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Abstract

Using data from OMXS30, we study which of the models block maxima and peaks-
over-threshold, based on extreme value theory, are the most accurate when esti-
mating the risk measures Value-at-Risk and Expected Shortfall. To perform this
analysis, the risk measures are backtested. The extreme observations are fitted to
the generalized extreme value distribution and the generalized Pareto distribution
using maximum likelihood estimation. This study conclude that when estimating
Value at Risk, block maxima is a more accurate model. When estimating Expected
Shortfall, the difference between the models is not statistical significant.
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Abbreviations

BM block maxima

ES Expected Shortfall

GEV generalized extreme value

GPD generalized Pareto distribution

MLE maximum likelihood estimation

PBdH Pickands-Balkema-de Haan

POT peaks-over-threshold

VaR Value-at-Risk
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1 Introduction

The prices of stocks change over time and sometimes they change substantially
over a short time period. The most recent example is the stock price drop in the
spring 2020, caused by the coronavirus, e.g., the OMXS index dropped by 11.1%

in one day (SVT, 2020). Other examples when the price dropped heavily, are
during the "Black Monday" on October 19th 1987, where Dow Jones dropped by
over 20% (Sundkvist, 2014) and during the financial crisis 2008 (Ohlin, 2018). A
natural question is then, how much can the price possibly fall? How bad can it
be? Have we already seen the worst case scenario or can it be even worse in the
future? Thus, we want to be able to predict how much the prices can drop in the
future.

To predict how much the price can fall, we use different risk measures. Two risk
measures are Value at Risk (VaR) and Expected Shortfall (ES). VaR is equal to
the smallest loss such that the probability of obtaining a greater loss, is less than
or equal to some predetermined probability α. Further, ES can be summarized
as the average of the losses that are greater than VaR. Hence, when calculating
VaR, a lower limit of "the worst losses" is obtained, while when calculating ES the
average of these "worst losses" is produced (see Embrechts et al. 2005 and Hull
2018).

How do we calculate VaR and ES? A number of models exist for this purpose.
Here, we will focus on two different models based on extreme value theory. Extreme
value theory is used to analyze events that happen rarely, i.e., extreme events. In
our setting, rare events consist of large drops in the stock prices. Such events do
not occur frequently, but looking at historical data we can assume that they will
happen sooner or later (Dowd, 2005).

The two models based on extreme value theory are called block maxima (BM)
and peaks-over-threshold (POT). Both models have the same objective; fit a dis-
tribution to the sample of extreme observations. However, the models assume that
the data follow different distributions. Also, which observations from the orignial
sample that should be considered as extreme, differs in the two models (see Coles
2001 and Dowd 2005).
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The purpose of this thesis is to compare these two models and examine which
one is most accurate when estimating VaR and ES in the Swedish stock market.
Below, some previous studies in this field are presented. Note that none of the
studies below analyze the Swedish market. Hence, this study contributes to a more
complete picture of the accuracy of VaR and ES estimates based on extreme value
theory.

Thus, we are interested in possible differences of the VaR and ES estimates
of the two models BM and POT. Cerovic and Karadzic (2015), who analyzed the
Montenegrin stock market index for the period 2004-2014, concluded that POT
passed the Kupiec test, while BM did not. Here, BM underestimated VaR too
much. Similarly, Marinelli et al. (2007) establish that POT is significantly better
than BM. Here the analysis was done on S&P500 for 1990-2004 and on 1998-
2004 for some other series. However, in this study BM was over-conservative and
produced fewer violations of VaR than expected. For all stocks in this study,
BM was rejected at 95% level of confidence, while POT was not. On the contrary,
neither the VaR0.99 estimates of BM or POT is rejected in Bekiros and Georgoutsos
(2005) for 95% level of confidence where the data consists of daily returns from
1997 to 2001 of the Dow Jones Industrial average and the Cyprus Stock Exchange
indices. Note that they use Christoffersen’s test and not Kupiec. In Embrechts
et al. (2005) an argument why POT is better than BM is formulated:

The block maxima method . . . has the major defect that it is very
wasteful of data; to perform our analyses we retrain only the maximum
losses in large blocks (Embrechts et al., 2005, p. 275).

