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Abstract

Galois theory unites field theory and group theory to solve some field theoret-
ical problems. The aim of this thesis is to provide a concise introduction to the
topic, culminating in the proof of the insolubility of the general quintic equation
by radicals. Using the developed field theory, a short discussion about geomet-
ric constructions is included, in which the impossibility of duplicating the cube,
trisecting the angle and squaring the circle is shown.
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1 Introduction

Can the general quintic equation be solved by radicals? This question has puzzled many
great mathematicians ever since Girolamo Cardano published a paper containing algebraic
solutions to both the cubic and quartic equation in 1545. After nearly 300 years, in 1824,
this conundrum was finally solved by the Norwegian Niels Henrik Abel when he proved that
such a solution does not exist. The question of whether or not some quintic equations could
be solved by radicals then arose, and if so, what was so special about them. The task of
answering this was undertaken by the turbulent young Frenchman Évariste Galois. Although
it was not discovered until more than a decade after his tragic death following a duel, Galois
had found an answer to this in 1832 by introducing the concept of a group and creating a
new field of algebra, now called Galois theory in his honour.

Galois theory comprises the theory of field extensions and elementary group theory to
define the Galois Group over a field extension F :K. This is the set of all K-automorphisms
over F under composition of maps. It can be seen as a group where the elements are dis-
tinct permutations of the zeros of some polynomial over K, and is under certain conditions
isomorphic to the symmetry group Sn for some integer n. Galois theory culminates in the
exploration of the relationship between the solubility of a polynomial by radicals and the
solubility of its associated Galois group.

The theory of field extensions needed for Galois theory also has some unexpected applic-
ation; it can be used to discuss geometric constructions by manner of unmarked ruler and
compass. This connection was famously employed to prove the impossibility of duplicating
the cube, trisecting the angle, and squaring the circle, three problems which have puzzled
mathematicians ever since Antiquity.

This thesis serves as an unofficial extract of the excellent second edition of Ian Stewart’s
Galois Theory [1]. Unless otherwise specified, all definitions, lemmas, theorems, corollaries,
and proofs are from there, subject to reformulation and change of title, that is a lemma in
Stewart [1] might in this text be referred as a theorem and so on. The structure also mainly
follows that of Stewart [1], with the notable exception that ruler and compass constructions are
here covered in the end, instead of straight after discussing field extensions. The information
in the brief historical paragraph in the beginning of this section, as well as in the upcoming
historical piece on Galois, are also taken from Stewart [1].

To limit the scope of this thesis, some knowledge must regrettably be assumed. This
text is mainly aimed at those who have taken a first course in abstract algebra, and for the
main results on the solubility of polynomials by radicals, familiarity with concepts such as iso-
morphisms, fields, soluble, simple, and symmetric groups, and results such as the isomorphism
theorems are highly recommended. However, for those who do not possess such knowledge,
there might still be some things of interest; the sections on field extensions and geometric
constructions are more easily accessible. Before moving into the theory, we shall make a small
detour, since any text discussing the work of Galois could be considered incomplete without
at least a brief mention of the short, but in many ways extraordinary life he led.

1.1 The Life of Galois

Évariste Galois was born on 25th October 1811 in Bourg-la-Reine near Paris. He entered
school at the age of twelve, before which he had been educated solely by his mother. Two years
later, he came across Legendre’s Éléments de Géometrie which he is famously said to have
read ‘like a novel’ and mastered in one reading. His interest in mathematics thus thoroughly
peaked, he went through the entrance examination for École Polytechnique, which he failed.
Instead, he entered École Normale in 1828.
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In the summer of 1830, there was an attempted coup d’état prompting the king to suppress
the freedom of the press. An uprising ensued, consequently replacing the king. The students
of Polytechnique took part in the protests while the students of École Normale were forbidden
to take part and locked in. Galois was infuriated to the point where he wrote a letter attacking
the director of the school resulting in his expulsion. In the beginning of 1831, Galois sent a
memoir to the Academy of Sciences, receiving no reply. His mathematical career thus coming
to a halt, he joined the artillery of the National Guard which soon after disbanded due to
charges of conspiracy. At a banquet held in protest, Galois proposed a toast to the king
with an open knife in his hand. Those attending interpreted this as a threat to the king’s
life and Galois was arrested. After being acquitted, Galois received news from the Academy,
who rejected his memoir on account of it being incomprehensible. Ten days later, Galois
was arrested once more, this time for wearing the uniform of the disbanded artillery and was
imprisoned, giving him time to work on his mathematics.

Following his release, Galois experienced his first and only love affair. Although veiled
in mystery, letters indicate that Galois was rejected. He took it badly and was soon after
challenged to a duel with pistols. On the eve of the duel, 29th May, Galois wrote a letter
roughly outlining his discoveries on the connection between groups and polynomial equations.
The next day, Galois was shot in the stomach. On 31st May 1832, he died of peritonitis, not
yet 21 years old.

Galois’s mathematical discoveries lay unnoticed, seemingly lost to the world. It wasn’t
until 1843 when Joseph Liouville found Galois’s work that its importance was recognised.
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2 Field Extensions

In this section, we shall examine and discuss various properties of field extensions which we
shall need later on, such as what different types of field extensions there are, what is meant
by their degree and what it entails.

Definition. If K is a subfield of a field F, then F is a field extension of K. We denote this
as F :K.

We shall regularly refer to a field extension by just calling it an extension.

Definition. Let K∗ :K and F ∗ : F be field extensions. An isomorphism between the two is
a pair of field isomorphisms (λ, µ), λ : K → F and µ : K∗ → F ∗ such that

λ(k) = µ(k), ∀k ∈ K.

Note that this is equivalent to saying that λ = µ|K , where µ|K denotes the restriction of
µ to K. If we identify K with λ(K) and K∗ with µ(K∗), then both λ and µ|K becomes the
identity map.

Now let F : K be a field extension. If α ∈ F and α /∈ K, then let K(α) denote the
intersection of all subfields of F containing both K and α. Clearly, K(α) is non-empty since
it at least contains K. After some consideration, we also realise that K(α) is the smallest
subfield of F containing both K and α.

Definition. By the above notation, K(α) :K is called a simple extension. Furthermore, we
say that K(α) is obtained from K by adjoining α to K.

2.1 Transcendental Extensions

Definition. Let F :K be a field extension and let α ∈ F. If there is no non-zero polynomial
p over K such that p(α) = 0, then α is transcendental over K, and K(α) : K is a simple
transcendental extension.

Theorem 2.1. Let K be a field. Then the field of fractions K(t) of the polynomial ring K[t]
is a simple transcendental extension.

Proof. Clearly K(t) is a simple extension. If p(t) = 0 for some polynomial p over K, then
p = 0 by the definition of K(t). Thus K(t) :K is a simple transcendental extension.

To be able to classify all simple transcendental extensions, up to isomorphism, we first
need a lemma.

Lemma 2.2. Let φ be a homomorphism from a field K to a ring R with φ 6= 0. Then φ is a
monomorphism.

Proof. As is well known, the kernel of φ is an ideal in K. However, K is a field and so has no
ideals other than 0 and itself. Since φ 6= 0, the kernel of φ is not K, so it must be 0. Therefore,
φ is a monomorphism.

Theorem 2.3. Let K be a field and let K(t) : K be as described above. Then the simple
transcendental extension K(α) :K is isomorphic to the extension K(t) :K. The isomorphism
can be chosen to map t to α.
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Proof. Define the map φ :K(t)→ K(α), where

φ(f(t)/g(t)) = f(α)/g(α),

and f, g are polynomials over K. If g 6= 0, then g(α) 6= 0 since α is transcendental, so that this
map makes sense. We have that φ is a homomorphism, and since φ 6= 0 it is a monomorphism
by Lemma 2.2. All elements of K(α) can be written as f(α)/g(α), so φ is also surjective, and
hence it is an isomorphism. Moreover, φ|K is the identity, and so we have an isomorphism of
extensions. Finally, φ(t) = α.

2.2 Algebraic Extensions

Definition. Let F : K be a field extension and let α ∈ F. If there is a non-zero polynomial
p over K such that p(α) = 0, then α is algebraic over K, and K(α) : K is a simple algebraic
extension.

Definition. Let F : K be a field extension. If every element in F is algebraic over K, then
F :K is an algebraic extension, and F is algebraic over K.

The construction of a simple algebraic extension is slightly more difficult compared to that
of a simple transcendental extension and requires a couple of lemmas. The goal is to construct
a simple algebraic extension from any field K given an irreducible polynomial over K. Let us
start with a definition.

Definition. Let F :K be a field extension. If an element α ∈ F is algebraic over K, then the
non-zero monic polynomial m of lowest degree over K such that m(α) = 0 is the minimum
polynomial of α over K.

Lemma 2.4. Let K be a field. The minimum polynomial m of an algebraic element α over K
is irreducible over K. Furthermore, every polynomial p with p(α) = 0 is divisible by m.

Proof. We prove both statements by contradiction.
Suppose m is not irreducible over K. Then there are polynomials g and h over K such

that m = gh, where the degree of g and h are less than that of m. Since m is the minimum
polynomial of α over K, we have 0 = m(α) = g(α)h(α). Hence g(α) = 0 or h(α) = 0,
contradicting the definition of m. Therefore, m is irreducible over K.

Now suppose there is a non-zero polynomial p overK not divisible bym such that p(α) = 0.
By the division algorithm, there are polynomials q and r such that p = qm + r, where the
degree of r is smaller than that of m, and r 6= 0. We then have

0 = p(α) = q(α)m(α) + r(α) = r(α).

As before, this is a contradiction to the minimality of m. Thus every polynomial p over K
such that p(α) = 0 is divisible by m.

Lemma 2.5. Let m be an irreducible non-constant polynomial over the field K and let I be
the ideal of K[t] comprising all multiples of m. Then the quotient ring K[t]/I is a field.

Proof. Let I + f be a non-zero element of K[t]/I = T. Since m is irreducible, f and m are
coprime. By a well-known result, there are then polynomials g and h over K such that

gf + hm = 1K .
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However, since I +m = I is the zero element of R, we have

I + 1K = (I + g)(I + f) + (I + h)(I +m) = (I + g)(I + f),

so (I + g) is the inverse of (I + f). Since f was chosen arbitrarily, every element of R has an
inverse. Since T is commutative by definition of polynomial multiplication over a field, and
since no element of T can be both a unit and a zero divisor, T is a field.

The sought after construction is now within reach.

Theorem 2.6. Let K be any field and m a monic irreducible polynomial over K. Then there
exists an extension K(α) :K such that the minimum polynomial of α over K is m.

Proof. As in the proof of Lemma 2.5, let I be the ideal of K[t] comprising all multiples of m.
By the same lemma, we know that K[t]/I = T is a field. The goal here is now to set it up in
such a way that T = K(α) where the minimum polynomial of α is m.

To this end, we shall define two functions. First, let λ :K → K[t] be the monomorphism
that maps every element in K to itself in K[t]. Second, let µ :K[t]→ T be the homomorphism
such that µ(f) = I + f for every f ∈ K[t]. The composite map φ = µλ is a homomorphism
of fields, and φ 6= 0, so by Lemma 2.2, φ is a monomorphism. Let α = I + t. We then have
T = φ(K)(α). If we now identify K with its image φ(K), so that φ(β) is changed to β for
every β ∈ K, and adjust the definition of addition and multiplication in T accordingly, we get
that K ⊆ T and thus T = K(α). It remains to show that m is the minimum polynomial of α
over K.

The zero element of T is I and by definition, m ∈ I, so we have m(α) = I. If the minimum
polynomial of α over K is p, then p|m by Lemma 2.4. However, since m is monic and
irreducible, we must have p = m. Thus m is the minimum polynomial and the construction
is complete.

The classification of all simple algebraic extensions up to isomorphism is once again a bit
more intricate compared to the transcendental case, and we require one more lemma.

Lemma 2.7. Let K(α):K be a simple algebraic extension where α has minimum polynomial m
over K. The every element of K(α) has a unique expression in the form of a polynomial p(α)
over K where deg p < deg m.

Proof. The methodology here is to first prove the existence of such an expression and second,
to prove uniqueness.

