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Abstract

In recent years there has been a large increase in available data from the
electric grid in Finland. The availability of both operational as well as finan-
cial data enables exploration of forecasting energy prices using deep learning
techniques. As a result this thesis implements the Multi-Horizon Quantile
Recurrent Neural Network (MQRNN) to forecast the regulating price in the
Finnish energy market. The forecast is a rolling window three to eight hours
into the future and contains several quantiles. The results suggest that while
the central location of the distribution does not change much from the spot
price the tails can be long, especially the right tail. Since the model is able
to capture changes in the distribution there is indication that the market
contains some structure. Finally, after dicussing the results and drawing
conclusions some suggestions for future improvements are presented.
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Chapter 1

Introduction

Energy is traded like a commodity in the Nordics where supply and demand
determines the price. Due to energy’s crucial function in society and in-
tangible feature the set up is different in comparison to other commodity
markets. In recent time the need for innovation in the energy market has
increased in the mission to combat climate change. Today a growing part
of power production comes from renewable energy sources such as wind and
solar power. But forecasting the production from renewables is challenging
and large deviations can occur which result in market volatility. As a re-
sult operators of the power grid, in their effort to provide a well functioning
market, are making their data more available. Finland is at the forefront of
such an initiative and extensive amount of power grid data is provided in
real time. With plenty of data available the possibility to use deep learning
techniques for forecasting is enabled. While plenty of research has focused on
the energy load and spot price, this thesis investigates the regulating price
in Finland.

In its aim to forecast the regulating price this thesis implements the Multi-
Horizon Quantile Recurrent Neural Network which was introduced in 2017 by
Wu et al. [17]. It models the conditional quantiles several time steps into the
future and has been used successfully on sales data from Amazon as well as in
the energy forecasting competition GEFCom 2014. Forecasting quantiles can
be more informative than point forecasting. It captures the shape, scale and
central location of the distribution. When the data is skewed the expected
value can be less informative than the median. Quantile regression is also
less sensitive to outliers [12]. These are desirable traits when forecasting the
regulating price.
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The topic of the thesis is of value to companies which trade energy since
there is plenty of uncertainty associated with the regulating price. The results
from modelling the distribution can be used for risk management and trading.
Risk measures, such as Value-at-Risk (VaR), are easily computed once the
quantiles are obtained.

In the second chapter the dynamics of the energy market in Finland (and
the Nordics) are introduced. First some characteristics of energy, as a com-
modity, are presented. Secondly the three different markets, Spot, Intraday
and Regulating, on which energy is traded are explained. The occurance of
up- and down-regulation is also motivated.
The third chapter covers the history and theory of quantile regression. It
is showed that by solving a optimization problem the desired quantile can
be obtained. On these observations, Roger Koenker and Gilbert Bassett in
1978 introduced the conditional quantile function [11]. It enabled quantiles
to be modelled as functions of input variables. Later it was explored how
nerual networks could be used to approximate the conditional quantile func-
tion. This sets the stage for the Multi-Horizon Quantile Recurrent Neural
Network which is covered in detail at the end of the chapter.
The fourth chapter covers how the model was implemented. The choice of
neural networks and hyperparameters are motivated.
In the fifth chapter the results are presented. The model implemented is
visualized for 10 consecutive hours of the validation data. To test the model
on a greater scale histograms are also presented of the forecasting errors for
1000 hours of the validation data.
In the final chapter the results are discussed and conclusions put forward.
Trade-offs made during the course of the thesis are clarified and the direction
of future work is recommended.

The thesis follows the convention where bold-face, lower-case letters refer
to vectors and bold-face, capital-case letters refer to matrices. Exceptions are
made when presenting the Multi-Horizon Quantile Recurrent Neural Network
to make the notation less heavy and what is implied should be evident from
context.
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Chapter 2

Dynamics of the Power Market

In the early 1990’s the the market for trading of electrical energy started to
become deregulated in the Nordic countries. Today it is liberalized and en-
ergy is traded like a commodity on the power exchange Nord Pool. But due
to its importance to society and unique features the setup of the energy mar-
ket is different in comparison to other commodity markets. Two important
features are:

• Production must equal consumption in the power grid at all
times. The Transmission Grid Operator (TSO) is an independent
operator of the power grid and aims to have a frequency of 50Hz in the
power grid at all times. In many cases there is one and in Sweden it is
Svenska Kraftnät while in Finland it is Fingrid. In the Nordics there
is extensive cooperation between the TSOs.

• Non-storagable. Batteries do not have the capacity to store great
amounts of energy. Thus there is little room for abitrage possibilities.
One cannot produce while the price is low, store it, and sell it when
the price is high.

Due to this, the power market is split into three sub-markets which are
interconnected. These are the Spot market, Intraday market and Regulating
market. In Figure 2.1 their relationships are illustrated for two arbitrary
days.

The spot market takes place every day at 12.00 (noon). Up until then
trading companies (TCs) can submit their production and consumption plans
along with prices to Nord Pool. The submissions apply to the hours of the
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coming day. The market price is determined by supply and demand in a
double-acution. The Finnish market consists of one price area but this is not
always the case. Sweden, for example, consists of four price areas.

Two hours after the spot market has taken place the intraday market
opens for the hours of the coming day. This is a liquid market where TCs
can trade with each other. Any deviations from the original plans submitted
in the spot market can be neutralized. Approximately one hour before the
operational hour the intraday market for that particular hour closes.

As the operational hour comes into effect, if the TC produces or con-
sumes more than initially reported in the spot market (including any intra-
day trading), it will be settled in the regulating market. But the price in the
regulating market can vary from the spot price. If production does not equal
consumption the frequency in the grid will deviate from 50Hz. In such cases
the TSO must take action.

• If consumption > production the frequency falls and the TSO must
up-regulate. Since demand is greater than supply it generates a higher
price than the spot price.

• If consumption = production the frequency is 50Hz and the regulating
price equals the spot price.

