem 6.2. If G has a normal subgroup N such that both N and G/N are abelian, then G is anM-group.

We need the following Lemma.

Lemma 6.3. If G has a normal subgroup N such that N is solvable, G/N is supersolvable and all Sylow
subgroups of N are abelian, then G is an M-group.

Proof of Theorem 6.2. For an abelian group the center equals the group itself (also the derived subgroup is
trivial), so by Lemma 5.5 the group is nilpotent. Therefore, both N and G/N are nilpotent, supersolvable
and solvable, with subgroups that are abelian, in particular the Sylow subgroups. By Lemma 6.3 we are
done.

In the following proof, we are rewarded for the results proven in Chapter 5.

Proof of Lemma 6.3. Again we show that the set of all groups that satisfy the hypothesis is a subset of
M. Properties such as a subgroup begin normal and solvable, quotient groups being supersolvable
and Sylow subgroups being abelian, are purely group theoretical properties, and are preserved through
homomorphisms. Furthermore, they are preserved by taking subgroups. Showing that G satisfies the
second condition of the definition of M remains. Therefore, suppose that G is not abelian. If N itself
is abelian, then if N ⊂ Z(G) we can proceed exactly as in the proof of Corollary 6.1, with 1 replaced
with N , using the supernormal series given from G/N . In that case we can find some normal abelian
subgroup A that is not contained in the center of G. If N ( Z(G) then A =N will do.

If N is not abelian, let A be the maximal normal subgroup of G contained in N . We claim that
A ( Z(G), for otherwise we contradict the maximality of A. In fact, let A ⊂ Z(G) =⇒ A ⊂ Z(N ) and
consider the quotient group N/A. Let the subgroup H/A (by the correspondence theorem), such that
A/A ⊂ H/A ⊂ N/A, and H/A is the minimal nontrivial normal subgroup of G/A. Our goal is to show
that H is also abelian, which contradicts the maximality of A.

Since G/A is solvable, Lemma 5.2 implies that the derived

(H/A)′ ,H/A

=⇒ (H/A)′ = A/A,

by the minimality of H , which gives that H/A is abelian. But this can only happen if the derived subgroup
H ′ is contained in A ⊂ Z(H). By Lemma 5.5, H is nilpotent and can be written as a direct product of
its Sylow subgroups contained in N , which are by hypothesis abelian. Therefore, H is abelian and we
have our contradiction. Thus, in all cases we can find some abelian normal A of G satisfying the second
property ofM.

The third and last main result of this chapter will be showing that every M-group is solvable. First
we need the notion of a permutation representation and a basic fact concerning such representations. We
begin with a definition.

Definition 6.3. Let G be a group with a representation (θ,V ). We call this representation a permutation
representation of degree n if dimV = n and θg is associated with a permutation matrix for every g ∈ G,
in a suitable basis for V .

Remark. The regular representation of a group G is a permutation representation of degree |G|.
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Remark. It is evident that a permutation representation of degree n describes a group homomorphism
from G into the symmetric group on n letters. Conversely, every such homomorphism gives a natural
permutation representation after identifying {1, . . . ,n} with the basis {e1, . . . , en} of a vector space of
dimension n. The character of such a natural permutation representation will in the following Lemma be
described as a permutation character of G.

Lemma 6.4. Let G be a permutation group on Ω = {1, . . . ,n} with permutation character χ. Let t equal the
number of orbits of the G-set Ω. Then 〈χ,χ1〉 = t, where χ1 is the principal character of G.

Proof. The Lemma follows directly from Burnside’s Lemma, since χ(g) equals the number of fixed points
of g with respect to the action of G on Ω. Indeed,

〈χ,χ1〉 =
1
|G|

∑
g∈G

χ(g) = t.

The following Lemma and its proof will be used in the upcoming Theorem.

Lemma 6.5. If a group G has a unique minimal normal subgroup N , then there exists a faithful irreducible
representation of G.