The set of all elements of the form f(α)/g(α), where f and g are polynomials over K and
g(α) 6= 0, is a field under regular addition and multiplication of polynomials. It also contains
K and α, and lies inside K(α). Therefore, all elements of K(α) can be written in this form.
Since g(α) 6= 0, m does not divide g. Further, since m is also irreducible, m and g are coprime.
Hence there are polynomials p and q over K such that pg + qm = 1. This yields

1 = p(α)g(α) + q(α)m(α) = p(α)g(α)⇔ g(α) =
1

p(α)
,

so that
f(α)/g(α) = f(α)p(α) = h(α),

for some polynomial h over K. Let r be the remainder upon dividing h by m. Then r(α) = h(α)
with deg r < deg m. Hence we have proved existence.

Suppose there are two such expressions, with a(α) = b(α) where a and b are polynomials
over K. Let c = a− b. Then c(α) = 0. But since both a and b have lower degree than m, we
have deg c < deg m. By the minimality of m, we must have c = 0 so that a = b, which proves
uniqueness.
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Theorem 2.8. Let K(α) : K and K(β) : K be two algebraic extensions where α and β have
the same minimum polynomial m over K. Then the two extensions are isomorphic and the
isomorphism of the larger fields can be chosen to map α to β.

Proof. This proof is fairly straight forward. We use Lemma 2.7 to define a map between K(α)
and K(β), and then we use properties of the minimum polynomial to show that this map is
indeed an isomorphism.

By Lemma 2.7, all elements of K(α) can be uniquely expressed in the form

a = a0 + a1α+ · · ·+ anα
n (a0, . . . , an ∈ K)

where n = deg m− 1. We define the map φ : K(α)→ K(β) by

φ(a) = a0 + a1β + · · ·+ anβ
n.

Lemma 2.7 now yields that φ is both injective and surjective, so it remains to show that it is
a homomorphism. Clearly, we have

φ(a+ b) = φ(a) + φ(b).

To show φ(ab) = φ(a)φ(b), for any a, b ∈ K(α), let a = f(α), b = g(α), and ab = h(α), where
f, g, and h are polynomials over K with degree lower than m. We then need h to be the
remainder upon dividing fg by m. We have

f(α)g(α)− h(α) = ab− ab = 0.

By Lemma 2.4, m divides fg − h. Thus there is a polynomial q over K such that

fg − h = qm⇔ fg = qm+ h.

Since deg h < deg m it follows by the division algorithm that h is the remainder upon dividing
fg by m. It follows from this that f(β)g(β) = h(β) since φ is a bijection. Thus we have

φ(ab) = φ(h(α)) = h(β) = f(β)g(β) = φ(f(α))φ(g(α)) = φ(a)φ(b),

and φ is an isomorphism. Every element K is a constant polynomial and is therefore mapped
to itself, so φ|K is the identity and the extensions are isomorphic. Additionally, we have
φ(α) = β.

This is an important result for the rigour of later sections and we shall need to invoke this
theorem many times. However, we shall also require a more general version of this theorem.
We start with a somewhat niche definition.

Definition. Let φ : K → L be a monomorphism of fields. We then define the function
φ̂ :K[t]→ L[t] by

φ̂(k0 + k1t+ · · ·+ knt
n) = φ(k0) + φ(k1)t+ · · ·+ φ(kn)tn

where k0, . . . , kn ∈ K.

It is easily seen that φ̂ is a monomorphism, and if φ is an isomorphism, so is φ̂. The
distinction between φ and φ̂ is not necessary, since φ(k) = φ̂(k) for any k ∈ K. We shall
therefore use φ for both mappings in the future.
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Theorem 2.9. Let φ :K → K ′ be an isomorphism of fields and let K(α) and K ′(β) be simple
algebraic extensions of K and K ′ respectively, such that α has minimum polynomial mα

over K and β has minimum polynomial mβ over K ′. Suppose that mβ(t) = φ(mα(t)). Then
there exists an isomorphism ψ :K(α)→ K ′(β) such that ψ|K = φ and ψ(α) = β.

Proof. This proof is basically the same as the proof of the last theorem with some minor
adjustments.

All elements of K(α) are of the form p(α) where p is a polynomial over K of lower degree
than that of mα. We define the map ψ :K(α)→ K ′(β) by ψ(p(α)) = (φ(p))(β). Since φ is an
isomorphism, ψ is surjective and injective by Lemma 2.7. Moreover, for any a, b ∈ K(α) we
have

ψ(a+ b) = ψ(a0 + b0 + (a1 + b1)α+ · · ·+ (an + bn)αn)

= φ(a0) + φ(a1)β + · · ·+ φ(an)βn + φ(b0) + φ(b1)β + φ(bn)βn

= (φ(a))(β) + (φ(b))(β) = ψ(a) + ψ(b).

Now, let a = f(α), b = g(α) and ab = h(α), where f, g, and h are polynomials over K
with degree lower than mα. As before, we have

f(α)g(α)− h(α) = 0,

and therefore mα divides fg− h, so that h is the remainder upon dividing fg by mα. By the
same reasoning, φ(h) is the remainder upon dividing φ(fg) by φ(mα). Since φ(mα(t)) = mβ(t),
and φ is an isomorphism, we have that

ψ(ab) = ψ(h(α)) = (φ(h))(β) = (φ(fg))(β)

= (φ(f))(β)(φ(g))(β) = ψ(a)ψ(b).

Hence ψ is an isomorphism. Since all elements in K are constants, ψ|K = φ. Finally, consider
the polynomial p(t) = t = 1Kt over K. We have

ψ(α) = ψ(p(α)) = (φ(p))(β) = (φ(1K))(β) = p(β) = β,

which concludes the proof.

2.3 The Degree of an Extension

The degree of an extension is a crucial concept when working with extensions, not least
when it comes to geometric construction by means of unmarked ruler and compass, which are
discussed in section 5. After this subsection, one has all the necessary tools for section 5 and
may, therefore, without complication, skip ahead.

To be able to define the degree of an extension, we first need to make an observation which
has been staring us in the face for some time.

Theorem 2.10. Let F : K be a field extension. Then F is a vector space over K under
ordinary addition in F for vectors and ordinary multiplication in F for scalar multiplication.

Proof. Since both F and K are fields, all the axioms for a vector space are satisfied.

Definition. Let F :K be a field extension. The degree of F :K is the dimension of the vector
space F over K. We denote the degree as [F :K].

Definition. A field extension is finite if its degree is finite.
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We next present a useful tool when determining the degree of an extension, often referred
to as the tower law.

Theorem 2.11 (The Tower Law). Let F, M, K be fields such that K is a subfield of M and
M is a subfield of F. Then

[F :K] = [F :M ][M :K].

Proof. Let (xi)
m
i=1 be a basis for M over K and let (yj)

n
j=1 be a basis for F over M for some

integers m and n. Our goal is now to show that xiyj is a basis for F over K for 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

We first show linear independence. Suppose that some linear combination of these elements
is zero, that is

m,n∑
i=1,j=1

kijxiyj =

n∑
j=1

( m∑
i=1

kijxi

)
yj = 0 (kij ∈ K).

The coefficients
∑m
i=1 kijxi lie in M and the yj are linearly independent over M since they

form a basis, so we must have
m∑
i=1

kijxi = 0.

However, since the xi form a basis over K, they are linearly independent over K so we must
have kij = 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence the elements xiyj are linearly independent
for those i and j.

Second, we show that the xiyj span F over K. We know that any element a ∈ F can be
written as

a =

n∑
j=1

λjyj

for some λj ∈M since the yj span F over M. Similarly, λj ∈M can be written as

λj =

m∑
i=1

λijxi

for some λij ∈ K since the xi span M over K. Thus, for any element a ∈ F we have

a =

m,n∑
i=1,j=1

λijxiyj

which shows that the xiyj span F over K.
Finally, we need to address what happens if any of the degrees involved are infinite. The

interpretation is then the straight forward one. If either [F :M ] or [M :K] are infinite, then
so is [F : K]. Conversely, if [F : K] is infinite, then either [F : M ] or [M : K] must also be
infinite.

The tower law is not of much use, however, if we do not know how to get started in
calculating the degree of a field extension. In light of this, we present the following convenient
fact.

Theorem 2.12. Let K(α) : K be a simple field extension. If it is transcendental, then
[K(α) : K] is infinite. If it is algebraic, then [K(α) : K] = degm, where m is the minimum
polynomial of α over K.
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Proof. For the transcendental case, we need only note that 1, α, α2, . . . are linearly independ-
ent over K. Hence [K(α) :K] is infinite.

For the algebraic case, we need to determine a basis for K(α) over K. Let deg m = n and
consider the set S = {1, α, . . . , αn−1}. By Lemma 2.7, any element of K(α) can be written as a
polynomial of α of degree lower than n, so the elements of S span K(α) over K. Furthermore,
by the uniqueness part of Lemma 2.7, the elements of S are also linearly independent and
thus they form a basis. We now have

[K(α) :K] = degm

as required.

After some consideration, we realise that this result implies that any simple algebraic
extension is indeed finite. However, the converse does not hold. Furthermore, algebraic
extensions need not be finite, but every finite extension is indeed algebraic.

Theorem 2.13. Let F :K be field extension. Then F :K is finite if and only if F is algebraic
over K and there exists finitely many elements α1, . . . , αn ∈ F such that F = K(α1, . . . , αn).

Proof. First, suppose that F : K is a finite extension. Then there is a basis {α1, . . . , αn} for
F over K, so that every element of F can be obtained as a linear combination of α1, . . . , αn,
and thus F = K(α1, . . . , αn). It remains to show that F :K is algebraic. To this end, let x be
any element of F and note that [F : K] = n. The set {1, x, . . . , xn} contains n + 1 elements,
so they must be linearly dependent over K. Hence

k0 + k1x1 + · · ·+ knx
n = 0

for some k0, . . . , kn ∈ K, not all zero. Any element x of F is therefore algebraic over K, and
thus F is algebraic over K.

Second, suppose instead that F : K is algebraic where F = K(α1, . . . , αn). Here, we use
induction on n to show that F :K is finite. If n = 1, F :K is a simple algebraic extension, so
by Theorem 2.12, F :K is finite. If the statement holds for all n = k, then for n = k + 1 the
tower law yields

[F :K] = [K(α1, . . . , αk+1) :K(α1, . . . , αk)][K(α1, . . . , αk) :K].

Since F :K is an algebraic extension, [K(α1, . . . , αk+1) :K(α1, . . . , αk)] is a simple algebraic
extension, and again by Theorem 2.12, must be finite. By proceeding in the same manner, the
induction step goes through and we have that [F :K] is finite. This concludes the proof.

2.4 Normal and Separable Extensions

The notions of normality and separability in field extensions are an essential part of Galois
theory. Before we can define them, however, we first need to establish the concept of splitting
fields.

2.4.1 Splitting Fields

Definition. Let K be a field and f a polynomial over K. Then f splits over K if it can
written as a product of linear factors

f(t) = k(t− α1) · · · (t− αn), (k, α1, . . . , αn ∈ K).
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If f fulfils this condition, then α1, . . . , αn are the zeros of f in K. If F is an extension of K,
then f is also a polynomial over F, and it is therefore relevant to examine the case where
f splits over F. This motivates the following definition.

Definition. Let K be field and f a polynomial over K. Then an extension Σ of K is a splitting
field for f over K if

(i) f splits over Σ;

(ii) Σ = K(α1, . . . , αn) where α1, . . . , αn are the zeros of f in Σ.

Condition (ii) is equivalent to saying that Σ is the smallest field over which f splits.
We now need to prove the existence of such a field Σ. As stated in (ii) above, such a field Σ

is obtained by adjoining zeros of f to K. Recall that we did this for an irreducible polynomial
in Theorem 2.6, so we simply split f into irreducible factors and treat them separately.

Theorem 2.14. Let K be any field and let f be any polynomial over K. Then there exists a
splitting field for f over K.

Proof. We use induction on deg f = n. If n = 1, then f splits over K and there is nothing
to prove. Assume then that there exists a splitting field for f over K for all n = k and
let n = k+ 1. If f splits over K we are done. Suppose therefore that f does not split over K.
Then f has an irreducible factor f1 such that deg f1 > 1. We use Theorem 2.6 to adjoin α1

to K where α1 is a zero of f1. Over K(α1), we then have f(t) = (t − α1)g, where
deg g = k + 1 − 1 = k. By the induction hypothesis, there exists a splitting field Σ for g
over K(α1). But Σ is also a splitting field for f over K. Thus the induction step goes through
and we are done.

