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Abstract

The Hidden Markov model is applicable to a wide variety of Æelds. Applied to Ænancial time
series, its assumed underlying state sequence can reØect the time series’ tendency to behave di�erently
over di�erent periods of time. In many situations, models could be improved by including exogenous
data. However, that may in some cases be inappropriate in practice as the model could get too
mathematically complex to learn or require too strong assumptions. The jump estimator for learning
Hidden Markov models by clustering temporal features is very Øexible in that regard. In this thesis we
conduct a simulation study to show that, assuming time-varying transition probabilities depending
on exogenous variables, the jump estimator’s prediction accuracy of latent states can be signiÆcantly
improved as its feature space is extended with the relevant exogenous data. To facilitate the simulation
study, we use an EM-algorithm to estimate Hidden Markov models applied to the S&P 500 index with
transition probabilities depending on exogenous variables. Four variables are considered in a forward
selection scheme resulting in the CBOE Volatility Index being deemed the most important exogenous
variable in this setting. For practical purposes, our results indicate in particular that when applying
the jump estimator to the S&P 500, including features based on the volatility index improves its ability
to segment the S&P 500 into periods with bullish and bearish market conditions.
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Populärvetenskaplig sammanfattning

En Dold Markovmodell (HMM) kan användas för modellera tidsserier på ett sätt som beskriver
olika beteenden under olika perioder; till exempel kan den beskriva Ænansiella tidsseriers benägenhet
att plötsligt ändra riktning då marknadssentimentet förändras, exempelvis på grund av en pandemi.
Givet en tidsserie, tänker man sig att den antar olika tillstånd som ej går att observera men som
reØekteras i hur variabeln i tidsserien är slumpartat fördelad. Systemet kan ses som en underliggande
”dold” process som utvecklas stegvist i tid och slumpmässigt hoppar mellan olika tillstånd samt
emitterar en observation vid varje tidpunkt. Denna process kallas för Markovkedja och deÆnieras av
att sannolikheterna att hamna i olika tillstånd i framtiden endast beror på nuet.

När man modellerar en tidsserie med en HMM vill man, baserat på tidigare observationer, (1)
skatta parametrar som har att göra med hur den observerbara variabeln fördelas under olika till-
stånd samt sannolikheterna som beskriver övergången mellan tillstånden och, (2) försöka bestämma,
”prediktera”, vilka tillstånd som har genererat varje observation i tidsserien. Traditionellt sett har
detta gjorts med den så kallade Maximum Likelihood-metoden. Denna uppsats bygger på en nyligen
föreslagen klustringsmetod för att lösa både parameterskattning och prediktion samtidigt. Den utnyt-
tjar olikheter i fördelningen av olika observationer som genererats under olika tillstånd för att ordna
dem i grupper som representerar de möjliga tillstånden. Till skillnad från Maximum Likelihood-
metoden behöver den inte göra lika starka antaganden om systemet som modelleras, vilket minskar
risken för att den blir vilseledande. Vidare kan man med fördel kontrollera hur stabila de predik-
terade tillstånden ska vara genom en regulariseringsparameter. Detta kan till exempel leda till lägre
transaktionskostnader om en handelsstrategi baseras på modellen.

I en ”vanlig” HMM är övergångssannoliketerna i Markovkedjan konstanta. Denna kan modiÆeras
genom att låta sannolikheterna bero på exogena variabler som skulle kunna ha en påverkan på den
modellerade tidsserien. Detta skulle å ena sidan kunna förbättra modellen, men å andra sidan kan
den bli svårare att arbeta med. Den ovan nämnda klustermetoden för HMMer, Jump-metoden, är
däremot mycket Øexibel i det avseendet och kan enkelt utvidgas för att ta hänsyn till exogen data. I
denna uppsats visar vi genom en simuleringsstudie att, under antagandet att övergångssannoliketerna
beror på exogena variabler, kan Jump-metodens prediktiva förmåga förbättras då den, utöver obser-
vationer från den modellerade (endogena) tidsserien, även klustrar de relevanta exogena variablerna.
Simulerade tidsserier tillåter en jämförelse av Jump-metodens predikterade tillstånd vid varje tidpunkt
med de ”verkliga” (som annars är okända) och därmed går det att bedöma metodens trä�säkerhet. Vi
simulerar tidsserierna enligt HMMer av senast nämnda sort ämnade att modellera Standard & Poor’s
500 index med exogena variabler valda så att modellerna passar observerad data väl med statistiska
mått. Variabelurvalet tyder på att, framför allt, CBOE Volatility Index med fördel kan inkluderas som
exogen variabel. Detta samt de positiva resultaten från simuleringsstudien verkar vara användbara
i praktiken; då Jump-metoden även klustrar CBOE Volatility Index, tyder våra resultat på att dess
förmåga att identiÆera perioder i Standard & Poor’s 500 med, i genomsnitt, antingen positiv eller
negativ avkastning förbättras.
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1 Introduction

The Hidden Markov model (HMM) is applicable to a wide range of Æelds including computational biol-

ogy; speech recognition; and Ænance. Modeling a system where one can observe a sequence of variables,

e.g. a time series, it may be appropriate to assume that di�erent observations in that sequence was

generated under di�erent conditions. For example, in a time series of Ænancial returns, one reasonable

assumption is that the market can be upwards trending (bullish) or downwards trending (bearish) and

that the distribution of the returns are determined by these states. This situation could be modeled

with a HMM. It assumes that the distribution of an observable variable is completely determined by an

associated unobservable (hidden) state and that the probabilities of transitioning to each state at the next

point in time is only dependent on the current state.

When modeling a system with a HMM it is of interest to estimate the parameters of the model; that is

the parameters related to the distributions of the outputted variable under each state and the transition

probabilities. With a sequence of observed outputted variables and the estimated HMM, one would also

be interested in predicting the corresponding most likely sequence of hidden states. Traditionally, in

the case with a Ænite amount of states and discrete time, the parameters are estimated by Maximum

likelihood estimation (MLE) after which the most likely sequence of states is predicted using the Viterbi

algorithm (Viterbi, 1967).

When building a model, one has to make assumptions to simplify the truth su�ciently much for it

to be explained by the model. The model will be wrong but possibly useful. Consider a map which is

a very simpliÆed (but useful) model of some part of earth’s surface. If the assumptions of the model are

too far o� and the model is too dependent on them being correct; it may however break down and give

a deceptive picture of reality. It is therefore desirable to develop models with relaxed assumptions while

still being su�ciently informative. MLE requires strong assumptions about the HMM and is therefore

not very robust to misspeciÆcation of, for example, the conditional distributions given each state.

Zheng, Li and Xu (2019) proposed to apply spectral clustering to a set of features derived from

the observed time series of the outputted variable (when continuous) in order to learn the HMM. It

relaxes the assumptions of MLE about the conditional distributions. However, their method does not

consider the temporal order of the observations in the time series. Therefore, relevant information such

as autocorrelation is not accounted for. In particular for Ænancial time series of returns; empirical studies

show patterns such as volatility tending to cluster over several days (Cont, 2001) suggesting persistent

states.

To address this, Nystrup, Lindström and Madsen (2020b) combined the jump framework of Bempo-

rad, Breschi, Piga and Boyd (2019) with the temporal features used by Zheng et al. (2019) in order to learn

HMMs. Their proposed way of learning HMMs, referred to as the jump estimator, is a clustering method

with a regularisation parameter penalising jumps between states. This allows advantageous control over

the transition rates in the predicted state sequence. In their simulation study, it performed favourably

over both MLE and spectral clustering in several regards (Nystrup et al. 2020b). Like spectral clustering,

their method make less assumptions than the MLE about the observed time series; it does not require

that the observed data follows any speciÆc distribution. Furthermore, being a clustering method, one

7



can e�ortlessly extend the clustered feature space with exogenous variables assumed to contain useful

information.

This thesis shall treat that prospect. We aim to investigate if the jump estimator may be further

improved by adding relevant exogenous features to the feature space. More speciÆcally, we shall explore

the potential the jump estimator applied to the Standard & Poor’s 500 (S&P 500) index assuming a HMM

with transition probabilities depending on exogenous variables. We aim to Ænd exogenous variables that

are appropriate to include in such a model, and compare the performance of the jump estimator before

and after adding those variables to the ”vanilla” feature space used by Nystrup et al. (2020a).

In Section 2, we describe and estimate a HMM explaining the S&P 500 log-returns with exogenous

variables determining the transition probabilities. It is the model proposed by Diebold, Lee and Weinbach

(1994) and is Æt using their expectaion-maximisation (EM) algorithm. We consider four variables to

include and perform forward selection to Ænd the ones which result in the best model. This is to be done

in two approaches di�ering in how the data is preprocessed; resulting in two HMMs.

The jump estimator of Nystrup et al. (2020b) for learning HMMs is explained in greater detailed in

Section 3. After this, we do a simulation study in Section 4 based on time series generated according to

the HMMs from Section 2. This allows to assess the performance of the jump estimator using di�erent

feature spaces and inputs. Before concluding and commenting on further work in Section 6, we apply it

to real data in Section 5 in order to demonstrate the practical potential of what is learned throughout

the thesis.

As this thesis can be divided into two parts with results obtained in Sections 2 and 4, we end each of

those sections with a discussion. Firstly however, we go through some theoretical preliminaries beyond

basic mathematical statistics necessary to understand the contents in this text.

1.1 Preliminaries

1.1.1 Basic concepts in Finance

A stock index measures the overall development of a stock market. The price of a stock index is derived

from the prices of some selected stocks representing the market (for example by a weighted arithmetic

mean).

The S&P 500 is a stock index which is based on the prices of 500 public American companies

selected by a committee. The stocks are chosen so that they represent the American economy. The S&P

500 is commonly used as a benchmark for what returns an investor may expect when exposed to the risk

of the stock market.

The return of a stock (disregarding dividends) or an index is how much its price changes over a

period of time t � 1 to t. It is the fraction,

R

t

=

P

t

�P
t�1

P

t�1
,

where P

t

is the price at time t. We shall consider daily returns where a point in time t is at the close

of the stock market on day t. Then P

t

is the closing price of the stock/index on day t and R

t

is the
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return during that day. If an investor invests an amount A at time 0, the amount at time T will be

A(1 +R

1

)(1 +R

2

) · . . . · (1 +R

T

).