Proof. Suppose that N ⊂ kerθ for all irreducible representations θ of G, then by Theorem 3.3.6, N = 1,
contradicting the non-triviality of N . Therefore, there exists some irreducible θ such that for some
x ∈N − 1, we have θx , 1. Then the following holds:

N ( kerθ

=⇒ N ∩kerθ ,N
=⇒ N ∩kerθ = 1

=⇒ kerθ = 1

where the second implication follows from the minimality of N and the third implication follows from
the uniqueness of N . Hence, a faithful irreducible representation of G must exist.

Theorem 6.3. If G is an M-group, then G is solvable.

Proof. We proceed with induction over |G|. The case |G| = 1 is trivial. Now suppose the theorem holds for
all groups of order less than |G| > 1. First we can suppose without loss of generality that G has a unique
minimal normal subgroup. If G had two distinct minimal normal subgroups N1 and N2, then G/N1 and
G/N2 would be M-groups with order strictly less than the order of G. By our induction hypothesis, the
quotient groups are solvable and so the direct product G/N1 ×G/N2 is solvable. The homomorphism
φ : G→ G/N1 ×G/N2 given by

φ(g) = (gN1, gN2)

has kernel N1 ∩N2, which is a normal subgroup strictly contained in N1 and N2. By the minimality
of N1 and N2 we must have kerφ = 1 and G is isomorphic to a solvable group, and hence solvable.
Therefore, we now assume that G has a unique minimal normal subgroup N . By Lemma 6.5, there
exists some faithful irreducible representation (θ,V ) of G of minimal degree. In a suitable basis, the
monomial θ has an associated monomial matrix. Change all non-zero entries to 1 and arrive at a
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permutation representation (θp,V ) of degree dimV . Let K = kerθp. We first claim that K is abelian.
Indeed, K = {g ∈ G | θg is diagonal} is isomorphic to the abelian matrix group {θg | θg is diagonal} with
isomorphism map g 7→ θg . Secondly, we claim that K is non-trivial.

Suppose that K is trivial ⇐⇒ θp is faithful, in hope of a contradiction. By Lemma 6.4, θp contains
at least one copy of the principal representation. Furthermore, it is reducible, for if θp were to equal the
principal representation then θp would not be faithful. Therefore, θp can be decomposed into a direct
sum of irreducible components

θp =
⊕

ϕi .

Take x ∈N − 1, then there must exist some ϕi such that ϕix , 1. In fact, otherwise

θ
p
x =

⊕
ϕix = 1

which contradicts θp being faithful. Following the proof of Lemma 6.5 with θ replaced by ϕi we get
that kerϕi = 1 and ϕi being a faithful irreducible representation of G, with dimϕi < dimθp = dimθ
contradicting the minimality of θ.

To summarise, K is abelian and the quotient G/K is an M-group of order less than G. By our
induction hypothesis, G/K is solvable. But K is trivially solvable, so by Lemma 5.1, G itself must be
solvable.
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7 Character Tables of Groups of Increasing Size

In this chapter we will work primarily with four different groups, which we will denote as Q8,G24, P32
and G96 (with their index denoting their order). We will find the so called character tables of these
groups, which will help us find the irreducible representations. In particular, the faithful irreducible
representations are of particular interest. Here we will get a chance of using the theory of the previous
chapters. The last group of order 96 will also give an example of an M-group that contains a subgroup
that is not an M-group itself.

7.1 A group of order 8

We begin with the group Q8 with generators c,d and relations

c4 = d4 = 1, c2 = d2, d−1cd = c−1.

After identifying

c↔ i,

d↔ j,

cd↔ k,

we notice that Q8 is in fact the quaternion group of order 8, and we can easily verify that Z(Q8) =Q′8 =
〈c2〉 ↔ {±1}. We begin by finding the character table of Q8, but in order to do so we must first explain
what a character table is.