It remains to determine if there is a unique splitting field for any given f and K. Up to
isomorphism, that is indeed the case. However, for the proof of this we first need a lemma
which we prove by induction and the use of Theorem 2.9.

Lemma 2.15. Let φ : K → K ′ be an isomorphism of fields, f a polynomial over K, and
Σ any splitting field for f over K. If F is an extension of K ′ such that φ(f) splits over F,
then there exists a monomorphism ψ : Σ→ F such that ψ|K = φ.

Proof. We use induction on deg f = n. If n = 1, then f splits over K, and φ(f) splits over K ′

by the definition of φ. Then φ itself fulfils the requirements of the theorem.
Assume that the statement holds for all n = k and let n = k + 1. Over Σ, we then have

f(t) = k(t− α1) · · · (t− αk+1).

Now the minimum polynomial m of α1 over K is an irreducible factor of f. Since φ is an
isomorphism, φ(m) divides φ(f) which splits over F. Over F we therefore have

φ(m(t)) = k(t− β1) · · · (t− βr)

where β1, . . . , βr ∈ F. Over K ′, φ(m) is irreducible and must therefore be the minimum
polynomial of β1 over K ′. By Theorem 2.9, there is an isomorphism ψ1 : K(α1) → K ′(β1),
such that ψ1|K = φ and ψ1(α1) = β1. We now have that Σ is a splitting field for the
polynomial g(t) = f(t)/(t − α1) over K(α1). Since deg g = k, the induction hypothesis
yields that there exists a monomorphism ψ : Σ → F such that ψ|K(α1) = ψ1. But then
ψ|K = ψ1|K = φ. This concludes the proof.
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Theorem 2.16. Let φ : K → K ′ be an isomorphism of fields. Let Σ be splitting field for f
over K, Σ′ a splitting field for φ(f) over K ′. Then there is an isomorphism ψ : Σ→ Σ′ such
that ψ|K = φ. In other words, the extensions Σ :K and Σ′ :K ′ are isomorphic.

Proof. By Lemma 2.15, there is a monomorphism ψ : Σ → Σ′ such that ψ|K = φ. Because
of this and the fact that φ is an isomorphism, we have that ψ(Σ) is a splitting field for φ(f)
over K ′. But ψ(Σ) is contained in Σ′ since ψ is a monomorphism, and Σ′ is also a splitting field
for φ(f) over K ′, so we must have ψ(Σ) = Σ′. Hence ψ is surjective and an isomorphism.

2.4.2 Normal Extensions

Definition. Let F : K be a field extension. If every irreducible polynomial over K with at
least one zero in F splits over F, then F :K is normal.

Theorem 2.17. A field extension F : K is normal and finite if and only if F is a splitting
field for some polynomial over K.

Proof. Since we are dealing with an if and only if statement, the proof comprises two parts.
First, suppose that F : K is normal and finite. By Theorem 2.13, F = K(α1, . . . , αn)

for some α1, . . . , αn algebraic over K. Let mi be the minimum polynomial of αi over K and
let f = m1 · · ·mn. Every mi is irreducible over K and has a zero αi in F, so by normality,
each mi splits over F. Hence f splits over F. Since F is generated by K and the zeros of f,
F is a splitting field for f over K.

Second, suppose that F is a splitting field for some polynomial f over K. Since F is then
generated by K and the zeros of f, F :K is finite. It remains to show that it is also normal.
The goal is to show that an irreducible polynomial g over K with a zero in F splits over F.
Let Σ be a splitting field for fg over F, and thus also a splitting field for g over F. Let β1
and β2 be zeros of g in Σ. We now claim that

[F (β1) : F ] = [F (β2) : F ].

Here, we make use of a certain trick. Since for i = 1 and 2, F ⊆ F (βi), and K ⊆ K(βi), we
have by the tower law

[F (βi) : F ][F :K] = [F (βi) :K] = [F (βi) :K(βi)][K(βi) :K]. (2.1)

Since β1 and β2 have the same minimum polynomial g over K, we have by Theorem 2.12 that
[K(β1):K] = [K(β2):K], and by Theorem 2.8, K(β1) and K(β2) are isomorphic. Furthermore,
F (βi) is a splitting field for f over K(βi). Hence, the extensions F (βi) :K(βi) are isomorphic
by Theorem 2.16, and thus they have the same degree. Substituting this in equation (2.1)
yields

[F (β1) : F ][F :K] = [F (β1) :K(β1)][K(β1) :K]

= [F (β2) :K(β2)][K(β2) :K] = [F (β2) : F ][F :K].

After cancellation, we obtain

[F (β1) : F ] = [F (β2) : F ]

as claimed.
If β1 ∈ F, we have that [F (β1) : F ] = 1 = [F (β2) : F ], and so β2 ∈ F. Hence F : K is

normal.
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2.4.3 Separable Extensions

Definition. Let f be an irreducible polynomial over K. Then f is separable over K if it
has no multiple zeros in a splitting field. If f is not separable over K, it is inseparable
over K.

We can extend the notion of separability to arbitrary polynomials, algebraic elements and
entire extensions.

Definition. Any polynomial over a field K is separable over K if all its irreducible factors
are separable over K.

Let F : K be a field extension. An algebraic element α ∈ F is separable over K if its
minimum polynomial over K is separable over K.

An algebraic extension F :K is a separable extension if every α ∈ F is separable over K.

If F : M and M : K are field extensions such that K ⊆ M ⊆ F, we say that M is an
intermediate field of F : K. Often we omit specifying what extension M is an intermediate
field of since it is usually clear from the context. Next, we show that separability in algebraic
extensions carries over to intermediate fields.

Theorem 2.18. Let F : K be a separable algebraic extension and let M be an intermediate
field. Then F :M and M :K are separable.

Proof. Since every algebraic element α ∈ F is separable over K, we must have that all
algebraic elements in M are separable over K, and thus M :K is separable.

Let α ∈ F and let mK and mM be the minimum polynomials of α over K and over M
respectively. By Theorem 2.4, we have that mM |mK over M . But α is separable over K
so mK is separable over K, hence mM is separable over M . Therefore, F : M is a separable
extension and we are done.

While on the topic of multiple zeros of polynomials, we shall now investigate how we can
detect such using differentiation. For polynomials over R this detection method is standard.
For polynomials over arbitrary fields, we first need to formally define what differentiation is.

Definition. Let K be a field and

f(t) = a0 + a1t+ · · ·+ ant
n

a polynomial over K. Then the formal derivative of f is the polynomial

Df = a1 + 2a2t+ · · ·+ nant
n−1.

Just as in the case of the standard derivative in R, we have some properties of D. Simple
computation show that for any polynomials f and g over K

D(f + g) = Df +Dg, D(fg) = Df · g + f ·Dg

and if k ∈ K, then
D(k) = 0, D(kf) = k ·Df.

These allow us to give a useful criterion for the existence of multiple zeros without knowing
what they are.

Theorem 2.19. Let f 6= 0 be a polynomial over a field K. Then f has multiple zeros in a
splitting field if and only if f and Df have a common factor of degree ≥ 1 over K.
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Proof. First, suppose that f has a repeated zero in a splitting field Σ, so that over Σ

f(t) = (t− α)2g(t)

for some g over Σ and some α ∈ Σ. Then

Df = 2(t− α)g + (t− α)2Dg = (t− α)(2g + (t− α)Dg)

so that f and Df have a common factor (t − α) over Σ. We have that f(α) = 0 and
(Df)(α) = 0 so when considered as polynomials over K, they must both be divisible by the
minimum polynomial of α over K by Theorem 2.4. Thus f and Df have a common factor of
degree ≥ 1.

Second, suppose that f has no multiple zeros. We shall use induction on deg f = n to
show that f and Df are coprime over Σ, hence also coprime over K. If n = 1, then Df is
a constant and so coprime to the polynomial f. If n = k + 1, then f(t) = (t − α)g(t) where
deg g = k and (t− α) - g(t). Then

Df = g + (t− α)Dg.

Since (t − α) - g(t), we must have that a factor of g divides Dg if f and Df are not to
be coprime. But by induction, g and Dg are coprime, and hence, so are f and Df. This
completes the proof.
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3 Galois Theory

In this section, we shall begin by introducing some of the basic concepts in Galois theory,
such as Galois extensions and Galois groups. We shall then need to do some interim study on
field degrees, group orders, and monomorphisms to then be able to present the fundamental
theorem of Galois theory which concerns what is known as the Galois correspondence. Finally,
we shall conclude the section by reviewing some results from group theory, which will be
needed for the upcoming section.

3.1 Underlying Definitions

We already have all that is required to define the Galois extension.

Definition. If F : K is a finite separable normal field extension, then F : K is a Galois
extension.

For the definition of the Galois group, a preceding definition and a lemma are necessary.

Definition. Let K be a subfield of the field F. An automorphism φ of F is a
K-automorphism of F if

φ(k) = k, ∀k ∈ K.

Note that an automorphism is an isomorphism between a mathematical object and itself.
In the above case, φ can be seen as an automorphism of the extension F :K, rather than just
of the large field.

Lemma 3.1. Let F : K be a field extension. The set of all K-automorphisms of F form a
group under composition of maps.

Proof. Composition of maps is associative, so it remains to prove closure under operation,
existence of identity, and existence of inverse. Let φ and ψ be K-automorphisms of F .
Clearly, φψ is then an automorphism. Furthermore, φ(ψ(k)) = φ(k) = k, for all k ∈ K,
so φψ is a K-automorphism and we have closure under operation. The identity map on F
is a K-automorphism. Finally, φ−1 is an automorphism of F , and for all k ∈ K we have
k = φ−1(φ(k)) = φ−1(k), so φ−1 is a K-automorphism. Thus, the set of all K-automorphisms
of F form a group under composition of maps.

Definition. Let F :K be a field extension. The Galois group of F :K, denoted Γ(F :K), is
the group of all K-automorphisms of F under composition of maps.

To prepare for what is known as the Galois correspondence, we need to examine the
relationship between intermediate fields and subgroups of the associated Galois group. We
shall return to this correspondence later on.

Definition. Let F : K be a field extension and let M be an intermediate field. Then
M∗ = Γ(F :M) is the group of all M -automorphisms of F.

We have that K∗ is the whole Galois group, and that F ∗ comprises one element, namely
the identity map on F. Furthermore if N is another intermediate field and M ⊆ N, we have
that M∗ ⊇ N∗, since all automorphisms fixing all elements of N certainly also fix all elements
of M.

Conversely, we also associate a set to a subgroup of Γ(F :K).

Definition. Let F : K be a field extension and H a subgroup of Γ(F : K). We then
let H† = {x ∈ F |φ(x) = x ∀φ ∈ H}.
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For us to have a correspondence between the maps ∗ and †, we need H† to be an interme-
diate field. This is indeed the case, which we show in the following lemma.

Lemma 3.2. F :K be a field extension and H a subgroup of Γ(F :K). Then H† is a subfield
of F containing K.

Proof. Let x, y ∈ H† and φ ∈ H. Since φ is an automorphism, we have

φ(x+ y) = φ(x) + φ(y) = x+ y.

Similarly, H† is closed under multiplication. Since φ fixes all elements x, y ∈ H†, and all x, y
are in the field F, the other axioms for a field are also fulfilled so that H† is a subfield of F.
Since φ ∈ Γ(F :K), we have φ(k) = k for all k ∈ K, and hence H† contains K.

Definition. With notation as above, H† is the fixed field of H.

In this case, we note that K ⊆ Γ(F : K)†. Once again, we have reverse inclusions. If H
and G are subgroups of Γ(F :K) and H ⊆ G, then H† ⊇ G†, since all elements in G† are fixed
by all automorphisms in G, and thus certainly also by all automorphisms in H. Furthermore,
if M is an intermediate field we have

M ⊆M∗†

H ⊆ H†∗,
(3.1)

since every element of M is fixed by the automorphisms that fixes all of M, and every auto-
morphism of H fix all elements that are fixed by all of H.

To give a taste of what is to come, let F be the set of all intermediate fields of F : K
and G be the set of all subgroups of Γ(F :K). We then have the two maps

∗ : F → G
† : G → F

satisfying (3.1). When both of these are bijections we refer to this as the aforementioned
Galois correspondence. We shall later see that this is, in fact, the case when we are dealing
with a Galois extension, but we are not ready to prove it yet.