The log-return on day t is the natural logarithm of (1+R
t

) =

P

t

P

t�1
. Given a sample of returns, one can

reduce the skewness of their distribution by transforming them to log-returns. Making the distribution of

the returns more symmetric will also make it closer to the normal distribution. Thus, using log-returns

is particularly useful if assuming normality in a model. In this thesis, we set y
t

to be the log-return of

the S&P 500 index over day t.

1.1.2 Markov Chain

Markov processes can be deÆned in continuous and discrete time but we shall focus on discrete time

Markov processes referred to as Markov chains. The following theory draws heavily upon Stroock (2014).

Let a stochastic process {s
t

}
t�1 satisfy the Markov property

P(s

t

| s
1

, s

2

, . . . , s

t�1) = P(s

t

| s
t�1), if P(s1, s2, . . . , st�1) > 0. (1)

The values which can be attained by the Markov chain are called states and comprises the state-space.

Assuming the set of states is Ænite, one can conveniently write it as S = {1,2, . . . ,K} where the states are

labeled by integers. We can set up the transition probabilities pij
t

= P(s

t

= j | s
t�1 = i), where i, j 2 S , in

a stochastic matrix,

�
t

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p

11

t

p

12

t

. . . p

1K

t

p

21

t

p

22

t

. . . p

2K

t

.

.

.

.

.

.

.

.

.

.

.

.

p

K1

t

p

K2

t

. . . p

KK

t

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where each row sum up to one. Finally, let p be a vector containing the probabilities P(s
1

= i) where

i 2 S . The process {s
t

}
t�1 satisfying the above is a Markov chain on the Ænite state-space S with initial

distribution given by p and transition probability matrix �
t

.

Before moving on we state the deÆnition of a sojourn which is relevant to Markov chains as it is of

interest how long the process tends to remain in each state.

DeÆnition 1 (Rubino and Sericola, 1989). A sojourn of X in B is X
m

,X

m+1

, . . . ,X

m+k

where k � 1,

X

m

,X

m+1

, . . . ,X

m+k�1 2 B and X

m+k

< B. If in addition, m > 0 and X

m�1 < B, then the sojourn begins

at time m, Ænishes at time m+ k and lasts k.

1.1.3 Hidden Markov model

Restricting ourselves to the discrete time and Ænite state-space case, we can deÆne a Hidden Markov

model (HMM) as a bivariate stochastic process {(y
t

, s

t

)}
t�1 where {s

t

}
t�1 is an unobservable ”hidden”

Markov chain and y

t

is a random variable such that the conditional distribution of y
t

given s

t

is com-

pletely determined by s

t

(Cappé et al. 2006; p. 1-4). The system being modeled by a HMM can be
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Figure 1: Schematic diagram of the system being modeled by the HMM.

thought of as an underlying sequence of states s

1

, s

2

, . . . where each element s
t

in the state sequence

generates an output y
t

(see Figure 1).

Due to the states being hidden, all inference about the model has to be based on observations of y

with the associated states as latent variables. When modeling a system as a HMM, one may be interested

in making inference about the initial distribution p; the transition probability matrix �
t

for each point in

time; the conditional distribution of Y ; and the underlying state sequence generating the observed values

in a sample.

1.1.4 Statistical learning

In supervised learning, the goal is to predict a response variable Y with a set of features, or predictors,

X = {X
1

,X

2

, . . . ,X

p

}. Essentially, it is about estimating an assumed function f such that Y = f (X) + ✏

where ✏ is the residual; the di�erence between the observed and the Ætted value. It is assumed to be

random and distributed around zero. This estimation is based on observations of (X,Y ). If Y is discrete,

the problem of estimating f is a classiÆcation problem. If continuous, it is a regression problem.

In unsupervised learning, on the other hand, we have observations of X but not of a response variable

labeling the data. In this case we do not aim to estimate a function f as we have no observations to

relate to X . The goal is rather to group or to Ænd an informative way to visualize the data ( James

et al., 2013; p. 373-374). One of the main methods, or class of methods, in unsupervised learning is

clustering. It involves assigning (grouping) objects to clusters based on similarity between the objects

(Hastie et al. 2009; p. 501-503). If the goal is to predict the state sequence in a HMM given a time

series of observations of the output variable, i.e. label each observation with a state, one could exploit

the assumed dissimilarity between observations associated with di�erent states (and similarity between

10



observations associated with the same state) to cluster the data into one cluster per state (when the state

space is Ænite).

The similarity between observations in one cluster can for instance be that they are close to one

another with respect to squared Euclidean distance in the feature space. That is the case for one of the

more popular and well known clustering methods. The K-means clustering algorithm is initialised by

randomly placing K cluster centers in the feature space. After initialization, it assigns each observation

to its nearest cluster (in Euclidean distance) after which it replaces each cluster center by the centroid

of the observations assigned to that cluster. This is iterated until the algorithm converges in some sense

(for example when the cluster centers no longer change from one iteration to the next). The result is K

clusters in which the within-cluster variance is minimised. The algorithm for jump estimation of HMMs

is closely related to K-means clustering (Nystrup et al., 2020b). When the Euclidean norm is used, it

could in fact be seen as an extension of K-means; adding a jump penalising regularisation term to the

objective function.
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2 Estimating a two state HMM with time-varying transition probabili-

ties applied to the S&P 500

Diebold et al. (1994) proposed a HMM in which the transition probabilities are logistic functions of

exogenous variables. They also developed an EM-algorithm to Ænd the parameters maximising the

likelihood of the HMM. We shall describe the model in Section 2.1 as well as outline their EM-algorithm

in Section 2.2. Afterwards, we apply it to the S&P 500 and some corresponding exogenous variables

which may be appropriate for the model. To choose which variables to include, we perform forward step

wise variable selection.

2.1 The Model

Let {(y
t

, s

t

)}
t�1 be a HMM as described in Section 1.1.3. We set the daily log-returns of the S&P 500

index to be {y
t

}
t�1 with the underlying Markov chain {s

t

}
t�1. We let the sequence of explanatory

variables {x
t

}
t�1 = {(1,xt

1

,x

t

2

, . . . ,x

t

k�1)
0}
t�1 determine the transition probabilities of the Markov chain at

each point t = 1,2, . . . in discrete (daily) time where k � 1 is the number of exogenous variables included

in the model. With some additional assumptions, we get the model of Diebold et al. (1994).

Let the state space be comprised by two states, i.e. K = 2, and assume that the probability matrix of

the Markov chain satisÆes,

�
t

=

0

B

B

B

B

@

p
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t

p
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t

p
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t
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t
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A

=
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B

B

B

B

@

e

x

0
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1+e

x

0
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1� p11
t

1� p22
t

e

x

0
t�1�2

1+e

x

0
t�1�2

1

C

C

C

C

C

C

C

A

(2)

with p

ij

t

= P(s

t

= j |s
t�1 = i) where i, j 2 {1,2} and � = (�

1

,�

2

)

0
= (�

1

0

,�

1

1

, . . . ,�

1

k�1 ,�20 ,�21 , . . . ,�2k�1)
0 2

R2k . Denote ⇢ = P(s

1

= 2). Then, the initial distribution of this two-state Markov chain is given by ⇢.

Finally, we assume that the variables y
t

for t = 1,2 . . . and i = 1,2 satisfy the conditional distribution,

y

t

|s
t

= i

i.i.d.2 N (µ

i

,�

i

) () f (y

t

|s
t

= i;↵) =

1p
2⇡�

i

exp

0

B

B

B

B

@

�(y
t

�µ
i

)

2

2�

2

i

1

C

C

C

C

A

, (3)

where ↵ = (↵

1

,↵

2

) = (µ

1

,�

1

,µ

2

,�

2

). Then the inference is to estimate ✓ = (↵,�,⇢). These assumptions

are not realistic and make the model a simpliÆcation of the very complex truth. However, the model may

be su�ciently accurate for our purpose.
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2.2 Estimating the parameters

Let y = {y
t

}T
t=1

and x = {x
t

}T�1
t=1

be observations of the variables included in the model and construct the

design matrix,

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 x
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1
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. . . x

1

k�1

1 x

2

1

x

2

2

. . . x

2

k�1
.

.

.

.

.

.

.

.

.

.

.

.

1 x

T�1
1

x

T�1
2

. . . x

T�1
k�1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(4)

of the exogenous variables. We aim to Ænd the maximum likelihood estimate (MLE) of ✓. If we would

have observed the state sequence s = {s
t

}T
t=1

, the goal would be to Ænd ✓ which maximises the complete

data likelihood,

f (y,s|X;✓). (5)

Optimising the complete likelihood is is equivalent to optimising the complete log-likelihood,

log f (y,s|X;✓), (6)

as the logarithm is a monotone transformation.

However, we cannot observe s in a HMM and thus we may not directly maximise the complete data

log-likelihood. We only have information which lets us maximise the incomplete data log-likelihood,

log f (y|X;✓) = log

2

X

s

1

=1

2

X

s

2

=1

...

2

X

s

T

=1

f (y,s|X;✓) (7)

which is not feasible in practice due to the expression being very complex (the logarithm acts outside the

sum). The EM-algorithm (Algorithm 1) with s as the latent (unobserved) variable aims to Ænd a ✓ which

maximises the incomplete data likelihood; thus Ænding the MLE. One can show that log f (y|X;✓

(j)

) is

increasing (but not necessarily strictly) for each iteration j = 1,2, . . . of the algorithm (Hastie et al., 2009;

p. 276-277) but it does not always converge to the global maximum.

Algorithm 1: The EM-Algorithm

1. Initialise: Pick a ✓

0 to initialise the algorithm.

2. E-Step: Construct Q(✓,✓(j�1)
) = E

s|y,X;✓

(j�1) log f (y,s|X;✓).

3. M-Step: Find ✓

(j)

= argmax

✓

E
s|y,X;✓

(j�1) log f (y,s|X;✓).

4. Iterate steps 2 and 3 for j = 1,2,3 . . . until convergence.

Typically, one would iterate until the algorithm convergences in ✓ or the incomplete log-likelihood.

13



The rather tedious procedure for performing step 2 and 3 which was developed by Diebold et al. (1994)

is described in great detail in their paper. We outline that method here.