If a group has conjugacy classes {Cl(gi)}ri=1 and irreducible characters {χi}ri=1 we let the character
table be a table of the following form:

Character Table

Cl(g1) Cl(g2) . . . Cl(gr )

χ1 x11 x12 . . . x1r
χ2 x21 x22 . . . x2r
...

...
...

. . .
...

χr xr1 xr2 . . . xrr

where xij = χi(gj ). We will always order the irreducible characters in increasing order with χ1 being the
principal character (hence x1j = 1 for all j). We will also set Cl(g1) = Cl(1) = 1 (hence xi1 = dimχi
for all i). For extra readability, we will also write out Cl(g)nm where m =

∣∣∣Cl(g)∣∣∣ and n = |G|/m (hence n
equals the order of the centralizer of g in G). The second most trivial character table is for the group
Z2 = {1,β}.

34



Character Table of Z2

Cl(1)21 Cl(β)21
χ1 1 1
χ2 1 −1

Now we return to our group Q8 and construct the character table. Notice that we are able to do this
without knowing any of the irreducible representations of Q8. First we find the five conjugacy classes of
Q8 and so we know the dimensions of the character table.

Unfinished Character Table of Q8

Cl(1)81 Cl(c2)81 Cl(c)42 Cl(d)42 Cl(cd)42
χ1 1 1 1 1 1
χ2 x21 x22 x23 x24 x25
χ3 x31 x32 x33 x34 x35
χ4 x41 x42 x43 x44 x45
χ5 x51 x52 x53 x54 x55

We will move in a snake-like fashion and decide the whole table in five parts, using five different
relations. The Degree Equation (Theorem 3.1) gives a condition on the first column

5∑
i=1

x2i1 = 8

and so x21 = x31 = x41 = 1 and x51 = 2. With all the linear characters found we can use Corollary 3.2
and get

〈c2〉 =
⋂

χ∈LinG

kerχ =⇒ x22 = x32 = x42 = 1.

The last unknown of the second column is given by the Second Orthogonality Relation (Theorem 3.2)

4+2x52 = 0 =⇒ x52 = −2.

The last row is now given directly from the First Orthogonality Relation (Theorem 2.1)

‖χ5‖2 =
4+4+2|x53|2 +2|x54|2 +2|x55|2

8
= 1 =⇒ x53 = x54 = x55 = 0.

For the last nine entries, consider the three normal subgroups

N2 = {1, c2, c, c3},
N3 = {1, c2, d, d3},
N4 = {1, c2, cd, cd3},
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that all yield an isomorphic quotient group. Indeed,

G/N2 � G/N3 � G/N4 � Z2.

Using Theorem 3.5, we can lift the non-principal irreducible representation of Z2 for G/N2, G/N3 and
G/N4, which yields the characters χ2, χ3 and χ4 respectively. The character table of Q8 is now complete.

Character Table of Q8

Cl(1)81 Cl(c2)81 Cl(c)42 Cl(d)42 Cl(cd)42
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

We now seek the irreducible representation of degree 2, which is faithful by the character table (and
Theorem 3.4). This representation is probably known to the reader. It can be found directly with the use
of the induced representation.

We know from Lemma 5.5 that Q8 is an M-group, hence χ5 is monomial. Take H = {1, c, c2, c3} �
Z4 and T = {1, d} as a set of left-coset representatives of H in Q8. Let ψ be a representation of H
and consider the induced representation ψG. It is our hope that the character of ψG is χ5. Take the
irreducible representation ψck = i

k and compute relations c1 = 1c and cd = dc3, which yields

ψGc =
[
i 0
0 −i

]
.

Similarly d1 = d1 and dd = 1c2, gives

ψGd =
[
0 −1
1 0

]
=⇒ ψGcd =

[
0 −i
−i 0

]
.

One immediately sees that the character of ψG is χ5 and ψG is the irreducible representation of degree
2, of our first group Q8.