• If consumption < production the frequency increases and the TSO
must down-regulate. Since demand is smaller than supply it generates
a lower price than the spot price.

Along with the expansion of renewable energy sources it has become more
challenging to properly forecast energy production. In Finland on a windy
day around 16% of all energy production comes from wind power. On a calm
day, wind power constitutes 0, 2% [6]. This has resulted in Finland exhibiting
a very volatile regulating market. In Figure 2.2 the spot price and regulating
price is illustrated for some days in January 2016. The top figure shows
the prices. The bottom figure clarifies whether the market was regulated or
not. It is not uncommon that the regulating price can be several magnitudes
above or below the spot price.
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Figure 2.1: The energy market in the Nordics illustrated and explained for
two arbitrary days. The first one is the spot market which takes place the
day before the operational hours. The second one is the intraday market. For
a particular hour it closes approximately one hour before it comes into effect.
The third market is the regulating market. Depending on the frequency in the
grid the Transmission System Operator (TSO) either up-regulates on down-
regulates. Any deviations from the spot market which are not neutralized in
the intraday market are settled in the regulating market.

8



Figure 2.2: In the top figure, the spot price as well as regulating price for
some days in January 2016 has been plotted. The regulating price can be
very volatile and be many times above or below the spot price. The bottom
figure shows whether the market was up-regulated (1), not regulated (0) or
down-regulated (−1).
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Chapter 3

Theory

3.1 Quantile Regression

Let us denote by FX the distribution function for some stochastic process
X. The inverse to the distribution function is denoted by F−1X and is often
referred to as the quantile function. It can be shown, by letting F−1X (U) = x
where U is U(0, 1), that FX is strictly increasing and continuous,

P(X ≤ x) = P(F−1X (U) ≤ x) = P(U ≤ FX(x)) = FX(x).

In the last equality we use the fact that P(U ≤ u) = u. In the case when FX
is discontinuous and/or monotonically increasing, a more robust approach to
constructing the quantile is required. This paves the way for the definition
of the quantile function.

Definition 3.1.1. Quantile function. For any stochastic variable X with
distribution function FX(x) = P(X ≤ x) we define the inverse distribution
function,

F−1X (τ) = inf(x ∈ R : FX(x) ≥ τ), where τ ∈ (0, 1).

With the quantile function defined, we proceed to quantile regression.
This presentation is based on the introduction to the area given in [10] and
[12]. We begin by casting the computation of quantiles as an optimization
problem. Consider the cost function ρτ where τ ∈ (0, 1) and 1 denotes the
indicator function,

ρτ (u) = u(τ − 1u<0). (3.1)
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For a stochastic variable X, we are interested in making a point estimate x̂
such that we minimize the cost function ρτ . We proceed in the usual manner
when computing the expected value,

E [ρτ (X − x̂)] =

∫
R
ρτ (y − x̂)fX(y)dy (3.2)

= (τ − 1)

∫ x̂

−∞
(y − x̂)fX(y)dy + τ

∫ ∞
x̂

(y − x̂)fX(y)dy. (3.3)

Next we differentiate with respect to x̂. The first integral in (3.3) becomes, by
the fundamental theorem of calculus and differentiating through the integral,

(τ − 1)
∂

∂x̂

∫ x̂

−∞
(y − x̂)fX(y)dy = (τ − 1)(y − x̂)fX(y)|y=x̂

+ (τ − 1)

∫ x̂

−∞

∂

∂x̂
(y − x̂)fX(y)dy

= 0− (τ − 1)

∫ x̂

−∞
fX(y)dx

= (1− τ)FX(x̂).

And by the same line of argument the second integral in (3.3) becomes,

τ
∂

∂x̂

∫ ∞
x̂

(y − x̂)fX(y)dy = −τ(y − x̂)fX(y)|y=x̂

+ τ

∫ ∞
x̂

∂

∂x̂
(y − x̂)fX(y)dy

= 0− τ
∫ ∞
x̂

fX(y)dx

= τ(FX(x̂)− 1).

By collecting the terms and setting the expression equal to zero we obtain

(1− τ)FX(x̂) + τ(FX(x̂)− 1) = 0 ⇐⇒ FX(x̂) = τ

which shows we are able to obtain the quantile τ .
When FX is replaced by the sample distribution function

F̂X(x) =
1

n

n∑
i=1

1Xi≤x
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we may still select x̂ to minimize the expected loss. And by doing so we
obtain the sample quantile function. This is shown by first introducing the
expected loss using the sample distribution function,

E[pτ (X − x̂)] =
1

n

n∑
i=1

(Xi − x̂)(τ − 1Xi−x̂<0)

=
1

n

(
(τ − 1)

∑
x̂≥Xi

(Xi − x̂) + τ
∑
x̂<Xi

(Xi − x̂)

)
.

By differentiating with respect to x̂ and setting the expression equal to
zero we obtain

1

n

∂

∂x̂

(
(τ − 1)

∑
x̂≥Xi

(Xi − x̂) + τ
∑
x̂<Xi

(Xi − x̂)

)

⇐⇒ 1

n

(
(τ − 1)

∑
x̂≥Xi

(−1) + τ
∑
x̂<Xi

(−1)

)
= 0

⇐⇒ 1

n

∑
x̂≥Xi

1 = τ

where τ is the sample quantile. In 1978, Roger Koenker and Gilbert Bassett
[11] were able to generalize these observations and introduce the conditional
quantile function Qy(τ |x) = xTβ(τ) where β(τ) is the solution to the opti-
mization

LQR = min
β

n∑
i=1

ρτ (yi − xTi β)

and y is the variable of interest and x are inputs. The subscript QR stands
for Quantile Regression. This opens up the possibility to model quantiles
as functions of input variables. Modelling quantiles can be more appeal-
ing than doing point estimation since central tendency, scale and shape are
distribution measures captured by the quantiles.