As mention earlier, BM and POT rely on the assumption that the extreme obser-
vations follow a certain distribution; denote the distribution in BM by H and the
distribution in POT by G. H and G are two different distributions, but they have
the same purpose: model the distribution of the extreme losses. In particular, we
can note that a parameter, denoted ξ, is contained in both distributions. ξ should
therefore take similar values (and same sign) in the two distributions (Coles, 2001).
In Gilli and Këllezi (2006), a positive ξ is obtained in both models. Dowd (2005)
and Embrechts et al. (2005) express that the case ξ < 0 is often not of great inter-
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est since most of financial data are more heavily tailed. This is strengthened by
the results in Gilli and Këllezi (2006). In Cotter (2006), BM is modeled for the
European, Asian and American markets. Similarly to Gilli and Këllezi (2006), ξ is
positive in Cotter (2006), with one exception in the Asian market. Hence, Cotter
(2006) conclude that the data follow the Fréchet distribution.

Summarizing the results in this study, we conclude that BM is significantly
more accurate than POT for estimating VaR. When estimating ES, BM seems to
perform better than POT. However, in this case the difference is non-significant,
for the 95% level of confidence. Further, the parameter ξ becomes positive in BM
and negative in POT.

Further, this thesis starts with a section of the theory of VaR and ES. There-
after, the extreme value theory is introduced. We proceed with the underlying
theory of the estimation of the distributions and end this part with the theory of
backtesting VaR and ES. Before the results are given, the data and methodology
used are presented. We close the thesis with a discussion of the results.

2 Theory

2.1 Value at Risk and Expected Shortfall

Value at Risk (VaR) and Expected Shortfall (ES) are two widely used risk mea-
sures. Since ES is defined in terms of VaR, we begin with the definition of VaR.
VaR is defined as

VaRα = inf{l ∈ R : Pr(L > l) ≤ 1− α}, (1)

where α ∈ (0, 1) is the chosen confidence level and L is a stochastic loss variable. In
words, this can be interpreted as we want to find the smallest number l such that
the probability of obtaining a loss greater than l is less than or equal to 1−α. The
time horizon we will consider here is one day. If the distribution of L is continuous
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(which we will assume), an equivalent definition to (1) of VaR is

Pr(L > VaRα) = 1− α, (2)

i.e., we want to find the value of VaR such that the probability of obtaining a loss
greater than VaR is equal to 1−α (Embrechts et al., 2005). Further, the definition
of ES is

ESα =
1

1− α

∫ 1

α

VaRx dx, (3)

which can be seen as taking the average VaR over all confidence levels x ∈ (α, 1).
If the loss distribution is continuous, then ES can also be defined by

ESα = E(L | L ≥ VaRα). (4)

Then the definitions (3) and (4) are equivalent (Embrechts et al., 2005).
As mention earlier, both risk measures are widely used. However, one crucial

argument of choosing ES over VaR is that ES measures the size of potential losses
greater than VaR. When using VaR, we only detect the lower limit of "the worst
losses" (Embrechts et al., 2005).

2.2 Extreme value theory

Extreme value theory handles, as the name suggests, the theory of extreme events.
In finance, an extreme event can be when the stock price decreases rapidly. Of
course, we want to be able to analyze such events, or in other words, we want to
find the distribution of these extreme events. However, there is a difficulty when
working with extreme events. Extreme events are, by nature, uncommon and
therefore we have relatively few samples to rely on when performing the estimation.
This implies that long original samples are needed. Another problem is to define
what is considered as an extreme event. There are two methods for defining
extreme events. In the first method, the original data are dived into blocks, e.g.
each month or year is a block. Then the largest observation in each block is
extracted and inference is performed on this new sample. This method is called
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block maxima. In the second method, all observations above a certain threshold
are regarded as extreme. This method is called peaks-over-threshold (Dowd, 2005).
Below, these two methods are described in more detail.

2.2.1 Block maxima

Let X1, X2, . . . , Xn be a sequence of independent distributed random variables,
where Xi, i = 1, . . . , n has some unknown distribution function F . Define Mn =

max{X1, X2, . . . , Xn}, i.e., Mn is the block maxima. The objective is now to find
the distribution of Mn. Since X has distribution function F , we could argue that

Pr(Mn ≤ x) = Pr(X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x)

= Pr(X1 ≤ x)Pr(X2 ≤ x) . . .Pr(Xn ≤ x)

= (F (x))n,

(5)

but since F is unknown, this is to no help (Coles, 2001). Fortunately, the Fisher-
Tippett theorem comes here into play. This theorem states that Mn converges
in distribution to the generalized extreme value (GEV) family of distributions as
n→∞. The GEV family of distributions are given by

Hµ,σ,ξ(x) =


exp

(
−
(

1 + ξ
x− µ
σ

)− 1
ξ
)