7.2 A group of order 24

Before defining a group G24 of order 24 we will do some preparations. By Theorem 3.3, the character
table of any cyclic group, such as Z3 = {1, β, β2}, is trivial to construct. Consider the following one.
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Character Table of Z3

Cl(1)31 Cl(β)31 Cl(β2)31
χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

ω = e2πi/3

Define an automorphism β :Q8→Q8 by

1 7→ 1,

c2 7→ c2,

c 7→ d 7→ cd 7→ c,

c3 7→ d3 7→ cd3 7→ c3.

In our identification of Q8, we recognize β as the renaming i 7→ j 7→ k. From the definition above, β3 = 1
and β is of order 3. Identify {1, β, β2} with Z3 and define our group of order 24 as the outer semidirect
product

G24 = Z3 nβ Q8,

with Q8 isomorphic to a normal subgroup of G24. With this definition at hand, we can write out a set of
generators and their relations of G24. Explicitly, G24 has generators c,d and β with relations

c4 = d4 = 1, c2 = d2, cd = c−1,

β3 = 1, cβ = d, dβ = cd.

Now Q8 � 〈c,d〉 and 〈c,d〉 / G24. Furthermore, Q′8 ⊂ G
′
24 ⊂ Q8 and [cd, β] = c, [c, β] = d implies that

G′24 = Q8. The center of G24 is also easily computed. If g ∈ Z(G24) with g = β−ix for some x ∈ Q8 we
must have

x = βiβ−ix = β−ixβi = xβ
i

which can only happen when i = 0 =⇒ x ∈ Z(Q8) = 〈c2〉. We verify that c2 is in the center of G24 by
computing for any g = βix ∈ G24

g−1c2g = (βix)−1c2βix = x−1c2x = c2.

Therefore Z(G24) = 〈c2〉. The quotient group G24/Z(G24) of order 12 is isomophic to A4, the alternating
group of four letters, by the isomorphism ϕ given by the mappings (we abuse notation of the left coset
g〈c2〉 = ±g)

±1 7→ (), ±c 7→ (13)(24), ± d 7→ (14)(23), ±cd = (12)(34)

±β 7→ (123), ±βc 7→ (243), ± βd 7→ (142), ±βcd = (234)

±β2 7→ (132), ±β2cd 7→ (234), ± β2c 7→ (124), ±β2d = (243).
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Notice that the first row is the Klein four-group H4 which is normal in A4. With this in mind, we compute
the character table of A4, which will give us some information of G24. First, A4 has five conjugacy
classes and A4/H4 � Z3, which gives three irreducible characters and representations. By the Degree
Equation, the fifth irreducible representation χ5 must be of degree 3. This representation is easily found
by the power of the induced representation. Take the subgroup H4 of A4 with left-coset representatives
T = {(), (123), (132)}. A non-principal representation ψ of H4 is for example given by χ2 in its character
table (which is easily produced by three lifted characters from the irreducible non-principal character of
Z2).

Character Table of H4

Cl(())41 Cl((12)(34))41 Cl((13)(24))41 Cl((14)(23))41
χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

Since A4 is generated by the three-cycles (123) and (124) it is enough to determine ψG for these
values. We compute

(123)() = (123)(), (124)() = (132)(13)(24),

(123)(123) = (132)(), (124)(123) = ()(14)(23),

(123)(132) = ()(), (124)(132) = (123)(12)(34),

which yields the induced representation (which to our knowledge might not be irreducible!)