With the introduction of artificial neural networks, the interest to model
the quantiles with non-linear models grew. In 1995, Halbert White, cited
by James W. Taylor [14], provided theoretical support for such as possibil-
ity. Using a neural network to map the function with input variables, the
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optimization problem becomes

LQRNN = min
θ

n∑
i=1

ρτ (yi − f(θ,xi)) (3.4)

where θ represents the weights in the neural network f . The subscript
QRNN stands for Quantile Regression Neural Network.

3.2 Multi-Horizon Quantile Recurrent Neu-

ral Network

The Multi-Horizon Quantile Recurrent Neural Network (MQRNN), which
was introduced in 2017 by Wu et al. [17], expands on the ideas elaborated on
above. It is a framework for forecasting quantiles several time steps into the
future. And although this thesis forecasts a single variable, for completeness
it should be stated that the MQRNN is designed to handle several different
time series. It aims to find the conditional distribution,

p(yt+k,i, . . . , yt+1,i|y:t,i, x(h):t,i , x
(f)
t: , x

(s)
i )

where y·,i is the i’th time series to forecast, x
(h)
:t,i historical inputs, x

(f)
t: fore-

casted inputs and x
(s)
i static inputs. The static input x

(s)
i is key to this design

as its time-series specific. Translated to the work of this thesis, it opens up
the possibility to use one MQRNN to forecast the regulating price on several
different price areas in the Nordic power market. According to the authors,
the network is able to bridge the behavior of different time series on which
it has trained. It is also a way to combat the issue of forecasting a variable
with little or no historical data to train on. Since this thesis only investigates
the regulating price in Finland the i’th notation is dropped and there are no
static inputs.

In comparison to (3.4) where f originally was a one hidden layered mul-
tilayer perceptron (MLP) the MQRNN incorporates several different neural
networks. The model is illustrated in Figure 3.1.

Let K be the horizon (number of timesteps) to forecast and Q the number
of quantiles. For any forecast creating time point t, the network will output
a K × Q matrix Ŷ = [ŷ

(q)
t+k]k,q. The goal is to minimize the quantile loss

function (note it is the same function as (3.1) but rewritten)

Lq(y, ŷ) = qmax(y − ŷ, 0) + (1− q) max(ŷ − y, 0). (3.5)
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To optimize the parameters in the network the following metric is minimized
during training

LMQRNN =
T∑
t=1

Q∑
q=1

K∑
k=1

Lq

(
yt+k, ŷ

(q)
t+k

)
. (3.6)

Put in words, the inner sum is a summation over the entire horizon K. The
middle sum is over all the quantiles Q. The outer sum is across all forecast
creating time points in the training data.

As shown in Figure 3.1 the MQRNN consists of three different neural
networks. A recurrent neural network (RNN) acts as encoder while the other
two, which are part of the decoder, are multilayer perceptrons (MLPs) and
referred to as the Local MLP and Global MLP. The equations are,

ht = f(ht−1, xt, yt), (3.7)

[ct+1, . . . , ct+K , ca] = mGlobal(ht, x
(f)
t: ), (3.8)

[y
(q1)
t+k , . . . , y

(qQ)
t+k ] = mLocal(ct+k, ca, x

(f)
t+k). (3.9)

The MQRNN architecture is designed to solve a sequence-to-sequence
(Seq2Seq) type of problem. In 2013 Alex Graves [7] demonstrated that it
was possible to use the Long Short-Term Memory (LSTM) to generate se-
quences of data with long-range structure. The encoder-decoder framework,
introduced by Cho et al in 2014 [3] for Statistical Machine Translation (SMT),
is a continuation of solving Seq2Seq problems. The main idea is to have a
neural network encode the input and produce a representation, also known as
the context, which another neural network then decodes to the output. When
trained together, the encoder and decoder can approximate more intricate re-
lationships. In addition, when using RNNs as encoder and decoder, it opens
up the possibility to have input and output of arbitrary lengths which may
not equal.

In the case of the MQRNN, as can be seen in Figure 3.1 and equation
(3.7), an RNN is used as encoder. It opens up the possibility to have input
vary in length and captures temporal differences in the historical data due to
its recursive nature. The decoder of the MQRNN is not an RNN but consists
of two MLPs, the Global- and Local MLP.
The Global MLP (3.8) takes the encoding ht as well as the flattened pre-

dictions x
(f)
t: as input. The output is a vector with elements which either
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act as a horizon-specific context ct+1, . . . , ct+K or a horizon-agnostic context
ca. The contexts must not be of a single element, but can contain several
elements.
The Local MLP (3.9) acts on each specific time point in the horizon. For
any horizon t+ k it takes the horizon specific context ct+k, the horizon inde-
pendent context ca as well as the forecasted inputs at that particular horizon
x
(f)
t+k. The output at each specific horizon is a vector containing all quantiles.

For each time step t, the local MLP iterates through the horizons and thus
produces the matrix Ŷ = [ŷ

(q)
t+k]k,q.

A motivation for having two MLPs in the decoder comes from the authors
emphasis on having both horizon-specific context as well as horizon-agnostic
context. The horizon-specific context, as stated by the authors, ”carries
network-structural awareness of the temporal distance between a forecast
creation time point and a specific horizon. This is essential to aspects like
seasonality mapping.” [17, p. 4] Meanwhile, some information may not be
time-dependent and is thus captured by the horizon-agnostic context. At
a forecast creation time point, it acts on the entire horizon. The authors
find, empirically, an improvement in training stability as well as smoother
forecasts when including the horizon-agnostic context.