Before describing how to go about constructing the expectation in the E-step, we remind the reader

about the multivariate conditional density f (u

1

,u

2

, . . . ,u

m

|u
m+1

,u

m+2

, . . . ,u

n

) =

f (u

1

,u

2

,...,u

n

)

f (u

m+1

,u

m+2

,...,u

n

)

when

f (u

m+1

,u

2

, . . . ,u

n

) , 0 and m 2 {1,2, . . . ,n}. This is widely accepted and derivation is omitted here. The

variables u
1

,u

2

, . . . ,u

n

can be continuous, mixed or discrete. In the latter case, f is replaced with P .

With this formula; the Markov property of {s
t

}T
t=1

; and the independence of the variables y
1

|s
1

, y

2

|s
2

, . . . , y

T

|s
T

,

we get an expression for the complete data likelihood (5),

f (y,s|X;✓) = f (y

T

, s

T

|y
1:T�1, s1:T�1,X;✓)f (y

1:T�1, s1:T�1|X;✓)

= . . . = f (y

1

, s

1

|X;✓)

T

Y

t=2

f (y

t

, s

t

|y
1:t�1, s1:t�1,X;✓)

= f (y

1

|s
1

,X;✓)P(s

1

|⇢)
T

Y

t=2

f (y

t

|s
1:t

,y

1:t�1,X;✓)P(s

t

|y
1:t�1, s1:t�1,X;✓)

= f (y

1

|s
1

;↵)P(s

1

|⇢)
T

Y

t=2

f (y

t

|s
t

;↵)P(s

t

|s
t�1,xt�1;�),

where conditioning on X and the parameters should not be confused with conditioning on random

variables. The notations y
1:t

and s

1:t

denotes the elements in the sequences y and s from time one up

until time t. It follows that the complete data log-likelihood (6) is,

log f (y,s|X;✓) = log f (y

1

|s
1

;↵) + logP(s

1

|⇢) +
T

X

t=2

n

log f (y

t

|s
t

;↵) + logP(s

t

|s
t�1,xt�1;�)

o

= 1{s
1

=1}
h

log f (y

1

|s
1

= 1;↵

1

) + log(1� ⇢)
i

+ 1{s
1

=2}
h

log f (y

1

|s
1

= 2;↵

2

) + log⇢

i

+

T

X

t=2

n

1{s
t

=1} log f (yt |st = 1;↵

1

) + 1{s
t

=2}f (yt |st = 2;↵

2

)

+ 1{s
t

=1,s

t�1=1} log(p
11

t

) + 1{s
t

=2,s

t�1=1} log(p
12

t

)

+ 1{s
t

=2,s

t�1=2} log(p
22

t

) + 1{s
t

=1,s

t�1=2} log(p
21

t

)

o

,

where 1 is the indicator function. Taking the expectation of the complete data log-likelihood with respect
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to s|y,X;✓

(j�1) we get,

E
s|y,X;✓

(j�1) log f (y,s|X;✓) = P

⇣

s

1

= 1

�

�

�

y,X,✓

(j�1)⌘ h
log f

⇣
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as E[1
A

] = P(A) where A is an event. The E-step of the EM-algorithm therefore amounts to evaluate

the marginal and joint smoothed probabilities, P
⇣

s

t

= i |y,X;✓

(j�1)⌘ and P

⇣

s

t

= k, s

t�1 = l |y,X;✓

(j�1)⌘, for

i, l, k = 1,2. The reader is referred to Diebold et al. (1994) for the details about how these probabilities

are computed.

In the subsequent M-step, the constructed expectation is maximised with respect to ✓. Diebold et

al. (1994) found that one can directly Ænd solve for ↵(j) and ⇢

(j). Finding �

(j)

i

requires a linear Taylor

approximation of pii
t

(�

i

) centered at �(j�1)
i

. Consequently, the expectation is not maximised exactly and

the error bound will be largest as � change the most from one iteration to the next. As the algorithm

begins to converge, this second order error bound becomes minute. For detailed derivations of the

solution to the optimisation problem, the reader is again referred to Diebold et al. (1994). The closed

form solutions to the parameters of ✓(j) that are computed in the M-step are,
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where @p

ii

t

(�

i

)

@�

i

=

✓

@p

ii

t

(�

i

)

@�

i

0

,

@p

ii

t

(�

i

)

@�

i

1

, . . . ,

@p

ii

t

(�

i

)

@�

i

k�1

◆

is evaluated at �(j�1)
i
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2.3 Model selection

With a given set of k � 1 exogenous variables, there are 2

k�1 possible models as described above to

choose from by including a few, all or none of them. One could Æt every possible model, evaluate the

quality of each and select the best. Due to computational limitations however, we choose our model by

forward selection ( James et al., 2013; p. 207) instead as follows:

1. Fit the null modelM
0

without any exogenous variables.

2. For j = 1, . . . , k �1: Æt one model for each of the k � j variables not included in modelM
j�1 which

includes that variable in addition to those inM
j�1. Denote the best of these models byM

j

.

3. Choose the best of the modelsM
0

,M
1

, . . . ,M
k�1.

To perform the forward selection, we Ærst need to introduce some way to evaluate how good the models

are in relation to each other. The log-likelihood function (7) works when comparing models with the

same amount of parameters (degrees of freedom). However, the likelihood tends to increase with the

degrees of freedom making it badly suited for comparing models which di�ers in that regard; favouring

more complex, possibly overÆtted, models. Taking this into account, we use the measurements in the

following deÆnition which penalises model complexity.

DeÆnition 2 Let L( ˆ✓) be the maximised likelihood of a model with parameters ✓; let k = dim(✓) be the

amount of parameters estimated; and n the sample size. Then, the Akaike Information Criterion is AIC =

2k � 2logL( ˆ✓) and the Bayesian Information Criterion is BIC = log(n)dim(✓)� 2logL( ˆ✓).

When using AIC or BIC to compare a set of models, the model which give the smallest value is considered

to be the best. The values are useful in comparing models but say nothing about them in absolute terms.

AIC and BIC look similar but are derived and motivated in di�erent ways. AIC aims to select the model

which best approximates the ”true model” of the data by choosing the model minimising the (estimated)

expected information loss (Burnham and Andersson, 2002; p. 60-64). On the other hand, BIC aims to

select the model which has the highest probability of being true given the data. If the ”true model” is

considered, BIC will select it almost surely as the sample size goes to inÆnity (Hastie et al., 2009; p. 233-

235). In practice, for a large enough sample, if their favoured model di�ers, BIC will select the simpler

model. Regarding which one to rely on, generally speaking, AIC is intended for comparing prediction

accuracy while BIC may be more appropriate for explanatory modeling (Shmueli, 2010).

The EM-algorithm returns maximising a ˆ

✓ (although not necessarily the global max). Moreover, we
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can compute the likelihood L(✓) of the model for the observed (incomplete) data as follows,

L(✓) = f (y|X;✓) = f (y

1:T�1|X;✓)f (y

T

|y
1:T�1,X;✓)

= . . . = f (y

1

|X;✓)

T

Y

t=2

f (y

t

|y
1:t�1,X;✓)

1

= f (y

1

|X;✓)

T

Y

t=2

f (y

t

|y
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=) logL(✓) = log

0

B

B

B

B

B

B

@
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s

1
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1

|s
1

;✓)f (s

1
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C

C

C

C

C
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+

T

X

t=2

log f (y

t

|y
1:t�1,X1:t�1;✓),

where X
1:t�1 is the matrix comprised by the Ærst t�1 rows of X . The values f (y

1

|s
1

;✓) and f (s

1

|✓) can
be calculated directly, given ✓; and f (y

t

|y
1:t�1,X1:t�1;✓) for t = 2,3, . . . ,T are each computed during the

E-step of the EM-algorithm developed by Diebold et al. (1994). Hence, we may evaluate L
⇣

✓

(j�1)⌘ during

every iteration (j) in the algorithm. We compute the maximised likelihood during the last iteration before

the EM-algorithm terminates and get AIC and BIC.

2.4 Exogenous variables considered

We consider four di�erent exogenous variables which could be seen as indicators of market sentiment.

The variables are,

1. 3-Month Treasury Bill rate (DTB3),

2. CBOE Volatility Index (VIX),

3. 10-year minus 3-month Treasury yields (T10Y3M),

4. TED Spread (TED).

One could of course consider additional variables which may be well suited for our model. However, we

limit ourselves to these four.

2.4.1 3-Month Treasury Bill (DTB3)

The 3-Month Treasury Bill rate is the annual yield on US government debt obligations with 3-month

maturity. Due to its almost nonexistent risk, it is frequently used to measure the theoretical ”risk free

rate”, that is, the annual return of the risk free asset. As investor uncertainty increase, demand for risk

free assets such as the 3-Month T-Bill typically increase. Consequently, their price increase and their

yield rates decrease.

2.4.2 CBOE Volatility Index (VIX)

The VIX is an index indicating the market’s expectation of future market volatility; implied volatility. It

is derived from the inputs used to compute prices of options with S&P 500 as the underlying asset. High

values of VIX are often associated with high uncertainty and investor fear.

1This equality is intuitively clear but justiÆed in Appendix A.
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2.4.3 10-year minus 3-month Treasury yields (T10Y3M)

The 10-year minus 3-month Spread is the di�erence between the 10-Year and 3-month Treasury yields (10-

Year minus 3-Month). Under normal circumstances, this di�erence is positive as investors are prepared

to pay more for the most liquid asset of the two (the one with shorter maturity). If this spread is negative

however, the famous (or infamous) yield curve is inverted. Historically, an inverted yield curve has in

almost all cases been followed by a recession in the US economy.

2.4.4 TED spread (TED)

The TED spread is the 3-month LIBOR rate minus the 3-month T-Bill rate. The LIBOR is a benchmark

rate based on the interest rates on loans between major banks. A large TED spread is considered to

indicate high credit risk on these loans and vice versa. One could therefore hypothesise that a high TED

spread would be associated with uncertainty on the Ænancial markets.

2.5 Data

The daily closing prices of the S&P 500 and exogenous variables mentioned above is downloaded from

FRED Economic Data (Federal Reserve Bank St. Louis, 2020). The data is taken from the time period

2012-03-26 to 2020-03-06 (With one additional day for the S&P 500 (2012-03-23) to get the daily log-

return on the Ærst day). Due to holidays, there are some days with no data. In very few of these cases,

there are data missing for a subset of the variables. These days are simply removed from the data set. It

is assumed that whatever e�ect this may have on the model is negligible. The log-returns for each day

are computed before removing days with missing data in other variables so that there will not be any

outliers introduced by this (if computing the return over two days instead of one).