ψG(123) =


0 0 1
1 0 0
0 1 0

 and ψG(124) =


0 −1 0
0 0 1
−1 0 0

 .
The character of ψG is now known for three of the four conjugacy classes of A4. We take the represen-
tative (14)(23) out of the last conjugacy class (namely H4) and compute

ψG(14)(23) = ψ
G
(124)ψ

G
(123) =


−1 0 0
0 1 0
0 0 −1

 .
Now we can use the First Orthogonality Relation and verify that the character of ψG is indeed irreducible
and equal to χ4 of A4.
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Character Table of A4

Cl(1)121 Cl((12)(34))43 Cl(123)43 Cl(124)43
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

ω = e2πi/3

Now we turn our attention to computing the character table of G24. First we see that G24 has seven
conjugacy classes. We list them here for the sake of completion:

Cl(1) = {1}, Cl(c2) = {c2},
Cl(c) = {c, c3, d, d3, cd, cd3},

Cl(β) = {β, βc, βd, βcd}, Cl(βc2) = {βc2, βc3, βd3, βcd3},
Cl(β2) = {β2, β2c3, β2d3, β2cd3}, Cl(β2c2) = {β2c2, β2c, β2d, β2cd}.

With four irreducible characters lifted from A4, the Degree Equation gives that the remaining three
degrees n1,n2 and n3 must satisfy

n21 +n
2
2 +n

2
3 = 24− 12 = 12 =⇒ n1 = n2 = n3 = 2

and so

Unfinished Character Table of G24

Cl(1)241 Cl(c2)241 Cl(c)46 Cl(β)64 Cl(βc2)64 Cl(β2)64 Cl(β2c2)64
χ1 1 1 1 1 1 1 1
χ2 1 1 1 ω ω ω2 ω2

χ3 1 1 1 ω2 ω2 ω ω
χ4 2 x42 x43 x44 x45 x46 x47
χ5 2 x52 x53 x54 x55 x56 x57
χ6 2 x62 x63 x64 x65 x66 x67
χ7 3 3 −1 0 0 0 0

ω = e2πi/3

We use the Second Orthogonality Relation twice in order to completely determine the second and
third column. Firstly, applying the relation on column one and two yields

3+2(x42 + x52 + x62) + 9 = 0 =⇒ x42 + x52 + x62 = −6.
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Since c2 ∈ Z(G24), we must have by Lemma 2.1 that x42,x52 and x62 are all real numbers and that
x42 = x52 = x62 = −2. Secondly, applying the relation on column three yields (note that Cl(c) =Q8−〈c2〉)

3+ x243 + x
2
53 + x

2
63 +1 = 4 =⇒ x43 = x53 = x63 = 0.

Consider the similarities between row four, five and six in the character table for G24 and row five in
the character table of Q8. Let θ be the irreducible character corresponding to χ4 of G24, then θ|Q8
could potentially equal the irreducible representation of degree 2 of Q8. We make this ansatz. From the
relations θβc = θdβ and θβd = θcdβ the matrix corresponding to θβ must be of the form

θβ = a
[
i i
1 −1

]
.

With the additional constraint that θβ3 = θ1 we get the three distinct solutions

a =
1
√
2
exp

( (3 + 8k)πi
12

)
,

which correspond to the three distinct (up to G-isomorphism) two-dimensional representations of G24. In
fact, k = 0 gives χ4, k = 1 gives χ5 and k = 2 gives χ6. We have now found all irreducible representations
of G24 and have the full character table.

Character Table of G24

Cl(1)241 Cl(c2)241 Cl(c)46 Cl(β)64 Cl(βc2)64 Cl(β2)64 Cl(β2c2)64
χ1 1 1 1 1 1 1 1
χ2 1 1 1 ω ω ω2 ω2

χ3 1 1 1 ω2 ω2 ω ω
χ4 2 −2 0 −1 1 −1 1
χ5 2 −2 0 −ω ω −ω2 ω2

χ6 2 −2 0 −ω2 ω2 −ω ω
χ7 3 3 −1 0 0 0 0

ω = e2πi/3

Note that the irreducible representations corresponding to χ4, χ5 and χ6 are faithful. Furthermore,
these two-dimensional representations are not monomial. This follows from the fact that G24 does not
have any subgroup of index 2 (a necessary condition). The argument for this fact is short.