ξ 6= 0

exp

(
− exp

(
x− µ
σ

))
ξ = 0,

(6)

provided that 1+ξ(x−µ)/σ > 0. The three parameters µ, σ and ξ are the location
parameter, the scale parameter and the shape parameter. As the names suggest,
µ indicates where on the axis the distribution of Mn is located and σ illustrate the
width of the distribution. Finally, ξ is a measure of the shape of the distribution.
If ξ > 0, then Mn follows the Fréchet distribution, which is a distribution with
heavy tails. Next, when ξ = 0, Mn follows the Gumbel distribution, which has
exponential tails. For ξ < 0, the tails of the distribution is lighter than in the
normal distribution. When modeling financial data the cases ξ > 0 and ξ = 0
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are of most interest, since this sort of data rarely have tails lighter than normal
(Dowd, 2005). Also, when ξ < 0, the distribution has an upper end-point; µ−σ/ξ
(Coles, 2001).

loss

day

Figure 1: In the BM model, the largest observation in each block is considered as
an extreme event, i.e., the block maxima. Inference is then done on the sample of
block maxima.

Further, we can find the quantiles of the GEV distribution by setting H(x) = p,
where p is some chosen probability, and solve for x. Thus, by inverting (6) we get

xp =


µ− σ

ξ
(1− (− ln p)−ξ) ξ 6= 0

µ− σ ln(− ln p) ξ = 0.
(7)

It should be emphasized that xp is the quantile of the extreme value distribution
H(x) and not of the parent distribution F (x) (Dowd, 2005).

Recall now the definition of VaR,

Pr(L > VaRα) = 1− α,

which is equivalent to
Pr(L ≤ VaRα) = α,

which also can be written as F (VaRα) = α. Hence, VaRα can be seen as a quantile
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of F . Since F is unknown, it is not possible to find the quantile by simply inverting
F . However, since Pr(Mn ≤ x) = (F (x))n, and we now know that Pr(Mn ≤ x)

can be approximated by H for large n, we get

p = H(VaRα) = Pr(Mn ≤ VaRα) = (F (VaRα))n = αn,

where α is the confidence level for the corresponding VaR. Thus, by plugging in
p = αn in (7), we get

VaRα =


µ− σ

ξ
(1− (−n lnα)−ξ) ξ 6= 0

µ− σ ln(−n lnα) ξ = 0,
(8)

which is the desired quantile (Dowd, 2005).
The next step is to find a formula for ES. Recall the definition of ES in (3).

However, instead of trying to solve this integral analytically, we approximate ES by
numeric integration, i.e., we calculate the average VaR for a number of confidence
levels from α to 1. So far, we have assumed that α could be any value in (0, 1).
However, we will use α = 0.99 in this study. Because we are dealing with extreme
value theory, we need to choose a high confidence level. Otherwise, the formulas
for VaR and ES will be inaccurate (Dowd, 2005).

2.2.2 Peaks-over-threshold

Let X1, X2, . . . , XN be a sequence of random variables that are independent and
identically distributed with some unknown distribution function F . Then, the
POT method can be summarized as that we want to find the distribution of all
excess observations that are greater than some chosen threshold u. Denote this
distribution by Fu(x). Thus, we have

Fu(x) = Pr(X − u ≤ x) | X > u) =
F (u+ x)− F (u)

1− F (u)
. (9)

However, Fu is unknown since F is unknown (Dowd, 2005). Fortunately, a theorem
regarding a limit distribution solves the situation.
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u

Figure 2: In the POT model, each observation above the threshold u is considered
as an extreme event. The excess losses are then used for inference.

Theorem 2.1 (Pickands-Balkema-de Haan, (Embrechts et al., 2005)). We can
find a (positive measurable) function βu, thats depend on the threshold u, such
that

lim
u→xF

sup
0≤x<xF−u

∣∣Fu(x)−Gξ,βu(x)
∣∣ = 0,

if and only if F is in the domain of attraction of Hξ, ξ ∈ R. Here, xF ≤ ∞ is the
right endpoint of F and G is the distribution function of GPD,

Gξ,βu(x) =

1− (1 + ξx/βu)
−1/ξ ξ 6= 0

1− exp(−x/βu) ξ = 0.
(10)

Remark. A function F belongs to maximum domain of attraction of H if

lim
n→∞

Pr((Mn − dn)/cn) = lim
n→∞

F n(cnx+ dn) = H(x),

for some non-degenerated function H and sequences of real constants (cn) and
(dn), cn > 0 for all n (Embrechts et al., 2005).