3.2 Fixed Fields and Subgroups

The goal in this subsection is to show that if H is a subgroup of Γ(F : K), where F : K is
a Galois extension, then H†∗ = H. Our method will be to show that H and H†∗ are finite
groups of the same order and, since we know that H ⊆ H†∗, conclude that H†∗ = H.

3.2.1 Degrees and Group Orders

Keeping our goal described above in mind, we shall first determine [H† : K] in terms of the
order of H. We need this to later compute the order of H†∗. For this, we require a couple of
lemmas. We begin with one attributed to Dedekind.

Lemma 3.3 (Dedekind). Let K and F be fields. Then every set of distinct monomorphisms
K → F is linearly independent over F.
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Proof. We aim to prove this by contradiction. Suppose therefore that a set of distinct mono-
morphisms λ1, . . . , λn fromK to F are linearly dependent. That means that there are elements
a1, . . . , an ∈ F , not all zero, such that

a1λ1(x) + · · ·+ anλn(x) = 0 (3.2)

for all x ∈ K. Of all equations of the form (3.2) that hold, with all ai 6= 0, there must be at
least one where the number n of terms is least. We choose notation so that equation (3.2) is
such an equation.

There exists y ∈ K such that λ1(y) 6= λn(y) since λ1 6= λn, and so y 6= 0. Equation (3.2)
holds for all x ∈ K, so we can replace x with yx. This yields, for all x ∈ K,

a1λ1(yx) + · · ·+ anλn(yx) = a1λ1(y)λ1(x) + · · ·+ anλ1(y)λn(x) = 0. (3.3)

The first equality follows from the fact that all λi are monomorphisms. If we now multiply
equation (3.2) by λ1(y) and then subtract equation (3.3), we obtain

a2(λ1(y)− λ2(y))λ2(x) + · · ·+ an(λ1(y)− λn(y))λn(x) = 0.

The coefficient of λn(x) is an(λ1(y) − λn(y)) 6= 0, so we have an equation of the form (3.2)
with at most n−1 terms. This is a contradiction to the minimality of n, and thus no equation
of the form (3.2) with non-zero coefficients exists. This concludes the proof.

The second lemma is a useful principle from group theory.

Lemma 3.4. Let G be a group whose distinct elements are g1, . . . , gn, and let g ∈ G. Then,
as i varies from 1 to n, the elements ggi run through the whole of G, each element of G
occurring precisely once.

Proof. If h ∈ G, then g−1h = gi for some i, so that h = ggi. If ggj = ggi, we then have
gj = g−1ggj = g−1ggi = gi. Hence the mapping gj → ggj is a bijection G → G, from which
the result follows.

A corollary to the next theorem will end our current endeavour.

Theorem 3.5. Let G be a finite subgroup of the group of automorphisms of a field K and
let K0 be the fixed field of G. Then

[K :K0] = |G|.

Proof. Let g1, . . . , gn be the elements of G where g1 is the identity. Then |G| = n. The
methodology of this proof will be to first show that [K : K0] ≥ n, and then to show that
[K : K0] ≤ n which will allow us to conclude that [K : K0] = n. We prove both of these
statements by contradiction.

To this end, suppose that [K : K0] = m < n. Let {a1, . . . , am} be a basis for K over K0.
Consider the system of m homogeneous linear equations

g1(ai)x1 + · · ·+ gn(ai)xn = 0, i = 1, . . . ,m,

in the n unknowns x1, . . . , xn. Since n > m, this is an underdetermined system of homogeneous
equations so that there is a non-trivial solution. Hence, there are elements y1, . . . , yn ∈ K,
not all zero, such that

g1(ai)y1 + · · ·+ gn(ai)yn = 0 (3.4)
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for i = 1, . . . ,m. For any element k ∈ K we have

k = α1a1 + · · ·+ αmam, α1, . . . , αm ∈ K0.

Using (3.4), picking any i, we have

g1(k)y1 + · · ·+ gn(k)yn = g1

( m∑
j=1

αjaj

)
y1 + . . .+ gn

( m∑
j=1

αjaj

)
yn

=

m∑
j=1

αjg1(aj)y1 + · · ·+
m∑
j=1

αjgn(aj)yn

=

m∑
j=1

αj(g1(aj)y1 + · · ·+ gn(aj)yn)

= 0.

Hence the distinct automorphisms g1, . . . , gn are linearly dependent. This is a contradiction
to Lemma 3.3. Therefore m ≥ n.

Now suppose [K : K0] > n. Then there exists a set of n + 1 elements of K linearly
independent over K0. Let {a1, . . . , an+1} be such a set. Consider the system of n homogeneous
linear equations

gi(a1)x1 + · · ·+ gi(an+1)xn+1 = 0, i = 1, . . . , n,

in the n + 1 unknowns x1, . . . , xn+1. As before, this is an underdetermined system, so there
exist y1, . . . , yn+1, not all zero, such that

gi(a1)y1 + · · ·+ gi(an+1)yn+1 = 0 (3.5)

for i = 1, . . . , n. As in the proof of Lemma 3.3, we choose y1, . . . , yn+1 so that as many terms
as possible are zero, and renumber so that

y1, . . . , yr 6= 0, yr+1, . . . , yn+1 = 0.

The system of equations (3.5) now becomes

gi(a1)y1 + · · ·+ gi(ar)yr = 0 (3.6)

for i = 1, . . . , n. Let g ∈ G, and operate by g on (3.6). This yields

ggi(a1)g(y1) + · · ·+ ggi(ar)g(yr) = 0, i = 1, . . . , n,

which by Lemma 3.4 as i varies, is equivalent to

gi(a1)g(y1) + · · ·+ gi(ar)g(yr) = 0 (3.7)

for i = 1, . . . , n. If we now multiply the equations (3.6) by g(y1) and equations (3.7) by y1,
and then subtract, we obtain

gi(a2)(g(y1)y2 − y1g(y2)) + · · ·+ gi(ar)(g(y1)yr − y1g(yr)) = 0.

This is a system of equations like (3.6) but with fewer terms, so we have a contradiction unless
all the coefficients

g(y1)yj − y1g(yj), j = 1, . . . , r,
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are zero. If this is the case, then

g(y1)yj − y1g(yj) = 0 ⇔ g(y1)yj = y1g(yj) ⇔ y−11 yj = g(y−11 yj),

for all g ∈ G, so that y−11 yj ∈ K0. Hence there exist z1, . . . , zr ∈ K0 such that yj = y1zj for
j = 1, . . . , r. With i = 1, equation (3.6) then becomes

a1y1z1 + · · ·+ ary1zr = 0,

since g1 is the identity. Because y1 6= 0, we can divide by y1 to obtain

a1z1 + · · ·+ arzr = 0.

This shows that the ai are linearly dependent over K0, which is a contradiction to our original
assumption. Hence [K : K0] ≤ n.

Combining the first and second part, we can conclude that [K :K0] = n, and the proof is
complete.

Corollary 3.6. Let G = Γ(F : K) where F : K is a finite extension and let H be a finite
subgroup of G. Then

[H† :K] = [F :K]/|H|.
Proof. Since H† is an intermediate field, we have [F :K] = [F :H†][H† :K] by the tower law.
By Theorem 3.5, we have [F :H†] = |H|. Combining these two yields [H† :K] = [F :K]/|H|
as required.

We now need to do some work on auto- and monomorphisms. To be able to treat these
more generally, we shall also introduce the notion of a normal closure.

3.2.2 Automorphisms and Monomorphisms

We begin with a generalisation of the K-automorphism, the K-monomorphism.

Definition. Let K be a subfield of the fields M and F. Then a K-monomorphism of M
into F is a map φ :M → F which is a monomorphism between fields such that φ(k) = k for
all k ∈ K.

Evidently, if K ⊆ M ⊆ F, then any K-automorphism of F restricted to M is a
K-monomorphism M → F. We are interested in reversing the process.

Theorem 3.7. Let F : K be a finite and normal field extension and let M be a field such
that K ⊆ M ⊆ F. Further, let ψ be any K-monomorphism M → F. Then there exists a
K-automorphism φ of F such that φ|M = ψ.

Proof. Since F :K is finite, F is a splitting field for a polynomial f over K by Theorem 2.17.
Hence, it is simultaneously a splitting field for f over M and for f over ψ(M). The latter is
true since ψ(M) ⊆ F, and since ψ(f) = f. We have that ψ is an isomorphism between M and
ψ(M), so by Theorem 2.16 there exists an isomorphism φ:F → F such that φ|M = ψ. Thus φ is
an automorphism of F. Furthermore, since φ|K = ψ|K is the identity, φ is a K-automorphism
of F.

This allows us to construct K-automorphisms in the following manner.

Theorem 3.8. Let F :K be a finite and normal field extension and let α, β be zeros in F of
the irreducible polynomial p over K. Then there exists a K-automorphism φ of F such that
φ(α) = β.

Proof. By Theorem 2.8 there is an isomorphism ψ :K(α)→ K(β) such that ψ|K is the identity
and ψ(α) = β. By Theorem 3.7, ψ extends to a K-automorphism φ of F.
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3.2.3 Normal Closures

When we are dealing with extensions that are not normal, we can try to obtain normality by
making the extensions larger. This is the thought behind normal closures.

Definition. Let F :K be an algebraic extension. A normal closure of F :K is an extension N
of F such that

(i) N :K is normal;

(ii) if F ⊆M ⊆ N and M :K is normal, then M = N.

Similar to our definition of a splitting field, N is the smallest extension of F which is
normal over K.

Next, we show the existence and uniqueness of a normal closure, which we shall prove
using the existence and uniqueness of a splitting field.

Theorem 3.9. Let F :K be a finite extension. Then there exists a normal closure N of F :K.
If N ′ is another normal closure, then the extensions N :K and N ′ :K are isomorphic.

Proof. First, we show existence. Since F :K is finite, F = K(α1, . . . , αr) for some integer r by
Theorem 2.13. Let mi be the minimum polynomial of αi over K and let N be a splitting field
for f = m1 · · ·mr over F. Then N is also a splitting field for f over K so that by Theorem 2.17,
N :K is normal and finite. Suppose that there is another field L such that F ⊆ L ⊆ N where
L :K is normal. Each polynomial mi has a zero αi ∈ L, so f splits over L by normality. By
the definition of a splitting field, L = N. Hence, N is a normal closure.

Now suppose that N and N ′ are both normal closures. The above polynomial f splits
over N and N ′, so both N and N ′ contain a splitting field for f over K. These splitting fields
contain F and are normal over K by Theorem 2.17. Combining this with the definition of N
and N ′, we must have that the splitting fields are equal to N and N ′ respectively. By the
uniqueness of splitting fields (Theorem 2.16), N :K and N ′ :K are isomorphic.

The next two results will show that we only need to concern ourselves with a normal
closure of a given extension when discussing monomorphisms. The first is a simple lemma.

Lemma 3.10. Let K ⊆ F ⊆ N ⊆ L where F :K is finite and N is a normal closure of F :K.
Further, let ψ be any K-monomorphism F → L. Then ψ(F ) ⊆ N.

Proof. Let α ∈ F. Then α has minimum polynomial m over K and

0 = m(α) = ψ(m(α)) = m(ψ(α)).

Thus ψ(α) is a zero of m which implies that ψ(α) ∈ N since N :K is normal. The choice of
α is arbitrary so ψ(F ) ⊆ N.

The second result is a bit more intricate and provides a sort of converse to our lemma.

Theorem 3.11. Let F :K be a finite extension. The following statements are then equivalent:

(i) F :K is normal.

(ii) There exists a normal extension N of K containing F such that every K-monomorphism
ψ : F → N is a K-automorphism of F.

(iii) For every extension L of K containing F, every K-monomorphism ψ : F → L is a
K-automorphism of F.
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Proof. Our methodology here will be to show that (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (iii). F : K is normal so F is a normal closure of F : K. Additionally, F ⊆ F,

and thus ψ(F ) ⊆ F by Lemma 3.10. Since ψ is also a monomorphism and a linear map
between two finite dimensional vector spaces, F and ψ(F ), over the same field K, we have
that ψ(F ) = F. Hence ψ is a K-automorphism of F, and every K-monomorphism ψ :F → L,
for any extension L, is a K-automorphism of F.

(iii) ⇒ (ii). Let N be a normal closure for F : K, which exists by Theorem 3.9. Then it
follows from (iii) that N has the properties described in (ii).