Suppose that H is a subgroup of G24 of index 2. If Z(G24) = 〈c2〉 is contained in H , then the quotient
H/〈c2〉 is a subgroup of G24/〈c2〉 � A4 of index 2. But A4 has no such subgroup. Hence we are left
with the possibility that the center of G24 is not contained in H . This implies that Q8 ∩H = 1 =⇒
Q8 ∩ c2H = {c2} which is a clear contradiction, since H ∪ c2H = G24.

We can now deduce that G24 is solvable (by Lemma 5.1 with the normal subgroup being Q8) but is
not an M-group.
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7.3 A group of order 32

Consider a group P32 of order 32 with generators a,b,c,d and relations

a4 = b4 = c4 = d4 = 1, a2 = b2 = c2 = d2,

ab = a−1, cd = c−1,

ac = ca, ad = da, bc = cb, bd = db.

We should think of P32 being the product of two copies of Q8 (called a central product). Indeed, let
Q1 = 〈a, b〉 and Q2 = 〈c, d〉, then it is clear that

Q1 �Q2 �Q8.

Furthermore, the third line in the relations above show that all elements of Q1 commute with all elements
of Q2 and vice versa. Since Z(Q1) = Z(Q2) = 〈c2〉 =⇒ Z(P32) = 〈c2〉. There are a total number of 17
conjugacy classes of P32. Write g ∈ P32 as g = g1g2 for g1 ∈Q1 and g2 ∈Q2. Note that this composition
of g is not unique. In any case,

g−1xg = g−11 x1g1g
−1
2 x2g2

holds for any x = x1x2 ∈ P32, again with x1 ∈Q1 and x2 ∈Q2. In this way we can consider the conjugacy
classes of P32 as direct products of the conjugacy classes of Q1 with the conjugacy classes of Q2.

All but one irreducible representations of P32 are given by the quotient group

P32/〈c2〉 = 〈a〈c2〉, b〈c2〉, c〈c2〉, d〈c2〉〉 � Z2 ×Z2 ×Z2 ×Z2 = Z4
2.

Indeed such an isomorphism exists by mapping the general element an1bn2cn3dn4〈c2〉 ∈ P32/〈c2〉 for
ni ∈ {0, 1} to (n1,n2,n3,n4) ∈ Z4

2. Since Z4
2 is an abelian group of order 16, we can lift 16 one-

dimensional irreducible representations from the elementary abelian group Z4
2 up to P32.

As the reader might have expected from the character tables of Z2, Z3 and H4, an abelian group G
is isomorphic to its group of linear characters LinG = IrrG (with group operation (χ1,χ2) 7→ χ1χ2). This
fact is not hard to prove and should be intuitively clear from these examples. We trust for the moment
this unproven hunch and find four irreducible linear characters χ2, . . . ,χ5 of Z4

2 which hopefully should
generate all 16 irreducible characters of Z4

2, in the same way that (1,0,0,0), . . . , (0,0,0,1) generate Z4
2.

Identify Z2 by the obvious four quotient groups of Z4
2, lift up the non-principal representation to get

χ2, . . . ,χ5 and then define

χ1 = χ
2
2

χ6 = χ2χ3, χ7 = χ2χ4, χ8 = χ2χ5,

χ9 = χ3χ4, χ10 = χ3χ5, χ11 = χ4χ5,

χ12 = χ2χ3χ4, χ13 = χ2χ3χ5,

χ14 = χ2χ4χ5, χ15 = χ3χ4χ5
χ16 = χ2χ3χ4χ5

It is easy to check that all χ1, . . . ,χ16 are irreducible characters of Z4
2 which we now lift up to P32. By the