Thus, we can approximate Fu(x) by Gξ,βu and (9) can now be written as

Gξ,βu(x) =
F (x+ u)− F (u)

1− F (u)
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or equivalently
F (x+ u) = Gξ,βu(x)(1− F (u)) + F (u). (11)

In (11), the distribution function of F (x + u) is stated. By a change of variable
from x+ u to x, we obtain the distribution of the losses greater than u, namely

F (x) = Gξ,βu(x− u)(1− F (u)) + F (u).

Before it is possible to obtain an explicit formula for F (x), we have to calculate
F (u) = Pr(X ≤ u). Denote the total number of observations by N and the number
of observations that are greater than u by Nu. Then F (u) can be approximated
by

F (u) = Pr(X ≤ u) =
N −Nu

N
= 1− Nu

N
. (12)

Now, by (10) and (12), we have

F (x) =

(
1−

(
1− Nu

N

))(
1−

(
1 + ξ

x− u
βu

)−1/ξ)
+

(
1− Nu

N

)
,

which can be simplified to

F (x) = 1− Nu

N

(
1 + ξ

x− u
βu

)−1/ξ

(13)

when ξ 6= 0. When ξ = 0, the same method is applied. However, we us

Gβu(x) = 1− exp

(
− x

βu

)
instead of

Gξ,βu(x) = 1−
(

1 + ξ
x

βu

)−1/ξ

.

Thus, we get

F (x) = 1− Nu

N
exp

(
− x− u

βu

)
, (14)

when ξ = 0 (Dowd, 2005).
To obtain VaR, we want to find the quantile of (13), respectively for (14), for
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the confidence level α. By setting F (VaRα) = α and solving for VaRα in (13) and
(14), we get

VaRα =


u+

βu
ξ

((
N

Nu

(1− α)

)−ξ
− 1

)
ξ 6= 0

u+ βu ln

(
N

Nu

(1− α)

)
ξ = 0.

(15)

Finally, we derive the formula for ES. By (3) and (15) we have

ESα =
1

1− α

∫ 1

α

u+
βu
ξ

((
N

Nu

(1− x)

)−ξ
− 1

)
dx =

VaRα

1− ξ
+
βu − ξu
1− ξ

, (16)

for ξ 6= 0. For ξ = 0, we have

ESα =
1

1− α

∫ 1

α

u+ βu ln

(
N

Nu

(1− x)

)
dx = VaRα + βu, (17)

(Dowd, 2005).

2.2.3 Threshold selection

So far, we have taken the threshold u as given. However, the decision of u is not
straightforward. According to the PBdH theorem, the choice of u should be as
high as possible. On the other hand, a higher threshold will produce fewer extreme
observations, resulting in high variances for the estimates of the parameters of the
distribution. Hence, a threshold as low as possible is desirable, but that still
fulfills the limit assumption of the theorem reasonably well. A simulation study in
McNeil and Frey (2000) concludes that when 10% of the observations are regarded
as extreme, is the optimal level. Another method for choosing the threshold is
given in Coles (2001), which is explained below.

If X ∼ GPD, the expected value of X is given by

E(X) =
βu

1− ξ
.
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Then the conditional expectation is given by

E(X − u0 | X > u0) =
βu0

1− ξ
,

for some threshold u0. If u0 is sufficiently large to satisfy the limit assumption of
the PBdH theorem, then the same holds for any u > u0. Further, it can then be
shown that

E(X − u | X > u) =
βu

1− ξ
=
βu0 + ξu

1− ξ
. (18)

for u > u0. Thus, we see in (18) that E(X − u | X > u) is a linear function in u
for u > u0. The empirical counterpart of the conditional expectation is the sample
mean of the threshold excesses, i.e.,

1

Nu

Nu∑
i=1

(xi − u).

Then, it follows that the so called mean residual life plot

{(
u,

1

Nu

Nu∑
i=1

(x(i) − u)

)
: u < xmax

}
,

where x(i), i = 1, . . . , Nu is the ordered sample, should be approximately linear for
u > u0. Hence, as threshold, we should choose the smallest u such that the mean
residual life plot is linear (Coles, 2001).