(ii) ⇒ (i). Suppose f is any irreducible polynomial over K with a zero α in F. Then f
splits over N by normality, and if β is a zero of f in N, then there exists a K-automorphism
φ of N such that φ(α) = β by Theorem 3.8. By assumption in (ii), φ is a K-automorphism
of F, so that

β = φ(α) ∈ φ(F ) = F.

Hence any irreducible polynomial f with at least one zero in F splits over F and F : K is a
normal extension.

The third result is of a more computational nature.

Theorem 3.12. Let F :K be a finite separable extension of degree n. Then there are exactly
n distinct K-monomorphisms of F into a normal closure N.

Proof. We use induction on [F : K] = n. If n = 1, then F = K and the identity map is the
only distinct K-monomorphism of F into N. Thus the statement holds for n = 1.

Assume that the statement holds for all n = k. Let n = k + 1 and let α ∈ F \ K with
minimum polynomial m over K. Then

deg m = [K(α) :K] = r > 1,

since α /∈ K. The irreducible polynomial m has one zero in the normal extension N, so it splits
over N, and since m is also separable, it has the distinct zeros α1, . . . , αr. By the induction
hypothesis, there are precisely s distinct K(α)-monomorphisms ρ1, . . . , ρs : F → N, where

s = [F :K(α)] = [F :K]/[K(α) :K] = (k + 1)/r,

by the tower law. Now since N :K is a normal and finite extension, we have by Theorem 3.8
that there are r distinct K-automorphisms ψ1, . . . , ψr of N such that ψi(α) = αi. Consider
the maps

φij = ψiρj .

It is easily verified that they are k + 1 = rs distinct K-monomorphisms F → N. We show
that these exhaust the K-monomorphisms F → N.

Let ψ :F → N be a K-monomorphism. Since 0 = ψ(m(α)) = m(ψ(α)), we have that ψ(α)
is a zero of m in N. Hence ψ(α) = αi for some integer 1 ≤ i ≤ r. The map φ = ψ−1i ψ is a
K(α)-monomorphism of F :N, since ψ−1i and ψ both fix K and

φ(α) = ψ−1i ψ(α) = ψ−1i (αi) = α.

Now, by induction, we have precisely s distinct K(α)-monomorphisms ρ1, . . . , ρs, so φ = ρj
for some integer 1 ≤ j ≤ s. Hence,

ψ = ψiφ = ψiρj .

Thus all K-monomorphisms F → N are of the form ψiρj , and the theorem is proved.
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This enables us to calculate the order of the Galois group of a Galois extension.

Corollary 3.13. Let F :K be a Galois extension of degree n. Then |Γ(F :K)| = n.

Proof. By Theorem 3.12 there are precisely n distinct K-monomorphisms of F into a normal
closure N, and hence into any normal extension of F. Since F : K is normal, we have, by
Theorem 3.11, that every K-monomorphism F → N is a K-automorphism of F. Hence there
are precisely n distinct K-automorphisms of F, and thus |Γ(F :K)| = n.

This leads us to another important result.

Theorem 3.14. If F :K is a Galois extension with Galois group G, then K is the fixed field
of G.

Proof. Let K0 be the fixed field of G and let [F : K] = n. Then |G| = n by Corollary 3.13.
By Theorem 3.5, [F : K0] = |G| = n. Since K0 is a fixed field of G we have K ⊆ K0, and so
we must have K = K0.

There is a converse to this, that is if K is the fixed field of the Galois group G of a finite
extension, then we have a Galois extension. We need this result as well to ensure that the
Galois correspondence is a bijection. Before we can prove it, however, we require a result
similar in both statement and proof to Theorem 3.12.

Theorem 3.15. Let K ⊆ F ⊆ L be fields such that L : K is finite and [F : K] = n. Then
there are at most n K-monomorphisms F → L.

Proof. Let N be a normal closure of L : K. Then N : K is finite by Theorem 3.9. Every
K-monomorphism F → L is also a K-monomorphism F → N and we may therefore assume
that L is a normal extension of K by replacing L with N. We now use induction on [F :K] as
in the proof of Theorem 3.12 with some alterations. First, by induction we have s′ distinct
K(α)-monomorphisms F → N where s′ ≤ s. Second, we may lack separability, so we have r′

K-automorphisms of N where r′ ≤ r since the zeros in N need not be distinct. The rest of
the argument goes through.

Note that if we do not have separability, then there are fewer than n K-monomorphisms
F → L since r′ < r for some choice of α.

We can now prove the converse of Theorem 3.14 when F :K is finite.

Theorem 3.16. If F : K is a finite extension with Galois group G such that K is the fixed
field of G, then F :K is a Galois extension.

Proof. First we show that F :K is separable and second, that F :K is normal.
K is the fixed field of G, so by Theorem 3.5, [F : K] = |G|. Let |G| = n. Then there are

precisely n distinct K-automorphisms of F, which are K-monomorphisms F → F, namely
the elements of G. But as noted just above, if F :K is not separable, there are fewer than n
K-monomorphisms F → F. Therefore, F :K must be separable.

Let N be an extension of K containing F and let ψ be a K-monomorphism F → N. Since
N contains F, every element of G defines a K-monomorphism F → N, and thus there are n
K-monomorphisms F → N which are automorphisms of F. But by Theorem 3.15, we can
have at most n distinct ψ, so ψ must be one of these automorphisms of F. Since condition
(iii) in Theorem 3.11 is now fulfilled, we have that F :K is normal by the same theorem.

F :K is then a finite separable normal extension and thus it is a Galois extension.
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3.3 The Fundamental Theorem of Galois Theory

We are almost ready to properly establish the properties of the Galois correspondence between
a field extension and its Galois group. Before we can state and fully prove the main theorem,
however, we need a lemma.

Lemma 3.17. Let F :K be a field extension and let M be an intermediate field. Furthermore,
let ψ be a K-automorphism of F. Then

(ψ(M))∗ = ψM∗ψ−1.

Proof. Let M ′ = ψ(M), φ ∈M∗, and x1 ∈M ′. Then x1 = ψ(x) for some x ∈M, and we have

(ψφψ−1)(x1) = ψφ(x) = ψ(x) = x1,

so that
ψM∗ψ−1 ⊆M ′∗.

Similarly ψ−1M ′∗ψ ⊆M∗. Thus we have

ψM∗ψ−1 ⊆M ′∗

ψM∗ψ−1 ⊇M ′∗

and hence also M ′∗ = (ψ(M))∗ = ψM∗ψ−1.

Theorem 3.18 (Fundamental Theorem of Galois Theory). Let F :K be a Galois extension
of degree n with Galois group G. Furthermore, let F be the set of all intermediate fields of
F :K and G the set of all subgroups of Γ(F :K). Then the following statements hold true.

(i) |G| = n.

(ii) The maps ∗ and † are mutual inverses and set up an order-reversing one-to-one corres-
pondence between F and G .

(iii) If M is an intermediate field, then

[F :M ] = |M∗|

and [M :K] is the index of M∗ in G.

(iv) An intermediate field M is a normal extension of K if and only if M∗ is a normal
subgroup of G.

(v) If an intermediate field M is a normal extension of K, then Γ(M :K) is isomorphic to
the quotient group G/M∗.

Proof. (i). This is just a restatement of Corollary 3.13.
(ii). Let M ∈ F . We then have that F : M is separable by Theorem 2.18. Addition-

ally, since F : K is normal and finite, F is a splitting field for some polynomial over K by
Theorem 2.17, and therefore also a splitting field for the same polynomial over M, so that

M∗† = M. (3.8)

Now consider H ∈ G . We know that H ⊆ H†∗. By equation (3.8), we have that
H†∗† = (H†)∗† = H†. This, combined with Theorem 3.5, yields

|H| = [F :H†] = [F :H†∗†] = |H†∗|.
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Since both H and H†∗ are finite groups and H ⊆ H†∗, we must have that

H = H†∗.

So for any M ∈ F and H ∈ G , we have that M∗† = M and H = H†∗, from which
statement (ii) follows.

(iii). F :K is a Galois extension, so by Corollary 3.13, [F :M ] = |M∗|. By the tower law,

|M∗| = [F :M ] =
[F :K]

[M :K]
⇔ [M :K] =

[F :K]

|M∗|
=
|G|
|M∗|

,

which, by the well-known theorem of Lagrange, is equal to the index of M∗ in G since both
groups are finite.

(iv). First, suppose that M :K is normal and let ψ ∈ G. Then ψ|M is a K-monomorphism
M → F. Since M : K is normal and M ⊆ F, we have that ψ|M is a K-automorphism of M
by (iii) in Theorem 3.11. Hence ψ(M) = M. By Lemma 3.17, M∗ = (ψ(M))∗ = ψM∗ψ−1, so
that M∗ CG.

Now suppose that M∗CG and let ψ be any K-monomorphism M → F. By Theorem 3.7,
there exists a K-automorphism φ of F such that ψ|M = φ. Now φ ∈ G so φM∗φ−1 = M∗

since M∗ CG. Lemma 3.17 then tells us that (φ(M))∗ = φM∗φ−1 = M∗. By statement (ii),
we can apply the map † to both sides to get φ(M) = M. Hence ψ(M) = M, so that ψ is a
K-automorphism of M. By (ii) in Theorem 3.11 M :K is normal.

(v). Let G̃ be the Galois group of the normal extension M :K. We define the map φ:G→ G̃
by

φ(λ) = λ|M , λ ∈ G.

We have that λ|M is a K-monomorphism M → F, but since M :K is normal, statement (ii) in
Theorem 3.11 tells us that λ|M is a K-automorphism of M. Hence φ is a group homomorphism.
By Theorem 3.7, there is a K-automorphism λ of F for every K-monomorphism µ :M → F,
and thus in particular of for every K-automorphism of M, such that λ|M = µ. Therefore, φ
is surjective. Furthermore, we observe that ker(φ) = M∗. We can employ elementary group
theory to see that

G̃ = Im(φ) ∼= G/ker(φ) = G/M∗.

All parts of the theorem are now proved.

The importance of this theorem does not necessarily lie in its intrinsic merit, but rather in
its potential to be used as a tool. It allows us to utilise results from group theory when dealing
with polynomials and field extensions which dramatically expands our arsenal. Because of
this, we shall need to review some results form elementary group theory before delving into
the discussion of solutions of equations by radicals.

3.4 Results from Group Theory

This subsection requires some basic knowledge about group theory to be properly compre-
hended. The relevant theory, that is all necessary definitions, theorems, and proofs, should be
included in most texts on group theory, for example Bhattacharya et al. [2], or Hungerford [3].

To facilitate the understanding of future proofs, we recall then isomorphism theorems,
omitting the proofs.
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Theorem 3.19 (The Isomorphism Theorems). Let G, H, and T be groups.

(i) If φ :G→ H is a homomorphism, then

G/ker(φ) ∼= im(φ).

(ii) If H is a subgroup of G and T CG, then

H/(T ∩H) ∼= HT/T.

(iii) If H and T are normal subgroups of G with T ⊆ H, then H/T CG/T, and

(G/T )/(H/T ) ∼= G/H.

These are the first, second, and third isomorphism theorems, respectively. We shall really
only need these to prove the next theorem, which tells us how the property of solubility relates
between a group and its subgroups.

3.4.1 Soluble Groups

Let us begin by recalling the definition of a soluble group.

Definition. A group G is soluble if there is a finite series of subgroups Gi of G such that

〈eG〉 = G0 CG1 C . . .CGn = G

for i = 0, · · · , n − 1, where 〈eG〉 is the group generated by the identity in G and Gi+1/Gi is
abelian for all i.

Theorem 3.20. Let G be a group, H a subgroup of G, and T a normal subgroup of G.

(i) If G is soluble, then H is soluble.

(ii) If G is soluble, then G/T is soluble.

(iii) If T and G/T are soluble, then G is soluble.

Proof. (i). Let G have a finite series of subgroups as described as in the definition and
let Hi = Gi ∩H. Then H has the a series

〈eG〉 = H0 CH1 C · · ·CHn = H.

