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I 

Abstract  

It is very important for an investor to choose an accurate and effective risk measure when 

optimizing a portfolio of different assets. Recently, in addition to the standard risk measures 

such as variance or Value-at-Risk (VaR), more developed risk measures have emerged and one 

of them is the entropic Value-at-Risk (EVaR). This paper is testing the hypothesis stated by 

Ahmadi-Javid and Fallah-Tafti (2019) that entropic Value-at-Risk (EVaR) is the better risk 

measure to use in the portfolio optimization. To achieve this goal, the EVaR-optimized portfolio 

is compared to the mean-variance optimized portfolio (MV) for investors with different 

preferences. These preferences are exhibited through utility functions starting from the 

traditional utility functions such as the power and the exponential utility function and finishing 

with more complex functions such as the bilinear and S-shaped utility function. The conducted 

tests have shown that under different utility functions investors had different preferences for 

these two portfolios. EVaR optimized portfolio was mostly preferred by investors with the 

bilinear utility function when the kink has a negative value, which means that more risk averse 

investors were preferring this portfolio. 

 

Keywords: Mean-variance framework, entropic value-at-risk, utility functions, risk preference, 

portfolio optimization 
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1 Introduction  

Due to the constantly arising financial distractions and crisis, the need in finding a perfect 

method of calculating the risk has significantly increased. Risk management means identifying 

and assessing the uncertainty of risk factors using appropriate and relevant methods. Alongside, 

with the growing importance of the correct risk measurement techniques, the necessity of the 

appropriate asset allocation, from which investors can gain profit, also increased. For many 

years, the Value-at-Risk has been a popular risk measure to use in forming an investment 

decision. Even today it is used by the Basel Committee on Banking Supervision as a risk 

measure to represent the estimation of the market risk in the Fundamental Review of the 

Trading Book, although in the future Value-at-Risk will be changed to conditional Value-at-

Risk. It is an important part of portfolio management and asset allocation industries since it is 

easy to calculate and easy to interpret. In practice, the Value-at-Risk is a crucial measure of the 

extent to which a specific portfolio is exposed to the risk inherent in financial markets. Hence, 

it has also been used in portfolio optimization. Initially, portfolio optimization was introduced 

by Markowitz (1952) to achieve an optimal portfolio that has low risk and a high return. 

However, some researches argue about the efficiency of the mean-variance approach since the 

use of the standard deviation as an appropriate measure of risk implies that investors equally 

evaluate the probability of negative returns versus positive returns (Cid, Soler and Blanco, 

2010).  

 

According to Kahneman and Tversky (1979), investors tend to have loss aversion where they 

prefer to avoid losses rather than gain equivalent benefits. This theory, as well as advancing the 

mean-variance optimization technique, pushes the interest in creating new risk measures in 

order to include the loss aversion in the portfolio optimization approach. In the last few years, 

the prospect theory increased the demand for new risk measures in addition to VaR and CVaR. 

Recently, a new form of Value-at-Risk has emerged: The Entropic Value-at-Risk (EVaR). 

Ahmadi-Javid (2011) claims that this version has better properties that will enhance the 

portfolio optimization. Ahmadi-Javid and Fallah-Tafti (2019) researched further the topic on 

portfolio optimization using the EVaR.  
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Therefore, the overall purpose of this paper is to test the hypothesis stated by Ahmadi-Javid and 

Fallah-Tafti (2019), where they claim that the EVaR is a superior risk measure to use in the 

portfolio optimization or asset allocation. The general portfolio optimization approach by 

Markowitz (1952) is used as a starting point and further is compared to an optimization that 

incorporates the EVaR as the measure of the risk in portfolio. To be more specific, the aim is 

to investigate if the created portfolio optimization technique using EVaR is valid and 

outperforms the standard MV optimized portfolio technique for any kind risk preference of an 

individual investor. The different utility functions are used in order to exhibit how agent with 

different attitude towards risk will decide between the EVaR and the MV optimized portfolio. 

In the paper written by Ahmadi-Javid and Fallah-Tafti (2019), they have created EVaR 

optimized portfolios for several confidence levels and compared them based on the Sharpe ratio. 

Taking a different approach in this research paper, the EVaR portfolio is determined for one 

confidence level and is compared to a MV optimized portfolio in terms of the certainty 

equivalent. Hence, this research paper aims to widen the view on the readiness of investors with 

different preferences to pay for the EVaR optimized portfolio and connects the theory with the 

“real-world” application. 

 

In this research paper, the EVaR optimized portfolio was only compared to the portfolio 

optimized by the standard mean-variance framework. Hence, the precise conclusion cannot be 

made whether portfolio with EVaR is the superior risk measure in comparison with other risk 

measures such as VaR and CVaR. In case of the MV-framework, the portfolio is optimized 

under the normal distribution assumption and hence, the proposed optimization technique does 

not account for higher moments such as skewness and kurtosis, whereas in case of the EVaR 

portfolio, it accounts for all moments. In regard to the data, the Dow Jones Industrial Average 

Index was chosen since the index is composed of the companies from different industries. The 

index only contains 30 US companies and therefore, Dow Jones Index does not suit the role of 

the index of total and global stock market activity. 

 

As it was mentioned above, the EVaR is a relatively new risk measure and it is not explored in 

detail yet. This means it is not widely used in forming an investment decision, and therefore it 

is important to research this topic further. Currently, investors use the VaR and CVaR for 

optimizing the portfolio under the mean-variance Markowitz (1952) framework, but there is a 

possibility that the portfolio can be optimized more efficiently using the EVaR. Also, due to a 
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potential upcoming financial crisis caused by the coronavirus outbreak in 2020, risk 

management together with portfolio optimization become crucial topics in modern world 

society.  

 

After conducting a specific number of tests, this master's thesis shows that an investor with 

different preferences is important in choosing an EVaR optimized portfolio. Investor with 

bilinear utility function would prefer this portfolio more than other types of investors. The agent 

with traditional utility functions such as power and exponential utility functions is rather 

indifferent between the EVaR and MV optimized portfolios. Whereas the investor with S-

shaped utility function, or prospect theory utility function, would prefer EVaR optimized 

portfolio only at a specific inflection point.  

 

As to the structure of the paper, the Introduction chapter provides valuable information about 

the aim of the paper and the relevance and importance of the topic. Further, in Chapter 2: 

Literature Review, the theoretical background is explained to lay out a better understanding of 

the ground of the thesis. Chapter 3 describes the methods used for optimizing the portfolio 

under the mean-variance framework and using the EVaR. Chapter 4 elaborates on the data used 

and provides a view on the data statistics. Chapter 5 provides the empirical results, and Chapter 

6 represents the conclusion of the conducted research.  
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2 Literature Review 

2.1 Portfolio Optimization 

Portfolio optimization, or “optimal asset allocation” refers to the idea that an optimal portfolio 

is the portfolio which is mean-variance efficient meaning that the investor shall maximize the 

expected return on the portfolio while maintaining a level of risk the investor is already bearing 

(Rasmussen, 2003). While maintaining the balance, the investor should also think about the fact 

that every asset in the portfolio is unique and thus the weights of each asset in the portfolio shall 

vary. Diversification is one of the most important concepts in portfolio optimization theory, it 

is crucial for the investor to invest in the different asset types and classes to reduce the total risk 

of the portfolio (Rasmussen, 2003).  

 

This section provides the theoretical background on the risk aversion and utility functions 

definitions. As well the main topics of the research are explained such as portfolio optimization 

under the mean-variance framework and minimization of the risk, where the risk measure is 

projected by EVaR. 