While the MQRNN iterates through the horizons and produces the quan-
tiles there also exists other approaches to generate forecasted sequences. The
fairly common recursive strategy, at time t, treats the forecasted value ŷt+1 as
the true value, yt+1 := ŷt+1, and then uses it as an input in the next time step.
This is repeated for the entire forecasting horizon t+ 1, t+ 2, . . . , t+K. The
MQRNN does not employ the recursive strategy but uses the Direct Multi-
Horizon strategy instead. By using it, the model is trained on a multivariate
target. The authors state the latter strategy is less prone to accumulating
errors over time since it does not use forecasted target values as ground truth
and is efficient as parameters are shared across predictions.
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Figure 3.1: The architecture of the MQRNN [17]. Circles represent ob-
served data. Squares are network nodes. First, a recurrent neural network
(RNN) acts as encoder and encodes historical data. The gray area is the
decoder. A dashed box implies the flattening of a vector. Dashed lines im-
plies replication. The decoder, which consists of two multilayer perceptrons
(MLPs), decodes and outputs the quantiles. In the picture the encoder is
a Long Short-Term Memory (LSTM) network, but this thesis uses a Gated
Recurrent Unit (GRU) network. In comparison to the original illustration,
the forking-sequences scheme suggested by the authors is removed since this
thesis implements the rolling-window scheme.
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Chapter 4

Implementation

This section covers the implementation of the MQRNN. All programming
was done in Python 3 in Google Colab. Google Colab enables the limited
free use of a GPU which speeds up training and evaluation of neural networks.
The Tensorflow package was used to build the model and input pipeline.

4.1 Data Collection and Preprocessing

Two data sources were used for collecting data, the power exchange Nord Pool
and Finnish TSO Fingrid. In recent years, both have developed Application
programming interfaces (APIs) from which data can be downloaded. Nord
Pool launched its API in July 2019 and Fingrid made its beta API available
in February 2017. While Nordpool provides plenty of market data for several
price areas in Northern Europe, Fingrid publishes country unique data for
Finland. This includes real-time data on a three minute basis for, among
other power generation sources, nuclear-, wind- and hydro power produc-
tion in Finland. The initative by Fingrid is currently unique in the Nordics
but other countries are following similar paths. The Swedish TSO, Svenska
Kraftnät, is set to start testing a similar API by 2022.

It was decided that a rolling window of t + 3h, . . . , t + 8h should be the
forecast horizon. The reason for not including t + 1h and t + 2h are due
to trading reasons. It also allows all historical data to be published and
accessed. Forecasting beyond t + 8h would be useful, but a horizon of eight
hours ensures all data used as forecasting inputs to be available. In Table 4.1
the data used can be reviewed. In total, 69 variables are used in the model.

17



Some descriptions have been provided to clarify the content of a variable. It
has also been indicated whether it has been used as historical data for the
encoding, forecasted input in the decoder or both.

Data was downloaded from 2016-01-01 until 2020-04-01. Subsequently
the data was split such that 80% was used to train, 10% to validate and 10%
to test. Since the forecast of the regulating price would be hourly, the input
data was also made to be hourly. Any variables which were reported on a
more frequent basis were downsampled to hourly averages. As is common
practice in deep learning, the data was preprocessed before being modelled.
It is often necessary to have the data on similar scales. Thus the data was
normalized using

X − µXtrain

σXtrain

where µXtrain
and σXtrain

are the sample mean and sample standard deviation
from the training data of any variable X. The preprocessing method of nor-
malization is commonly used in time series forecasting within deep learning
[15]. One drawback when normalizing a variable with a large variance is that
large values influence the normalized data heavily. It shrinks values which
are more centrally located in the distribution. This is certainly the case for
regulating price data which can be close to 0 but also contains −1000 and
3000. Two exceptions to the preprocessing was made. First, the variable
called Dominating Direction was already in the set {−1, 0, 1}. Secondly, all
the time variables were in the set {0, 1}. Thus no preprocessing was required
for these variables since their values were close to zero and integers.
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Data Description Usage
Regulating price Value to be forcasted Target and historical
Dominating direction Dominating direction

of regulating volumes
{1, 0,−1}

Historical

Regulating prices
SE1, SE3

Regulating prices of
neighboring price ar-
eas

Historical

Nuclear power pro-
duction

Power from nuclear
power

Historical

Transmission between
FIN and SE1

Power transmission in
cable between price
areas

Historical

Transmission between
FIN and SE3

Power transmission in
cable between price
areas

Historical

Production sur-
plus/deficit

Domestic surplus or
deficit of power pro-
duction

Historical

Industrial cogenera-
tion

Power from industrial
cogeneration

Historical

Hydro power produc-
tion

Power from hydro Historical

Other small scale pro-
duction

Power from small
scale production and
reserve sources

Historical

Cogeneration of dis-
trict heating

Power from cogenera-
tion of district heating

Historical

Change in temp.
in Rovaniemi,
Jyväskylä and
Helsinki

Differentiated temper-
ature xt−xt−1 for ma-
jor cities

Historical

Ordered up-
regulations from
balancing energy

The volume of or-
dered up-regulations
from balancing energy
market

Historical
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Ordered down-
regulations from
balancing energy

The volume of ordered
down-regulations from
balancing energy mar-
ket

Historical

The sum of the up-
regulation bids in the
balancing energy

Volume of up-
regulating bids

Historical

The sum of the down-
regualtion bids in the
balancing energy

Volume of down-
regulating bids

Historical

Spot prices FIN, SE1,
SE3, EE

Spot prices in Finland
and neighboring price
areas

Forecasted and histor-
ical

Total production
prognosis

Prognosis of total
power production

Forecasted

Total consumption
prognosis

Prognosis of total
power consumption

Forecasted

Volume of up-
regulating bids in
regulating market

Sum of bids for up-
regulation

Forecasted and histor-
ical

Volume of down-
regulating bids in
regulating market

Sum of bids for down-
regulation

Forecasted and histor-
ical

Transmission capacity
for intraday market
(FIN-SE1)

Intraday market ca-
pacity is given as free
capacity after spot
market

Forecasted and histor-
ical

Transmission capacity
for intraday market
(FIN-SE3)

Intraday market ca-
pacity is given as free
capacity after spot
market

Forecasted and histor-
ical

Transmission capacity
for intraday market
(FIN-EE)

Intraday market ca-
pacity is given as free
capacity after spot
market

Forecasted and histor-
ical
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Adjusted volume of
up-regulating bids

Volume of up-
regulating bids di-
vided by spot price

Forecasted and histor-
ical

Adjusted volume of
down-regulating bids

Volume of down-
regulating bids di-
vided by spot price

Forecasted and histor-
ical

Time Binary {0, 1} variables
for hour and weekday

Forecasted and histor-
ical

Table 4.1: List of data variables. Some descriptions have been added to clar-
ify the content. The regulating price is the target variable to be forecasted.
Historical indicates that the variable has been used only in the encoder as a
historical input. Forecasted indicates that the variable has been used only in
the decoder as a forecasted input. Some variables have been used for both.