This stems from the fact that if GiCGi+1, then (Gi∩H)C (Gi+1∩H) because (Gi∩H) ⊆ Gi
and (Gi+1 ∩H) ⊆ Gi+1. We now need to show that the factors Hi+1/Hi are abelian. Since
Gi CGi+1, we have by the second isomorphism theorem that

Hi+1

Hi
=
Gi+1 ∩H
Gi ∩H

=
Gi+1 ∩H

Gi ∩ (Gi+1 ∩H)
∼=

(Gi+1 ∩H)Gi
Gi

.

The latter group is a subgroup of Gi+1/Gi, which is abelian, so must itself be abelian. Thus
Hi+1/Hi is abelian for all i, and H is soluble.

(ii). Define Gi as before. Then G/T has a series

T/T = G0T/T CG1T/T C . . .CGnT/T = G/T.
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A typical quotient is
Gi+1T/T

GiT/T

which, by the third isomorphism theorem, is isomorphic to

Gi+1T

GiT
=
Gi+1(GiT )

GiT
∼=

Gi+1

(GiT ) ∩Gi+1

∼=
Gi+1/Gi

((GiT ) ∩Gi+1)/Gi
.

The first isomorphy follows from the second isomorphism theorem, and the second isomorphy
from the third isomorphism theorem. The last group is a quotient group of Gi+1/Gi, which
is abelian, so must itself be abelian. Hence G/T is soluble.

(iii). There exist two series, since both T and G/T are soluble,

〈eG〉 = T0 C T1 C . . .C Tr = T

T/T = G0/T CG1/T C . . .CGs/T = G/T

with abelian quotients. Consider the series of G given by

〈eG〉 = T0 C T1 C . . .C Tr = T = G0 C . . .CGs = G.

Then a quotient is either Ti+1/Ti, which is abelian, or Gi+1/Gi which, by the third isomorph-
ism theorem, is isomorphic to

Gi+1/T

Gi/T
,

which again is abelian. Hence G is soluble.

3.4.2 Simple Groups

We turn our attention to simple groups which, in a sense, can be regarded as the opposite of
soluble groups. Let us once again begin by quickly recalling the definition.

Definition. A group G is simple if its only normal subgroups are 〈eG〉 and G.

We now classify all groups which are both simple and soluble. Recall that all cyclic groups
are abelian, that every subgroup of an abelian group is normal and that a cyclic group of
prime order is simple.

Theorem 3.21. A soluble group is simple if and only if it is cyclic of prime order.

Proof. First, suppose that G is a simple soluble group. Then G has a series

〈eG〉 = G0 CG1 C . . .CGn = G.

By deleting repeats, we may assume that Gi+1 6= Gi. The Gn−1 is a proper normal subgroup
of G, so Gn−1 = 〈eG〉 since G is simple. Hence Gn/Gn−1 = G, which is abelian. Every
subgroup of an abelian group is normal and every element in G generates a cyclic subgroup,
so must therefore generate either 〈eG〉 or G. Hence G is simple and cyclic, so is therefore of
prime order.

Now suppose that G is a soluble cyclic group of prime order. Then G is also simple.

Our last little excursion into reviewing results from group theory will be concerning the
alternating and symmetric groups. Recall that the symmetric group Sn is the group of all
permutations of a set of n elements and that the alternating group An is the group of all
even permutations of Sn. The proof presented here is more similar in structure to the proof
by Hungerford [3], rather than that of Stewart [1].
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Theorem 3.22. If n ≥ 5, then the alternating group An is simple.

Proof. This proof is rather long, so we shall split it up into two parts. Suppose that
(1) 6= T C An. Our methodology will be to first show that if T contains one 3-cycle, then
it contains all 3-cycles and that the 3-cycles generate An, so that we must have T = An.
Second, we shall show that T indeed contains a 3-cycle which regrettably will require some
arduous case study. It is here we shall need n ≥ 5.

According to our plan above, suppose then that T contains a 3-cycle which we may assume
to be (123). Now for any integer k > 3, the cycle (32k) = (2k)(3k) is even, so lies in An. Since
T CAn, we have that

(32k)(123)(32k)−1 = (32k)(123)(3k2) = (1k2)

lies in T, and hence also that (1k2)2 = (12k) ∈ T for all k ≥ 3. Now the symmetric group Sn
is generated by all 2-cycles of the form (1i) for i = 2, . . . , n. Since An is the set of all even
products of these, it is generated by all elements of the form (1ij), where 1 < i < j. But for
2 < i < j, we have

(1ij) = (1j2)(12i)(12j) = (12j)−1(12i)(12j),

so that An is generated by all the cycles (12k) and hence T = An.
We now need to show that T must contain at least one 3-cycle. As mentioned above, we

shall do this by splitting it into three cases. Every element of T is a product of disjoint cycles.

1. Some element of T contains a cyclic factor of length ≥ 4.

2. All disjoint cyclic factors of elements of T are of length ≤ 3 and at least one is of
length 3.

3. All disjoint cyclic factors of elements of T are of length ≤ 2.

These cases exhaust the possibilities of the structure of T.

1. Suppose that T contains an element of the form σ = (123 . . . r)τ, where r ≥ 4
and τ is a product of cycles disjoint from each other and from (123 . . . r). Now
let δ = (123) = (12)(23) ∈ An. Since T C An, we have that σ−1(δσδ−1) ∈ T.
Furthermore, (123) and (123 . . . r) commutes with τ since they are disjoint. Thus

σ−1(δσδ−1) = τ−1(1r . . . 32)
(
(123)(123 . . . r)τ(123)−1

)
= τ−1τ(1r . . . 32)(123)(123 . . . r)(132)

= (13r)

and T contains a 3-cycle.

2. (a) Suppose that T contains an element of the form σ = (123)(456)τ, where τ is a
product cycles disjoint from each other, from (123) and from (456). Now
let δ = (124) ∈ An. As in case (1), σ−1(δσδ−1) ∈ T, so that T contains

σ−1(δσδ−1) = τ−1(456)−1(123)−1
(
(124)(123)(456)τ(124)−1

)
= τ−1τ(465)(132)(124)(123)(456)(142)

= (14263)

and hence also a 3-cycle by case (1).
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(b) Suppose that T contains an element of the form σ = (123)τ, where τ is a possibly
empty product of 2-cycles disjoint from each other and from (123). Then

σ2 = (123)τ(123)τ = (123)(123)ττ = (123)(123) = (132)

lies in T, so that T contains a 3-cycle.

3. Here we may suppose that T contains an element of the form σ = (12)(34)τ, where
τ is a product of 2-cycles disjoint from each other, from (12) and from (34). Let
δ = (123) ∈ An. Then

σ−1(δσδ−1) = τ−1(34)(12)(123)(12)(34)τ(132) = (13)(24) = π ∈ T.

Since n ≥ 5, there is an element ρ = (13k) ∈ An, where k ≥ 5. Then π(ρπρ−1) ∈ T. But

π(ρπρ−1) = (13)(24)(13k)(13)(24)(1k3) = (13k),

so T contains a 3-cycle.

Hence T must contains a 3-cycle, so that by the first part of this proof T = An. Thus An
has no proper normal subgroups for n ≥ 5 and is therefore simple.

We now connect this result to the full symmetric group Sn.

Corollary 3.23. The symmetric group Sn is not soluble if n ≥ 5.

Proof. If Sn were soluble, then the subgroup An would be soluble by Theorem 3.20 and simple
by Theorem 3.22. Hence An is of prime order by Theorem 3.21. But |An| = 1

2 |Sn| = 1
2n! is

not prime if n ≥ 5, so we have a contradiction. Thus, Sn is not soluble for n ≥ 5.

We conclude this section by reviewing one final result concerning the symmetric group.

Theorem 3.24. The symmetric group Sn is generated by the cycles (12 . . . n) and (12) for
any positive integer n.

Proof. Let σ = (12 . . . n) and τ = (12), and let G be the group generated by σ and τ.
Then

στσ−1 = (12 . . . n)(12)(1n . . . 2) = (23) ∈ G

and hence
σ(23)σ−1 = (12 . . . n)(23)(1n . . . 2) = (34) ∈ G.

Thus G contains all 2-cycles (m− 1,m) for m = 2, . . . , n. Then G contains

(12)(23)(12) = (13), (13)(34)(13) = (14), . . .

and therefore all 2-cycles (1m). But then G contains all (1m)(1r)(1m) = (mr). Every element
of Sn is a product of 2-cycles, so we must have G = Sn.



34 4. Solutions of Equations by Radicals

4 Solutions of Equations by Radicals

We are now ready to connect all of this perhaps seemingly unrelated theory and apply it to
the solution of equations by radical expressions. We shall then be able to show the insolubility
of general quintic equation.

4.1 Radical Extensions

We have not yet defined properly what the ’solubility by radicals’ of polynomials actually
means. It seems high time to do something about this. We begin with field extensions.

Definition. Let F : K be a field extension. Then F : K is a radical extension if
F = K(α1, . . . , αn) where, for each i = 1, . . . , n, there is an integer m(i) such that

α
m(i)
i ∈ K(α1, . . . , αi−1) for i ≥ 2

and α
m(1)
1 ∈ K.

We say that the αi together form a radical sequence for F :K.
Before we can make the connection with zeros of polynomials, we need to address the

characteristic of a field. We define it as done in Hungerford [3].

Definition. Let F be a field. Then F is of characteristic n if n1F = 0 for some positive
integer n. If no such n exists, F is of characteristic 0.

We shall only concern ourselves with fields of characteristic zero.

Definition. Let f be a polynomial over a field K of characteristic zero and let Σ be a splitting
for f over K. Then f is soluble by radicals if there exists a field L containing Σ such that
L :K is a radical extension.

There are two things to note here; first, Σ:K need not be radical and second, this definition
implies that if f has one zero expressible by radicals, then all zeros must be, by an argument
based on Theorem 2.8.

We now want to prove that if K is a field of characteristic zero, then the extension F :K
has a soluble Galois group if there is field L such that L : K is radical. This is not straight
forward, and we shall need to do some preliminary work in the form of a sequence of lemmas,
first concerning separability of irreducible polynomials over fields of characteristic zero.

Lemma 4.1. If K is a field of characteristic zero, then every irreducible polynomial over K
is separable over K.

Proof. We shall prove this by contradiction. Suppose, therefore, that f is an irreducible
polynomial over K which is inseparable over K. Since f then has multiple zeros in a splitting
field, f and Df must have a common factor of degree ≥ 1 over K by Theorem 2.19. But f is
irreducible and Df is of smaller degree than f, so we must have Df = 0. Thus if

f(t) = a0 + · · ·+ amt
m,

then nan = 0 for all integers n > 0. Over a field of characteristic zero, this is equivalent to
an = 0 for all n, so that every irreducible polynomial f is a constant polynomial, which is a
contradiction. Thus, f is separable over K.

Lemma 4.2. Let F :K be a radical extension and let N be a normal closure of F :K. Then
N :K is a radical extension.
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Proof. Let F = K(α1, . . . , αn) where α
m(i)
i ∈ K(α1, . . . , αi−1) for i = 2, . . . , n, and α

m(1)
1 ∈ K.

Let fi be the minimum polynomial of αi over K. Then N ⊇ F is a splitting field
for f1 · · · fn. For every zero βij ∈ N of fi, there is an isomorphism φ : K(αi) → K(βij)
by Theorem 2.8. Furthermore, since N :K is normal, we have by Theorem 3.8 that φ extends
to a K-automorphism ψ of N. Since αi is radical over K, so is βij , and therefore also N.

Let us now move to situations where we have abelian Galois groups.

Lemma 4.3. Let K be a field of characteristic zero and let F be a splitting field for the
polynomial tp − 1 over K, where p is prime. Then Γ(F :K) is a abelian.

Proof. The derivative of tp − 1 is ptp−1, so the polynomial has no multiple zeros in in F by
Theorem 2.19. Furthermore, a quick investigation shows that its zeros form a group G under
multiplication. All the zeros are distinct, so G has order p, and since p is prime, G is cyclic.
Let ε be the generator of this group. Then F = K(ε), so that any K-automorphism of F is
determined by its effect on ε. Moreover, K-automorphisms of F permute the zeros of tp − 1.
Hence any σi ∈ Γ(F :K) is of the form

σi : ε→ εi.

But then
σiσj(ε) = εij = εji = σjσi(ε),

so that Γ(F :K) is abelian.

Lemma 4.4. Let K be a field of characteristic zero over which tn − 1 splits. Further, let
k ∈ K and let F be a splitting field for tn − k over K. Then Γ(F :K) is abelian.