The total sample size is 1950. Due to the availability of Ænancial data, one could increase the

sample size e�ortlessly and possibly make better inference. However, because this EM-algorithm is quite

computationally intensive, a larger sample size would not be feasible for the author.

2.6 Preprocessing data

The noisy nature of Ænancial time series (Abu-Mostafa & Atiya, 1996) motivates smoothing of the time

series representing the exogenous variables. This aims to prevent noise and outliers a�ecting our model.

We shall consider two ways of doing this eventually resulting in two di�erent models. In the Ærst

approach, we perform Simple exponential smoothing (SES) on the time series. The degree of smoothing

will be set by minimising the one step ahead prediction error; giving a reasonable degree of smoothing

assuming that there are some structure in the series. In the second approach, we shall resort to Locally

estimated scatterplot smoothing (LOESS). There, the degree of smoothing will be set manually so that

the smoothed curves appear to follow the major trends in the time series. This is a very informal way of

doing it. However, ensuring that we Ælter out much variation will be beneÆcial for our simulation study;

we may better investigate the jump estimator’s robustness to noise in exogenous variables (See section

3.1).
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Figure 2: SES smoothed time series of exogenous variables.

2.6.1 Approach (a): SES

SES is a simple but common method for time series smoothing and prediction. Given a univariate time

series {x
t

}T
t=1

(In this case, not to be confused with row t in the design matrix), we transform it recursively

according to

z

t

= ↵x

t

+ (1�↵)z
t�1

starting from z

1

= x

1

. If we would like to predict x
t+1

, SES predicts ˆ

x

t+1

= z

t

. The parameter ↵ controls

the degree of smoothing. It is between 0 and 1 and determines the proportion of which the Ætted value is

based on the most recent value. We choose ↵ by minimising the one step ahead prediction error over the

entire time series in our sample (separately for each exogenous variable). The prediction error is in this

case deÆned as the mean of the losses from each prediction. It is desirable to use a robust loss function

due to the noise and possible outliers in the time series. We consider the Huber (1964) loss,

L

�

(✏) =

8

>

>

>

<

>

>

>

:

1

2

✏

2 if |✏|  �,

�(|✏|� 1

2

�), otherwise,
(8)

where ✏ = x � ˆ

x is the residual of a prediction which we assume is unbiased (so E(✏) = 0). This loss

combines the square and absolute loss. For ”normal” values of ✏ ( �) it is the square loss. However,
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for errors with abnormally large magnitude it is the absolute loss which is less sensitive to outliers. A

rule of thumb is to classify an outlier as one which is more than three standard deviations away from the

mean. Therefore, we set � = 3std(✏) where we estimate the standard deviation from the set of residuals

obtained when doing one step ahead prediction over the entire time series. As ✏
t

= x

t

� ˆ

x

t

= x

t

� z
t�1,

the prediction error is 1

T�1
P

T

t=2

L

�

(✏

t

) where � = 3std(✏

2

, . . . ,✏

T

).

We consider an equidistant grid of ↵’s spaced by 0.01. The prediction error is computed as described

above for each of these parameters and the ↵ which minimises the error is chosen. This procedure is

done separately for each exogenous variable resulting in Table 1 and the time series in Figure 2. The

smoothing resulting from this approach is minimal but we do see a slight reduction of spikes in the time

series.

Table 1: Best ↵ for simple exponential smoothing.

DTB3 VIX T10Y3M TED
↵ 0.98 0.84 0.96 0.78
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Figure 3: LOESS smoothed time series of exogenous variables.

2.6.2 Approach (b): LOESS

LOESS involves Ætting a polynomial to a speciÆed amount of nearest neighbors to each point by weighted

least squares. To describe LOESS, we again consider a univariate time series {x
t

}T
t=1

. Then LOESS maps
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x

t

to ˆ

x

t

= p(t) setting

p = argmin

p2P n

X

i2N
t

W (i) (x

i

� p(i))2

where P n is the set of polynomials of degree n; N
t

is the set of indices of the k nearest neighbours to t;

and W (i) is a weight function which ensures that the Æt is more inØuenced by closer points than those

further away. Commonly it is the tri-cube weight function W (i) =

⇣

1� |d
i

|3
⌘

3

where |d
i

| is the distance

from i to t normalized to [0,1]. We use these weights and quadratic polynomials (n = 2). The degree

of smoothing, span, is determined by the amount of points considered in each neighbourhood divided

by the length of the entire time series. Increasing this fraction will give smoother results. This method

does not assume one function explaining the entire time series. Furthermore, it is beneÆcial compared

to some other kernel methods in terms of bias at the boundaries (Hastie et al. 2009; p.192-198).

We choose the span manually in such a way that the Ætted curve appears to capture major, longer

term signals of the time series while Æltering out sudden, sharp moves. The chosen span is 0.05 for all

exogenous variables; resulting in all variables being equally forward and backward looking. It appears to

have the largest e�ect on the time series of VIX and TED spread which are more volatile. The smoothed

and raw versions of the time series are illustrated in Figure 3.

2.6.3 Z-score standardisation

Before being inputted into the EM-algorithm, the variables are standardised according to Z-score stan-

dardisation

x

stand

t

j

=

x

t

j

� mean(x
j

)

std(x

j

)

(9)

which simpliÆes the initial choice of initial ✓0 (in particular �

0) as all exogenous variables will have

sample mean and standard deviation zero and one respectively. Here, x
j

is the time series of the j ’th

variable. The smoothed and standardised time series are Ænally used to construct the inputted design

matrix X .2 To make � more interpretable, one can unstandardise the coe�cients to readjust the model

to the non-standardised data. This is done as follows,

�

i

0

+

k�1
X

j=1

�

i

j

x

j

t

= �

stand

i

0

+

k�1
X

j=1

�

stand

i

j

x

stand

t

j

= �

stand

i

0

+

k�1
X

j=1

�

stand

i

j

x

t

j

� mean(x
j

)

std(x

j

)

=

0

B

B

B

B

B

B

@

�

stand

i

0

�
k�1
X

j=1

�

stand

i

j

mean(x

j

)

std(x

j

)

1

C

C

C

C

C

C

A

+

k�1
X

j=1

�

stand

i

j

std(x

j

)

x

j

t

=)

8

>

>

>

>

<

>

>

>

>

:

�

i

0

= �

stand

i

0

�Pk�1
j=1

�

stand

i

j

mean(x

j

)

std(x

j

)

,

�

i

j

=

�

stand

i

j

std(x

j

)

, j = 1,2, . . . , k � 1.
2Including the appropriate variables for each step in the forward selection and each approach (a) and (b).
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Table 2: BIC and AIC of the models (with included variables) for each step of the forward selection in
approach (a). Bold entries identify the best values.

Model AIC BIC
M

0

�13631.1366 �13592.1075
Ma

1

(VIX) �13770.5723 �13720.3921
Ma

2

(VIX+TED) �13775.5127 �13714.1813
Ma

3

(VIX+TED+DTB3) �13772.2440 �13699.7614
Ma

4

(All) �13771.5600 �13687.9262

2.7 Execution on S&P 500

We do the forward selection as described in Section 2.3 separately for approaches (a) and (b). The

EM-algorithm is implemented in R with max(|✓(j) � ✓(j�1)|) < 10

�6 as stopping criterion; the iterations

are stopped as the largest change in the parameters from one iteration to the next is smaller than 10

�6.

Each time we run the algorithm, we initialise it with a ✓

0 in which each parameter is chosen randomly

and uniformly on reasonable intervals.

2.7.1 Execution: approach (a)

We Æt the models to y and the SES transformed time series in X according to the forward selection

scheme. The selected models with AIC and BIC at each step are reported in Table 2. The di�erent

criteria disagree on which model is best; with AIC preferring a more complex model than BIC.

Our purpose is partly to investigate which exogenous variables explain y through the model best.

However, in the forthcoming simulation study we shall generate simulated state sequences sequentially

according to the transition probabilities pij
t

predicted by the selected x

t�1. This suggests relying on AIC

rather than BIC. Therefore, we select Ma

2

but note that BIC favours Ma

1

which includes only VIX. The

estimated parameters ofMa

2

are,

µ

1

= 0.0006, �

1

= 0.0045,

�

stand

1

= (0.4593,�3.6164,0.1056)0 ,

µ

2

= �0.0001, �

2

= 0.0127,

�

stand

2

= (�0.6627,2.3837,�0.4951)0 ,

⇢ = 1.

We invert the standardisation and get the coe�cients �

1

= (14.2172,�0.9257,1.0119)0 and �

2

=
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Table 3: BIC and AIC of the models (with included variables) for each step of the forward selection in
approach (b). Bold entries identify the best values.

Model AIC BIC
M

0

�13631.1366 �13592.1075
Mb

1

(VIX) �13714.1890 �13664.0087
Mb

2

(VIX+T10Y3M) �13714.0036 �13652.6721
Mb

3

(VIX+T10Y3M+TED) �13711.6521 �13639.1695
Mb

4

(All) �13708.8858 �13625.2521

(�8.5240,0.6102,�4.7441)0 . 3

2.7.2 Execution: approach (b)

The models are Æt to y and the LOESS transformed time series in X . The best model with AIC and BIC

values at each step are reported in Table 3. Mb

1

is selected by both AIC and BIC and the parameters of

Mb

1

are,

µ

1

= 0.0010, �

1

= 0.0046,

�

stand

1

= (2.0709,�1.3377)0 ,

µ

2

= �0.0007, �

2

= 0.0123,

�

stand

2

= (1.2640,1.7318)

0
,

⇢ = 0.

After inverting the standardisation we get �
1

= (8.5539, �0.4265)0 and �

2

= (�7.1289, 0.5521)0 . Figure
4 shows how the transition probabilities depend on the selected variable VIX.

2.8 Discussion

Doing the selection in another way, for example by backward selection, would possibly result in other

models. Di�erent degrees of time series smoothing of the exogenous variables and even initialisation

of the EM-algorithm also have the potential to a�ect the results; Mb

2

is a very close runner up when

considering AIC. However, a key observation in Tables 2 and 3 is that both AIC and BIC increase

quite substantially when letting the transition probabilities depend on variance in VIX (Ma

1

andMb

1

) as

opposed to keeping them Æxed (M
0

).