2.3 Maximum likelihood estimation

To estimate the parameters (µ, σ, ξ) in GEV and (βu, ξ) in GPD, the likelihood
function is used (Coles, 2001). This function is defined by

L(θ̄ | x̄) =
n∏
i=1

fθ̄(xi), (19)

where θ̄ is the vector of parameters to be estimated, x̄ = (x1, x2, . . . , xn) are the
data points and fθ̄ is the probability density function. The likelihood function
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is then differentiated with respect to θ̄ in order to find the θ̄ that maximizes the
function. However, usually the log-likelihood function

l(θ̄ | x̄) =
n∑
i=1

ln fθ̄(xi) (20)

is used instead since it is easier to differentiate this function. Because the logarithm
is an increasing injective function, it follows that (19) and (20) are equivalent in
this case (Evans and Rosenthal, 2010). Following this procedure for the GEV
distribution, we obtain, for ξ 6= 0,

l(µ, σ, ξ | z̄) = −n lnσ −
(

1 +
1

ξ

) n∑
i=1

ln

(
1 + ξ

zi − µ
σ

)
−

n∑
i=1

(
1 + ξ

zi − µ
σ

)−1/ξ

,

if 1 + ξ(zi − µ)/σ > 0 for i = 1, 2, . . . , n. z̄ is the sample of block maxima.
If this inequality is violated for some i, the log-likelihood function equals −∞.
This scenario corresponds to that one of the data points is located beyond the
distribution’s end-point. For ξ = 0, we get

l(σ, ξ | z̄) = −n lnσ −
n∑
i=1

(
zi − µ
σ

)
−

n∑
i=1

exp

(
− zi − µ

σ

)
.

Further, the estimation of the parameters in the GPD distribution is done similarly.
Denote the excess losses over u by ȳ. Then, the log-likelihood is given by

l(βu, ξ | ȳ) = −Nu ln βu −
(

1 +
1

ξ

) Nu∑
i=1

ln

(
1 + ξ

yi
βu

)

provided that ξ 6= 0 and (1 + ξyi/βu) > 0 for i = 1, 2, . . . , Nu. For the case ξ = 0,
the log-likelihood function is equal to

l(βu | ȳ) = −Nu ln βu −
1

βu

Nu∑
i=1

yi,

(Coles, 2001).
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2.4 Backtesting

When backtesting a risk measure, the purpose is to examine if the underlying
model that estimates the risk measure is accurate (Hull, 2018).

2.4.1 Backtesting VaR

In this thesis, we consider VaR0.99. By (2), we have

Pr(L > VaR0.99) = 0.01.

Hence, we expect that the losses will exceed VaR 1% of the times. In reality, we
cannot expect that the actual number of violations of VaR is exactly equal to 1%.
Thus, the question is then how much the actual frequency can deviate from the
expected frequency and still be considered as acceptable. To answer this question,
we use the Kupiec test (Hull, 2018).

Consider the probability mass function of the Binomial distribution,

Pr(X = k) =
n!

k!(n− k)!
pk(1− p)n−k,

which is interpreted as the probability of obtaining k successes out of n trials, with
the probability of success equal to p. In our setting, a violation of VaR is counted
as success, p is than equal to 1−α and n is the total number of observations. The
cumulative distribution function is then given by

Pr(X ≤ k) =
k∑
i=1

n!

i!(n− i)!
pi(1− p)n−i.

The test, called the Kupiec test, is performed as follows. If the actual number of
violations is smaller than the expected number, we calculate Pr(X ≤ k), where k is
the actual number of violations. On the contrary, if the actual number of violations
is greater than the expected number, Pr(X ≥ k) is calculated, where again, k is
the actual number of violations. Finally, these probabilities are compared to the
chosen significant level. If the probability is less than the significant level, the
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model is rejected, otherwise it is not (Hull, 2018). To apply a two-sided test, we
find a confidence interval of the number of expected violations of VaR. This can
be done by using the inverse of binomial distribution function (Dowd, 2005).

2.4.2 Backtesting ES

A backtest is performed to see how accurate the estimates of ES are. Here, we use
a backtest introduced by Acerbi and Szekely (2014). Recall the definition of ES in
(4). Then we have

ESα,t = E(Lt | Lt > VaRα,t) =
E(LtIt)

E(It)
=

E(LtIt)

1− α
,

where It is the indicator function

It =

1 if Lt > VaRα,t,

0 if Lt ≤ VaRα,t.

As mention earlier, we want to test if ES is correctly estimated for all days or if it
is incorrectly estimated for some day, i.e., if it is under- or overestimated for some
day. Hence, the null hypothesis is that ES is correctly estimated by the model
for all days and the alternative hypothesis is that it is incorrectly estimated for at
least one day (Acerbi and Szekely, 2014).

Further, define the test statistic Z by

Z = − 1

T (1− α)

T∑
t=1

LtIt
ESα,t

+ 1.