 

2.2 Risk Aversion  

Firstly, the concept was introduced by Bernoulli (1782 cited in Bell & Fishburn, 2000) in the 

18th century. The main idea of his paper is that two people who encounter the same lottery can 

evaluate it differently due to the differences in their individual psychology. According to his 

studies, utility of wealth or u(w) is a measure of the intensity of a person’s preferences for 

wealth w, which should be estimated using the power of preference without reference to the 

risk or probability of the outcome (Bell & Fishburn, 2000). Arrow (1964) and Pratt (1965) were 

the first to notice the crucial role of the first and second derivative of the utility function and 

measures of risk aversion were firstly introduced in their work. According to Kahneman and 

Tversky (1979) it is said the agent is considered to be risk averse, when:  

𝑢 is concave (𝑢′′(𝑥) > 0)              (1) 

The concept, when the agent prefers the certain option over the risky opportunity with the same 

expected value, is then called risk aversion (Danthine and Donaldson, 2015). The utility 

function of the risk-averse agent is also assumed to be increasing (Ding, Chen and Zhang, 
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2009). The agent can also be risk-neutral, where the investor is indifferent between the certain 

and uncertain alternatives and risk-loving, where the agent would prefer the uncertain rather 

than the certain outcome (Danthine and Donaldson, 2015). 

 

2.3 Certainty Equivalent  

DeMiguel et al. (2009) underlined that there are three performance measures of the newly 

constructed portfolio: the Sharpe ratio, the certainty equivalent, and a measure of the portfolio 

turnover. In this paper the comparison between the portfolios is done by the certainty 

equivalents of the EVaR and mean-variance optimized portfolios under different utility 

functions.  

 

The concept of certainty equivalence represents the guaranteed amount of money that a person 

would consider as desirable as a risky asset (Danthine and Donaldson, 2015). The certainty 

equivalent changes in accordance to the investors risk tolerance/aversion. The difference in 

certainty equivalents is explained as a certain return on investment corresponding to an increase 

in utility (for the utility function under consideration) (Hagströmer et al., 2008). For a risk-

averse agent, CE is frequently less than the expected value. When comparing the certainty 

equivalent of the portfolio, the portfolio with bigger certainty equivalent shall be preferred 

(Ding, Chen and Zhang, 2009). 

 

2.4 Utility functions  

In his article, Tobin (1958) proposed that risk-averse agents can be divided in two types: 

diversifiers, whose utility functions concave upward and plungers, whose utility functions are 

either linear or convex upward. The assumption, under this theory, is that the investor’s 

preference is represented either by the quadratic utility function, or by the probability 

distribution of the returns, which is part of the two-parameter distribution class (Nigro and 

Glustoff, 1972).   

 

Since quadratic utility is not a realistic description of any investor's attitude to risk, investors’ 

preferences are frequently represented by more complex utility functions such as bilinear and 

S-shaped utility functions (Adler and Kritzman, 2007 and Sharpe, 2007). According to 
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Gourieroux and Monfort (2004), the utility functions are useful in the specification of the 

efficient portfolios because they can show the preferences of the individual investors and make 

it possible to compare market portfolio with the efficient batch of the individual portfolios in 

order to test equilibrium models. Until the beginning of the 21st century, the so-called plungers 

were never fully considered in research papers and only through researching the bilinear and  

S-shaped utility functions and hence, in this article, this type of risk-averse investors are taken 

into account. Additionally, in this article the standard power and exponential utility functions 

are considered. The utility functions themselves are further going to be represented in the 

Methodology chapter.  

 

2.4.1 Exponential utility 

Following the exponential utility function used in Hagströmer et al. (2008), we look at absolute 

risk aversion, which is represented in the function through the parameter 𝐴 and hence, is part 

of the constant absolute risk aversion (CARA) class (Danthine and Donaldson, 2015). A graphic 

representation can be seen in Figure 1. Being part of this class refers to the property that the 

overall amount invested in risky assets is not affected if the level of wealth, or in this case 

portfolio return, changes (Danthine and Donaldson, 2015). This utility function is also part of 

the hyperbolic absolute risk aversion (HARA) class (Sharpe, 2007).  

 

Figure 1: Exponential utility function 

 

Source: Hagströmer et al. (2008) 
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2.4.2 Power utility functions 

Danthine and Donaldson (2015) state that the power utility function belongs to the class of 

constant relative risk aversion (CRRA) and is a way to ensure the independence of risk aversion 

from wealth/portfolio returns. The function always implies a preference for upside deviations 

and therefore never slopes down (Adler & Kritzman, 2007). The applied power utility function 

is obtained from the paper by Hagströmer et al. (2008) and it reflects the degree of relative risk 

aversion in the parameter 𝛾. For the case 𝛾 = 1 a log utility function is used (Hagströmer et al., 

2008 and Danthine and Donaldson, 2015). Additionally, the optimal portfolio decision does not 

depend on wealth and the consumption decisions (Barucci, 2003). An example of the power 

utility function is shown in Figure 2. 

 

Figure 2: Power utility function 

 

Source: Hagströmer et al. (2008) 

 

2.4.3 Bilinear utility functions 

To follow the prospect theory introduced by Kahneman and Tversky (1979), the equations are 

supposed to preserve the bilinear form that emphasize the expected utility theory. According to 

prospect theory, investors feel losses more severely than gains (Danthine and Donaldson, 2015). 

In Figure 3, it is visible that at a reference point the function hit its steepest point and it is where 

the value function suddenly changes. The location of the reference point, and the method of 

coding and editing the choice problems emerge as critical factors in the analysis of decisions. 

In the case of this research, the bilinear utility function proposed by Adler and Kritzman (2007) 

is used, where the reference point is called kink or critical return level 𝑥. The parameter 𝑃 
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exhibits the penalty for the returns lower than the kink. At 𝑃 = 1 the utility function shows 

neither risk aversion nor loss aversion since there is no kink. The investors, whose behavior is 

described by this utility function, are worried about penetrating the threshold. It is said the 

function simply describes the view of the investors on the risk (Adler & Kritzman. 2007). The 

bilinear function does not indicate risk aversion since the function is linear and the marginal 

utility is not declining in returns (Hagströmer et al., 2008).  

 

Figure 3: Kinked (bilinear) utility function 

 

Source: Adler, M. & Kritzman, T. (2007) 

 

2.4.4 S-shaped utility function  

Kahneman and Tversky (1979) were the pioneers to propose the idea that the investor’s utility 

function might be S-shaped. Figure 4 visually represents the value function proposed by 

Kahneman and Tversky (1979). The parameters included in the function are represented by 𝛾1 

and 𝛾2 as the upside and downside shape parameters (respectively), and 𝐴 and 𝐵 as the upside 

and downside magnitude parameters. When the returns are located below the critical value or 

inflection point 𝑧, the investor is considered to be risk-loving, whereas when it is above the 

inflection point, the investor is risk averse. The higher the ratio 𝐴
𝐵
 gets, the less risk is chosen 

for the portfolio. The 𝛾1and 𝛾2 parameters do not have a big influence on the allocation but 

primarily determine the bend of the S-shape (Hagströmer et al., 2008).  
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Figure 4: S-shaped utility function. 

 

Source: Armstrong,J. & Brigo, D. (2017) 

 

2.5 Markowitz: Mean-Variance portfolio optimization review  

The foundation of any investment decision process is the desire to receive excess returns over 

the risk-free rate on the investment. The theory developed by Harry Markowitz (1952) forms a 

ground for the whole asset management industry and is still used widely nowadays. It is 

considered as one of the first efforts to determine the relationship between the expected return 

and risk. The general rule is: “the investor does (or should) consider expected return a desirable 

thing and a variance of the return an undesirable thing” (Markowitz, 1952). To clarify, the 

investor should maximize the expected return on investment, for a given risk (variance) level, 

or minimize the risk level while maintaining a given return level.  