3The coe�cients are given in the same order as the variables in the table with the Ærst coe�cient being the constant term.
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Figure 4: Graph of p11 (solid) and p

22 (dashed) fromMb

1

as functions of VIX.

The states of the selected models, Ma

2

andMb

1

, represent a less volatile bull market (state one) and

a more volatile bear market (state two). Moreover, as intuition suggests, the probability of transitioning

to state two (bear market) increases with VIX in both models. Vice versa holds for state one. Conversely,

according toMa

2

, an increasing TED spread would increase the probability of transitioning to, or staying

in the bull market (and vice versa). This is unexpected considering that which is mentioned in section

2.4.4. However, the standardised coe�cient associated with the TED spread is much smaller than that of

VIX, setting the TED spread’s inØuence on the model to be relatively small.

Comparing approaches (a) and (b), we see that the obtained AIC and BIC values are better in (a)

than in (b) indicating that the models in (a) have more predictive and explanatory power than those in

(b). Seeing the SES and LOESS smoothed variables as di�erent variables and performing the selection

considering all of these eight variables; we would at a guess still end up selecting modelMa

1

orMa

2

. The

lower likelihood of the models in (b) compared to (a) can be explained by the LOESS smoothing being

too severe; removing much relevant information from the exogenous variables. On the other hand, the

SES smoothing, with smoothing parameter chosen automatically, does little to Ælter potential noise and

outliers.

It would be interesting to see if one could improve the models further by altering the methods in

the preprocessing stage. We add that winsorization (remove and replace extreme values) was tried to get

rid of outliers more than three standard deviations away from the mean. This did not seem to have any

signiÆcant e�ect on the resulting model. One could, instead, probably improve the model by considering
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di�erent degrees of smoothing to Ælter out the ”right” amount of noise.

Comparing SES with LOESS, we note that SES is backward looking while LOESS is, in addition,

forward looking. Consequently, the LOESS smoothed time series does not reØect the available data at

each point in time. Although it is not what we observe in our results (due to the degree of smoothing by

LOESS being severe), this might inØate the computed likelihoods.4 SES is therefore a less questionable

method even though one has access to the entire interval when Ætting the models. This does not make

the resulting model,Mb

1

, from approach (b) appear to be very good as, in addition to its lower likelihood,

it is based on LOESS smoothed explanatory variables. However, it is useful for our simulation study as

it allows for some interesting experiments based on inputting either raw or smoothed data to the jump

estimator when applied to series generated according to Mb

1

. For that end, the advantage of LOESS is

that the smoothed time series is not lagged which is the case for SES. In our simulation study, we can

see the excess variation in the raw data as noise, being distributed around the LOESS curve considered

as the true signal (See Figure 3).

To conclude this section, we have two models, Ma

2

and Mb

1

, to facilitate the simulation study in

Section 4. The models from approach (a) appears to explain the data better than that from approach

(b). However, in this setting, both approaches results in VIX being deemed, of those considered, the

most important explanatory variable for this class of HMMs. Furthermore, a HMM with time-varying

transition probabilities improves upon the null model.

4Discussed with and remarked by P. Nystrup.
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3 Jump estimation of HMMs

Algorithm 2: Jump estimation of HMM (Nystrup et al., 2020b).
Input: Time series u = {u

1

,u

2

, . . . ,u

T

}; the number of latent states K ; and initial state sequence
s

0

= {s0
1

, s

0

2

, . . . , s

0

T

}.
1. Construct a set of standardised features z from the time series u.

2. Iterate for i = 1,2, . . . until s(i) = s

(i�1).

(a) ✓

(i)

= argmin

✓

P

T

t=1

`

✓

z

t

,✓

s

(i�1)
t

◆

(model Ætting).

(b) s

(i)

= argmin

s

(

P

T�1
t=1



`

✓

z

t

,✓

(i)

s

t

◆

+�1{s
t

,s
t+1

}
�

+ `

✓

z

T

,✓

(i)

s

T

◆

)

(state sequence Ætting).

3. Compute the average sojourn duration and distributional parameters for each state.

Output: HMM parameters and prediction of latent states.

Nystrup et al. (2020b) proposed a novel method for learning a HMM by minimising the objective

function of Bemporad et al. (2018) for Ætting jump models;

T�1
X

t=1

h

`(z

t

,✓

s

t

) +�1{s
t

,s
t+1

}
i

+ `(z

T

,✓

s

T

), � � 0. (10)

where ` is a loss function, in this case `(z

t

,✓

s

t

) = ||z
t

� ✓
s

t

||2
2

. It requires Ænding the minimising state

sequence s = {s
1

, s

2

, . . . , s

T

} and parameters ✓ = {✓
1

,✓

2

, . . . ,✓

K

} given an observed time series of features

z = {z
1

, z

2

, . . . , z

T

}. Seeing the elements of ✓ as cluster centers, the similarities to K-means with objective

function analogous to
P

T

t=1

||z
t

�✓
s

t

||2
2

are clear (Hastie et al. 2009; p. 509-510).

Algorithm 2, which aims to minimise the objective function (10), is just as described by Nystrup

et al. (2020b) apart from step 3 where computation of transition probabilities has been replaced with

computation of average sojourn duration for each state. This is so because the transition probabilities

are not assumed to be constant in our case. The optimisation problem in Item 2a is solved by Ænding

✓

(i) such that @

@✓

j

P

T

t=1

`(z

t

,✓

s

(i�1)
t

)

�

�

�

✓

j

=✓

(i)

j

= 0 for j = 1,2, . . . ,K . By the strict convexity of the squared

Euclidean norm, this is indeed the minimising ✓. Using the di�erentiation rules of matrix calculus we

have,

@

@✓

j

T

X

t=1

||z
t

�✓
s

(i�1)
t

||2
2

=

@

@✓

j

T

X

t=1

✓

z

t

�✓
s

(i�1)
t

◆0 ✓
z

t

�✓
s

(i�1)
t

◆

=

@

@✓

j

T

X

t=1

✓

z

0
t

z

t

� 2z0
t

✓

s

(i�1)
t

+✓

0
s

(i�1)
t

✓

s

(i�1)
t

◆

=

X

t: s

(i�1)
t

=j

✓

2✓

0
s

(i�1)
t

� 2z0
t

◆

.

Setting this expression to zero we get the solution ✓

(i)

j

=

1

N

j

P

z

t

t: s

(i�1)
t

=j

, where N

j

is the number of elements
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Figure 5: Graph illustrating the optimisation problem solved by dynamic programming when K = 2. The
minimising state sequence is the least costly path from start to Ænish.

in s

(i�1) being equal to j . This is the centroid of the observations in z being assigned to state j during

the previous iteration. Nystrup et al. (2020b) Ænd s

(i) in item 2b by the dynamic programming method

of Bellman (1957). Firstly, deÆne

V (T ,s) = `(z

T

,✓

s

),

V (t, i) = `(z

t

,✓

i

) +min

j

h

V (t +1, j) +�1{i,j}
i

, t = T � 1, . . . ,1.

Given ✓, the sequence s minimising the objective function is

s

1

= argmin

j

V (1, j),

s

t

= argmin

j

h

V (t, j) +�1{s
t�1,j}

i

, t = 2, . . . ,T .

This Ænds the least costly path through T nodes with the choice between K nodes at each point in time

where V (t, i) is the best path from node (t, i) to Ænish and the cost of going from (t, i) to (t + 1, j) is

`(z

t

,✓

i

) + �1{i,j}. Finding this path which sums up to the least cost is equivalent to minimizing the

objective function with respect to s. This is illustrated in Figure 5 for the case when the state space is

comprised by two states.

Nystrup et al. (2020b) run Algorithm 2 from ten di�erent initial state sequences generated by K-

means++; choosing the output which gives the lowest objective value. K-means++ initialisation spreads

out the initial cluster centers randomly in a certain way (Arthur and Vassilvitskii, 2006). This is motivated

by the fact that the algorithm risk getting stuck in local minimums of the objective function. They also

terminate the algorithm after a maximum of ten iterations or as the objective value changes by less

than 10

�6 from one iteration to the next. Here, we shall use this stopping criterion and, in the manner

as mentioned above, initialise Algorithm 2 with ten di�erent state sequences generated by K-means++

initialisation. Finally, the features z are standardised by Z-score standardisation (9). Although the

algorithm does both estimation and prediction, it is still referred to as the jump estimator.

27



Table 4: For each point in time t = l, . . . ,T , we construct the features from time series x and y.

Features considered for the jump estimator.
1. Observation: y

t

2. Absolute change: |y
t

� y
t�1|

3. Previous absolute change: |y
t�1 � yt�2|

4. Centered mean: mean(y
t�l+1, . . . , yt)

5. Centered standard deviation: std(y
t�l+1, . . . , yt)

6. Left mean: mean(y
t�l+1, . . . , y

t� l

2

)

7. Left standard deviation: std(y
t�l+1, . . . , y

t� l

2

)

8. Right mean: mean(y
t� l

2

+1

, . . . , y

t

)

9. Right standard deviation: std(y
t� l

2

+1

, . . . , y

t

)

10. Exogenous variable j : x
t

j

11. Square root of x
t

j

:
p

x

t

j

12. Natural logarithm of x
t

j

: logx
t

j

13. Reciprocal of exponential x
t

j

: exp(�x
t

j

)

14. Probability p

11: ext�1/(1 + e

x

t

�

1

)

15. Probability p

22: ext�2/(1 + e

x

t

�

2

)

3.1 Input and features

We allow u in Algorithm 2 to be a multivariate time series and consider,

u = {(x
1

, y

1

), (x

2

, y

2

), . . . , (x

T

,y

T

)},

where x represents the exogenous variables and y is, as before, the log-returns of the S&P 500. We use

the same backward looking features derived from y as Nystrup et al. (2020a) with window lengths l = 6

and l = 14. In addition to those, we consider x and a few transformations of x (see Table 2: 10-13).