4.2 Multi-Horizon Quantile Recurrent Neu-

ral Network

While the authors of the MQRNN provide the framework little is provided
in terms of the architecture of the encoder and decoder. In other words,
recommendations for hyperparameters such as the number of nodes or the
number of layers of the encoder and decoder are not provided. Finding the
correct hyperparameters for a neural network is still a trial-and-error process
where different combinations are evaluated and compared. It requires plenty
of computing power. Some iterating was done and the final model used is
described in this section.

4.2.1 Encoder

A RNN is being used as encoder. But in comparison to the orginal paper and
Figure 3.1 a Gated Recurrent Unit (GRU) was used instead of the Long-Short
Term Memory (LSTM). The GRU is inspired by the LSTM but is easier to
compute [3]. And in Seq2Seq modelling, the GRU performs on par with the
LSTM [4]. The GRU cell is illustrated in Figure 4.1. For one GRU cell the
equations are
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rt = σ
(
wT
r xt + urht−1

)
,

zt = σ
(
wT
z xt + uzht−1

)
,

h̃t = φ
(
wTxt + urtht−1

)
,

ht = ztht−1 + (1− zt)h̃t.

There are two gates, rt is the reset gate and zt is the update gate. The hidden
state ht depends on h̃t as well as the previous hidden state. When the reset
gate is close to zero, h̃t depends on the current input. This is passed on
to the hidden unit ht and tuned by the update gate zt. The parameters
wr,wz,w, ur, uz and u are to be optimized during training. The activation
functions, σ and φ are the sigmoid and hyperbolic tangent (tanh).

By using several hidden units together, the RNN can capture dependen-
cies across different time lengths. This is possible since the parameters are
initialized randomly and not shared across the units. This implies each in-
dividual GRU unit has different gates. To exploit this, 32 GRU units were
used in the model.

There is some periodicity in the energy market and to capture this the
last 168 hours (one week) of historical data was fed to the RNN at each time
point t to create the context for the decoder.

4.2.2 Global Decoder

The purpose of the global decoder, mGlobal, is to create horizon-specific con-
texts as well the horizon-agnostic context. In the MQRNN paper it is stated
that the contexts can be of an arbitrary dimension. Inspired by this, and
given a horizon of six timesteps, each of the horizon-specific contexts (six)
as well as the horizon-agnostic context (one) was given five elements. Thus
totalling 35. The input, consisting of the encoding and future inputs, totalled
314 when flattened. Thus the decoder was set up as mGlobal : R314 → R35.

As activation function, the Exponential Linear Unit (ELU) was selected.
Introduced in 2016, it improves upon the Rectified Linear Unit (ReLU). Two
benefits are quicker learning and better generalization of inputs [5]. The
parameter α can be tuned but was set to the default value of 1. The function
and its derivative are stated below and illustrated in Figure 4.2.
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Figure 4.1: One GRU cell illustrated [16]. The reset gate, rt =
σ
(
wT
r xt + urht−1

)
, determines how much previous information should be let

through. The update gate, zt = σ
(
wT
z xt + uzht−1

)
, determines how much

new information should be let through. It should be noted that in compar-
ison to the equations above the hidden state in the picture is computed as
ht = zth̃t + (1 − zt)ht−1. The parameters wr,wz,w, ur, uz and u are to be
learned. The activation functions, σ and φ are the sigmoid and hyperbolic
tangent (tanh).

f(x) =

{
x, x > 0

α(ex − 1), x ≤ 0

f ′(x) =

{
1, x > 0

αex, x ≤ 0

4.2.3 Local Decoder

Since the authors of the original paper place such emphasis on the local
decoder, mLocal, extra care was given to it during implementation. Two
experiences are worth shedding additional light on. First, the local decoder
was unable to generalize without any activation function. Attempts were
made such that only linear combinations of the input to the local decoder
were processed without any activation function. The network was more prone
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Figure 4.2: The Exponential Linear Unit (ELU) and its derivative. The
function is a development of the Rectified Linear Unit and offers quicker
learning and better generalization of inputs [5]. The parameter α can be
tuned but has been set to the default value of 1.

to experience the issue of crossing quantiles in such attempts. Due to this, the
ELU function (see section 4.2.2) was used as activation function. Secondly,
the local decoder was sensitive to the number of nodes in the hidden layer.
By increasing the number of nodes more information was captured and a
better performance in the quantiles observed. As such, a shared hidden layer
of 25 nodes was used. Finally to produce the quantiles, at each of the six
horizons, a linear function mapped the hidden layer to the quantiles. In total,
mLocal : R57 → R25 → R11. To remind the reader, the dimension of 57 comes
from the input to mLocal. At each timestep there were 47 forecasted inputs
and the horizon-specific as well as the horizon-agnostic contexts were each
five dimensional. This totals 57. As for the quantiles, eleven were computed.
These were q1, q10, q20, q30, q40, q50, q60, q70, q80, q90 and q99.
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4.2.4 Additional Hyperparameters

To prevent the network from depending too much on certain parameters
and combat overfitting dropout was applied before the output layer. When
dropout is applied the network will set a predefined number of random
weights equal to zero during training. The fraction of weights to be equal to
zero at random was set to 0.5. By also applying dropout the network was
able to generalize better and prevent the issue of crossing quantiles.