Under the null hypothesis, the ratio LtIt/ESα,t equals one and since we expect
T (1− α) exceedances of VaR, we have that Z = 0. Instead, if ESα,t is incorrectly
estimated for some day, LtIt/ESα,t is not equal to one and we obtain Z > 0 or
Z < 0 depending on if ES is over- or underestimated (Acerbi and Szekely, 2014).

Of course, we can not expect to obtain exactly Z = 0 even if ES is reasonable
correctly estimated. Instead, we rely on the critical values to decide if the model
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is acceptable. Acerbi and Szekely (2014) present critical values for a range of
distributions for α = 0.975 and T = 250. However, we are interested in the critical
values for α = 0.99. One can then ask if the critical values for α = 0.975 and
α = 0.99 coincide? Also, Acerbi and Szekely (2014) only report critical values for
the left tail of the distribution. Since we are also interested in the right tail, we
simulate the distribution of Z to obtain this value.

Acerbi and Szekely (2014) state that the critical values are stable for different
distribution. We assume that the losses follow a normal distribution with mean 0
and standard deviation 1. Z is then simulated (using Monte Carlo simulation, see
Dowd 2005) 500,000 times with T = 625 and α = 0.991. T is chosen to 625 because
then the distribution of Z for α = 0.99 seems to coincide with the distribution of Z
for α = 0.975 in Acerbi and Szekely (2014). If T is not increased, the distribution
of Z seems to converge to the degenerated distribution located at the point 1 when
α → 1. Table 1 illustrate the lower and upper critical values for a two-sided test
for a range of significant levels.

sign. level lower upper

10% -0.70 0.59
5% -0.86 0.70
1% -1.05 0.84

Table 1: Critical values for different significant levels. Lower is the critical value
for underestimation and upper is the critical value for overestimation.

3 Data

The data consists of daily closing prices of the OMXS30 index (see Nasdaq 2020)
from January 1th 1988 to December 31st 2016, in total 7281 observations. The
data were downloaded from Swedish House of Finance – FinBas (2020) at March
25th 2020. The closing prices were then transformed to daily changes in percent

1MATLAB was used to perform the simulation of Z (MATLAB, 2019).
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Figure 3: Daily percentage losses of OMXS30 from January 1th 1988 to December
31st 2016.

by

Li = −100

(
Pi − Pi−1

Pi−1

)
where Pi is the price of the index at day i and Li is the loss at day i. A plot of
the daily losses are shown in figure 3. Note that we interpret losses as positive and
consequently gains as negative. Descriptive statistics of the data can be found in
table 2.

Descriptive statistics

number of obs. 7281
mean -0.047
st. dev. 1.444
skewness -0.197
kurtosis 4.434
min. -11.652
max. 8.424

Table 2: Descriptive statistics of the OMXS30 index, for the period January 1st

1988 – December 31st 2016.
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4 Method

The data are divided into in-sample and out-sample periods according to table 3,
where the number of observations in each period is given in parentheses.

in-sample out-sample

1988-2011 (6028) 2012 (250)
1989-2012 (6026) 2013 (250)
1990-2013 (6025) 2014 (249)
1991-2014 (6024) 2015 (251)
1992-2015 (6023) 2016 (253)

Table 3: In-sample and out-sample periods for the data.

For each in-sample period, the parameters of the GEV and GPD distributions
are calculated, i.e., the parameters are updated once a year. To find the parameters
(µ, σ, ξ) of the GEV distribution, extract the greatest loss each quarter and then
apply the MLE to this new data set2.

In the GPD, the threshold has to be decided. Recall the threshold selection
process in section 2.2.3. The mean residual life plot is illustrated in figure 4. The
graph seems to be approximately linear for u = 5 to 7, implying that we should
chose u = 5. However, according to McNeil and Frey (2000), the threshold should
be chosen such that 10% of the observations are categorized as extreme events.
Choosing u = 5, only 0.3% of the observations are regarded as extreme. But
the graph is also approximately linear for u = 2 to 4. If u = 2, 6.4% of the
observations are regarded as extreme, which is closer to the 10% McNeil and Frey
(2000) proposed. Thus, the threshold was chosen to 2%. The MLE is then applied
to the losses greater than 2% to find (βu, ξ)

3.
Then VaR0.99 is calculated by (8) and (15) for each out-sample period using the

parameters of the corresponding in-sample period. Count the number of violations
of VaR, i.e., how many losses are greater than VaR. Finally, apply the Kupiec test
to the number of violations for α = 0, 99, at the 95% level of confidence.