 

After the application of the mean-variance portfolio theory, the resulting portfolios given a risk 

level are almost all diversified. In addition, there are several other assumptions stated by 

Markowitz (1952):   

 

1) The market is efficient, and all the investors have symmetric information about the 

market conditions, therefore all investors are considered to be equal.  

2) All investors are risk averse and invest only in the risky assets 

3) The returns are normally distributed 

4) If the investor is willing to reduce the risk (or volatility), the new investment should be 

added. 
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5) The investor believes that the more profit he receives from the investment, the higher 

the risk of the investment and the other way around. 

6) The theory implies diversification for a vast range of 𝜇𝑖  and 𝜎𝑖,𝑗, and the investors do 

not believe that the adequacy of diversification depends solely on the number or the 

types of different securities held. 

7) Assets in the portfolio are not perfectly correlated.  

 

However, the mean-variance model is criticized that the assumptions are not realistic. In the 

article by Rice (2017), the author disapproves of the approach and argues that it does not 

account for the risks that drive the current market. The mean-variance approach assumes the 

normal distribution of the returns in the portfolio, but financial data usually has fat-tails and 

hence, is not normally distributed (Stoyanov, S., Rachev, S., Racheva-Iotova, B. and Fabozzi, 

F.). If investors have the quadratic utility, the mean-variance approach assumes that they are 

indifferent to other features of the distribution (Adler & Kritzman, 2007). 

 

According to Rasmussen (2003), the portfolio return can be calculated as the weighted sum of 

the returns on the assets which are composing the portfolio itself. The portfolio return 𝑟𝑝 

consisting of 𝑁 assets with portfolio weights 𝑤𝑛 and returns 𝑟𝑛 can be written as:  

𝑟𝑝 = ∑  𝑤𝑛 𝑟𝑛
𝑁
𝑛=1                  (2) 

Or in a matrix notation: 

𝑟𝑝 = 𝑤𝑇 𝑟𝑛 = 

[
 
 
 
𝑤1

⋮
𝑤𝑛

⋮
𝑤𝑁]

 
 
 
𝑇

[
 
 
 
 
𝑟1
⋮
𝑟𝑛
⋮
𝑟𝑁]

 
 
 
 

               (3) 

 

The risk of a portfolio, determined by its volatility, highly depends on the exact nature and 

magnitude of the covariance or correlation between asset returns (Rasmussen, 2003 p.77). It is 

also possible to reduce the risk level of the total portfolio by choosing suitable assets and their 

weights, but only if assets in the portfolio are correlated. In other words, when dealing with risk 

in the portfolio, it is necessary to understand the way in which the assets in the portfolio are 

related to each other.  
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As it was mentioned above, the risk of the portfolio is quantified by its volatility or standard 

deviation. Since this study uses an initial portfolio of N assets, the formula for the variance of 

N assets is defined as follows: 

𝑉𝑎𝑟𝑝 = ∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑟𝑖, 𝑟𝑗)
𝑁
𝑗=1

𝑁
𝑖=1              (4) 

 

where the portfolio volatility using the matrix, notation is:  

              𝜎𝑝 = √𝑉𝑎𝑟𝑝 = √𝑤𝑇Σ𝑤               (5) 

 

The formula originates from Markowitz' (1952) article, but for this paper, the equation by 

Rasmussen (2003) was used. This calculation of risk adds more complexity to the modern 

portfolio theory approach since it demands the determination of asset-by-asset correlations and 

the individual volatility of assets. Under the mean-variance framework, Markowitz (1952) has 

stated that the efficient frontier can be constructed by combining the portfolios with the 

maximum possible expected return for a given level of risk.  

 

Some researchers still argue whether the optimization approach itself is better than the naïve 

diversification rule where the share of 1/N of wealth is evenly distributed to each of the N assets 

available for investment (DeMiguel et al., 2009). Since it does not require any complex 

mathematical models and does not demand the approximation of the distribution moments; this 

approach is still used by asset management professionals (DeMiguel et al., 2009 and Benartzi 

& Thaler, 2001). According to the findings by DeMiguel et al. (2009), the equally-weighted 

portfolio surprisingly outperforms mean-variance optimization approach. Nevertheless, in this 

research, the naïve approach is used as the initial portfolio which then is optimized using the 

EVaR and the MV-framework.  

 

Further, in this paper the focus is on the minimum-variance portfolio where the assets weights 

generate the lowest possible risk (Rasmussen, 2003). In this case, the mean-variance investor 

either does not take the expected returns into the account or, equivalently, limits the expected 

return so that it is the same for all assets (DeMiguel et al., 2009). No additional limitations on 

the level of the expected return are used. 
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2.6 Risk measure  

 

2.6.1 VaR (Value-at-Risk)  

There is an effective way to quantify risk in every single market. However, each method is 

closely related to its specific market and cannot be applied directly to other markets. In general, 

VaR and other risk measures are considered as efforts to create a single measure that sums up 

the total risk in the portfolio. This risk measure can first be traced to Baumol (1963) but became 

famous only after JPMorgan created the RiskMetrics in 1996 (Guégan and Hassani, 2019). The 

goal of the VaR is to provide a probability-based boundary for possible losses over a specified 

holding period and confidence level (James, 2003). In order to calculate VaR, it is necessary to 

choose two parameters: time horizon (or holding period) and the confidence level. The later 

one indicates the probability that we will get a result no worse than the VaR, and can take any 

value between 0 to 1. In regard to the time horizon, it is the period of time during which we 

measure profit or loss on our portfolio. Whenever the confidence level is increasing, the VaR 

estimate changes too (Dowd, 2005).  

 

The concept of VaR is about assessing the potential change in portfolio value within a particular 

time frame at a particular level of certainty (Rasmussen, 2003). An advantage of the VaR 

calculation is, that it is easy to understand. However, some scientists argue that VaR is an 

inadequate measure of risk because some of the VaR assumptions are unrealistic. In addition, 

VaR is not a coherent risk measure (does not fulfil subadditivity) and therefore, does not always 

contribute to diversification (Artzner et al., 1999). Further, the tail risk together with illiquidity 

is not captured by the VaR approach (Guégan and Hassani, 2019). 
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2.6.2 Coherent Risk measures 

According to Artzner et al. (1999) a risk measure fulfils the property of coherence when it 

satisfies all of the following axioms: 

1. Translation invariance: It describes that increasing the amount of it should decrease the 

risk measure by the same amount which means that: 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝐺 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝛼 =>   𝜌(𝑋 + 𝛼 ∙ 𝑟) = 𝜌(𝑋) − 𝛼 

2. Subadditivity: It describes that the merged risk of two assets should be smaller than the 

sum of the individual risks that: 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋1𝑎𝑛𝑑 𝑋2 ∈ 𝐺 =>   𝜌(𝑋1 + 𝑋2) ≤ 𝜌(𝑋1) + 𝜌(𝑋2)     

3. Positive homogeneity: It describes that while scaling a portfolio, the risk measure is 

scaling proportionally with the portfolio, so that: 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ≥ 0 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑋 ∈ 𝐺 =>   𝜌(𝜆𝑋) = 𝜆𝜌(𝑋)     

4. Monotonicity: It describes that if the loss of one portfolio is smaller that of another 

portfolio, the risk measure of this portfolio is smaller too, so that:   

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 𝑎𝑛𝑑 𝑌 ∈ 𝐺 𝑤𝑖𝑡ℎ 𝑋 ≤ 𝑌 =>   𝜌(𝑋) ≤ 𝜌(𝑌)     

If the risk measure does not fulfil all axioms, then it is not a coherent risk measure (Artzner et 

al., 1999). 