4.2.5 Optimization

For the optimization procedure a batch size of 32 was used. It is a batch size
which is common and recommended as default [2]. As optimizer the Adaptive
Moment Estimation (Adam) was used. With sparse data it is recommended
to use an adaptive optimizer. Another benefit with adaptive optimizers is
that they tune the learning rate themselves. As such, the default value
can be left as is. Altogether, Adam is considered the best optimizer [13].
The optimization of parameters, also known as training within deep learning
can be seen in Figure 4.3. The figure shows average loss across batches of
equation (3.6). In the legend, Train indicates the loss on data which the
network has seen and performed backpropagation on. Test indicates data
which the model has not seen and only been evaluated on. A couple of
things are worth highlighting from the figure.

First, except for the first epoch, the loss is smaller for the training data
compared to the test data. This can be explained by the inner workings of
Keras [9]. During training, the loss is reported as the average across batches.
Meanwhile during testing, the model uses the weights as they are at the end of
an epoch. In later epochs, the training loss continues to decrease suggesting
an improvement to the model. This leads to the second notion, which is the
curve for the test loss. After epoch three it starts to increase. This behavior
is known as overfitting. It indicates the model continues to improve on the
training data while a decrease in performance on unseen data takes place.
This thesis applied two methods to combat this. First, as already mentioned,
dropout was applied to prevent the model depending too much on specific
input variables. Secondly, early stopping was applied. Early stopping makes
the model stop training after a decrease in performance on test data has been
observed for n epochs. In this case, n = 2.

Third, in comparison to other areas where deep learning is being applied,
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five epochs is very small. In image- and speech recognition optimization can
take place for hours. But a prerequisite is a large amount of data. This is
not the case of this thesis since approximately 38000 data samples were used
for training.

Figure 4.3: Average loss across batches of (3.6) for train and test data. Ex-
cept for the first epoch the loss is smaller for the training data on which
the network performs backpropagation. The loss on training data contin-
ues to decrease while the network starts overfitting after epoch three on the
test data. Early stopping was applied after two epochs of poorer test per-
formance. Running the model for five epochs is considered small by deep
learning standards. The small number of epochs can be explained by rela-
tively little data.
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Chapter 5

Results

In this section the results will be presented. The model used is the best
performing one (epoch three in Section 4.3). To illustrate the quantiles, the
rolling window of t + 3h, . . . , t + 8h has been illustrated for 10 consecutive
hours of the validation data. For comparison, the spot- and the regulating
price has been plotted together with the quantiles. The development is easy
to see by following the the regulating price (black line) as it shifts by one
hour in every plot. All figures are in Appendix A.

Following, to evaluate the model en masse, histograms of the forecasting
errors were created for 1000 hours of the validation data. The term forecast-
ing error can be misleading since the quantiles are not point forecasts. But
in lack of a better word it will be used. The errors were computed as

ŷ
(q)
t,j − yt,j = ε

(q)
t,j .

for all t = 1, . . . , 1000 and j = t+ 3, . . . , t+ 8 and q = 0.01, 0.1, 0.5, 0.9, 0.99.
Theses figures can also be found in Appendix A.

5.1 Quantiles

By looking at Figures A.1 - A.10 it can be seen that the central location
of the distribution is around the spot price. Plenty of probability mass is
located around the center as the 10% and 90% quantiles are close to the spot
price as well. That being said, the model is able to expand and contract
the quantiles. During some hours they are wide while during other hours
they are close to each other. The quantiles are also smooth over time. For
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a particular hour, the quantiles appear to be stable as that hour approaches
the forecast creating time point. The tail quantiles show a different behavior
as they are further away from the central location of the distribution. Many
times the difference between the 99% and 90% quantile is big. This also
applies to the 1% and 10% quantile, but not to the same extent.

From the Figures A.1 - A.10 it might look as if the central quantiles are
parallel. This is not the case but due to the scale of the y-axis any changes
might not stand out.

5.2 Forecasting Errors

While the figures of the quantiles are informative, the histograms of the fore-
casting errors paint a more holistic picture. Since it already had been indi-
cated plenty of probability mass was located at the center of the distribution
the errors of the quantiles further out in the distribution were investigated.
For completeness, and importance, the errors for the median were also com-
puted.

By looking at the histograms for the 99% quantile in Figure A.11, it can be
seen that in a few cases the error is negative. This indicates the regulting price
has surpassed the quantile. The majority of errors are positive and located
quite close to 0. Yet, the model appears to overshoot the true regulating price
quite freuently since plenty of errors are rather large and positive. For the
90% quantile in Figure A.12 the behavior is similar with plenty of positive
errors. Compared to the 99% quantile, the errors are more concentrated and
closer to zero. The 50% quantile, also known as the median, is the center
of the distribution. In Figure A.13 it can be seen that besides the large
negative errors, the distribution is centered around zero. The 10% and 1%
quantiles are close to mirror images of the 90% and 99% quantiles. These
can be reviewed in Figures A.14 and A.15. The difference is the frequency
and magnitude of the regulating price dropping below the quantiles. From
the histograms it can be seen that the downside of the regulating price is not
as extreme as the upside.
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Chapter 6

Discussion

In this section the figures of the quantiles and the forecasting errors will
be elaborated upon. Aspects of the implementation will also be taken into
consideration. Finally, conclusions will be drawn and some recommendations
for future work will be discussed.

6.1 Results Discussion

From the results it appears as if the regulating price has a distribution with
plenty of probability mass close to the spot price and long tails. While such
behavior can be suspected by merely looking at the raw data, the model aims
to quantify this observation. At the onset of this thesis far fewer quantiles
were used in the output. It was believed that quantiles close to the center
of the distribution would be more prone to change. When this proved not
to be the case, more quantiles were added and it was noted the 99% quan-
tile seemed to change more frequently. It raised the question why the 90%
quantile was not moving as much. But upon inspecting the forecasting er-
rors it was confirmed that most of the time the 90% quantile was above the
regulating price. And the distribution of the errors was centered closer to
zero in comparison to the 99% quantile. This gives weight to the notion of
the regulating price having plenty of probability mass around the spot price,
but the right tail can be very long.