2The "in2extRemes" library in R was used for the MLE (Gilleland and Katz, 2016).
3The "in2extRemes" library in R was used for the MLE (Gilleland and Katz, 2016).
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At last, calculate ES0.99 numerically for the GEV distribution and analytically
for the GPD. Before ES0.99 is backtested, the distribution of the test statistic Z
was simulated. Thereafter, ES0.99 can backtested by the test of Acerbi and Szekely
(2014).

5 Results

5.1 Block maxima

We have 112 quarterly block maxima Mn, with on average n = 62.76 observations
in each block. The MLE of the parameters (µ, σ, ξ) for the GEV distribution is
given in table 4. Based on these estimates, VaR is calculated by (8). Note that VaR
of year 2012 is calculated by the estimates from 1988-2011, VaR of 2013 is based on
the estimate of 1989-2012, etc. The estimates of VaR are presented in table 5. In
total, we have 1253 observations in the out-sample periods 2012-2016. Therefore
we expect 0.01 · 1253 = 12.53 violations of VaR under this period. Actual number
of violations became 12 for ξ 6= 0 and 9 for ξ = 0. A 95% confidence interval for
the number of violations is given by [6, 20]. Hence in both cases, the numbers of
violations fall in this interval.

Further, ES is calculated. The estimates of ES are also found in table 5. ES is
then backtested. For the case ξ 6= 0, the test statistic z is equal to 0.048 and for
ξ = 0, we have z = 0.222. Reviewing table 1, we see that none of the cases can be
rejected for the 95% level of confidence.

ξ 6= 0 ξ = 0

µ σ ξ µ σ

1988-2011 2.543 1.044 0.174 2.645 1.135
1989-2012 2.568 1.066 0.161 2.664 1.150
1990-2013 2.523 1.022 0.167 2.619 1.107
1991-2014 2.469 0.991 0.185 2.572 1.084
1992-2015 2.481 0.968 0.177 2.577 1.053

Table 4: MLE of the parameters in the GEV and Gumbel distributions.
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VaR ES

ξ 6= 0 ξ = 0 ξ 6= 0 ξ = 0

2012 3.044 3.168 4.198 4.168
2013 3.078 3.194 4.235 4.207
2014 3.013 3.130 4.133 4.106
2015 2.945 3.072 4.058 4.028
2016 2.946 3.063 4.019 3.991

Table 5: VaR and ES for the years 2012-2016 under the GEV distribution.

Figure 4: Mean residual life plot of the financial data with 95% confidence interval.

5.2 Peaks-over-threshold

We proceed with the results of the POT model. The frequency of extreme obser-
vations for each in- and out-sample period is given in table 6. We can note that
the frequency is greater for the in-sample periods compared with the out-sample
periods, with one exception. Further, the MLE of the parameters of the GPD is
given in table 7. The estimates of VaR and ES are then calculated by the same in-
sample and out-sample periods as in the previous model. The results are presented
in table 8.

Finally VaR and ES are backtested again. Regarding VaR, we get 4 violations
for both ξ 6= 0 and ξ = 0. Since 4 /∈ [6, 20], we reject this model. For ES, we
get z = 0.661 for ξ 6= 0 and z = 0.654 for ξ = 0. Again, consulting table 1, both
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z = 0.661 and z = 0.654 fall in the non-rejection region for 95% level of confidence.

in-sample out-sample

year freq year freq

1988-2011 6.9% 2012 5.2%
1989-2012 7.1% 2013 1.2%
1990-2013 7.0% 2014 1.6%
1991-2014 6.7% 2015 7.6%
1992-2015 6.9% 2016 4.7%

Table 6: The frequency of threshold exceedances for each in-sample and out-sample
period.

ξ 6= 0 ξ = 0

βu ξ βu

1988-2011 1.077 -0.024 1.052
1989-2012 1.080 -0.027 1.052
1990-2013 1.079 -0.038 1.040
1991-2014 1.072 -0.033 1.038
1992-2015 1.045 -0.027 1.018

Table 7: MLE of the parameters in the GPD distribution.