 

2.6.3 Conditional Value-at-Risk (Expected Shortfall) 

Since the VaR is seen as unstable, suffers to be not coherent and further does not provide any 

information beyond the VaR (Rockafellar & Uryasev, 2002) another risk measure is needed. 

Hence, Rockafellar and Uryasev (2002) suggest the use of the Conditional Value-at-Risk 

(CVaR) also known as Expected Shortfall (Hull, 2015). They claim that the CVaR has superior 

properties such as coherence and further considers “fat-tails” and high losses with small 

probabilities in the calculation. 

 

2.6.4 Entropic Value-at-Risk 

The Entropic Value-at-Risk is classified as a coherent risk measure and is described as the 

tightest upper bound for both VaR and CVaR with the same confidence levels obtained from 
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the Chernoff inequality for the VaR (Ahmadi-Javid, 2012). Chernoff bound, or inequality, was 

introduced by Herman Chernoff (1952) and it defines the tail of the distribution (Nelson, 1995). 

Since EVaR originated from the Chernoff bound, it accounts for all moments of the distribution 

by using the moment-generating function 𝑀𝑋(𝑧) in the equation (Nelson, 1995 and Ahmadi-

Javid, 2012). Chernoff bound for any constant 𝑎 and for a random variable 𝑋 is as following:  

Pr(𝑋 ≥ 𝑎) ≤ 𝑒−𝑧𝑎𝑀𝑋(𝑧),   ∀𝑧 > 0             (6) 

 

Further, by solving the equation with respect to 𝑎 for 𝛼 ∈ (0,1]:  

𝑒−𝑧𝑎𝑀𝑋(𝑧) = 𝛼                (7) 

where   𝛼: Risk level 

The following result is obtained:  

𝑎𝑋(𝛼, 𝑧) ≔ 𝑧−1 ln(
𝑀𝑋(𝑧)

𝛼
)              (8) 

where   Pr(𝑋 ≥ 𝑎𝑋(𝛼, 𝑧) ≤ 𝛼) 

 

By Amir Ahmadi-Javid (2012), EVaR is considered to be a more attractive risk measure in 

comparison to its prominent competitors VaR and CVaR as it is strongly monotone over its 

domain and strictly monotone over its sub-domain. One of the most important advantages of 

EVaR is that it can solve the wide class of stochastic optimization problems since it can be 

efficiently computed in certain cases where CVaR cannot. At the same confidence levels, EVaR 

is considered to be a more risk-averse measure than CVaR. As a matter of fact, each coherent 

risk measure has its dual representation, and the dual representation of EVaR is related to the 

relative entropy or Kullback-Leiber divergence from where the new risk measure takes its name 

(Ahmadi-Javid, 2012). 

 

EVaR also belongs to the convex risk measures class and hence, is differentiable (Ahmadi-

Javid & Fallah-Tafti, 2019). According to the paper by Fischer, Moser and Pfeuffer (2018), the 

EVaR is law invariant, but it is not elicitable. Even though it is said that it cannot be backtested 

due to the non-elicitability property, Acerbi and Skezely (2015) have proven that it is not true 

and the risk measure does not necessarily need to be elicitable to be backtested. Therefore, 

backtesting of EVaR represents a potential area for future research. In addition, new concepts 
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in regard to EVaR are constantly introduced: for example, cumulative entropic Value-at-Risk 

was described in the article by Assa et al. (2016) and belongs to the collective risk models class.  

 

The EVaR mathematical representation, as the best upper bound, of X ∈ LM+ with confidence 

level 1 − 𝛼 and under the condition of 𝑧 > 0  is: 

𝐸𝑉𝑎𝑅1− 𝛼(𝑋) ≔ inf
𝑧>0

{𝑧−1 ln(
𝑀𝑥(𝑧)

𝛼
)},           (9) 

where  LM+ is the set of all Borel measurable functions, whose moment-

generating function 𝑀𝑥(𝑧) = 𝐸(𝑧𝑧𝑋) exists for all 𝑧 ∈ ℝ and LM+.  

                     Random variable 𝑋 ∈ LM+ represents the losses of a portfolio 

 

The risk measure is also proved to be coherent for all (0,1] (Ahmadi - Javid, 2012). Since the 

tightest bound may be obtained as a limiting value, “inf” (or infinum) was applied instead of 

using “min” (Nelson, 1995). The condition of 𝑧 > 0  indicates that it is an upper bound 

(Chernoff, 1952). Hence, EVaR1− 𝛼(𝑋) is proven to be the tightest upper bound of VaR and 

CVaR (Ahmadi - Javid, 2012). 

 

Under the normality assumption 𝑋 ∼ 𝑁(𝜇, 𝜎2), EVaR can be defined in terms of the mean and 

variance and it is equal to the mean-standard-deviation risk measure for different values of .  

𝑀𝑉𝜆(𝑋) ≔ 𝐸(𝑋) + 𝜆𝑆𝑇𝐷(𝑋), 𝜆 > 0,           (10) 

𝐸𝑉𝑎𝑅1−𝛼(𝑋) =  𝜇 + √−2 ln 𝛼 𝜎,           (11) 

 

In the portfolio optimization approach of Ahmadi-Javid and Fallah-Tafti (2019), they have 

introduced the primal-dual interior point algorithm to solve the optimization problem with 

EVaR. Since this article is written under the Markowitz framework (1952), it is assumed that 

the returns are normally distributed.  
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3 Methodology 

3.1 Core Assumptions 

For the analysis, the normality approach is used and hence, the normal distribution is assumed, 

which allows for the above definitions of the Entropic Value-at-Risk. This assumption relies on 

the central limit theorem in statistics, which states that the distribution of the mean tends to the 

normal distribution when the number of observations tends to infinity (Brooks, 2014).  

 

The FRTB by the Basel Committee on Banking Supervision (2019) suggests that in the 

calculation of the Conditional Value-at-Risk (Expected Shortfall) should be calculated by using 

an α of 2.5% which then results in a confidence level of 97.5%. Hence, since the Entropic 

Value-at-Risk is a coherent risk measure as well, the same approach has been used.  

 

For the different utility functions, the parameters vary between the values stated in Table 1 

which we obtained from Hagströmer et al. (2008): 

 

Table 1: Parameters for the utility functions 

Utility function  Parameter values 

Exponential 𝐴:    0.5 ≤ 𝐴 ≤ 6 

Power 𝛾:    1 ≤ 𝛾 ≤ 5 

Bilinear 

 

𝑥:    −0.04 ≤ 𝑥 ≤ 0.005 

𝑃:    1 ≤ 𝑃 ≤ 10 

S-shaped 

 

 

 

 

𝑧:     −0.05 ≤ 𝑧 ≤ 0.00 

𝛾1:   0.05 ≤ 𝛾1 ≤ 0.5 

𝛾2:   0.5 ≤ 𝛾2 ≤ 0.95 

𝐴:    1.5 ≤ 𝐴 ≤ 2.9 

𝐵:    1.5 ≤ 𝐵 ≤ 0.1 
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3.2 Optimization 

In the applied optimization technique, it is assumed that the obtained weights can only be 

positive which translates into the restriction that the investor does not allow for short selling. 

Further, the restriction that the sum of the weights shall be equal to one is determined, which 

means that the investor always invests the full amount of money and does not hold a cash 

position in the portfolio.  