Degree Equation, the last irreducible character of P32, χ17, is of degree 4 and is fully known by applying
the Second Orthogonality Relation a total of 16 times with respect to the first column.
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We see that the representation coming from χ17 is the only irreducible faithful representation of
P32. In order to determine this representation we consider the subgroup H = 〈b, c, d〉 of index 2 in
P32, with left-coset representatives T = {1, a}. Consider further the unique two-dimensional irreducible
representation ψ of 〈c, d〉/H . Assume θ is a two-dimensional irreducible representation of H (which we
can show exists with methods used before), that extends ψ to H , that is θ|Q2

= ψ. Then θbψg = ψgθb
for all g ∈Q2 and θb = ω1 for some ω ∈ C, by Schur’s Lemma (Theorem 1.2). Furthermore, θb4 = 1 and
so in hope of interesting consequences choose ω = i (in fact, choosing ω = −1 gives a reducible induced
representation later on). Now

θb =
[
i 0
0 i

]
, θc =

[
i 0
0 −i

]
, θd =

[
0 −1
1 0

]
, θcd =

[
0 −i
−i 0

]
,

θbc =
[
−1 0
0 1

]
, θbd =

[
0 −i
i 0

]
, θbcd =

[
0 1
1 0

]
,

from which we can verify that θ is in fact irreducible which we lift up to P32 to some four-dimensional
representation θP32 . Once again, for the sake of completion, we list some of the matrices of θP32 , which
we for simplicity will rename as θ = θP32 .

θa =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

, θb =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 , θc =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , θd =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

θab =


0 0 i 0
0 0 0 i
i 0 0 0
0 i 0 0

 , θac =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , θad =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

θbc =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , θbd =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 , θcd =


0 −i 0 0
−i 0 0 0
0 0 0 −i
0 0 −i 0

 ,

θabc =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , θabd =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , θacd =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,

θbcd =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , θabcd =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
One can now verify that θ is irreducible and equals the unique faithful irreducible representation of P32.
Thus, the character table of P32 is complete and all irreducible representations of P32 are known.
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7.4 A group of order 96

It is time to move on to the largest group we will take under consideration in this paper, a group G96
of order 96. It will be created from P32 much the same way that G24 was created from Q8. To this end,
let β1 and β2 be the before mentioned automorphisms of Q1, Q2 / P32 respectively. We will extend these
automorphisms to an automorphism α of P32 of order 3. In other words, let

aα = b, bα = ab, cα = d, dα = cd.

Like in Section 7.2 we identify {1, α, α2} with Z3 and construct

G96 = Z3 nα P32.

Since G96/P32 � Z3 we can immediately lift up the two linear characters χ2 and χ3 to G96 from the
non-principal characters of Z3. The next step is inducing the linear characters of P32 with left-coset
representatives T = {1, α, α2}. Most of these one-dimensional representations of P32 induce G96-
isomorphic representations of G96. For a more aesthetically pleasing character table, we lift up χ4, χ2,
χ7, χ3 and χ12 from P32 and receive induced characters χ4, χ5, χ6, χ7 and χ8 of G96. We check
that all these are irreducible, again with the First Orthogonality Relation. These representations are in
the opinion of the author, not very interesting. Consider for example the irreducible representation θ
induced from the representation of P32 given by χ2:

θa =


−1 0 0
0 1 0
0 0 −1

 , θb =


1 0 0
0 −1 0
0 0 −1

 ,
θc =


1 0 0
0 1 0
0 0 1

 , θd =


1 0 0
0 1 0
0 0 1

 ,
θα =


0 0 1
1 0 0
0 1 0

 .
If this representation seems familiar, it seems so because it is. Indeed, kerθ = 〈c, d〉 and it can be verified
that G96/ kerθ � A4 with for example akerθ having order 2 and αkerθ having order 3. Similar results
hold for the rest of these irreducible three-dimensional representations of G96.