In capturing the right tail behavior the model shows promising results.
In some cases the 99% quantile can become very big and thus indicate up-
regulation. But in the quantile figures, and confirmed in the error histograms,
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the model also overshoots the regulating price quite frequently. This can be
seen in Figure A.11. As such one could argue the 99% quantile captures the
potential but not always the actual outcome of the regulating price. That
being said, the distribution also exhibits a longer left tail. By looking at the
histograms of the errors, the model appears to better capture the behavior
of the left tail. There are few cases when the regulating price has gone below
the 1% quantile. This can be seen in Figure A.15. Extreme up-regulation
is however more frequent than extreme down-regulation. Hence it cannot be
ruled out if the model was not evaluated on enough extreme down-regulation.

In statistical terminology, the distribution is said to be skewed to the
right. And as such, the median does not need to equal the mean. With a
right skew, the mean is instead pushed to the right of the median. From a
practical point of view, the distribution can be difficult to interpret and act
upon. For example, in some of the quantile figures the median is below the
spot price. According to the model, there is thus more than 50% probability
of down-regulation. At the same time the right tail can be very long. This
potentially pushes the expected value above the spot price and another way
would be to interpret the results as a case of up-regulation. Attempts were
made to quantify the skewness. A robust measure is the quantile skewness γQ,
also known as the Bowley skewness or Galton skewness [1]. It is computed
as

γQ =
(q75 − q50)− (q50 − q25)

(q75 − q25)
.

It yields a value between [−1, 1]. A positive (negative) number implies a
right (left) skew. Complete symmetry yields 0. The 75% and 25% quantiles
can be replaced by other quantiles, for example 99% and 1%. The measure
was computed with both set of arguments. Due to the the length of the right
tail the skewness, when using 99% and 1%, was always right. When using
75% and 25% on the other hand, the skewness could vary more.
One matter which renders this measure useless is the phenomenon called
crossing quantiles. If, for example, q75 < q50 the measure breaks down. In
addition it violates the fundamental principles of probability theory. But it
is a well known problem in quantile regression. Historically it is attributed
to estimating the quantiles individually without any restrictions. This can
lead to the conditional quantile function no longer being monotonically in-
creasing. Still the problem is limited according to Koenker who write ”It is
of some comfort to recognize that such crossing is typically confined to out-
lying regions of the design space.” [10, p. 56] During this thesis the problem
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was encountered. But by applying dropout the performance was dramati-
cally improved. Alas, in a very few cases the 99% quantile was observed to
still experience the problem of crossing quantiles. While not directly touched
upon in the orginal MQRNN paper, it is believed that the problem is mit-
igated by the design of the loss function. Since the loss is not computed
independently for each quantile, any quantile crossing is penalized and the
errors are backpropagated and captured in the parameters.

So far this thesis has not touched upon how many quantiles should be
computed. Certainly many quantiles paint a greater picture of the distri-
bution - but they can also be used to estimate the expected value. While
not reported in the thesis, this would be how to proceed using the estimated
quantiles. We begin with the definition of expected value of some stochastic
variable X

µ =

∫
R
yfX(y)dy.

Next, we limit the support to [q1, q99] and note that since the probability
mass under fX is 0, 98 when the support is limited we introduce a normalizing
constant

µ̂ =
1

0.98

∫ q99

q1

yfX(y)dy.

By the substitution method we can set u = FX(y) and differentiate

du

dy
= fX(y) ⇐⇒ du = fX(y)dy

The new integration limits become

FX(q1) ⇐⇒ u = 0.01,

FX(q99) ⇐⇒ u = 0.99.

and we obtain the integral

µ̂ =
1

0.98

∫ 0.99

0.01

ydu.

Finally, we note that y = F−1X (u) = Q(u) and reformulate the integral as

µ̂ =
1

0.98

∫ 0.99

0.01

Q(u)du.
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As such we have an approximation of µ which depends on the quantile func-
tion. When forecasting several quantiles these can be used to estimate the
integral. For this thesis the domain of integration would be partitioned into
the set P with cardinality 11,

P = {0.01, 0.1, 0.2, . . . , 0.8, 0.9, 0.99}.

The length of the ith subinterval of P is

∆ui = ui − ui−1, for 2 ≤ i ≤ 11.

This allows us to write µ̂ as

µ̂ =
1

0.98

11∑
i=2

(qi + qi−1)

2
∆ui

which is an estimate of the expected value based on the quantiles. The
estimate can be attractive when we want to summarize the quantiles into
one number. But it is flawed in the sense that it discards the distribution
before the first quantile and after the last quantile estimated. Naturally it
also depends on how well the quantiles capture the true distribution.

For all intents and purposes, the big question is, how well the model can
approximate the function which generates the distribution of the regulating
price. Arguments both favoring and opposing the success of the model can
be made. According to economic theory, if the Efficient Market Hypothesis
holds, there should be no structure in the market which can be exploited. All
information should already be reflected in the price. To verify this is hard.
During the optimization of the model, the loss metric was not minimized very
quickly. This speaks in favor of there being some structure in the market.
The opposite behavior, where the loss metric decreases very fast directly can
be observed when neural networks are tasked with approximating something
stochastic. Not seldom the prediction is simply the last observed value [8].
But it should not be forgotten the randomness typical of financial assets also
is reflected in the regulating price. During optimization the best perform-
ing model was obtained after three epochs and thereafter the model started
overfitting. This speaks in favor of little structure in the data. Moreover,
it is a bold statement to say that there is structure in the market since it
implies the market is inefficient. Nonetheless, the results indicate that the
quantiles, especially the ones in the tails, can capture the movements in the
regulating price.
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6.2 Conclusions

This thesis aimed to implement the MQRNN to forecast the regulating price
in the Finnish energy market. This approach has been made possible with
the recent availability of data from the Finnish power grid. From the imple-
mentation and results this thesis draws the following conclusions.