 

In the first step, the EVaR portfolio is determined. For the optimization problem under a 

sample-based setting, a convex objection function is used. To result in this function, the 𝑧 in 

the definition function above is replaced with the parameter 𝑡−1, which convexifies the 

optimization problem. The proof of the convexity of the function was achieved by Ahmadi-

Javid and Fallah-Tafti (2019) and can be found in their paper. Hence the objective function for 

this optimization is as follows:  

min
𝑤

𝑡 ln(∑ 𝑝𝑚𝑒𝑡−1(𝑟𝑚𝑤′)𝑁
𝑚=1 ) − 𝑡 ln(𝛼)         (12) 

s.t. 𝑠𝑢𝑚(𝑤) = 1 

0.001 ≤ 𝑤𝑖 ≤ 1 

 

where:  𝑤′: Asset weights transposed (nx1 vector) 

𝑟𝑚: Return matrix (nxm vector) 

𝑟𝑚𝑤′: Portfolio return at point 𝑚 

𝑝𝑚: Probability 

𝛼: Risk level 

 

Minimizing the EVaR of the portfolio results in the optimal weights which are then applied to 

calculate the expected portfolio return.  

𝑟𝐸𝑉𝑎𝑅 = 𝑟𝑝 = �̅�𝑖𝑤𝐸𝑉𝑎𝑅              (13) 

where:  �̅�𝑖: Average return for each asset 

𝑤𝐸𝑉𝑎𝑅: Weights obtained from the EVaR optimization 
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In step 2, the mean-variance portfolio is determined. In this optimization, the variance is 

minimized while the restriction, where the expected return in the MV optimizations should be 

equal to the expected return calculated in step 1, is applied. 

min
𝑤

(𝑤Ω𝑤′)                 (14) 

s.t. 𝑠𝑢𝑚(𝑤) = 1 

0.001 ≤ 𝑤𝑖 ≤ 1 

𝑟𝑝 = 𝑤�̅�𝑖′ 

 

Where:  𝑤:  Asset weights (1xn Vector) 

𝑤′: Asset weights transposed (nx1 Vector) 

Ω: Variance-Covariance Matrix 

�̅�𝑖′: Average returns for each asset transposed 

𝑟𝑝: Expected portfolio return 

 

The obtained weights are summarized in Table A 1 in the Appendix. Using these weights, two 

portfolios are obtained on which the four chosen utility functions are applied. The different 

utility functions determined by Hagströmer et al. (2008), are shown in Table 2. 

 

Hence, values for each 𝑢(𝑟𝑝) are obtained which are then used to calculate the certainty 

equivalent for each parameter and each portfolio. Finally, the difference of the certainty 

equivalents between the portfolios is determined for each parameter as follows:  

∆𝐶𝐸 =  𝑟𝐶𝐸
𝐸𝑉𝑎𝑅 − 𝑟𝐶𝐸

𝑀𝑉              (15) 
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Table 2: Utility functions and Certainty Equivalent 

Utility function  Certainty Equivalent 

Exponential   

𝑢(𝑟𝑝) = −exp [−𝐴(1 + 𝑟𝑝)]  𝑟𝐶𝐸 = −
1

𝐴
ln(−�̅�) − 1 

Power 
  

𝑢(𝑟𝑝) =
(1+𝑟𝑝)

1−𝛾
−1

1−𝛾
  for 𝛾 > 0 𝑟𝐶𝐸 = [1 + (1 − 𝛾)�̅�]1/(1−𝛾) − 1 

𝑢(𝑟𝑝) = ln (1 + 𝑟𝑝)  for 𝛾 = 1 𝑟𝐶𝐸 = exp(�̅�) − 1 

Bilinear 
  

𝑢(𝑟𝑝) = ln(1 + 𝑟𝑝)  for 𝑟𝑝 ≥ 𝑥 𝑟𝐶𝐸 = exp(�̅�) − 1 

𝑢(𝑟𝑝) = 𝑃(𝑟𝑝 − 𝑥) + ln(1 + 𝑥) for 𝑟𝑝 < 𝑥, 𝑃 > 0 (see notes) 

S-shaped 
  

𝑢(𝑟𝑝) = −𝐴(𝑧 − 𝑟𝑝)𝛾1  for 𝑟𝑝 ≤ 𝑧 𝑟𝐶𝐸 = 𝑧 − (
�̅�

−𝐴
)
1/𝛾1

 

𝑢(𝑟𝑝) = +𝐵(𝑟𝑝 − 𝑧)𝛾2  for 𝑟𝑝 > 𝑧 𝑟𝐶𝐸 = 𝑧 + (
�̅�

+𝐵
)
1/𝛾2

 

Notes: To calculate the CE under the bilinear utility, there is no explicit solution for the case when �̅� < 𝑢(𝑥). 

Hence, the CE is determined by a standard search algorithm (Hagströmer et al., 2008) 
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4 Data 

For the analysis prices of 28 assets of the Dow Jones 30 Industrial are obtained from Compustat 

via the Wharton Research Data Services (2020). The index consists of the 30 so called blue-

chip companies which are considered to be the leaders in their respective industries 

(Bloomberg, 2020). The requirement for the determination of the initial portfolio in this analysis 

is that the individual asset has monthly prices over the ten-year period from 01/2010-12/2019. 

Further, rebalancing and/or exchange of assets over the ten-year period is not considered in this 

research. Hence the input of our calculations are 120 prices resulting in 119 monthly returns for 

each asset. The prices are all denoted in US Dollar ($). The chosen companies and their 

determined weights are listed in Table A 1 in the annex. 

 

The performance of the initial portfolio with equally-weighted assets can be seen as the green 

line in Figure 5. One can observe that the portfolio has an upward trend with a strong decrease 

from the 53rd to the 54th observation which is the start of a decreasing trend until the 74th 

observation. This is followed by another upwards trend until the end of the observed period. An 

average monthly return of 0.76% and a standard deviation of 3.52% has been calculated over 

the ten-year period (see Table 3).  

 

Figure 5: Portfolio performance 
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Table 3: Data properties 

 

Equally 

weighted 

EVaR 

weighted 

MV 

weighted 

Maximum 8.7321 7.7806 7.5085 

Minimum -8.8991 -6.7369 -7.0923 

Mean 0.7624 1.1822 1.1826 

Standard Deviation 3.5174 2.7191 2.7129 

Observations higher than std 14 21 19 

Observations lower than std 18 15 16 

Notes: The values shown in the first four rows of the table are all denoted in percent 

(%). The observations higher/lower than std describes how many observations in the 

respective data vectors deviate higher from the mean than the standard deviation.  

 

Looking at the return structure of the initial portfolio in Figure 6, one can see that the 119 

returns vary between 8.73% and -8.90%. The black horizontal lines in the graph show the 

standard deviation from the mean while the magenta horizontal lines represent the mean of the 

data. Comparing the returns with the standard deviation one can observe that in the equally 

weighted portfolio, the data exhibits 32 observations that exceed the standard deviation from 

the mean (14 positive and 18 negative observations).  

 

After optimizing the portfolio using the entropic Value-at-Risk and the mean-variance approach 

by Markowitz (1954) the portfolio performance and the data properties have been calculated. 

Comparing the performance of the three different weighted portfolios, one can observe that the 

curve of the two optimized portfolios in Figure 5 appear to be smoother than the curve of the 

initial portfolio. However the optimized portfolios exhibit a more stable upward trend with a 

lower first values (observation 1) and a higher last values (observation 120). One can also see 

that the optimized portfolios are less affected by downward movements like the initial portfolio 

which especially is shown between the observation 53 and 74 in Figure 5. While the initial 

portfolio goes down as mentioned above, the optimized portfolios still maintain the positive 

trend. Therefore, the optimized portfolios resulted in higher monthly average return of 1.18% 

which is approximately 0.42% higher than the naïve portfolio. Comparing the volatility, the 



Data 

 

22 

optimized portfolios exhibit lower standard deviations (EVaR = 2.719%; MV = 2.713%), which 

also lead to lower values for highest and lowest returns over the ten-year period (see Table 3).  