The conjugacy classes of G96 are: Cl(1),Cl(c2) of order 1 and make up the center of G96, Cl(a),
Cl(c), Cl(ac), Cl(ad), Cl(acd) of order 6 which we can identify with P32 and Cl(α), Cl(αc2), Cl(α2),
Cl(α2c2) of order 16. At first, the Degree Equation really gave us no information, since 96 can be written
as a sum of 11 squares in a number of ways. Although now, with eight known irreducible representations
of G96, we can deduce that the remaining three irreducible representations must be of degree 4.

We wish to find a one-dimensional representation, which induced will give such an irreducible rep-
resentation of degree 4 of G96. To that end, consider A = 〈ac, bd〉. Notice that both ac and bd are of
order 2 and A is of order 4 =⇒ A �H4. Furthermore, α fixes A:

(ac)α = bd, (bd)α = abcd, (abcd)α = ac.

Define a subgroup of G96 by H = 〈α, c2, ac, bd〉 with left-coset representatives T = {1, c, d, cd} of H
in G96. Since α fixes A we can decompose H = 〈α〉〈c2〉〈ac, bd〉 and the order of H is 24. It turns out
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that three one-dimensional representations of H induce the remaining three irreducible representations
of degree 4 of G96. In fact, consider the following partial character table of H .

Partial Character Table of H

Cl(1)241 Cl(ac)83 Cl(α)64 Cl(α2)64 Cl(c2)241 Cl(ac3)83 Cl(αc2)64 Cl(α2c2)64
ψ1 1 1 1 1 −1 −1 −1 −1
ψ2 1 1 ω ω2 −1 −1 −ω −ω2

ψ3 1 1 ω2 ω −1 −1 −ω2 −ω

ω = e2πi/3

From the computations

a1 = c(ac3), ac = cd(bd3), ad = cd(ac), acd = d(ac3),

b1 = d(bd3), bc = cd(bd3), bd = 1(bd), bcd = c(bd),

c1 = c(1), cc = 1(c2), cd = cd(1), ccd = d(c2),

d1 = d(1), dc = cd(c2), dd = 1(c2), dcd = c(1),

α1 = 1(α), αc = cd(α), αd = c(α), αcd = d(α),

we obtain the induced representation θ = ψG96
1 with the following matrices coming from the generators

of G96:

θa =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , θb =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ,

θc =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , θd =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

θα =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , θc2 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
Inducing the representations ψ2 and ψ3 up to G96 differ only from θ in θα by a homothety ω1 and ω21
respectively. It is now straightforward to check that these representations of degree 4 are all irreducible.
Moreover, they are’ faithful. All 11 irreducible representations of G96 are now known and we can fill in
the character table.
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Character Table of G96

Cl(1)961 Cl(c2)961 Cl(a)166 Cl(c)166 Cl(ac)166 Cl(ad)166 Cl(acd)166 Cl(α)616Cl(αc
2)616Cl(α

2)616Cl(α
2c2)616

χ1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 1 ω ω ω2 ω2

χ3 1 1 1 1 1 1 1 ω2 ω2 ω ω

χ4 3 3 3 −1 −1 −1 −1 0 0 0 0

χ5 3 3 −1 3 −1 −1 −1 0 0 0 0

χ6 3 3 −1 −1 3 −1 −1 0 0 0 0

χ7 3 3 −1 −1 −1 3 −1 0 0 0 0

χ8 3 3 −1 −1 −1 −1 3 0 0 0 0

χ9 4 −4 0 0 0 0 0 1 −1 1 −1

χ10 4 −4 0 0 0 0 0 ω −ω ω2 −ω2

χ11 4 −4 0 0 0 0 0 ω2 −ω2 ω −ω

ω = e2πi/3

Note that we have shown that all irreducible representations of G96 are monomial and so G96 is an
M-group. Clearly, we can identify the subgroup 〈α, c, d〉 with G24, which is, by Section 7.2, not an
M-group. As promised in Chapter 6, we have here produced an example of a subgroup of an M-group
which is not an M-group itself.
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