Proof. Let α be any zero of tn − k and let ε be a zero of tn − 1. Since tn − 1 splits over K,
we have n distinct zeros of tn − 1 in K by the proof of Lemma 4.3. Thus, the general zero of
tn−k is εα. Hence F = K(α) and any K-automorphism of F is determined by its effect on α.
Let σ and τ be in Γ(F :K). Then

σ : α→ εα

τ : α→ ηα

where ε and η are in K, whence

στ(α) = εηα = ηεα = τσ(α),

and Γ(F :K) is abelian.

Lemma 4.5. Let K be a field of characteristic zero and let F : K be a normal and radical
extension. Then Γ(F :K) is soluble.

Proof. We shall prove this by induction, however, we first need to make an observation.

Suppose that F = K(α1, . . . , αn), where α
m(i)
i ∈ K(α1, . . . , αi−1) and α

m(1)
1 ∈ K. By inserting

extra elements αj when necessary, we may assume that m(i) is prime for all i. In particular,
there is a prime p such that αp1 ∈ K. Using this observation, we shall now prove the statement
using induction on n.

If n = 0, then F = K and Γ(F :K) contains only the identity map, so is soluble.
Assume that the statement holds for all n = k and let n = k + 1. If α1 ∈ K, then

F = K(α2, . . . , αk+1) and Γ(F :K) is soluble by induction.
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Suppose, therefore, that α1 /∈ K. Let f be the minimum polynomial of α1 over K. Since
F : K is normal, f splits over F, and since K is of characteristic zero, F : K is separable by
Theorem 4.1, so that f has no repeated zeros. Since α1 /∈ K, the degree of f is at least 2.
Let β be a zero of f different from α1 and let ε = α1/β. We have that αp1 ∈ K so α1 is a
zero of the polynomial g = tp − αp1 over K. We must therefore have that f |g. Since f(β) = 0,
g(β) = 0, from which it follows that αp1 = βp. Hence, εp = 1. Furthermore, ε 6= 1. Thus, ε has
order p in the multiplicative group of F, so the elements 1, ε, . . . , εp−1 are distinct pth roots
of unity in F, since (εk)p = (εp)k = 1k = 1, for any integer k. Hence, tp − 1 splits over F.

We shall now consider an intermediate field and treat the Galois groups of various exten-
sions related to this intermediate field to show that the induction step goes through. To this
end, let M be a splitting field for tp−1 over K and a subfield of F, so that M = K(ε). Before
proceeding, we observe that F :K is finite and normal by assumption, but also separable by
Lemma 4.1, since K is of characteristic zero, hence F :M is also finite, normal and separable,
so that Theorem 3.18 applies to both extensions.

Since tp − 1 splits over M and αp1 ∈ M, the proof of Lemma 4.4 implies that M(α1) is a
splitting field for tp−αp1 over M. Thus M(α1):M is normal, and by Lemma 4.4, Γ(M(α1):M)
is abelian. By (v) in Theorem 3.18, we have that

Γ(M(α1) :M) ∼= Γ(F :M)/Γ(F :M(α1)).

Now
F = M(α1)(α2, . . . , αn),

so that F :M(α1) is a normal radical extension. By induction Γ(F :M(α1)) is soluble. Since
Γ(M(α1) :M) is trivially soluble, we have, by (iii) in Theorem 3.20, that Γ(F :M) is soluble.

The intermediate field M is a splitting field for tp − 1 over K, so M : K is normal. By
Lemma 4.3, Γ(M : K) is abelian and hence, also soluble. Applying (v) in Theorem 3.18, we
have that

Γ(M :K) ∼= Γ(F :K)/Γ(F :M).

Again, by (iii) in Theorem 3.20, we have that Γ(F : K) is soluble, completing the induction
step.

We can now prove the desired result.

Theorem 4.6. Let K be a field of characteristic zero and let K ⊆ F ⊆ L such that L :K is
radical. Then Γ(F :K) is a soluble group.

Proof. Let K0 be the fixed field of Γ(F :K), and let N be a normal closure of L :K0. Then

K ⊆ K0 ⊆ F ⊆ L ⊆ N.

Since L : K is radical, so is L : K0, and by Lemma 4.2, so is N : K0. Since N : K0 is a also
normal, Γ(N :K0) is soluble by Lemma 4.5.

By Theorem 3.16, F :K0 is a Galois extension, so that by (v) in Theorem 3.18,

Γ(F :K0) ∼= Γ(N :K0)/Γ(N : F ).

Theorem 3.20 then implies that Γ(F : K0) is soluble. But F : K0 is a Galois extension, so
Γ(F :K0) = Γ(F :K), and thus Γ(F :K) is soluble.

Before we can restate this result in terms of polynomials, we first define the Galois group
of a polynomial.
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Definition. Let f be a polynomial over a field K with splitting field Σ over K. The Galois
group of f over K is Γ(Σ :K).

Let G be the Galois group of the polynomial f over the field K. If α ∈ Σ is a zero of f,
then f(α) = 0, so for any g ∈ G we have

f(g(α)) = g(f(α)) = 0.

Hence, each element g ∈ G induces a permutation g′ on the set of zeros of f, so that distinct
elements of G induces different permutations, since Σ is generated by the zeros of f and F.
The map g → g′ is a group monomorphism from G to the set of all permutations of the zeros
of f. This is equivalent to saying that G is the group of permutations on the zeros of f. This
means that we can restate Theorem 4.6 as:

Theorem 4.7. Let f be a polynomial over a field K of characteristic zero. If f is soluble by
radicals, then the Galois group of f over K is a soluble group.

Thus to find a polynomial not soluble by radicals it is enough to find one whose Galois
group is not soluble.

4.2 The General Polynomial

To prove the insolubility of the quintic equation over Q, we shall first show that the general
polynomial of degree n ≥ 5 over Q is not soluble by radicals. This implies that there is
no general formula by which all quintic equations can be solved, contrary to the situation
for quadratic, cubic and quartic equations. However, this does not imply that all quintic
polynomials are insoluble by radicals; all quintic equations might be soluble by radicals, only
the solutions might look so different that they cannot be expressed in one formula. We shall,
therefore, then provide an example of a specific quintic polynomial which has an insoluble
Galois group

To be able to define the general polynomial of some degree, we need to consider a different
notion of finiteness so that we can treat transcendental extensions.

Definition. An extension F :K is finitely generated if F = K(α1, . . . , αn) where n is finite.

Here, the αi can be either algebraic or transcendental over K.

Definition. Let t1, . . . , tn be transcendental elements over a field K, all lying in some exten-
sion F of K. Then they are independent if there is no non-trivial polynomial p over K such
that

p(t1, . . . , tn) = 0

in F.

Lemma 4.8. Let F : K be a finitely generated extension. Then there exists an intermediate
field M such that

(i) M = K(α1, . . . , αr) where the αi are independent transcendental elements over K;

(ii) F :M is a finite extension.

Proof. Let F = K(β1, . . . , βn). If all the βj are algebraic over K, then F : K is finite by
Theorem 2.13 and we may take M = K. If not, then some βi is transcendental over K. Let α1

be such an element. If F :K(α1) is not finite, there exists some βj transcendental over K(α1).
Let α2 be such a βj . We may proceed in this manner until M = K(α1, . . . , αr) is such that
F :M is finite. By construction, the αi are independent transcendental elements over K.
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Continuing down this road, a result due to Steinitz tells us that the number r of inde-
pendent transcendental elements is independent of choice of M.

Lemma 4.9 (Steinitz). With the notation of Lemma 4.8, if there is another intermediate
field N = K(β1, . . . , βs) such that β1, . . . , βs are independent transcendental elements over K
and F :N is finite, then r = s.

Proof. Since F :M is finite and β1 ∈ F, β1 is algebraic over M, there is a non-trivial polynomial
p such that

p(β1, α1, . . . , αr) = 0.

Some αi must occur in this equation. Without loss of generality, we can take it to be α1.
Then α1 is algebraic over K(β1, α2, . . . , αr) and F :K(β1, α2, . . . , αr) is finite. Continuing in
this way, we get that

F :K(β1, . . . , βr)

is finite. Now if s > r, then βr+1 must be algebraic over K(β1, . . . , βr), which is a contradic-
tion, and so s ≤ r. Repeating the argument with βi and αi interchanged, we get r ≤ s. Hence,
r = s.

Definition. The number r in Lemma 4.8 is the transcendence degree of F :K.

Before proceeding, we must make a note on symmetric polynomials.

Definition. A polynomial f(t1, . . . , tn) in n variables is symmetric if

f(t1, . . . , tn) = f(tσ(t1), . . . , tσ(tn))

for every permutation σ of the set {1, . . . , n}.

There is a special type of symmetric polynomial, which is of considerable interest to us.

Definition. The rth elementary symmetric polynomial

sr(t1, . . . , tn)

in the indeterminates t1, . . . , tn is the sum of all possible distinct products with r factors of
the elements t1, . . . , tn, so that

s1 = t1 + t2 + · · ·+ tn

s2 = t1t2 + t1t3 + · · ·+ tn−1tn

...

sn = t1t2 · · · tn.

If K is a field and if t1, . . . , tn are independent transcendental elements over K, then the
symmetric group Sn can be made to act as a K-automorphism of K(t1, . . . , tn) by defining

σ(ti) = tσ(i)

for all σ ∈ Sn. Distinct elements of Sn give rise to distinct K-automorphisms.
Now let M be the fixed field of Sn. Then it is clear that M contains all the symmet-

ric polynomials in the ti, and so, in particular, all the elementary symmetric polynomials
sr(t1, . . . , tn).
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Lemma 4.10. With the above notation, M = K(s1, . . . , sn).

Proof. We shall first show that

[K(t1, . . . , tn) :K(s1, . . . , sn)] ≤ n!

and second, that

[K(t1, . . . , tn) :M ] = n!

Finally, we shall observe that K(s1, . . . , sn) ⊆M so that we, in fact, must have an equality.
For the first part we use induction on n. If n = 1, then [K(t1):K(s1)] = 1 since s1(t1) = t1.
Assume that the statements holds for all n = k and let n = k + 1. Consider the double

extension

K(t1, . . . , tk+1) ⊇ K(s1, . . . , sk+1, tk+1) ⊇ K(s1, . . . , sk+1).

We shall calculate the degree in our induction hypothesis by calculating the degree of each of
these extensions and then use the tower law. Let

f(t) = tk+1 − s1tk + . . .+ (−1)k+1sk+1 = (t− t1) . . . (t− tk+1),

so that f(tk+1) = 0, and thus

[K(s1, . . . , sk+1, tk+1) :K(s1, . . . , sk+1)] ≤ k + 1,

by Theorem 2.12 and Lemma 2.4. Now if we let s′1, . . . , s
′
k be the elementary symmetric

polynomials in t1, . . . , tk, we have

si = t1 . . . ti + . . .+ tk−i+2 . . . tk+1

= tk+1(t1 . . . ti−1 + . . .+ tk−i+2 . . . tk) + (t1 . . . ti + . . .+ tk+1−i . . . tk)

= tk+1s
′
i−1 + s′i

so that

K(s1, . . . , sk+1, tk+1) = K(tk+1, s
′
1, . . . , s

′
k).

By induction we now have

[K(t1, . . . , tk+1) :K(s1, . . . , sk+1, tk+1]

= [K(tk+1)(t1, . . . , tk) :K(tk+1)(s′1, . . . , s
′
k)] ≤ k!

so that by the tower law

[K(t1, . . . , tk+1) :K(s1, . . . , sk+1)]

= [K(t1, . . . , tk+1) :K(s1, . . . , sk+1, tk+1)][K(s1, . . . , sk+1, tk+1) :K(s1, . . . , sk+1)]

≤ k!(k + 1) = (k + 1)!

and the induction step goes through.
Since Sn is a group of K-automorphisms of K(t1, . . . , tn) we have, by Theorem 3.5, that

[K(t1, . . . , tn) :M ] = |Sn| = n!

As mentioned above, the fixed field M of Sn contains all symmetric polynomials in the ti,
and thus M must also contain K(s1, . . . , sn). We therefore have M = K(s1, . . . , sn).
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Corollary 4.11. Every symmetric polynomial in t1, . . . , tn over K can be written as a rational
expression in s1, . . . , sn.

Proof. The statement follows directly from the previous lemma, since symmetric polynomials
lie inside the fixed field of Sn.