 

Figure 6: Return structure 

 

 

Analysing the return structure (Figure 6), the optimized portfolios exhibit fewer negative 

deviations from the mean which exceed the standard deviation than the initial portfolio. In the 

initial portfolio, 18 observations deviate negatively more from the mean than the standard 

deviation, while only 15 observations in the EVaR portfolio and 16 observations in the MV 

portfolio deviate from the respective means. Further, due to the optimization, there are more 

observations of positive deviations from the mean that are greater than the standard deviation 

in the optimized portfolios (EVaR = 21 observations; MV = 19 observations), then in the initial 

portfolio (14 observations). 
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5 Empirical results  

For the application of the utility functions to the two optimized portfolios, the same approach 

as in Hagströmer et al. (2008) is used. In total, 102 test have been conducted on the two 

optimized portfolios, 12 times using the exponential utility, 9 times the power utility, 30 times 

the bilinear utility and 51 times the S-shaped utility. For each test, the individual parameters 

have been changed and for each change, a value for ∆𝐶𝐸 has been obtained.  

 

5.1 Traditional utility functions  

For the traditional utility functions, the exponential and power utility function, one can see in . 

Table 4 and Table 5, that the ∆𝐶𝐸 of the two portfolios is negative for both utilities and for all 

parameter changes. 

Table 4: ∆𝐶𝐸 – Exponential utility function 

𝐴 ∆𝐶𝐸 

0.50 -0.0005 

1.00 -0.0006 

1.50 -0.0007 

2.00 -0.0007 

2.50 -0.0007 

3.00 -0.0007 

3.50 -0.0007 

4.00 -0.0006 

4.50 -0.0006 

5.00 -0.0005 

5.50 -0.0004 

6.00 -0.0003 
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Table 5: ∆𝐶𝐸 – Power utility function 

𝛾 ∆𝐶𝐸 

1.00 -0.0006 

1.50 -0.0006 

2.00 -0.0006 

2.50 -0.0006 

3.00 -0.0006 

3.50 -0.0006 

4.00 -0.0005 

4.50 -0.0004 

5.00 -0.0003 

 

This means that an investment in the EVaR portfolio under these two utility functions and under 

all parameter choices, is not favourable in comparison to the MV portfolio. However, the 

difference between the certainty equivalents is so minor that it seems insignificant. But, looking 

at how the choice of 𝐴 and respectively 𝛾 influences the certainty equivalent, one can observe, 

that the highest values of 𝐴 or 𝛾 respectively lead to the difference of the certainty equivalents 

of the two portfolios that is closest to zero. For an 𝐴 = 6 in the exponential utility function an 

result of ∆𝐶𝐸 = −0.0003% was obtained and for an 𝛾 = 5.0 in the power utility function, a 

value of ∆𝐶𝐸 = −0.0003% was determined. 

 

The average ∆𝐶𝐸 for the exponential utility function resulted in a value of -0.0006% (Table A 

2 in the appendix) which indicates that an average investor that has an exponential utility 

function would invest in the MV portfolio, rather than invest in the EVaR portfolio, regardless 

the individual risk preference/parameter choice. With an average ∆𝐶𝐸 of -0.0005% (Table A 3 

in the appendix), an average investor with a power utility function would follow the same 

approach and invest in the MV portfolio rather than in the EVaR portfolio. However, the 

obtained values are very small and seem insignificant in determining into which portfolio shall 

be invested. Hence, to form a justified investment decision, an investor with these types of 

utility function requires the use of additional information but this analysis goes beyond the 

scope of this paper.   
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5.2 Bilinear utility function  

In the analysis of the bilinear utility function we varied the parameters 𝑥, which resembles the 

critical return level/kink and 𝑃 which is the penalty level for returns under the kink. The 

calculations with 𝑃 = 1 has been excluded from this research since it does not have a kink. 

Looking at the average ∆𝐶𝐸 in Table A 4 in the appendix, one can see that like the traditional 

utility functions, the bilinear utility has a negative average difference across different 

parameters (∆𝐶𝐸 = −0.0034%). But unlike the traditional utility functions, most of the 

investors under bilinear utility function have a positive ∆𝐶𝐸 and would prefer the EVaR 

portfolio rather than the MV portfolio. In Table 6, it can be seen that the penalty level 𝑃 has a 

slight effect on the preferences of the investors, but it is clear that the kink has a bigger influence 

on it. Only investors with a positive kink located at the values of 0.000 and 0.005 exhibit a 

negative ∆𝐶𝐸. It was stated by Hagströmer et al. (2008) that the higher the penalty level and 

the kink level is, the higher is level of risk aversion. It is visible in Table 6 that this statement 

does not apply across all values of 𝑥. At  𝑥 = −0.010 and  𝑃 = 10.0, the investor surely 

preferred the EVaR optimized portfolio, whereas at 𝑥 = 0.000 and  𝑃 = 10.0 the investor 

almost with complete certainty prefers MV optimized portfolio over the EVaR portfolio. 

 

Table 6: ∆𝐶𝐸 – Bilinear utility function 

  ∆𝐶𝐸 

x  𝑃 = 2.5 𝑃 = 5.0 𝑃 = 10.0 

-0.040  0.0026 0.0037 0.0043 

-0.035  0.0041 0.0059 0.0067 

-0.030  0.0043 0.0060 0.0069 

-0.025  0.0027 0.0039 0.0045 

-0.020  0.0024 0.0035 0.0040 

-0.015  0.0038 0.0054 0.0062 

-0.010  0.0022 0.0033 0.0374 

-0.005  0.0001 0.0021 0.0057 

0.000  -0.0066 -0.0418 -0.0901 

0.005  -0.0110 -0.0272 -0.0577 
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5.3 S-shaped utility function 

In the analysis of the S-shaped utility function, several tests were performed at the inflection 

point 𝑧 (or critical level of the return) located at 0.00, -0.025 and – 0.05 with varying either the 

shape parameters 𝛾1 and 𝛾2, or the magnitude parameters 𝐴 and 𝐵. In the case of the S-shaped 

utility function, in Table A 5 in the appendix the average ∆𝐶𝐸 of the S-shaped utility function 

is negative across different parameters (∆𝐶𝐸 = −0.0118%). The result of the negative average 

difference was the same as with the traditional and bilinear utility functions. However, in Table 

7 and Table 8 it is visible that at the inflection point equal to −0.05 , the ∆𝐶𝐸 is positive in both 

cases and subsequently, the investor would choose the EVaR portfolio over the mean-variance 

portfolio. In Table 7 with varying magnitude parameters 𝐴 and 𝐵 and constant parameters 𝛾1 

and 𝛾2 at the inflection points equal to −0.025 and −0.05, the mean-variance portfolio 

outperforms the EVaR portfolio.  

 

Table 7: ∆𝐶𝐸 – S-shaped utility function (1) 

Parameters  ∆𝐶𝐸 

𝐴 𝐵  𝑧 = 0 𝑧 = −0.025 𝑧 = −0.05 

1.50 1.50  -0.0136 -0.0243 0.0024 

1.70 1.30  -0.0162 -0.0263 0.0066 

1.90 1.10  -0.0160 -0.0289 0.0122 

2.10 0.90  -0.0084 -0.0323 0.0202 

2.30 0.70  -0.0020 -0.0370 0.0326 

2.50 0.50  -0.0052 -0.0433 0.0542 

2.70 0.30  -0.0081 -0.0469 0.1010 

2.90 0.10  -0.0107 -0.0002 0.2625 

Notes: In this application of the utility function the parameters A, B, and z vary 

while 𝛾1 and 𝛾2 are both held constant at 0.5. All values ∆𝐶𝐸 for are expressed in 

percent (%) 

 

The same results appear in Table 8 with varying shape parameters 𝛾1 and 𝛾2, at the inflection 

points equal to −0.025 and −0.05, the mean-variance portfolio outperforms the EVaR 

portfolio. At the parameter values of 𝛾1 = 0.05 and 𝛾2 = 0.95, the ∆𝐶𝐸 turns positive or equal 

to zero at all inflection points, which means that the investors who are more risk-averse or more 
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reluctant to the losses either are indifferent between two optimized portfolios or prefer the 

EVaR optimized portfolio over the MV optimized portfolio. According to the obtained results, 

the shape parameters 𝛾1 and 𝛾2 influence the investment decision in an EVaR optimized 

portfolio more than in a MV optimized portfolio (See Table A 5 and Table A 6 in the appendix). 