6 Discussion

The purpose was to study which one of the models BM och POT that gives the
most accurate estimates of VaR and ES. To evaluate the estimates of VaR and ES,
backtesting was performed. When backtesting VaR, the POT model was rejected,
while the BM model was not rejected. When VaR has been backtested in other
studies, such as Cerovic and Karadzic (2015) and Marinelli et al. (2007), BM was
outperformed by POT. Also, recall the argument of choosing POT over BM by
Embrechts et al. (2005),

The block maxima method . . . has the major defect that it is very
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VaR ES

ξ 6= 0 ξ = 0 ξ 6= 0 ξ = 0

2012 4.038 4.037 5.043 5.089
2013 4.055 4.054 5.053 5.106
2014 4.030 4.029 4.996 5.069
2015 3.983 3.981 4.959 5.019
2016 3.961 3.959 4.927 4.977

Table 8: VaR and ES for the years 2012-2016 under the GPD distribution.

wasteful of data; to perform our analyses we retrain only the maximum
losses in large blocks. (Embrechts et al., 2005, p. 275)

Thus, many other studies have come to the conclusion that POT is better than
BM, which is the opposite of the result in this study. However, we should observe
that the analysis in this report is based on a greater number of observations than
in Cerovic and Karadzic (2015) and Marinelli et al. (2007). We should also note
that the advantage in POT compared to BM, as Embrechts et al. (2005) express,
is that POT does not throw away useful (i.e., extreme) data. When the number of
observations increases, it is possible that this advantage in POT is of less impor-
tance. Still, this argument does not fully explain why BM performs better than
POT. The argument of a greater number of observations implies that the methods
should perform equally well. At the same time, Bekiros and Georgoutsos (2005)
use a relatively short sample period of five years and conclude that none of the
methods can be rejected.

Further, the frequency of losses that exceed the threshold is greater in the
in-sample periods compared to the corresponding out-sample periods, with one
exception. This could indicate that the risk is overestimated in the out-sample
periods. Because POT extract the extreme losses more effectively than BM (see
Embrechts et al. 2005), this could be an argument why POT overestimates the
risk even more than BM. To avoid this type of overestimation, a longer data set
could be used. Another approach could be to combine the two models; divide the
data into blocks and then apply POT but with a maximum number of observations
allowed to be drawn from each block.
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In addition, none of the models were rejected when ES was backtested at the
95% level of confidence. This can be seen as that ES is not equally sensitive as
VaR to the over-estimation of risk, which is the case especially in the POT model.
This would then imply that VaR is better choice for the evaluation of the two
models.

Further, before estimating VaR and ES, the parameters of the distributions
must be estimated: (µ, σ, ξ) in GEV and (βu, ξ) in GPD. GEV and GPD are two
different distributions, but in this context their purpose is the same; they show
the distribution of extreme losses. Also, the tail-index ξ is the same parameter in
the two distributions. Theoretically, we should get the same estimation of ξ in the
methods (Coles, 2001). A weaker hypothesis is that the sign of ξ should be the
same in the models. This is also the case in Gilli and Këllezi (2006). However,
in this study we get ξ > 0 in BM and ξ < 0 in POT. When ξ < 0, the tail of
the distribution is shorter. Since BM performs better in the backtesting of VaR,
this indicate that the true distribution of the extreme losses has a thicker tail, i.e.,
ξ > 0. This would imply that BM is a more accurate model than POT.

Additionally, it is possible that the choice of α influence the result. As mention
earlier, a high α needs to be chosen for the formulas of VaR and ES to be accurate
(see Dowd 2005). Here, we let α = 0.99, but an even higher α should be even
better. Since POT extract the extreme events more efficient than BM, it is possibly
that POT is more sensitive to the choice of α than BM. A solution is then to chose
a higher α. On the other hand, this would imply that fewer observations will be
considered as extreme, which also can lead to poor estimates.

7 Conclusion

How much can the stock price fall, was asked in the beginning. To answer this
question, we use the two risk measures VaR and ES. However, how the risk mea-
sures should be estimated is not straightforward; there exist several methods for
this purpose (see Hull 2018). Here, we focus on the methods BM and POT, which
are based on extreme value theory. Hence, the purpose was to analyze which one
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of the the two methods BM and POT that produced the most accurate estimates
of VaR and ES. To be able to do this analysis, we performed backtesting on VaR
and ES. The results showed that BM gives more accurate estimates than POT.
This result does not coincide with the general conclusion of which method that is
the most accurate (see Dowd 2005 and Embrechts et al. 2005).

To improve the study a larger data set could be used. However, as mention
earlier, the data set in this study have already more observations than in other
studies, such as Bekiros and Georgoutsos (2005) and Marinelli et al. (2007). Also,
none of the other studies mentioned earlier, perform the analysis on OMXS30 and
it is possible that distribution changes over different stocks and indices. However,
to be able to establish the result in this study, more research has to be done, e.g.,
use a different data set or use another method than MLE for the estimation of the
distributions. Choosing another value of α could also bring some new light on the
discussion.
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