• Conclusion 1: The distribution of the regulating price is centered
around the spot price. Plenty of probability mass is located close to
the center. Both tails are long, especially the right tail.

This conclusion is supported by the findings in the quantile figures as
well as the histogram of the errrors. While the 90% and 10% quantiles are
located fairly close to the spot price, the tail quantiles can be further away
from the central location of the distribution. Especially the right tail can be
very long.

• Conclusion 2: There is some structure in the regulating price which
the model can approximate.

This conclusion is supported by the behavior of the quantiles in the fig-
ures. While little happens to the central location of the distribution, the tail
quantiles can change rapidly from hour to hour. This thesis can only spec-
ulate in why there would be inefficiencies in the balancing energy market.
One reason could be that the energy market is not as liquid as other finan-
cial markets since there are fewer actors. Another would be it has a different
dynamic and is driven by largely physical variables. For example wind, cable
capacity, consumption, ect. While humans have difficulties detecting non-
linear relationships between several variables neural networks are capable of
doing so.

6.3 Looking Ahead

To potentially improve the results, some recommendations for the future can
be made.

First, this thesis did not implement the forking-sequences scheme intro-
duced in the orginal MQRNN paper. The authors state it improved their
results [17]. Building data pipelines for deep learning is not a trivial task
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however and implementing tailored schemes is time and knowledge consum-
ing. This was the main reason why the moving-window scheme was used in
this thesis and not the forking-sequences.

Secondly, one drawback about this thesis is the absence of weather fore-
casts. In an age where wind power is a major source of energy, weather
forecasts are important. One limitation to this is the lack of historical
weather forecasts. While plenty of weather services make their current fore-
casts available, historical forecasts are not as accessible. And to fully im-
plement weather forecasts, these must be available during the optimization
of the model. Consideration must also be made as to what information was
available at the forecasting creation time point t. In the interest of time this
thesis did not incorporate weather forecasts. But it is believed this would
improve the results.

Thirdly, the original intent of the MQRNN is to model several different
time series. This opens up the possibility to model the regulating price in all
price areas in the Nordics with one model. This could bring about benefits.
For example, not all price areas have had the same type of extreme volatility
as for example Finland or Denmark. Lack of such observations could po-
tentially be mitigated by a model with shared parameters. The model can
borrow statistical features across time series [17]. Another reason for having
one model is that it allows the model to train on more data. While some
input data could be the same, different price areas would produce different
outputs. There is also a resource and computational aspect. Creating and
maintaining a model for each price area is time and resource consuming.
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Appendix A

Results

A.1 Figures of Quantiles

This appendix contains the quantile figures of 10 consecutive hours of the
validation data. By every figure time shifts one hour and the forecast is
updated. It can be seen by following the the regulating price (black line).

Figure A.1: Forecast t+ 3h, . . . , t+ 8h.
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Figure A.2: Forecast t+ 3h, . . . , t+ 8h.

Figure A.3: Forecast t+ 3h, . . . , t+ 8h.
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Figure A.4: Forecast t+ 3h, . . . , t+ 8h.

Figure A.5: Forecast t+ 3h, . . . , t+ 8h.
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Figure A.6: Forecast t+ 3h, . . . , t+ 8h.

Figure A.7: Forecast t+ 3h, . . . , t+ 8h.
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Figure A.8: Forecast t+ 3h, . . . , t+ 8h.

Figure A.9: Forecast t+ 3h, . . . , t+ 8h.
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Figure A.10: Forecast t+ 3h, . . . , t+ 8h.

A.2 Histograms of Forecasting Errors

This appendix contains histograms of the forecasting errors which were com-
puted as

ŷ
(q)
t,j − yt,j = ε

(q)
t,j

for all t = 1, . . . , 1000 and j = t+ 3, . . . , t+ 8 and q = 0.01, 0.1, 0.5,
0.9, 0.99. To clarify, each histogram visualizes the errors for a specific timestep
in the forecasting horizon for a specific quantile. Each quantile has been pro-
vided with a unique color.

The histograms provide a picture of what the error distributions look like.
The x-axis consist of bins. The bars of the y-axis count how many errors are
contained in a bin.

On the x-axis there are small vertical markers which indicate the location
of an error. They provide visualization for extreme and less frequent errors.
More dense markers indicate plenty of error occurrences.

40



Figure A.11: Forecasting errors of the 99% quantile. Each histogram is a
specific horizon in t + 3h, . . . , t + 8h. The x-axis consist of bins. The bars
on the y-axis count how many errors are contained in a bin. On the x-axis
there are small vertical markers which indicate the location of an error.
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Figure A.12: Forecasting errors of the 90% quantile. Each histogram is a
specific horizon in t + 3h, . . . , t + 8h. The x-axis consist of bins. The bars
on the y-axis count how many errors are contained in a bin. On the x-axis
there are small vertical markers which indicate the location of an error.
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Figure A.13: Forecasting errors of the 50% quantile. Each histogram is a
specific horizon in t + 3h, . . . , t + 8h. The x-axis consist of bins. The bars
on the y-axis count how many errors are contained in a bin. On the x-axis
there are small vertical markers which indicate the location of an error.
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Figure A.14: Forecasting errors of the 10% quantile. Each histogram is a
specific horizon in t + 3h, . . . , t + 8h. The x-axis consist of bins. The bars
on the y-axis count how many errors are contained in a bin. On the x-axis
there are small vertical markers which indicate the location of an error.
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Figure A.15: Forecasting errors of the 1% quantile. Each histogram is a
specific horizon in t + 3h, . . . , t + 8h. The x-axis consist of bins. The bars
on the y-axis count how many errors are contained in a bin. On the x-axis
there are small vertical markers which indicate the location of an error.
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