The results do not correspond to the findings by Hagströmer et al. (2008) who stated that the 

higher the inflection point is, the higher is the loss aversion. Hence, overall results indicate that 

investors with low risk aversion. or even risk-loving investors would prefer the EVaR optimized 

portfolio to the MV optimized portfolio.  

 

Table 8: ∆𝐶𝐸 – S-shaped utility function (2) 

Parameters  ∆𝐶𝐸 

𝛾1 𝛾2  𝑧 = 0 𝑧 = −0.025 𝑧 = −0.05 

0.05 0.95  0.0000 0.0000 0.0151 

0.10 0.90  0.0000 -0.2771 0.0241 

0.15 0.85  0.0000 -0.2024 0.0260 

0.20 0.80  -0.0002 -0.1387 0.0243 

0.25 0.75  -0.0004 -0.0950 0.0209 

0.30 0.70  -0.0005 -0.0659 0.0168 

0.35 0.65  -0.0001 -0.0470 0.0127 

0.40 0.60  -0.0209 -0.0350 0.0089 

0.45 0.550  -0.0196 -0.0279 0.0054 

Notes: In this application of the utility function the parameters 𝛾1, 𝛾2 and z vary 

while A and B are both held constant at 1.5. All values ∆𝐶𝐸 for are expressed in 

percent (%) 
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6 Conclusion  

Conducting this empirical application is a contribution to the paper by Ahmadi-Javid and 

Fallah-Tafti (2019) which provides a comparison between the EVaR optimized portfolio to the 

mean-variance optimized portfolio with respect to the utility functions. It further considers the 

investor preference for the comparison between the two portfolios. Referring to the outcomes 

of the research it can be argued that the claim by Ahmadi-Javid and Fallah-Tafti (2019) does 

not hold for all investors and all risk preferences. The results obtained from the analysis show 

that besides the standard risk measures such as mean and the volatility, the individual risk 

preference of the investor plays a crucial role in the investment decision in an EVaR optimized 

portfolio.  

 

Looking at investors with a traditional utility function such as the exponential and the power 

utility, one can conclude that these investors would not invest in an EVaR portfolio over a MV 

portfolio. The results exhibit for each parameter change a negative value for the ∆𝐶𝐸. However, 

the ∆𝐶𝐸 was not significantly large and the results are more inclined to the statement that the 

investors under traditional utility functions are more or less indifferent between EVaR and MV 

optimized portfolios. Investors with a more detailed utility function such as the bilinear or s-

shaped utility function frequently exhibit positive ∆𝐶𝐸 values which indicate risk and/or loss 

aversion behaviour. In regard to the bilinear utility function, the investor’s preferences are 

dependent on the value of the kink/critical level and when it is negative the EVaR optimized 

portfolio is preferred to the mean-variance optimized portfolio. When discussing the S-shaped 

utility function, investors with low level of risk aversion (or at 𝑧 = −0.05) prefer to invest in 

the EVaR optimized portfolio.  

 

However, this result holds only for the confidence level specified in the assumptions and the 

empirical distribution of the used data set. Therefore, research that analyses other return 

distributions and confidence levels can complement this paper and further can yield similar or 

different results. As Hagströmer et al. (2008) argue, challenges still remain in specifying the 

utility function of the individual investor and therefore are fields that further need to be 

researched. Overall, the portfolio optimization technique using the Entropic Value-at-Risk as 

the underlying risk measure as discussed in this paper can be used as a basis for further 

development and application by asset and risk management professionals.  
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Table A 1: Portfolio composition and weights 

Company Name 
Equal 

weights 

EVaR 

weights 

MV 

weights 

3M Co 0.0357 0.0010 0.0015 

American Express Co. 0.0357 0.0011 0.0028 

Apple Inc. 0.0357 0.0013 0.0016 

Boeing Co. 0.0357 0.0086 0.0109 

Caterpillar Inc. 0.0357 0.0010 0.0014 

Chevron Corp. 0.0357 0.0010 0.0014 

Cisco Systems Inc. 0.0357 0.0010 0.0015 

Coca Cola Co. 0.0357 0.0011 0.0022 

Disney (Walt) Co. 0.0357 0.0026 0.0080 

Exxon Mobil Corp. 0.0357 0.0010 0.0014 

Goldman Sachs Group Inc. 0.0357 0.0010 0.0014 

Home Depot Inc. 0.0357 0.1049 0.1107 

Intel Corp. 0.0357 0.0873 0.0446 

Intl Business Machines Corp. 0.0357 0.0010 0.0016 

Johnson & Johnson. 0.0357 0.0011 0.0024 

JPMorgan Chase & Co. 0.0357 0.0010 0.0016 

McDonalds Corp. 0.0357 0.2502 0.2614 

Merck & Co. 0.0357 0.1179 0.0763 

Microsoft Corp. 0.0357 0.0026 0.0195 

Nike Inc. 0.0357 0.0029 0.0021 

Pfizer Inc. 0.0357 0.0011 0.0019 

Procter & Gamble Co. 0.0357 0.1422 0.1469 

Raytheon Technologies Corp. 0.0357 0.0010 0.0016 

UnitedHealth Group Inc. 0.0357 0.2565 0.2470 

Verizon Communications Inc. 0.0357 0.0064 0.0308 

Visa Inc. 0.0357 0.0010 0.0014 

Walgreens Boots Alliance Inc. 0.0357 0.0010 0.0013 

Walmart Inc. 0.0357 0.0011 0.0147 

 

  



Appendix 

 

34 

Table A 2: Certainty Equivalent for each portfolio – Exponential utility function 

𝐴 𝐶𝐸𝐸𝑉𝑎𝑅  𝐶𝐸𝑀𝑉 ∆𝐶𝐸 

0.50 1.1638 1.1643 -0.0005 

1.00 1.1454 1.1460 -0.0006 

1.50 1.1269 1.1276 -0.0007 

2.00 1.1084 1.1091 -0.0007 

2.50 1.0898 1.0905 -0.0007 

3.00 1.0711 1.0718 -0.0007 

3.50 1.0524 1.0531 -0.0007 

4.00 1.0337 1.0343 -0.0006 

4.50 1.0148 1.0154 -0.0006 

5.00 0.9959 0.9964 -0.0005 

5.50 0.9770 0.9774 -0.0004 

6.00 0.9580 0.9583 -0.0003 

    Average -0.0006 

 

Table A 3: Certainty Equivalent for each portfolio – Power utility function 

𝛾 𝐶𝐸𝐸𝑉𝑎𝑅  𝐶𝐸𝑀𝑉 ∆𝐶𝐸 

1.0 1.1457 1.1462 -0.0006 

1.5 1.1273 1.1279 -0.0006 

2.0 1.1089 1.1095 -0.0006 

2.5 1.0904 1.0910 -0.0006 

3.0 1.0719 1.0725 -0.0006 

3.5 1.0532 1.0538 -0.0006 

4.0 1.0345 1.0350 -0.0005 

4.5 1.0158 1.0162 -0.0004 

5.0 0.9969 0.9973 -0.0003 

    Average -0.0005 
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Table A 4: Certainty Equivalent for each portfolio – Bilinear utility function 