Adding transformations of x to the set of features can have several consequences. Firstly, a transformed

feature may reveal patterns not recognisable from the original data. Secondly, adding transformations

increases the impact of x to the euclidean distances in the objective function (10).5 This should lead to

a greater inØuence of the information from x on the predicted state sequence. It may be desirable to do

this because we want to compare performance when including versus excluding features based on x. If

their inØuence is minimal, it might prevent us from getting any signiÆcant results even if x contribute

with information which would be useful. However, we do not claim that the feature spaces which we shall

use are optimal with regards to x. Weighing the information from x in relation to y is interesting but

beyond the scope of this thesis.

As explained by Zheng et al. (2019) who originally motivated a version of the ”vanilla” features

derived from y, features 4-9 are intended to contain information about the conditional distributions

characterising each state. Furthermore, the absolute changes might be useful in detecting regime switches

5Adding the same feature twice, would be (disregarding initialisation) equivalent to weighing that feature’s contribution to
the euclidean distances by a factor of two.
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Table 5: Di�erent jump estimators for approach (a): Ma

2

and their feature spaces.

Name Features Dimension of feature space Inputted data
Vanillaa 1-9 (l = 6 & l = 14) 15 S&P 500 log-returns
Extendeda 1-13 (l = 6 & l = 14) 23 S&P 500 log-returns; raw VIX and raw TED spread

Table 6: Di�erent jump estimators for approach (b): Mb

1

and their feature spaces.

Name Features Dimension of feature space Inputted data
Vanillab 1-9 (l = 6 & l = 14) 15 S&P 500 log-returns
Extendedb 1-13 (l = 6 & l = 14) 19 S&P 500 log-returns and raw VIX
Oracleb 1-9 (l = 6 & l = 14) & 14-15 (added twice) 17 S&P 500 log-returns and raw VIX
Ext. smoothb 1-13 (l = 6 & l = 14) 19 S&P 500 log-returns and LOESS VIX
Ora. smoothb 1-9 (l = 6 & l = 14) & 14-15 (added twice) 17 S&P 500 log-returns and LOESS VIX

before the change of conditional distribution is reØected in the local means and standard deviations. The

features related to the exogenous variables (10-15) should contain information about the probabilities of

staying in or transitioning to each state at each point in time in the assumed HMM. We hypothesise that

this information is beneÆcial for jump estimation. In contrast to most of the features based on y, the

exogenous features are not backward looking.

We shall use several di�erent input data and feature spaces resulting in di�erent jump estimators.

They are named and described in Tables 5 and 6 and are intended to be applied to time series simulated

according to the HMMs from approaches (a) and (b) respectively. The HMM from approach (a), Ma

2

,

includes twice as many exogenous variables as Mb

1

from approach (b). Therefore, the feature space for

Extendeda is of higher dimensions than for Extendedb .

The explanatory variable (VIX) inMb

1

is heavily smoothed by LOESS. We can use this to investigate

the jump estimators robustness to noise in the exogenous variables. To that end, we consider di�erent

estimators inputted with either raw or smoothed exogenous time series. Moreover, we deÆne the Oracleb

estimator which replaces features 10-13 by 14 and 15; each added twice to keep the proportion of features

based on x the same as in Extendedb .6 Features 14 and 15 are the probabilities of staying in the respective

states (and 1� P{transition}) when going from one day to the next (the exact probabilities when LOESS

smoothed VIX is used). Of the estimators in Table 6, Oracle smoothb is the jump estimator with features

which, intuitively, would be most relevant forMb

1

. This is however cheating as it is not realistic to know

that information. The feature spaces and jump estimators using the exogenous variable(s) will be referred

to as the extended feature spaces and estimators.

6This is done in order to make the estimators more comparable; taking in consideration what was mentioned in the Ærst
paragraph of this section.
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Figure 6: Simulated and real S&P 500 indexes (black and grey respectively) according to modelsMa

2

(a)
andMb

1

(b) with state sequences on top and exogenous time series at the bottom.

4 Simulation Study

We compare the performance of the di�erent jump estimators in a simulation study. The daily log-returns

of S&P 500 are simulated using the models, Ma

2

and Mb

1

, selected in Section 2.7. The simulated data

allow us to compare the predicted state sequence to the true state sequence. Each simulated series is

created by Ærst generating a state sequence according to the transition probabilities at each point in time

in �
t

; given by the parameters of the selected HMM and exogenous variables from a randomly chosen

period of time between 2012-03-26 and 2020-03-06 of desired length. The Ærst element in the sequence

is generated according to the initial state distribution ⇢. Given the state sequence, we sample each

simulated daily log-return y

t

from the conditional Gaussian distribution with parameters determined by

s

t

. Figure 6 illustrates the simulated S&P 500 generated according toMa

2

andMb

1

. We can get the index

values from the log-returns by accumulatively multiplying the index with exp(log-return) starting from

an appropriate value.

The state classiÆcation performance is measured in balanced accuracy (BAC) which is the average of

the true positive rates for each state TP

TP+FN

, where TP is the number of true positives which was correctly

classiÆed and FN is the number of true positives which was incorrectly classiÆed (For state one, positive

is 1 and negative is 2. Vice versa for state two.). Due to the risk of label switching when clustering, i.e. the

algorithm labels the cluster really associated with state one as two and vice versa; the states are labeled

in such a way that these accuracy rates are maximised which is simply done when only considering two

states. As Nystrup et al. (2020b) pointed out, BAC is a suitable measure of accuracy as it does not get

inØated when a classiÆer take advantage of an imbalanced data set. If 95 percent of the observations
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belong to state 1, then a classiÆer which classiÆes all observations to the same state (in this case that

would be a jump estimator with large enough jump penalty �) would have 95 percent accuracy according

to accuracy deÆned by #correct classiÆcations
#total classiÆcations .

We remark that we are more concerned about the performance of the di�erent estimators in relation

to each other than their performance in absolute terms. Our goal in this study is to investigate if including

exogenous variables improves the jump estimator. Therefore, the relative performance is what we are

interested in.

4.1 Choosing the jump penalty �

Before comparing the di�erent jump estimators we need to decide which jump penalties to use. All

estimators should be optimised with respect to the jump penalty � in every setting. As BAC is used to

measure the performance of the jump estimators, we optimise them by maximising BAC with respect

to �. BAC is a random quantity (function of the data D and initial state sequence, s0, generated by

K-means++ which are both random) so we aim to Ænd the � which maximises B(�) = E(BAC|�). We

can estimate this by ˆB(�) = 1

n

P

n

i=1

BACi

�

where BAC1

�

,BAC2

�

, . . . ,BACn

�

is a sample of observations of

BAC for a given � which we get by applying the jump estimators to simulated time series.

We discretise the problem by considering a grid of jump penalties on the natural logarithmic scale

and choose the maximising � out of these. Thirteen gridpoints are used for most estimators apart from

some which require more to the left.7 Setting n = 1000 and computing ˆB for each jump estimator and

penalties separately on time series of length 250, 500 and 1000 in each setting (Ma

2

and Mb

1

), we get

Figures 7 and 8 and Tables 7 and 8 of approximated optimal jump penalties. To get a sense of the

accuracy of ˆB
1000

(�) we compute the sample standard error (SE) sp
1000

, where s is the sample standard

deviation of BAC. This is an estimate of how much, on average, we may expect ˆB
1000

to deviate from the

true mean and is shown in the Ægures around each curve.

In most cases, the estimators does not seem to be terribly sensitive to which jump penalty is used. The

exception is Vanillab which, for the longest time series, has a clearly deÆned maximum. In general, we

see a slight improvement in BAC when increasing � from zero; favouring jump estimation over K-means

clustering.

7A Æner grid was initially considered but the improvement in BAC when using more grid points is negligible.
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Table 7: Approximated optimal � for each jump estimator applied to time series simulated according to
Ma

2

.

250 500 1000
Vanillaa 0 0 20

Extendeda 0 0 1
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Figure 7: BAC (± standard error) as a function of � for the jump estimators estimators (a) and time series
of di�erent lengths generated byMa

2

.
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Table 8: Approximated optimal � for each jump estimator applied to time series simulated according to
Mb

1

.

250 500 1000
Vanillab 4 12 33

Extendedb 12 7 7

Oracleb 0 4 7

Ext. smoothb 1 3 4

Ora. smoothb 1 2 1
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Figure 8: BAC (± standard error) as a function of � for the jump estimators (b) and time series of di�erent
lengths generated byMb

1

.
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Table 9: Mean (and standard deviation) of the estimated parameters, average sojourn durations and
accuracies based on 1000 simulated series of di�erent lengths according to Ma

2

. Bold entries identify
the best estimates between the jump estimators.

µ

1

�

1

µ

2

�

2

Sojourn 1 Sojourn 2 Accuracy 1 Accuracy 2 BAC
250
Truea 0.0006 0.0045 �0.0001 0.0127 6.5143 (6.5076) 2.6662 (0.8115) 0.9347 (0.0376) 0.7511 (0.1041) 0.8430 (0.0466)

Vanillaa 0.0007 (0.0009) 0.0059 (0.0009) �0.0005 (0.0028) 0.0118 (0.0019) 19.9020 (17.9337) 7.6799 (2.7092) 0.8284 (0.0780) 0.5614 (0.1266) 0.6949 (0.0640)

Extendeda 0.0006 (0.0007) 0.0059 (0.0011) �0.0001 (0.0019) 0.0111 (0.0021) 29.5597 (29.4313) 15.6159 (9.7462) 0.8063 (0.1055) 0.6702 (0.1702) 0.7383 (0.0916)

500
Truea 0.0006 0.0045 �0.0001 0.0127 6.1625 (2.4163) 2.6924 (0.5013) 0.9463 (0.0216) 0.7693 (0.0622) 0.8578 (0.0316)

Vanillaa 0.0007 (0.0007) 0.0057 (0.0006) �0.0005 (0.0021) 0.0120 (0.0010) 19.8843 (10.1203) 7.3932 (1.8051) 0.8505 (0.0531) 0.5855 (0.0943) 0.7180 (0.0503)

Extendeda 0.0006 (0.0005) 0.0055 (0.0007) �0.0001 (0.0015) 0.0114 (0.0013) 25.8899 (13.8286) 13.4258 (7.0501) 0.8225 (0.0968) 0.7149 (0.1113) 0.7687 (0.0561)