Lemma 4.12. With notation as above, s1, . . . , sn are independent transcendental elements
over K.

Proof. We know from the proof of Lemma 4.10 that K(t1, . . . , tn) is a finite extension of
K(s1, . . . , sn). Hence, K(t1, . . . , tn) has transcendence degree n over K. Since K(s1, . . . , sn)
is an intermediate field of K(s1, . . . , sn) :K, it also has transcendence degree n over K. If the
si were to be dependent, then the transcendence degree of K(s1, . . . , sn) over K would be
smaller than n. Therefore the si must be independent transcendental elements over K.

We can now assign a meaning to the title of this subsection.

Definition. Let K be a field and let s1, . . . , sn be independent transcendental elements over
K. The general polynomial of degree n over K is the polynomial

tn − s1tn−1 + s2t
n−2 − · · ·+ (−1)nsn

over the field K(s1, . . . , sn).

Note that even though we say that the polynomial is over K it is really over K(s1, . . . , sn).

Theorem 4.13. Let K be a field and let f be the general polynomial of degree n over K.
Further, let Σ be a splitting for f over K(s1, . . . , sn). Then the zeros t1, . . . , tn of f in Σ
are independent transcendental elements over K, and Γ(Σ : K(s1, . . . , sn)) is the symmetric
group Sn.

Proof. We have that Σ:K(s1, . . . , sn) is finite by Theorem 2.17, so the transcendence degree of
Σ over K is equal to that of K(s1, . . . , sn) over K, namely n. By the definition of a splitting
field, Σ = K(t1, . . . , tn) and thus, the ti are independent transcendental elements over K,
since the transcendence degree of Σ over K would be smaller than n otherwise. Since the ti
are independent transcendental elements over K and the zeros of the general polynomial f
over K, the si must be the elementary symmetric polynomials.

As previously established, Sn acts as a group of K-automorphisms of Σ, and by Lemma
4.10, the fixed field of Sn is K(s1, . . . , sn). Now by Theorem 3.16 Σ : K(s1, . . . , sn) is a
Galois extension, and hence its degree is |Sn| = n! by Theorem 3.5. By (i) in Theorem 3.18
G = |Γ(Σ :K(s1, . . . , sn))| = n! and since it also contains Sn, we must have G = Sn.

The insolubility of the general quintic is now finally within our grasp.

Theorem 4.14. Let K be a field of characteristic zero and let n ≥ 5. Then the general
polynomial of degree n over K is not soluble by radicals.

Proof. By Theorem 4.13 the Galois group of f over K(s1, . . . , sn) is the symmetric group Sn.
Since Sn is not soluble by Theorem 3.23, the general polynomial of degree n is not soluble by
radicals by Theorem 4.7.

What remains now is to exhibit an example of a quintic polynomial which is not soluble
by radicals. For this, we need the associated Galois group to be insoluble. For practical
purposes, we first need a lemma.
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Lemma 4.15. Let f be an irreducible polynomial of degree p over Q where p is prime. If
f has precisely two non-real zeros in C, then the Galois group of f over Q is the symmetric
group Sp.

For the proof of this theorem, we shall need to invoke a theorem in group theory by
Cauchy; it states that if a prime p divides the order of a finite group, then the finite group
contains an element of order p. For reasons of brevity, we shall omit the proof of this. The
full statement and proof of the theorem is presented in, for example, Stewart [1].

Proof. By the fundamental theorem of algebra, C contains a splitting field Σ for f over Q.
Let G be the Galois group of f over Q. Then G is a subgroup of Sp. When constructing Σ
from Q, we first adjoin a zero, which is an element of degree p, so that [Σ :Q] is divisible by p.
By (i) in Theorem 3.18, p divides the order of G. By the aforementioned theorem by Cauchy,
G contains an element of order p. However, the only elements of Sp of order p are the p-cycles.

Complex conjugation is a Q-automorphism of C, and therefore induces a Q-automorphism
of Σ. It leaves the p− 2 real zeros of f fixed while permuting the two non-real ones. Thus G
contains a 2-cycle.

We may choose notation so that the 2-cycle is (12) and, taking a power of the p-cycle if
necessary, so that the p-cycle is (12 . . . p). By Theorem 3.24, these generate the whole of Sp,
and thus, G = Sp. The lemma is proved.

Theorem 4.16. The polynomial t5 − 6t+ 3 over Q is not soluble by radicals.

Once again, we shall need the use of a result omitted in this text; namely the well-known
Eisenstein’s criterion. Its statement and proof are also presented in Stewart [1].

Proof. Let f(t) = t5− 6t+ 3. By Eisenstein’s criterion, f is irreducible over Q. We shall show
that f has precisely three real zeros, each with multiplicity 1, so that we may invoke Lemma
4.15.

Since f is irreducible and Q is of characteristic zero, f is separable over Q by Lemma 4.1,
so that f has no repeated zeros. We have f(−2) = −17, f(−1) = 8, f(0) = 3, f(1) = −2, and
f(2) = 23. By Rolle’s theorem, the zeros of f are separated by zeros of Df, which has two
real zeros ± 4

√
6/5, so that f has at most three real zeros. But since a continuous function on

the real line cannot change sign without passing through 0, f has at least three zeros. Thus
f has precisely three real zeros.

Since 5 is prime, the Galois group of f is S5 by Lemma 4.15. By Corollary 3.23, S5 is not
soluble, so that f is not soluble by radicals by Theorem 4.7.
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5 Geometric Constructions

We shall end by discussing another application of the theory of field extensions; namely
impossible geometric constructions by unmarked ruler and compass. In order to make the
seemingly strange leap between these two subjects, we must first establish what can be done
with the tools at our disposal.

Assume that we are given a set P0 of points in the Euclidean plane R2. There are then
two possible operations we can perform.

(a) Operation 1 (ruler): Draw a straight line through any two points in P0.

(b) Operation 2 (compass): With centre at a point in P0, draw a circle with radius equal
to the distance between any pair of points in P0.

Definition. Points are constructible in one step from P0 if they are points of intersection of
any distinct lines or circles which are drawn using operations 1 or 2.

A point r ∈ R2 is constructible from P0 if there is a finite sequence

r1, . . . , rn = r

of points of R2 such that, for each i = 1, . . . , n, the point ri is constructible in one step from
the set

P0 ∪ {r1, . . . , ri−1}.

It turns out that given coordinates a and b, we can with operations 1 and 2 construct a+b,
a − b and ab. If b is non-zero, we can also construct a/b, and if a > 0, we can construct

√
a.

Since we can perform all field operations, the connection to field theory follows in a natural
way. When constructing new points, we consider the subfield of R generated by the x- and
y-coordinates of the points given and already constructed. Now let K0 be the subfield of R
generated by the coordinates of the points in P0. If ri is a constructible point with coordinates
(xi, yi), then we define the associated field Ki to be

Ki = Ki−1(xi, yi),

that is the field obtained from adjoining xi and yi to the field Ki−1. This yields

K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R.

Lemma 5.1. With notation as above, xi and yi are zeros in Ki of quadratic polynomials in
Ki−1.

Proof. There are three possible cases: line meets line, line meets circle, and circle meets circle.
Each one is dealt with using coordinate geometry. We shall only show the case ‘line meets
circle’.

Let A, B, and C be points with coordinates in Ki−1 which are (a1, a2), (b1, b2), and (c1, c2),
respectively. We draw the line AB and the circle with centre C and radius r, as can be seen in
Figure 1. Note that r2 ∈ Ki−1 by the Pythagorean theorem, since r is the distance between
two points whose coordinates are in Ki−1. The equation of the line AB is

x− a1
b1 − a1

=
y − a2
b2 − a2

(5.1)

and of the circle
(x− c1)2 + (y − c2)2 = r2. (5.2)
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Figure 1: Line meets circle.

If we substitute equation (5.1) into equation (5.2) we obtain

(x− c1)2 +

(
(x− a1)

(b1 − a1)
(b2 − a2) + a2 − c2

)2

= r2

so that the x-coordinates of the intersection points X and Y are zeros of a quadratic polynomial
over Ki−1. The same is true for the y-coordinates.

A field extension created by adjoining the zeros of a quadratic polynomial has degree 2.
The fact that our geometric constructions are results of repetitions of such processes motivates
our next theorem which is key in the upcoming impossibility proofs.

Theorem 5.2. Let r = (x, y) be a point constructible from a subset P0 of R2, and let K0 be
the subfield of R generated by the coordinates of the points in P0. Then the degrees

[K0(x) :K0] and [K0(y) :K0]

are powers of 2.

Proof. We employ the accumulated notation. By Lemma 5.1 and Theorem 2.12 we have

[Ki−1(xi) :Ki−1] = 1 or 2.

If the quadratic polynomial over Ki−1, of which xi is a zero, is irreducible, then the degree is 2;
otherwise it is 1. Similarly,

[Ki−1(yi) :Ki−1] = 1 or 2.

By the tower law, we therefore have

[Ki−1(xi, yi) :Ki−1] = [Ki−1(xi, yi) :Ki−1(xi)][Ki−1(xi) :Ki−1]

= 1, 2 or 4.

Hence [Ki−1(xi, yi) :Ki−1] = [Ki :Ki−1] is a power of 2.
An easy proof by induction using the above conclusion and the tower law shows that

[Kn :K0] is a power of 2. But, once again using the tower law,

[Kn :K0] = [Kn :K0(x)][K0(x) :K0]

from which it follows that [K0(x) :K] is a power of 2. By the same reasoning, [K0(y) :K0] is
a power of 2.
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5.1 Impossibility Proofs

We shall shortly resolve three classical construction problems by showing that the construc-
tions are impossible; the construction of a cube with twice the volume of a given one, the
trisection of the angle π/3, and the construction of a square equal in area to that of a given
circle. However, one crucial note must first be made. For these three proofs, we shall use
two results not included in this thesis; one that is easy to prove, and one that is much more
difficult. The first is Eisenstein’s criterion, which we have used once before, and the second is
the transcendence of π over Q which was famously proved by Lindemann. The full statement
and proof of both of these results are presented in Stewart [1].

Theorem 5.3. The cube cannot be duplicated using constructions by means of unmarked ruler
and compass.

Proof. We are given a cube and without loss of generality, we may take the side of that cube to
be the unit interval on the x-axis. We may therefore further assume that P0 = {(0, 0), (1, 0)},
so that K0 = Q. If we were able to duplicate the cube, then we should be able to construct
the point (α, 0), where α = Re 3

√
2, and so [Q(α) : Q] would be a power of 2 by Theorem 5.2.

But α is a zero of the polynomial t3 − 2 over Q, which is irreducible over Q, so that t3 − 2
is the minimum polynomial of α over Q. Hence [Q(α) : Q] = 3 by Theorem 2.12, which is a
contradiction to Theorem 5.2. Thus, the cube cannot be duplicated.

Theorem 5.4. The angle π/3 cannot be trisected using constructions by means of unmarked
ruler and compass.

Proof. Trisecting the angle π/3 is equivalent to constructing the angle π/9, which in turn is
equivalent to constructing the point (α, 0) given the points (0, 0) and (1, 0), where
α = cos(π/9). From this we can construct (β, 0) where β = 2 cos(π/9). We recall the tri-
gonometric formula

cos(3θ) = 4 cos3(θ)− 3 cos(θ).

If we put θ = π/9, then cos(3θ) = 1/2, so that

1

2
= 2(2 cos3(π/9))− 3 cos(π/9) = 2β3 − 3β

2
⇔ β3 − 3β − 1 = 0.

Now let f(t) = t3 − 3t− 1. Since

f(t+ 1) = t3 + 3t2 − 3

is irreducible over Q by Eisenstein’s criterion, so is f(t), and so f is the minimum polynomial
of β over Q. Thus [Q(β) : Q] = 3, a contradiction to Theorem 5.2.

Theorem 5.5. The circle cannot be squared using constructions by means of unmarked ruler
and compass.

Proof. We may assume that the given circle has radius 1 and thus, area π. The problem is
then equivalent to constructing (0,

√
π) from the points (0, 0) and (0, 1). If such a construction

exists, then we can use it to construct (0, π), which by Theorem 5.2 implies that [Q(π) : Q]
is a power of 2, and thus in particular that π is algebraic over Q. This is a contradiction by
Lindemann’s theorem. Such a construction is therefore impossible.
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