𝑥 𝑃 𝐶𝐸𝐸𝑉𝑎𝑅  𝐶𝐸𝑀𝑉 ∆𝐶𝐸 

-0.040 2.500 -1.9491 -1.9516 0.0026 

-0.035 2.500 -1.6704 -1.6746 0.0041 

-0.030 2.500 -1.3954 -1.3996 0.0043 

-0.025 2.500 -1.1224 -1.1251 0.0027 

-0.020 2.500 -0.8505 -0.8529 0.0024 

-0.015 2.500 -0.5861 -0.5898 0.0038 

-0.010 2.500 -0.3417 -0.3439 0.0022 

-0.005 2.500 -0.1105 -0.1105 0.0001 

0.000 2.500 0.1020 0.1085 -0.0066 

0.005 2.500 -0.0010 0.0100 -0.0110 
     

-0.040 5.000 -3.0070 -3.0108 0.0037 

-0.035 5.000 -2.6293 -2.6352 0.0059 

-0.030 5.000 -2.2573 -2.2633 0.0060 

-0.025 5.000 -1.8889 -1.8929 0.0039 

-0.020 5.000 -1.5230 -1.5265 0.0035 

-0.015 5.000 -1.1677 -1.1731 0.0054 

-0.010 5.000 -0.8402 -0.8435 0.0033 

-0.005 5.000 -0.6534 -0.6554 0.0021 

0.000 5.000 -1.2289 -1.1871 -0.0418 

0.005 5.000 -1.8999 -1.8728 -0.0272 
     

-0.040 10.000 -3.5360 -3.5403 0.0043 

-0.035 10.000 -3.1088 -3.1155 0.0067 

-0.030 10.000 -2.6883 -2.6952 0.0069 

-0.025 10.000 -2.2722 -2.2768 0.0045 

-0.020 10.000 -1.8592 -1.8632 0.0040 

-0.015 10.000 -1.4585 -1.4647 0.0062 

-0.010 10.000 -1.8812 -1.9186 0.0374 

-0.005 10.000 -2.8697 -2.8754 0.0057 

0.000 10.000 -4.1315 -4.0414 -0.0901 

0.005 10.000 -5.5903 -5.5326 -0.0577 

   Average -0.0034 
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Table A 5: Certainty Equivalent for each portfolio – S-shaped utility function (part 1) 

𝐴 𝐵 𝛾1 𝛾2 𝑧 𝐶𝐸𝐸𝑉𝑎𝑅  𝐶𝐸𝑀𝑉 ∆𝐶𝐸 

1.5 1.5 0.50 0.50 0.000 0.4124 0.4260 -0.0136 

1.7 1.3 0.50 0.50 0.000 0.2720 0.2882 -0.0162 

1.9 1.1 0.50 0.50 0.000 0.1275 0.1435 -0.0160 

2.1 0.9 0.50 0.50 0.000 0.0143 0.0227 -0.0084 

2.3 0.7 0.50 0.50 0.000 -0.0060 -0.0040 -0.0020 

2.5 0.5 0.50 0.50 0.000 -0.0343 -0.0291 -0.0052 

2.7 0.3 0.50 0.50 0.000 -0.0768 -0.0687 -0.0081 

2.9 0.1 0.50 0.50 0.000 -0.1270 -0.1163 -0.0107 
        

1.5 1.5 0.50 0.50 -0.025 0.4020 0.4263 -0.0243 

1.7 1.3 0.50 0.50 -0.025 0.2960 0.3223 -0.0263 

1.9 1.1 0.50 0.50 -0.025 0.1546 0.1835 -0.0289 

2.1 0.9 0.50 0.50 -0.025 -0.0432 -0.0109 -0.0323 

2.3 0.7 0.50 0.50 -0.025 -0.3385 -0.3015 -0.0370 

2.5 0.5 0.50 0.50 -0.025 -0.8225 -0.7792 -0.0433 

2.7 0.3 0.50 0.50 -0.025 -1.7135 -1.6666 -0.0469 

2.9 0.1 0.50 0.50 -0.025 -2.5016 -2.5014 -0.0002 
        

1.5 1.5 0.50 0.50 -0.050 0.6589 0.6565 0.0024 

1.7 1.3 0.50 0.50 -0.050 0.6220 0.6155 0.0066 

1.9 1.1 0.50 0.50 -0.050 0.5720 0.5598 0.0122 

2.1 0.9 0.50 0.50 -0.050 0.5000 0.4798 0.0202 

2.3 0.7 0.50 0.50 -0.050 0.3879 0.3553 0.0326 

2.5 0.5 0.50 0.50 -0.050 0.1890 0.1348 0.0542 

2.7 0.3 0.50 0.50 -0.050 -0.2606 -0.3617 0.1010 

2.9 0.1 0.50 0.50 -0.050 -2.2031 -2.4655 0.2625 
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Table A 6: Certainty Equivalent for each portfolio – S-shaped utility function (part 2) 

𝐴 𝐵 𝛾1 𝛾2 𝑧 𝐶𝐸𝐸𝑉𝑎𝑅  𝐶𝐸𝑀𝑉 ∆𝐶𝐸 

1.5 1.5 0.05 0.95 0.000 0.0000 0.0000 0.0000 

1.5 1.5 0.10 0.90 0.000 0.0000 0.0000 0.0000 

1.5 1.5 0.15 0.85 0.000 -0.0001 -0.0001 0.0000 

1.5 1.5 0.20 0.80 0.000 -0.0009 -0.0006 -0.0002 

1.5 1.5 0.25 0.75 0.000 -0.0018 -0.0014 -0.0004 

1.5 1.5 0.30 0.70 0.000 -0.0017 -0.0012 -0.0005 

1.5 1.5 0.35 0.65 0.000 -0.0003 -0.0001 -0.0001 

1.5 1.5 0.40 0.60 0.000 0.0787 0.0995 -0.0209 

1.5 1.5 0.45 0.55 0.000 0.2680 0.2876 -0.0196 
        

1.5 1.5 0.05 0.95 -0.025 -2.5000 -2.5000 0.0000 

1.5 1.5 0.10 0.90 -0.025 -2.4030 -2.1259 -0.2771 

1.5 1.5 0.15 0.85 -0.025 -1.5101 -1.3077 -0.2024 

1.5 1.5 0.20 0.80 -0.025 -0.8587 -0.7200 -0.1387 

1.5 1.5 0.25 0.75 -0.025 -0.3974 -0.3024 -0.0950 

1.5 1.5 0.30 0.70 -0.025 -0.0756 -0.0097 -0.0659 

1.5 1.5 0.35 0.65 -0.025 0.1429 0.1899 -0.0470 

1.5 1.5 0.40 0.60 -0.025 0.2841 0.3192 -0.0350 

1.5 1.5 0.45 0.55 -0.025 0.3663 0.3942 -0.0279 
        

1.5 1.5 0.05 0.95 -0.050 -0.6228 -0.6380 0.0151 

1.5 1.5 0.10 0.90 -0.050 -0.1561 -0.1802 0.0241 

1.5 1.5 0.15 0.85 -0.050 0.1620 0.1360 0.0260 

1.5 1.5 0.20 0.80 -0.050 0.3770 0.3527 0.0243 

1.5 1.5 0.25 0.75 -0.050 0.5188 0.4979 0.0209 

1.5 1.5 0.30 0.70 -0.050 0.6079 0.5911 0.0168 

1.5 1.5 0.35 0.65 -0.050 0.6584 0.6457 0.0127 

1.5 1.5 0.40 0.60 -0.050 0.6798 0.6709 0.0089 

1.5 1.5 0.45 0.55 -0.050 0.6786 0.6732 0.0054 

     
 Average -0.0118 

  