1000
Truea 0.0006 0.0045 �0.0001 0.0127 5.7720 (0.9286) 2.8160 (0.2347) 0.9481 (0.0131) 0.7836 (0.0320) 0.8658 (0.0185)

Vanillaa 0.0007 (0.0004) 0.0059 (0.0005) �0.0004 (0.0014) 0.0120 (0.0007) 58.3594 (14.9180) 24.1286 (6.6309) 0.8631 (0.0449) 0.6016 (0.0976) 0.7323 (0.0418)

Extendeda 0.0007 (0.0003) 0.0054 (0.0005) �0.0003 (0.0011) 0.0120 (0.0007) 25.0400 (5.4762) 12.1738 (2.5925) 0.8598 (0.0370) 0.7119 (0.0739) 0.7859 (0.0374)

4.2 Comparison results

Figures 7 and 8 show how the estimators including exogenous variables dominate the vanilla estimators

in terms of BAC. We report the estimated parameters, average sojourn durations and accuracies for each

jump estimator in Tables 9 and 10 based on 1000 time series of di�erent lengths. The values are those

obtained using the optimising jump penalties in Tables 7 and 8 for each case. Tables 9 and 10 also

show the true parameters and mean of true average sojourns of the data generating models. The true

accuracies are based on the state sequences predicted by the Viterbi algorithm (Viterbi, 1967) with the

true model parameters and transition probabilities at each point in time to Ænd the most likely state

sequence given the observed data. It computes s⇤ = argmax

s

f (s|y,X;M) = argmax

s

f (s,y|X;M), where

X is the observed exogenous data andM is the HMM (in this caseMa

2

orMb

1

). The Viterbi algorithm

is analogous to that which is used to compute the minimising state sequence in Algorithm 2 but with

reversed time order of operations (Nystrup et al., 2020b) and other costs (or rewards in this case) between

the nodes.

4.2.1 Setting (a)

As can be seen in Table 9, the true average sojourn durations of state one is more than twice the length

of those of state two in the time series simulated byMa

2

. It is the second state which both Vanillaa and

Extendeda Ænd the hardest to correctly predict. All the improvement in BAC when extending the feature

space stems from predicting this state and is between 4.3 and 5.4 percent (increasing with time series

lengths).

Overall, Extendeda appears to be better at estimating the parameters (except �
2

) of the conditional

distributions. However, both estimators overestimate �

1

and underestimate �

2

. Concerning the average

sojourns, they are greatly overestimated by both estimators and more so for Extendeda than Vanillaa

apart from the case when the vanilla estimator uses a much larger jump penalty.
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Table 10: Mean (and standard deviation) of the estimated parameters, average sojourn durations and
accuracies based on 1000 simulated series of di�erent lengths according to Mb

1

. Bold entries identify
the best estimates between the jump estimators.

µ

1

�

1

µ

2

�

2

Sojourn 1 Sojourn 2 Accuracy 1 Accuracy 2 BAC
250
Trueb 0.0010 0.0046 �0.0007 0.0123 15.3919 (11.5295) 7.2222 (3.9810) 0.9409 (0.0531) 0.7412 (0.1987) 0.8410 (0.0891)

Vanillab 0.0011 (0.0007) 0.0058 (0.0010) �0.0011 (0.0024) 0.0116 (0.0022) 35.6395 (25.2529) 15.0610 (8.5362) 0.8743 (0.0932) 0.6147 (0.1579) 0.7445 (0.0876)

Extendedb 0.0010 (0.0007) 0.0058 (0.0010) �0.0006 (0.0020) 0.0112 (0.0021) 54.0608 (36.2556) 29.7383 (19.6765) 0.8645 (0.1071) 0.6868 (0.1733) 0.7757 (0.0970)

Oracleb 0.0010 (0.0007) 0.0057 (0.0009) �0.0008 (0.0021) 0.0112 (0.0020) 29.7115 (27.7335) 13.8654 (9.5266) 0.8702 (0.0880) 0.6786 (0.1586) 0.7744 (0.0906)

Ext. smoothb 0.0010 (0.0007) 0.0056 (0.0009) �0.0007 (0.0019) 0.0109 (0.0023) 39.9825 (35.1917) 22.2157 (13.8798) 0.8426 (0.1215) 0.7217 (0.1577) 0.7822 (0.1022)

Ora. smoothb 0.0010 (0.0007) 0.0056 (0.0009) �0.0007 (0.0019) 0.0110 (0.0022) 44.8774 (40.8064) 23.1447 (14.0159) 0.8557 (0.1109) 0.7211 (0.1435) 0.7884 (0.0897)

500
Trueb 0.0010 0.0046 �0.0007 0.0123 14.6287 (5.4068) 7.2117 (2.4916) 0.9513 (0.0305) 0.7889 (0.0958) 0.8701 (0.0461)

Vanillab 0.0011 (0.0004) 0.0057 (0.0006) �0.0012 (0.0016) 0.0120 (0.0011) 57.1085 (36.0757) 21.9371 (10.2290) 0.9070 (0.0484) 0.6479 (0.1249) 0.7774 (0.0625)

Extendedb 0.0010 (0.0004) 0.0056 (0.0006) �0.0010 (0.0014) 0.0118 (0.0010) 56.9719 (32.9057) 24.1777 (11.7821) 0.9072 (0.0484) 0.7021 (0.1136) 0.8047 (0.0606)

Oracleb 0.0010 (0.0004) 0.0056 (0.0006) �0.0010 (0.0014) 0.0118 (0.0010) 51.2308 (30.3543) 21.2465 (10.3653) 0.9087 (0.0486) 0.7002 (0.1083) 0.8044 (0.0597)

Ext. smoothb 0.0010 (0.0004) 0.0055 (0.0005) �0.0010 (0.0014) 0.0118 (0.0011) 50.8331 (33.7968) 21.9237 (10.1061) 0.9043 (0.0521) 0.7240 (0.1063) 0.8141 (0.0573)

Ora. smoothb 0.0010 (0.0004) 0.0056 (0.0005) �0.0010 (0.0014) 0.0118 (0.0011) 50.5769 (35.9228) 20.5192 (9.5897) 0.9108 (0.0534) 0.7146 (0.1038) 0.8127 (0.0566)

1000
Trueb 0.0010 0.0046 �0.0007 0.0123 13.6458 (2.4174) 7.4531 (1.3544) 0.9504 (0.0176) 0.8148 (0.0462) 0.8826 (0.0242)

Vanillab 0.0010 (0.0003) 0.0058 (0.0004) �0.0011 (0.0010) 0.0120 (0.0007) 78.6825 (20.0044) 34.3050 (10.6923) 0.9097 (0.0389) 0.6721 (0.1012) 0.7909 (0.0449)

Extendedb 0.0010 (0.0003) 0.0056 (0.0004) �0.0010 (0.0009) 0.0120 (0.0006) 50.5651 (13.1131) 23.6073 (6.7319) 0.9085 (0.0305) 0.7233 (0.0801) 0.8159 (0.0381)

Oracleb 0.0010 (0.0003) 0.0057 (0.0004) �0.0010 (0.0009) 0.0120 (0.0006) 52.0750 (13.0933) 23.9657 (6.7515) 0.9115 (0.0306) 0.7199 (0.0794) 0.8157 (0.0382)

Ext. smoothb 0.0010 (0.0003) 0.0055 (0.0003) �0.0010 (0.0009) 0.0120 (0.0006) 48.7714 (12.8331) 23.3458 (6.8080) 0.9092 (0.0293) 0.7399 (0.0763) 0.8246 (0.0366)

Ora. smoothb 0.0011 (0.0003) 0.0056 (0.0003) �0.0011 (0.0009) 0.0121 (0.0006) 37.0433 (10.0273) 16.9038 (4.7838) 0.9167 (0.0272) 0.7299 (0.0711) 0.8233 (0.0352)

4.2.2 Setting (b)

In Table 10 we see that similarly to (a), the true average sojourns of state one lasts more or less twice

as long as those in state two in the sequence generated by Mb

1

. Moreover, the extended estimators are

slightly better at estimating most of the distribution parameters. As in (a), Vanillab prevails at estimating

�

2

but this di�erence diminishes with increasing time series length. Regarding the average sojourns, they

are overestimated by all estimators. Using di�erent jump penalties leads to di�erent average predicted

sojourns.

The improvement in BAC when extending the feature space comes, again, from correctly predicting

state two; with Extendedb and Oracleb improving upon Vanillab and the ”smooth” versions of those

performing even better. Adding the raw VIX to the feature space increases BAC by around 2.5- to 3%.

By using the LOESS smoothed VIX instead, we increase BAC further by around 1%.

It is a bit surprising that the Oracle estimators does not beat the extended estimators in terms of

BAC. Particularly when considering the ”smooth” versions; where the Oracle smoothb has the transition

probabilities of Mb

1

as features. This suggests that simply adding a few common transformations (11-13

in Table 4) of the exogenous variable to the set of features is su�cient.

The inferior performance of Extendedb and Oracleb compared to their ”smooth” counterparts is the

e�ect which the noise in VIX has on the estimators. This noise is the quite signiÆcant amount of variation

in VIX which was Æltered by LOESS (see Figure 3).

4.3 Discussion

The main takeaway from Tables 9 and 10 is the improvement in classiÆcation accuracy as the feature

space is extended with features from exogenous variables. In both settings (a) and (b), this improvement
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is based on correctly predicting the state with the shortest average sojourn duration. A possible reason to

why this is the case would be that the vanilla estimator relies more heavily on backward looking features

than the extended estimators. Thus, the feature spaces of the latter estimators are to a larger extent based

on current observations of the inputted variables at each point in time. This could be advantageous for

correctly predicting shorter lasting sojourns.

Seeing average sojourns as parameters to be estimated, the estimates are heavily biased by all estima-

tors. Due to them using di�erent jump penalties in di�erent settings and for di�erent time series lengths,

it is di�cult to determine which jump estimator is best or worst in this regard based on our results. In

Figure 8 in particular, we see that it is, in some cases, possible to use a smaller jump penalty without

much loss in accuracy. This could be a good idea to get less biased estimates of the average sojourns.

However, in practical applications it may be desirable for the jump estimator to predict longer sojourns

while still maintaining accuracy. If it would react to the very short lived and sporadic regime switches

demonstrated in Figure 6, that could be problematic. For example, when basing a trading strategy on

the predicted states, it would lead to great transaction costs (Nystrup et al., 2020b).

The relationship between the exogenous variable(s) and the transition probabilities in Ma

2

and Mb

1

is such that the Markov process is more likely to transition to one state for high values of the variable(s)

and the other for low values. This speciÆc relationship is probably what allowed the jump estimator to

make use of the exogenous data as it is a clustering method based on dissimilarity in (squared) Euclidean

distance between feature values associated with di�erent states. Would the coe�cients related to di�erent

states in Ma

2

and Mb

1

instead be of the same sign, we would not expect the same improvement as is

demonstrated in this simulation study.

It is encouraging to see that using the ”noisy” as opposed to the smooth VIX in setting (b) only

degrades the BAC by around 1% across time series lengths. This can be put in relation to the increase

of around 2.5- to 3% when extending the feature space with features based on raw VIX data. It is a

reassuring property of the jump estimator that it can utilise the information of the exogenous variable in

spite of excess variation, which judging by Figures 3 and 6b is severe in setting (b). Whatever Ænancial

variables inputted in a real setting, would likely contain noise distorting the relevant signal. Another

result demonstrating the extended jump estimator’s robustness to using suboptimal features is the equal

performance of Extendedb and Oracleb . This suggests in particular that the jump estimator does not

need to assume the exact shape of the curves describing the relationship between the exogenous variables

and the transition probabilities. However, it would be interesting to adjust the weight of the exogenous

variable in the feature space. This is not explored in this thesis as the exogenous variable’s contribution

to the feature spaces are set to be equal for all extended estimators in setting (b) and in setting (a) there

is only one estimator using the exogenous variable.

The state sequences computed by the Viterbi algorithm are the most accurate in all cases which is

not surprising as it uses the true model parameters and transition probabilities at each point in time.

This suggests that it would be interesting to compare the jump estimator in this setting with the more

traditional approach for learning HMMs as well; (1) use the EM-algorithm in Section 2 to estimate the

parameters and predict all transition probabilities with the exogenous data; and (2) compute the most
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likely state sequence using the Viterbi algorithm based on those parameters and transition probabilities.

This method applied to the simulated data in settings (a) and (b) could possibly outperform the extended

jump estimators. However, it would be an unfair competition as the models generating the time series

in (a) and (b) are exactly those which would be assumed in this procedure. On the other hand, an

interesting experiment is to change the conditional distributions to something else (such as the Student’s

t-distribution) when sampling the observable time series y. That would likely demonstrate one of the

strengths of the jump estimator; it is robust to misspeciÆed conditional distributions (Nystrup et al.,

2020b). Furthermore, the jump estimator make less assumptions about the manner of the relationship

between the exogenous variables and the transition probabilities. This is however at the cost of not

making strong inference about those probabilities. Although we have used both the appropriate EM and

Viterbi algorithms in this project, we could not execute these experiments in the simulation study. The

reason being that the EM-algorithm is too computationally intensive for it to be feasible for the author

to run it on 1000 simulated time series for each time series length in each setting.
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Table 11: Sharpe ratios of di�erent portfolios.

Buy and hold Vanilla Extended
Sharpe 0.05 0.16 0.19

5 Application to real data

Before concluding, we apply the jump estimator to real data. In this case, we cannot use BAC to assess

performance as the ”true” state sequence is unknown. Instead, we evaluate the performance of a ”trading

strategy” based on the predicted states. The strategy is simple; hold a long position in the S&P 500 on

days when the predicted state is that with positive mean return and hold no position during the other

days. We compare the performance of the portfolios, Vanilla and Extended, based on the states predicted

by the vanilla estimator and the extended estimator inputted with raw VIX and (in addition to vanilla

features) using features 10-13 in Table 4. The vanilla and extended estimators are applied to the S&P 500

(log-returns) using the entire period in our data set. The daily returns of the two portfolios are either

zero or the same as those of the index depending on which state is predicted each day. This is not at

all a realistic setting as the jump estimators have access to the entire time period when predicting the

states and the decision to enter or exit the market depends on future data. Furthermore, we completely

disregard transaction costs and other frictions. This experiment may therefore seem ridiculous but the

idea is that if the results from our simulation study are useful in practice, we should see that the Extended

portfolio outperforms the Vanilla portfolio as it should be better at identifying periods with bearish and

bullish market conditions.

We use the Sharpe ratio to assess performance but without taking the risk free interest rate into

account. Then, in our case, we deÆne the daily Sharpe ratio for a portfolio p to be

Sharpe :=

µ

p

�

p

where µ

p

and �

p

is the mean and standard deviation of the daily returns of portfolio p. This ratio

is optimised (on a grid as in Section 4.1) with respect to the jump penalty for each of the estimators

and we get �⇤
V

= 0.14 and �

⇤
Ext

= 0.03. The optimal jump penalties would, reasonably, be greater if

we accounted for transaction costs as well and if the ”trading decisions” would be solely based on the

available data at each point in time.

We obtain the Sharpe ratios in Table 11 along with the time series of the portfolio values in Figure 9.

The Buy and hold portfolio simply follows index. We see that Extended clearly performs best. However,

we emphasise that these results should not be confused with backtesting a trading strategy.
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Figure 9: Accumulated amount of each portfolio starting from the appropriate price of the S&P 500
index.

6 Conclusions

In Section 2 we used the EM-algorithm to estimate two HMMs with time-varying transition probabilities

depending on exogenous variables. These models were Ætted to the daily log-returns of the S&P 500

with exogenous variables selected through forward selection. The two approaches for Ætting the HMMs

di�ered in the way the exogenous variables were smoothed. For the Ærst model, we used SES with

parameter chosen automatically. For the other model, we used LOESS and Æltered out much variation in

the time series; allowing for more interesting experiments in the subsequent simulation study. Out of the

variables considered, we found that VIX was the most important explanatory variable for the assumed

HMM and improved upon the null model with Æxed transition probabilities.

In Section 4, we conducted a simulation study based on time series generated according to the

obtained HMMs. We aimed to investigate if adding features based on exogenous data to the jump

estimator would lead to an improvement. The results showed that the jump estimator’s ability to correctly

predict latent states was indeed signiÆcantly improved in every setting. However, the improvement was

entirely based on predicting the state with, on average, shorter lasting sojourns. This could be due

to the extended feature space being overall less backward looking than the vanilla space. We also

saw the extended estimators demonstrating some robustness to noise in the exogenous time series.

Moreover, adding a few common transformations of the included exogenous variable to the feature space

appeared to be su�cient in order for the jump estimator to fully utilise the information provided by the
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variable; using the ”optimal” transformations (appearing in the data generating model) instead led to no

improvement.

In conclusion, we have shown that, assuming a two-state HMM with transition probabilities de-

pending on exogenous variables, adding those variables as features to the jump estimator can improve

prediction of latent states; particularly those with, on average, shorter lasting sojourns. Furthermore, the

jump estimator does not appear to require any assumptions about the exact manner of the relationships

between the exogenous variables and the transition probabilities apart from, possibly, each variable in-

Øuencing the probabilities of transitioning to each state in opposite directions. For applications to the

S&P 500, a HMM depending on VIX (and possibly TED spread) in such a way seems to be well suited.

The results in Section 5, when applying the vanilla and extended estimators to real data, indicate that

what we learned from our simulation study may indeed be useful in practice.

6.1 Further work

The di�erence in the resulting HMMs from Section 2 showed what an e�ect the smoothing of the

exogenous time series had. Although the Ætted HMMs provided us with interesting results, the data

preprocessing could be done in a more informative and careful manner as it may improve the estimated

model. It would also be interesting to perform the experiments which was discussed in the last paragraph

of the discussion in Section 4; comparing the jump estimator with the EM-algorithm’s estimates combined

with the Viterbi algorithm’s most likely state sequence. This needs a more e�cient implementation of

the EM-algorithm and more computational power than that which the author had access to. We would

also like to consider additional exogenous variables for the forward selection in Section 2.

As for the jump estimator, it remains to be shown that extending the feature space with exogenous

data may lead to a performance increase in an online setting as well. The features of the jump estimators

used here are all backward (or current) looking. Hence, they could be applied to streaming data. We

would be interested in repeating this simulation study, but instead testing the out of sample performance,

particularly with the Greedy online state classiÆer of Nystrup et al. (2020a). A qualiÆed hypothesis would

be that the online state classiÆer using the extended feature space instead of the vanilla would detect

state changes earlier; showing similar results as those obtained by Nystrup et al. (2020a) when adding

realised volatility as features to the online classiÆer.
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Appendix

A JustiÆcation of equality related to incomplete likelihood

For t � 2 we have,

f (y

t

|y
1:t�1,X;✓) =

X

s

1

,s

2

,...,s

t

f (y

t

, s

1:t

|y
1:t�1,X;✓) =

X

s

1

,s

2

,...,s

t

f (y

t

|s
1:t

,y

1:t�1,X;✓)f (s

1:t

|y
1:t�1,X;✓).

Clearly, the conditional distribution of y

t

given s

t

is independent of X (and all other conditioning

variables except s
t

and ✓). Thus f (y
t

|s
1:t

,y

1:t�1,X;✓) = f (y

t

|s
1:t

,y

1:t�1,X1:t�1;✓). Furthermore,

f (s

1:t

|y
1:t�1,X;✓) = f (s

1

|y
1:t�1,X;✓)

t

Y

j=2

f (s

j

|s
1:j�1, y1:t�1,X;✓).

In our model, s
1

is only dependent on ✓ and s

j

is only dependent on s

j�1, Xj�1 and ✓. Thus we have,

f (s

1:t

|y
1:t�1,X;✓) = f (s

1

|y
1:t�1,X1:t�1;✓)

t

Y

j=2

f (s

j

|s
1:j�1, y1:t�1,X1:t�1;✓) = f (s

1:t

|y
1:t�1,X1:t�1;✓).

Using the above we arrive at,

f (y

t

|y
1:t�1,X;✓) =

X

s

1

,s
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,...,s

t

f (y

t

|s
1:t

,y

1:t�1,X;✓)f (s

1:t

|y
1:t�1,X;✓)

=

X

s

1

,s

2

,...,s

t

f (y

t

|s
1:t

,y

1:t�1,X1:t�1;✓)f (s1:t |y1:t�1,X1:t�1;✓) = f (y

t

|y
1:t�1,X1:t�1;✓).

Q.E.D.
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